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PARAMETRIZATION OF SCALE-INVARIANT
SELF-ADJOINT EXTENSIONS

OF SCALE-INVARIANT SYMMETRIC OPERATORS

MIRON B. BEKKER, MARTIN J. BOHNER, ALEXANDER P. UGOL′NIKOV,
AND HRISTO VOULOV

Abstract. On a Hilbert space H, we consider a symmetric scale-invariant operator
with equal defect numbers. It is assumed that the operator has at least one scale-
invariant self-adjoint extension in H. We prove that there is a one-to-one correspon-
dence between (generalized) resolvents of scale-invariant extensions and solutions of
some functional equation. Two examples of Dirac-type operators are considered.

1. Introduction

This article is a continuation of our previous investigation of scale-invariant symmetric
operators [4, 5, 7–10]. At first, we recall some definitions and previous results.

Definition 1. Let T be a densely defined operator on a Hilbert space H with domain
D(T ), and let q ∈ (0,∞) \ {1}. The operator T is said to be q-scale-invariant (s-i) (more
precisely, (q, Uq)-scale-invariant) provided there exists a unitary operator Uq on H such
that

1. UqD(T ) = D(T );
2. UqTf = qTUqf , f ∈ D(T ).

It is easily seen that if the operator T is closable, then its closure T̄ is also a q-s-i
operator. In [8, Lemma 1], it was shown that if T is a densely defined closed symmetric
operator with at least one defect number finite, then the first condition of Definition 1
can be replaced by the weaker condition UqD(T ) ⊂ D(T ).

In [4, 5], by using M. G. Krĕın’s method of the ‘real Cayley transform’ [18], it was
shown that a densely defined symmetric positive operator H (i.e., (Hf, f) ≥ 0 for all
f ∈ D(H)) which is q-s-i, always admits positive q-s-i self-adjoint extensions (with the
same Uq!). In particular, the so-called Friedrichs and Krĕın extensions (‘hard’ and ‘soft’
in terminology of M. G. Krĕın) are always q-s-i. Moreover, if the index of defect of the
operator H is (1, 1), then only these two extensions are q-s-i self-adjoint extensions of H.
This fact was announced in [23] and proved in [4]. In some situations, this fact allows
to find Friedrichs and Krĕın extensions directly from von Neumann formulas (see, for
example, [10]). The result [4, Theorem 3.11] also implicitly contains a parametrization
of all positive s-i self-adjoint extensions of a positive symmetric s-i operator H. This
parametrization is given in terms of solutions of some algebraic Ricatti equation.

An s-i symmetric operator which is not semi-bounded, generally speaking, does not
admit s-i self-adjoint extensions in the same space H. A corresponding example is given
in [8]. In order to consider s-i extensions in a larger Hilbert space H̃ ⊃ H, it is necessary
to modify Definition 1 as follows.
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Definition 2. Let H be a densely defined closed symmetric (q, Uq)-s-i operator on a
Hilbert space H, and let H̃ be its self-adjoint extension in a larger Hilbert space H̃. The
operator H̃ is called q-s-i self-adjoint extension of the operator H provided there exists
a unitary operator Ũq on H̃ such that H reduces Ũq, Ũq|H = Uq, and the operator H̃ is
(q, Ũq)-s-i.

The article [6] considered isometric operators V defined on a proper subspace D of a
Hilbert space H, which are unitarily equivalent to their Möbius transformation, that is,

UV = (aV + b̄I)(bV + āI)−1U,

where U is a unitary operator on H, a, b ∈ C, and the matrix g =

(
a b̄
b ā

)
satisfies the

condition
det g = 1, g∗Jg = J, where J = diag{1,−1}.

Such operators are called automorphic-invariant. In [6], among other results, it was
shown that if the defect numbers of the operator V are finite, then V admits a maximal
contractive automorphic invariant extension [6, Theorem 5.1] and a unitary extension in,
generally speaking, a larger Hilbert space H̃ ⊃ H [6, Corollary 5.3]. The article [6] also
contains parametrization of generalized resolvents of automorphic-invariant unitary ex-
tensions of V [6, Theorem 5.7]. Since the Cayley transform of a q-s-i symmetric operator
H is an automorphic-invariant isometry, where the transformation g is hyperbolic (hav-
ing two fixed points on the unit circle), the results of [6] immediately give the following
statement:

Let H be a closed symmetric densely defined q-s-i operator on a Hilbert space H with
finite defect numbers. Then H admits a self-adjoint or maximal dissipative q-s-i extension
H in H (i.e., Im(Hf, f) ≥ 0). These possibilities are not mutually exclusive if both defect
numbers of H are greater than or equal to 2. Consequently, such operator H always admits
at least one self-adjoint q-s-i extension H in a possibly larger Hilbert space H̃ ⊃ H.

The same result, using the same methods as in [6] (except the consideration of ex-
tensions in a larger space H̃), was recently published in [24]. Note that if the index of
defect of the operator H is (1, 1), then either H admits self-adjoint q-s-i extensions in H,
or it admits one maximal dissipative q-s-i extension in H, or all self-adjoint and maximal
dissipative extensions in H are q-s-i.

In this article, we consider a q-s-i symmetric operator H on a Hilbert space H and
assume that it has equal and finite defect numbers. Moreover, we assume that the
operatorH admits at least one q-s-i self-adjoint extension in H. Then we use M. G. Krĕın’s
formula [17], which parametrizes (generalized) resolvents of all self-adjoint extensions of
H. We show that there exists a one-to-one correspondence between the set of solutions
of some functional equation for parameterizing operator-valued function and the set of
(generalized) resolvents of q-s-i self-adjoint extensions of H. This material is contained
in Section 2. In Section 3, we illustrate our approach with two examples of Dirac-type
operators on L2(C2,R+). In particular, we give an explicit form of the above mentioned
functional equation. Those examples may be interesting in themselves.

The study of q-s-i operators is closely related to the study of pairs of operators A,B
that satisfy the formal algebraic relation

AB = qBA, q ∈ (0,∞) \ {1}.

The investigation of such pairs of operators is motivated by the development of the
theory of quantum groups and quantum algebras (see, for example, [15, 16, 29]) and, of
course, by the development of operator theory (see, for example, [25,26]). The article [27]
considered the case B = A∗, that is, AA∗ = qA∗A. The corresponding operator A is
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called q-normal. In [27], q-normal operators as well as some other classes of q-deformed
operators (q-quasinormal and q-hyponormal) were investigated.

In [12], the authors considered a one-parameter family {Us}, s ∈ S ⊂ R, of unitary
operators acting in some Hilbert space H and a linear operator A, A 6= 0 in H such that

UsA = p(s)AUs, s ∈ S,
where p is a real-valued function. In [12], such operators were called p(s)-homogeneous.
In a particular case, when S = Z, {Us} is a group, and p(s) = qs, s ∈ Z, one obtains
that a p-homogeneous operator is q-s-i in the sense of Definition 1.

2. Description of scale-invariant extensions

Let H be a densely defined closed prime symmetric operator in a Hilbert space H with
domain D(H). The assumption that H is a prime symmetric operator means that there
is no proper subspace H′ of H which reduces H such that H|H′ is self-adjoint. Suppose
that the defect numbers of the operator H are equal, and denote by

◦
H a fixed self-adjoint

extension of H in H. Denote by
◦
R (z) the resolvent of

◦
H. Also, put Mz = (H−zI)D(H)

and Nz̄ = M⊥z . For any z which belongs to the field of regularity of H, in particular, for
any nonreal z, the set Mz is a closed subspace of H. Following M. G. Krĕın [19], for any
nonreal z and ζ, we denote by Uzζ a bounded operator on H defined by

Uzζ = (
◦
H −zI)(

◦
H −ζI)−1 = I + (ζ − z)

◦
R (ζ).

The operator Uzζ possesses the following properties:
(a) UzζH = H; (b) U−1

zζ = Uζz; (c) U∗zζ = Uz̄ζ̄ ;
(d) UzζUζη = Uzη; (e) UzζMζ = Mz; (f) UzζNz = Nζ .

Let z0 with Im z0 6= 0 be fixed. Put N = Nz̄0 and call N a reference subspace.
With the subspace N, we associate a holomorphic operator-valued function Qz0(z) on N
defined by

(1) Qz0(z) = −iy0IN + (z − z̄0)PNUz̄0z|N, y0 = Im z0.

Here, PN is the orthogonal projection from H onto N. Using the properties of the
operators Uzζ , one may check that

(Qz0(z))∗ = Qz0(z̄) and Qz0(z)− (Qz0(z))∗ = (z − z̄)PNUz0zUz̄0z̄|N.
In particular, ImQz0(z) > 0 for Im z > 0.

Let H be an arbitrary self-adjoint extension of the operator H. Self-adjoint extensions
of H in the same space H are called canonical (orthogonal). We allow H to act in a
Hilbert space H̃ that contains H as a proper subspace. In such a case, we assume that
the self-adjoint extension H is minimal. The last condition means that

c. l.h.{E(∆)H : ∆ ∈ B(R)} = H̃,

where c. l.h. means closed linear hull (see [19]), B(R) is the σ-algebra of Borel sets of
R, and E is the resolution of identity associated with H. Let R(z) = P (H − zI)−1|H
be the (generalized) resolvent of H. Here, P is the orthogonal projection of H̃ onto H.
Formulas that describe those resolvents were proved by M. G. Krĕın [17] for the case of
finite defect numbers and by Sh. Saakyan [28] for the case of arbitrary defect numbers.

In order to formulate the Krĕın–Saakyan theorem (Theorem 1 below), we need the
notions of a proper and an improper RN-operator function. In our definition, we follow
[20, 21]. For a more modern terminology, we refer to [11]. For information about scalar
R-functions, we refer to [14], and regarding operator R-functions, to [30]. Let V (z)
be a function holomorphic in the upper half-plane C+ = {z ∈ C : Im z > 0}, whose
values are contractive operators on the Hilbert space N. Since we assume that our q-s-i
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operator has finite defect numbers, we consider only the case dimN < ∞. Using the
maximum principle, it is easily seen that the set F(V ) of all fixed vectors of V (z), i.e.,
{f : V (z)f = f}, does not depend on z and is given by

F(V ) = N	 (V (z)− IN)N.

Since F(V ) = F(V ∗), the subspace F(V ) reduces V (z). Denote by P̂ the orthogonal
projection onto (V (z)− IN)N. Evidently,

V (z) = V (z)P̂ + (IN − P̂ ) = P̂ V (z)P̂ + (IN − P̂ ) = V̂ (z) + (IN − P̂ ),

where V̂ (z) = P̂ V (z)P̂ is a contractive operator on N̂ = N	F(V ). If F(V ) = (0) (i.e., 1
does not belong to the spectrum of V (z)), then the operator-valued function τ given by

(2) τ(z) = i(IN + V (z))(IN − V (z))−1

is holomorphic in C+ and Im 〈τ(z)f, f〉 ≥ 0 for all f ∈ N. Such an operator-valued
function τ is called a proper RN-operator-valued function. If, however, F(V ) 6= (0), then
we define an improper RN-operator-valued function τ by the formal equality

(3) τ(z) = τ̂(z)P̂ +∞(IN − P̂ ),

where τ̂ is a proper RN̂-operator-valued function defined by (2) with N̂ and V̂ (z) instead
of N and V (z), respectively. All formulas that contain an improper operator-valued
function τ are understood in the sense that at first τ(z) is replaced by τn(z) = τ̂(z)P̂ +

n(IN− P̂ ) and then the limit is taken as n→∞. In particular, if B is an operator on N

such that the operator (P̂B|N̂+ τ̂(z))−1 exists, then (B+τ(z))−1 = P̂ (P̂B|N̂+ τ̂(z))−1P̂ .
An improper scalar-valued function assumes the value ∞ identically.

Theorem 1. There is a one-to-one correspondence between the set of all resolvents
(canonical and generalized) of the operator H and the set of all (proper and improper)
RN-operator-valued functions. This correspondence is established by the formula

(4) R(z) =
◦
R (z)− Uz̄0z [τz0(z) +Qz0(z)]

−1
PNUz0z,

where τz0(z) is an arbitrary (proper or improper) RN-function. Resolvents of canonical
self-adjoint extensions are obtained when τ is a constant self-adjoint operator in N.

Lemma 1. Let z0 and z′0 be two distinct nonreal points and N = Nz̄0 and N′ = Nz̄′0
be corresponding reference subspaces. Then the functions τz0(z) and τz′0(z) that corre-
spond to the same (generalized) resolvent according to the formula (4) are related by the
expression

(5) τz′0(z) = −Qz′0(z) + PN′Uz′0z0 [τz0(z) +Qz0(z)]Uz̄′0z̄0 |N′ .

Remark 1. It is clear that τz0 and τz′0 are both proper or both improper RN-operator-
valued functions and RN′ -operator-valued functions, respectively.

Remark 2. Formula (5) assumes that τz0 and τz′0 are both proper RN-operator-valued
functions and RN′ -operator-valued functions. If they are both improper functions, then
a formula similar to (5) is valid. We need to replace τz0 and τz′0 by τ̂z0 and τ̂z′0 , N and N′

by N̂ and N̂′, and Qz0 and Qz′0 by P̂ Q̂z0 |N̂ and P̂ ′Qz′0 |N′ , where P̂ and P̂ ′ are orthogonal
projections onto N and N′, respectively.

Proof of Lemma 1. Writing down the formula (4) for the same resolvent R(z) and two
reference subspaces N and N′, one obtains

Uz̄0z [τz0(z) +Qz0(z)]
−1
PNUz0z = Uz̄′0z

[
τz′0(z) +Qz′0(z)

]−1
PN′Uz′0z.
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Using properties of the operators Uzζ , we get

[τz0(z) +Qz0(z)]
−1
PN = Uz̄′0z̄0

[
τz′0(z) +Qz′0(z)

]−1
PN′Uz′0z0 .

The operators on both sides of the last expression annihilate Mz0 , and their ranges are
in N. Thus, they may be considered as operators on N. Therefore,

[τz0(z) +Qz0(z)]
−1

= Uz̄′0z̄0
[
τz′0(z) +Qz′0(z)

]−1
PN′Uz′0z0 |N,

i.e., [
τz′0(z) +Qz′0(z)

]
Uz̄0z̄′0 = PN′Uz′0z0 |N [τz0(z) +Qz0(z)] .

Consequently,

τz′0(z) +Qz′0(z) = PN′Uz′0z0 [τz0(z) +Qz0(z)]Uz̄′0z̄0 |N′ ,

proving (5). �

Theorem 2. Let H be a q-s-i densely defined closed symmetric operator in a Hilbert
space H, and let H be its self-adjoint extension in a possibly larger Hilbert space H̃ ⊃ H.
The extension H is q-s-i if and only if its (generalized) resolvent R(z) = P (H− zI)−1|H,
where P as before is the orthogonal projection of H̃ onto H, satisfies the relation

(6) UqR(z) =
1

q
R(z/q)Uq.

Proof. Since for the extension H in H the statement is clear, we will prove it only for the
extension in H̃.

Suppose at first that H is a q-s-i extension in the sense of Definition 2. Since H reduces
Ũq and Ũq|H = Uq, we have UqP = PŨq. Therefore,

UqR(z) = UqP (H − zI)−1|H = PŨq(H − zI)−1|H

=
1

q
P (H − z/qI)−1Ũq|H

=
1

q
P (H − z/qI)−1|HUq =

1

q
R(z/q)Uq.

Suppose now that the generalized resolvent R(z) of the operator H satisfies (6), and
denote by F (λ) the spectral function of H. Recall that F (λ) = PE(λ)|H, where E(λ)

is the orthogonal resolution of identity of H in the Hilbert space H̃. Without loss of
generality, we may assume that H is a minimal self-adjoint extension of H in H̃. Then

R(z) =

∫ ∞
−∞

dF (λ)

λ− z

(convergence of the integral is understood in the sense of the weak operator topology).
From the last expression, using the Stieltjes inversion formula [3, Section 69], one obtains
that (6) is equivalent to the relation

UqF (δ)U∗q = F (δ/q)

for an arbitrary Borel set δ ⊂ R. Now, from a well-known theorem of M. A. Najmark
(see, for example, [1, Section 110]) and the minimality of H, it follows that orthogonal
resolutions of identities that correspond to F (λ) and F (λ/δ) are unitarily equivalent,
i.e., in a larger Hilbert space H̃, there exists a unitary operator Ũq, Ũq|H = Uq, such that
ŨqE(δ)Ũ∗q = E(δ/q). Therefore, for the canonical resolvent R̃(z) of the operator H, one

has ŨqR̃(z)Ũ∗q =
1

q
R̃(z/q), from which the statement follows. �
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Suppose that
◦
H is a q-s-i self-adjoint extension of a q-s-i symmetric operator H. Then

one has
UqMz = Mz/q, UqNz = Nz/q, UqUzζ = Uz/q ζ/qUq.

For the operator Qz0(z) defined by (1), one has

(7) UqQz0(z) = qQz0/q(z/q)Uq.

Indeed,

UqQz0(z) = −iy0UqIN + (z − z̄0)UqPNUz0z|N
= −iy0INz̄0/q

Uq + (z − z̄0)PNz̄0/q
Uz0/q z/q|Nz̄0/q

U

= qQz0/q(z/q)Uq.

Now (4) and Theorem 2 gives

UqR(z) =
1

q

◦
R (z/q)Uq

−1

q
Uz̄0/q z/q

[
τ̂z0/q(z/q) +Qz0/q(z/q)

]−1
PNz̄0/q

Uz0/q z/qUq

=
1

q
R̂(z/q)Uq,

where the RNz̄0/q
-function τ̂z0/q(z/q) is defined by the formula

(8) τ̂z0/q(z/q) =
1

q
Uqτz0(z)U∗q ,

and R̂(z/q) is the generalized resolvent of an another extension of H and the reference
subspace Nz̄0/q.

The resolvent R̂(z/q) coincides with R(z/q) if and only if the parameter τ̂z0/q(z/q)
coincides with τz0/q(z/q) given by the right-hand side of (5) with z′0 = z0/q and z/q
instead of z. Thus, we have obtained the following result.

Theorem 3. Let H be a densely defined closed q-s-i symmetric operator in a Hilbert
space H. Suppose that the operator H admits a q-scale-invariant self-adjoint extension
◦
H in the space H. A (generalized) resolvent R(z) is the resolvent of a q-s-i self-adjoint
extension of H if and only if the parameterizing operator function τz0(z) satisfies the
relation

(9)
1

q
Uqτz0(z)U∗q

= −Qz0/q(z/q) + PNz̄0/q
Uz0/q z0 [τz0(z/q) +Qz0(z/q)]Uz̄0/qz̄0 |Nz̄0/q

.

3. Dirac-type scale-invariant operators

In this section, we consider two examples of Dirac-type symmetric q-s-i operators, and
in both cases, we write down the corresponding realization of (9). For completeness, in
each case, we also provide formulas for canonical resolvents of self-adjoint extensions.

3.1. Symmetric operators generated by Hermitian matrix-valued functions.
In this subsection, we recall a general construction of a Dirac-type symmetric operator
associated with a 2 × 2 Hermitian matrix-valued function. This construction can be
found in many books (see, for example, [31]). Deficiency indices of operators and linear
relations associated with first-order linear matrix differential equations, in particular,
deficiency indices of the Dirac type operators, were studied in [22] (see also extensive list
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of references there). Let H (t), t > 0, be a 2 × 2 Hermitian (H ∗(t) = H (t)) matrix-
valued function (m.-f.) whose entries are measurable functions bounded on each compact
subset of (0,∞). Suppose also that

(10) lim
t→∞

H (t) = 0

componentwise or in norm. Thus, H (t) is bounded on [b,∞) for any b > 0.
Denote by D the differential expression defined by

(11) Dx = J
dx

dt
+ H (t)x, t > 0,

where x ∈ C2 and J is the 2× 2 symplectic matrix of the form

(12) J =

(
0 1
−1 0

)
.

Now we define an operator D0 in a Hilbert space H = L2(C2,R+) as follows. Its domain
D(D0) consists of C∞ vector-valued functions with values in C2 which have compact
support within R+. On such a function, the operator D0 is defined by

(13) D0x = Dx, x ∈ D(D0).

Therefore, D0 is densely defined. It is easily seen that

(D0x, y) = (x,D0y), x, y ∈ D(D0)

where (·, ·) denotes the inner product in H. Therefore, the operator D, which is the
closure of D0, is symmetric and possibly self-adjoint.

The domain D(D∗) of the operator D∗ = D∗0 consists of absolutely continuous func-
tions x ∈ H for which Dx ∈ H. Consequently, dx/dt ∈ L2(C2, [b,∞)) for any b > 0,
x ∈ D(D∗), from which it follows that for such x one has limt→∞ x(t) = 0. Now integra-
tion by parts yields the following description of the operator D:

The domain D(D) consists of functions x ∈ H such that
1. x is absolutely continuous;
2. Dx ∈ H;
3. lim

t→0+
〈Jx(t), y(t)〉 = 0 for any y ∈ D(D∗),

where 〈·, ·〉 is the inner product in C2. The operator D is defined by

(14) Dx = Dx, x ∈ D(D).

Suppose now that the matrix-valued function H satisfies the condition

(15) H (qt) = H (t)/q

where q > 1 is a fixed number. Clearly, lim
t→∞

H (t) = 0.
Matrix-valued functions H which satisfy (15) are closely related to periodic matrix-

valued functions. Indeed, consider an 2× 2 m.-f. H̃ (τ), τ ∈ R, defined by

(16) H̃ (τ) = eτH (eτ ).

Then H̃ (τ) is a Hermitian periodic m.-f., H̃ (τ+T ) = H̃ (τ), where T = ln q. Conversely,
any periodic matrix-valued function H̃ (τ), τ ∈ R, by means of (16), defines a matrix-
valued function H (t), t ∈ R+, which satisfies (15).

Denote by Uq a unitary operator on H defined as

(17) (Uqx)(t) =
1
√
q
x(t/q).

It is easily seen that

(18) (U∗q x)(t) =
√
qx(qt).
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It is also evident that UqD(D0) = D(D0) and UqD0x = qD0Uqx, x ∈ D(D0), that is, the
operator D0 is q-s-i (see Definition 1 above). Consequently, the operators D∗ and D are
also (q, Uq)-scale-invariant.

Let H be a densely defined closed symmetric operator on a Hilbert space H. Denote
by D(H) the domain of H and suppose that the index of defect of H is (1, 1). Also denote
by ϕ(z), Im z 6= 0, the normalized (‖ϕ(z)‖ = 1) defect vectors of H (H∗ϕ(z) = zϕ(z)).
Recall that according to von Neumann formulas (see, for example [3]), the domain D(H)
of an arbitrary self-adjoint extension Hρ of H in H is described by

(19) D(Hρ) = {f = f0 + ξ(ϕ(i) + ρϕ(−i)) : f0 ∈ D(H), ξ ∈ C, |ρ| = 1} ,

and for f ∈ D(Hρ),

(20) Hρf = Hf0 + iξ(ϕ(i)− ρϕ(−i)).

Later on we use the following theorem (see [8, Theorem 1, Remark 1, Remark 2]).

Theorem 4. Let H be a symmetric q-s-i operator in a Hilbert space H with inner product
(·, ·). Suppose that the index of defect of H is (1, 1). Using the notations above, define

(21)

A = (q + 1)(ϕ(−i/q), ϕ(−i)),
B = (q − 1)(ϕ(i/q), ϕ(−i)),
C = (q − 1)(ϕ(−i/q), ϕ(i)),

D = (q + 1)(ϕ(i/q), ϕ(i)),

and put

Γ(ρ) =
Aρ+ B
Cρ+D

.

Then the transformation ρ→ Γ(ρ) maps the unit circle onto itself and the interior of the
unit disk onto itself. Each fixed point ρ of the transformation Γ located on the unit circle
defines a q-s-i self-adjoint extension of the operator H in H according to (19) and (20).

Consequently, a q-s-i symmetric operator H with index of defect (1, 1) may have either
no self-adjoint q-s-i extensions in H, or one q-s-i extension, or two q-s-i extensions, or
each extension of H is q-s-i self-adjoint. In the last case, the transformation Γ is identity,
Γρ = ρ for all ρ such that |ρ| ≤ 1 (see Example 1 below). For examples of q-s-i symmetric
operators which do not admit any q-s-i extension in H or admit only one extension, we
refer to [8].

3.2. Example 1. We assume that the matrix-valued function H (t) is of the form

(22) H (t) =


γ

t
i
ϕ(ln(t))

t

−iϕ(ln(t))

t

γ

t

 ,

where γ ∈ R and ϕ is a periodic and bounded real-valued measurable function with
period T . Clearly, (15) is satisfied with q = eT .

Theorem 5. Let D be the operator in L2(C2,R+) defined by (14), where the matrix-
valued function H (t) is given by (22). Then, for any γ ∈ R, the operator D is symmetric
with index of defect (1, 1).

Proof. By direct calculations, one may check that linearly independent solutions of the
differential equation

Dx = zx, Im z 6= 0
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for H (t) given by (22) are

(23) x+
z (t) = eizte−iω(t)−iγ ln t

(
1
−i

)
and

(24) x−z (t) = e−izte−iω(t)+iγ ln t

(
1
i

)
,

where ω(t) =
∫ t

1
(ϕ(ln s)/s)ds. From (23) and (24), it follows that for Im z > 0, only

the vector x+
z belongs to L2(R+), while for Im z < 0, only the vector x−z is in L2(R+).

This proves the theorem and shows that x+
z and x−z are defect vectors of the operator

D. Moreover, ‖x+
z ‖ = ‖x−z ‖ = | Im z|−1/2. �

Proposition 1. The operator D is prime.

Proof. The statement that the operator D is prime is equivalent to the statement that

c. l.h.{Nz : Im z 6= 0} = H. Suppose that a vector g =

(
g1

g2

)
∈ H is orthogonal to x+

z for

all z ∈ C+ and x−z for all z ∈ C−, that is ,∫ ∞
0

eizte−iω(t)−iγ ln t(g1(t)− ig2(t))dt = 0 for all z ∈ C+

and ∫ ∞
0

e−izte−iω(t)+iγ ln t(g1(t) + ig2(t))dt = 0 for all z ∈ C−.

The integral on the left-hand side of the first expression is a function which is holo-
morphic in the upper half-plane C+ and which is the Fourier transform of the function
e−iω(t)−iγ ln t(g1(t) − ig2(t)) ∈ L2(R+). Therefore, according to the Paley–Wiener theo-
rem [13], the left-hand side of the first expression is an element of the Hardy space H2

+

in the upper half-plane. Since that function is equal to zero identically, one concludes
that g1(t) + ig2(t) = 0 a.e. on R+. Similar arguments applied to the second integral,
with replacing upper half-plane by the lower half-plane C−, yield g1(t)− ig2(t) = 0 a.e.
on R+. Thus g1(t) = 0 a.e. and g2(t) = 0 a.e., that is, g(t) = 0 a.e. This concludes the
proof. �

We use now Theorem 4. Calculating the coefficients A,B, C,D according to (21), one
obtains B = C = 0 and A = D. Therefore, the transformation Γ acts as identity, and we
obtain the following result.

Theorem 6. Let D be the operator in L2(C2,R+) defined by (14), where the m.-f. H (t)
is given by (22). Then all self-adjoint extensions of D in L2(C2,R+) are q-s-i.

We use now von Neumann formulas (19) and (20) and present the expression for
the resolvent Rρ(z) = (Hρ − zI)−1, where Hρ is a self-adjoint extension of D which
corresponds to a value ρ (|ρ| = 1) in those formulas. The cases Im z > 0 and Im z < 0
are considered separately. In the formulas below, g =

(
g1

g2

)
∈ L2(C2,R+) and f = Rρ(z)g.

In the case Im z > 0, we have

f(t) =
ξ

ρ
x+
z − x+

z

1

2i

∫ t

0

exp [iω(s) + iγ ln s− izs](g1 + ig2)ds

+ x−z
1

2i

∫ ∞
t

exp [iω(s)− iγ ln s+ izs](−g1 + ig2)ds,

where
ξ =

1

2i

∫ ∞
0

exp [iω(s)− iγ ln s+ izs](−g1 + ig2)ds
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and ω(s) =
∫ s

1
ψ(v)dv.

In the case Im z < 0, we have

f(t) = ρξx−z − x−z
1

2i

∫ t

0

exp [iω(s)− iγ ln s+ izs](−g1 + ig2)ds

+ x+
z

1

2i

∫ ∞
t

exp [iω(s) + iγ ln s− izs](g1 + ig2)ds,

where

ξ =
1

2i

∫ ∞
0

exp [iω(s) + iγ ln s− izs](g1 + ig2)ds.

Now we select the self-adjoint extension of D which corresponds to the value ρ = 1

in (19) and (20) and denote it by
◦
H. According to Theorem 6, the operator

◦
H is q-s-i.

Denote the corresponding resolvent by
◦
R (z). In particular, for ρ = 1, we have the

formulas

(25)
◦
R (z)x+

ζ =


x+
z − x+

ζ

z − ζ
, Im z > 0,

−
x−z + x+

ζ

z − ζ
, Im z < 0

and

(26)
◦
R (z)x−ζ =


−
x+
z + x−ζ
z − ζ

, Im z > 0,

x−z − x−ζ
z − ζ

, Im z < 0.

Since c. l.h.{Nζ : Im ζ 6= 0} = H and R(z̄) = R(z)∗, it is sufficient to evaluate R(z) only
on defect vectors and assume that Im z > 0. Applying (4), one obtains the following
statement.

Theorem 7. All resolvents of the operator D are given by the formulas

R(z)x+
ζ =

◦
R (z)x+

ζ =
x+
z − x+

ζ

z − ζ
and

R(z)x−ζ =
x+
z v(z)− x−ζ
z − ζ

,

where

v(z) =
i− τ(z)

i+ τ(z)

and τ(z) is an arbitrary scalar-valued R-function.

We now use Theorem 3 and obtain the following result.

Theorem 8. In Theorem 7, the resolvent R(z) corresponds to a q-s-i extension if and
only if the parameterizing function τ satisfies the relation

(27) τ(z/q) = τ(z), Im z > 0.

Since any real constant satisfies (27), we again obtained the statement of Theorem 6.
Equation (27) also has nonconstant solutions. For example, any function of the form

τ(z) = F (log z),
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where F (z) is a T -periodic scalar-valued R-function (F (z + T ) = F (z)), satisfies (27).
Therefore, the operator D has infinitely many scale-invariant extensions in larger Hilbert
spaces H̃ ⊃ H. Below we show how to construct a T -periodic R-function F . Let p(λ),
λ ∈ R, be a nonnegative measurable and bounded T -periodic function. Put

dσ(λ) =
p(λ)

1 + λ2
dλ.

Without loss of generality, we may assume that
∫
R dσ(λ) = 1. Then the function

F (z) =

∫ ∞
−∞

λz + 1

λ− z
dσ(λ)

is an R-function which is T -periodic.

3.3. Example 2. Now we assume that the matrix-valued function H (t) is given by

(28) H (t) =


γ

t
i
ϕ(ln(t))

t

−iϕ(ln(t))

t
−γ
t

 ,

where γ and ϕ satisfy the same condition as before.

Theorem 9. Let D be the operator in L2(C2,R+) defined by (14), where the matrix-
valued function H (t) is given by (28). Then the operator D is symmetric with index of
defect (1, 1) for |γ| < 1/2 and self-adjoint for |γ| ≥ 1/2.

Proof. Denote by W (t) a m.-f. defined by

(29) W (t) =

(
cosh (γ ln t) − sinh (γ ln t)
− sinh (γ ln t) cosh (γ ln t)

)
.

One may check that e
−i

t∫
1

ψ(s)ds
W (t) is the fundamental matrix for the differential equa-

tion
J

dy

dt
+ H (t)y = 0.

Since all entries ofW are in L2([0, b]) for any b > 0 if and only if |γ| < 1/2, the statement
follows (see, for example, [31]). �

It is also possible to give explicit formulas for the solution of the equation

J
dy

dt
+ H (t)y = zy, Im z 6= 0.

Those solutions are given by
y+
z (t) = W (t)κ+

z (t)

and
y−z (t) = W (t)κ−z (t),

where

κ+
z (t) =

tγ+1/2H
(1)
γ+1/2(zt) + t−γ+1/2H

(1)
γ−1/2(zt)

tγ+1/2H
(1)
γ+1/2(zt)− t−γ+1/2H

(1)
γ−1/2(zt)


and

κ−z =

tγ+1/2H
(2)
γ+1/2(zt) + t−γ+1/2H

(2)
γ−1/2(zt)

tγ+1/2H
(2)
γ+1/2(zt)− t−γ+1/2H

(2)
γ−1/2(zt)

 ,
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and H(1)
ν and H(2)

ν are Hankel functions of order ν of first and second kind respectively.
Explicitly,

y+
z = e−iω(t)t1/2

H(1)
γ+1/2(zt) +H

(1)
γ−1/2(zt)

H
(1)
γ+1/2(zt)−H(1)

γ−1/2(zt)


and

y+
z = e−iω(t)t1/2

H(2)
γ+1/2(zt) +H

(2)
γ−1/2(zt)

H
(2)
γ+1/2(zt)−H(2)

γ−1/2(zt)

 ,

where, as before, ω(t) =
∫ t

1
ψ(s)ds. Taking into account the asymptotic behavior of

Hankel functions (see, for example [1]), one obtains that for Im z > 0, only the vector y+
z

belongs to the space L2(C2,R+), while for Im z < 0, only the vector y−z is in L2(C2,R+),
that is, y+

z and y−z are defect vectors of the operator D.
Note thatW ∗(t) = W (t), W (t)W (s) = W (ts), and the vector-valued functions κ±z are

solutions of the differential equation

J
dκ

dt
= zW (t2)κ, t > 0.

For the solutions hz(t) of the last equation, one has

(λ− µ̄)

∫ b

a

〈W (t)hλ(t),W (t)hµ(t)〉dt

= 〈Jhλ(b), hµ(b)〉 − 〈Jhλ(a), hµ(a)〉.

Here, 〈·, ·〉 is the inner product in C2. From the previous expressions, it follows that for
the L2-norm of the defect vectors y±z , one has

(30) ‖y±z ‖2 = − 1

2i Im z
lim
t↓0
〈Jκ±z (t), κ±z (t)〉

because y±z (t)→ 0 as t→∞, and the same is true for κ±z (t).
Taking into account the asymptotic behavior of the functions H(i)

ν (ξ) (i = 1, 2) as
ξ → 0, one obtains

(31) ‖y+
z ‖2 =

4 cos [γ(π − 2α)]

π|z| Im z cosπγ
, Im z > 0, 0 < α < π,

where α = arg z. Similarly,

(32) ‖y−z ‖2 = −4 cos [γ(π + 2α)]

π|z| Im z cosπγ
, Im z < 0, −π < α < 0.

In particular, ‖y+
z ‖ = ‖y−z̄ ‖.

Remark 3. We consider the branch of the function ln z with the cut along the negative
real semi-axis.

It is possible to prove that the operator D is prime, in a way similar to that used in
the previous subsection. This time, it is necessary to use properties of Hankel transforms
instead of Fourier transforms. Regarding properties of Hankel transforms, we refer to [2,
Chapter 9].

Evaluating the coefficients A,B, C,D according to (21) and using the properties of
Hankel functions, one obtains the following result.

Theorem 10. Let D be the operator in L2(C2,R+) defined by (14), where the matrix-
valued function H (t) is given by (28). Then the operator D has two q-s-i self-adjoint
extensions in L2(C2,R+). They correspond to the values of the parameter ρ equal to
ρ1 = eiπ(γ−1/2) and ρ2 = −ρ1.
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Indeed, the linear fractional transformation ρ→ Γ(ρ) (see Theorem 4 above) has two
fixed points ρ1 = eiπ(γ−1/2) and ρ2 = −ρ1 on the unit circle.

As before, using von Neumann formulas (19) and (20), it is possible to give explicit ex-
pression for the resolvent of an arbitrary orthogonal self-adjoint extension of the operator
D. We consider only a q-s-i extension which corresponds to the value ρ = ρ1 = eiπ(γ−1/2).
We denote it by

◦
H, and the corresponding resolvent is denoted by

◦
R (z). For

◦
R (z), one

has

(33)
◦
R (z)y+

ζ =


1

z − ζ

(
z1/2−γ

ζ1/2−γ y
+
z − y+

ζ

)
, Im z > 0,

− 1

z − ζ

(
z1/2−γ

ζ1/2−γ y
−
z + y+

ζ

)
, Im z < 0

and

(34)
◦
R (z)y−ζ =


− 1

z − ζ

(
z1/2−γ

ζ1/2−γ y
+
z + y−ζ

)
, Im z > 0,

1

z − ζ

(
z1/2−γ

ζ1/2−γ y
−
z − y−ζ

)
, Im z < 0.

Theorem 11. Let D be the operator in L2(C2,R+) defined by (14), where the matrix-
valued function H (t) is given by (28). Then, (4) gives the resolvent of a q-s-i extension
if and only if the function τ satisfies the relation

(35) τ(z/q) = q2γτ(z), Im z 6= 0.

The proof of Theorem 11 is obtained by direct calculations using (9), (33), and (34).
From (35), it follows that that the only constant R-functions that satisfy that expres-

sion are the functions τ(z) ≡ 0 and τ(z) ≡ ∞. Therefore, we obtained the result from
Theorem 10: The operator D has only two q-s-i extensions in H.

Equation (35) has also nonconstant solutions. For example, any function of the form

τ(z) = Ci
eiπγ

z2γ
,

where C is an arbitrary positive real constant, is an R-function and satisfies (35). There-
fore, the operator D has infinitely many q-s-i extensions in larger Hilbert spaces H̃ ⊃ H.
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