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PLANARITY OF WHITNEY LEVELS

JORGE BUSTAMANTE, W LODZIMIERZ J. CHARATONIK, AND RAÚL ESCOBEDO

Communicated by Charles Hagopian

Abstract. First, we characterize all locally connected continua whose all

Whitney levels are planar. Second, we show by example that planarity is

not a (strong) Whitney reversible property. This answers a question from

Illanes-Nadler book [2].

1. Introduction

In this article we investigate planarity of Whitney levels of continua. First,

we prove that there are only four locally connected continua whose all Whitney

levels are planar. This shows in particular that planarity is a strong Whitney

reversible property in the class of locally connected continua. We show even

more: we characterize all locally connected continua whose small Whitney levels

are planar. There is infinitely many of them. We also show that in general (for

non-locally connected continua) this is not the case, precisely, there is a non-

planar continuum whose all Whitney levels are planar. This answers [2, Question

54.3].

Let us start establishing basic terms used in this article. A continuum is a

compact, connected metric space. A map (or mapping) is a continuous function.

Given a continuum X we denote by C(X) the hyperspace of all subcontinua of

X equipped with the Hausdorff metric ([5, (0.1) and (0.13)]). A Whitney map

for C(X) is a mapping ω : C(X) → [0,∞) such that, (1) if A ⊂ B and A ̸= B,

then ω(A) < ω(B); and (2) for each x ∈ X, ω({x}) = 0. Whitney maps exist

for the hyperspace of any continuum ([2, Section 13]). For each t ∈ [0, ω(X)], the
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preimage ω−1(t) is called a Whitney level. It is known that each Whitney level

is a continuum ([2, Theorem 19.9]). A topological property P is said to be:

- a Whitney property, provided that if a continuum X has property P, then

for each Whitney map ω : C(X) → [0,∞) and for each t ∈ [0, ω(X)),

ω−1(t) has property P ([2, 27.1 (a)]);

- a Whitney reversible property, provided that whenever X is a contin-

uum such that, for all Whitney maps ω : C(X) → [0,∞) and for all

t ∈ (0, ω(X)) we have that ω−1(t) has property P, then X has property

P ([2, 27.1 (b)]);

- a strong Whitney reversible property, provided that whenever X is a con-

tinuum such that, for some Whitney map ω : C(X) → [0,∞) and for all

t ∈ (0, ω(X)) we have that ω−1(t) has property P, then X has property

P ([2, 27.1 (c)]);

- a sequential strong Whitney reversible property, provided that whenever

X is a continuum such that, there is a Whitney map ω : C(X) → [0,∞)

and a sequence {tn : n ∈ N} in (0, ω(X)) such that lim tn = 0 and, for

each n ∈ N, ω−1(tn) has property P, thenX has property P ([2, 27.1 (d)]);

- a weak small Whitney property, provided that if a continuum X has

property P, then there is a Whitney map ω : C(X) → [0,∞) and a

number s ∈ (0, ω(X)) such that for each t ∈ [0, s), ω−1(t) has property P
([1, (0.9)]).

If ω : C(X) → [0,∞) is a Whitney map for a continuum X and P is a

topological property, we say that small Whitney levels have P if there is a positive

number r such that Whitney levels ω−1(t) have P for t ∈ (0, r).

A continuum X is said to be planar provided that X is homeomorphic to

a subcontinuum of the euclidean plane. A graph is a continuum which can be

written as the union of finitely many arcs any two of which are either disjoint or

intersect only in one or both of their end points. Given an integer n ≥ 3, a simple

n-od is a graph that is the union of n arcs having only one end point in common.

A simple 3-od is called a simple triod. An n-od is a continuum X for which there

is a subcontinuum Y such that X \ Y is the union of n sets mutually separated

in X (i.e., X \ Y = ∪n
i=1Ei, Ei ̸= ∅ and Ei ∩ Ej = ∅ whenever i ̸= j).
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Figure 1. Positive Whitney levels of a triod and of L.

2. Locally connected continua

In this section we investigate planarity of Whitney levels of locally connected

continua. We will characterize locally connected continua whose all positive Whit-

ney levels are planar (Theorem 2.1) as well as locally connected continua whose

small positive Whitney levels are planar (Theorem 2.2). As a consequence we will

conclude that being a planar locally connected continuum is a sequential strong

Whitney reversible property.

We start with a characterization of locally connected continua whose all Whit-

ney levels are planar. Let L be the one point union of a circle with an arc, where

the common point is an end point of the arc.

Theorem 2.1. The following conditions are equivalent for a locally connected

continuum X:

(1) for each Whitney map ω : C(X) → [0,∞) all Whitney levels of X are

planar;

(2) for some Whitney map ω : C(X) → [0,∞) all Whitney levels of X are

planar;

(3) X contains no 4-od;

(4) X is one of the following four graphs: an arc, a circle, a simple triod, or

the graph L.

Proof. The implication (1) =⇒ (2) is obvious, and (2) =⇒ (3) is a consequence

of the fact that some Whitney levels of a 4-od contain 3-cells, see [4, Corollary

3.3]. To show (3) =⇒ (4) observe that X contains at most one ramification point,

otherwise it would contain a continuum homeomorphic to the letter H, which is
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a 4-od. If X contains no ramification point, it is an arc or a circle, if it contains

one ramification point it is a triod (if it contains no simple closed curve), or it is

the continuum L, if it contains a simple closed curve.

To show that (4) =⇒ (1) it is enough to examine all possible Whitney levels of

the listed continua. Whitney levels of an arc are arcs, Whitney levels of a circle

are circles ([3, 6.4]), and positive Whitney levels of a triod and of the graph L are

pictured in Figure 1. The details are left to the reader. In every case all of the

Whitney levels are planar, so the proof is complete. �

Now let us investigate continua whose small Whitney levels are planar.

Theorem 2.2. Let X be a locally connected continuum. Then the following

conditions are equivalent:

(1) for each Whitney map ω : C(X) → [0,∞) small Whitney levels are planar;

(2) for some Whitney map ω : C(X) → [0,∞) small Whitney levels are

planar;

(3) for some Whitney map ω : C(X) → [0,∞) there is a sequence {tn}∞n=1

such that tn > 0, lim∞
n=1 tn = 0, and ω−1(tn) are planar;

(4) X is a planar graph containing no simple 4-od.

Proof. The implications (1) =⇒ (2) and (2) =⇒ (3) are obvious. To show

(3) =⇒ (4) suppose (3) and note that X contains no simple 4-od, because small

Whitney levels of a simple 4-od contain 3-cells (see [4, Corollary 3.3]). Suppose

that X contains infinitely many ramification points, and each ramification point is

of order 3. Then X contains an arc A such that ω(A) = tn for some n ∈ {1, 2, . . . }
and A contains at least two ramification points of X that are not end points of

A. Then ω−1(tn) contain a 3-cell, contrary to (3), therefore X may contain only

finitely many ramification points. A locally connected continuum with finitely

many ramification points, all of order 3, is a graph without a simple 4-od.

To prove (4) =⇒ (1), let X be a graph containing no simple 4-od. Define R to

be a finite subset of X containing all ramification points of X, all end points of

X and such that every simple closed curve in X contains at least two point of R.

Let r < min{ω(A) : A is a continuum containing at least two points of R}.
Then any subcontinuum P of X satisfying ω(P ) < r is either an arc or a simple

triod. Thus ω−1(t), for t < r is the union of Whitney levels of arcs ω−1(t)∩C(A),

where A is a minimal arc in X containing two points of R, and continua of the

form {P ∈ C(X) : ω(P ) = t and a ∈ P} for some a ∈ R. Whitney levels of arcs

are arcs ([3, 6.4]), and the later continua are either arcs (if a is an ordinary point),

or disks (if a is a point of order 3), so ω−1(t) is homeomorphic to the graph X
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Figure 2. A planar graph and its small Whitney level.

whose ramification points are replaced by disks (see Figure 2). If X is planar,

then ω−1(t) is planar as well. �

As a consequence of the equivalence of conditions (3) and (4) of Theorem 2.2

we get the following corollary.

Corollary 2.3. Planarity is a sequential strong Whitney property in the class of

locally connected continua.

Because local connectedness is a sequential strong Whitney reversible property

(see [5, Theorem 14.47]), we get the following corollary.

Corollary 2.4. Being a planar locally connected continuum is a sequential strong

Whitney property.

3. Non locally connected continua

The main aim of this section is to show an example of a non-planar continuum

whose all Whitney levels are planar. By Theorem 2.1 it cannot be locally con-

nected. This shows that the assumptions of local connectedness are necessary in

Theorems 2.2 and 2.1, that planarity is not a Whitney reversible property, that

answers [2, Question 54.3], and that a non-planarity is not a weak small Whitney

reversible property.

Theorem 3.1. There is a non-planar continuum, whose all positive Whitney

levels are planar. Consequently, planarity is not a Whitney reversible property,

and non-planarity is not a weak small Whitney property.

Proof. Let X be the continuum pictured in Figure 3. It is the union of a

sequence of circles Cn having a common center p, the spirals Sn approximating

Cn and Cn+1 respectively, and an arc A having p as its end point.
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Figure 3. The example.

Formally, define

Cn = { 1
2n−1 (cos t, sin t, 0) : t ∈ [0, 2π)} and

Sn = { r(t)
2n−1 (cos t, sin t, 0) : t ∈ (−∞,+∞)} where

r(t) = 3
4 + 1

2π arctan t for t ∈ (−∞,+∞)

and put

X =
∞∪

n=1

(Cn ∪ Sn) ∪ (0, 0, 0), (0, 0, 1).

The important feature is that the spirals Sn and Sn+1 approximate Cn+1 in

different directions; this makes the continuum X non-planar. Really, for any

potential embedding of X in the plane the spirals Sn and Sn+1 have to be in

different components of the complement R2 \ Cn+1.

First we show that all positive Whitney levels of X are planar. To this aim we

determine all positive Whitney levels of X. We need to consider two cases.

Case 1: t ≥ ω(Cn) for all n ∈ {1, 2, . . . }. If we shrink all circles Cn to dif-

ferent points, the quotient space is an arc, so let m : X → [0, 1] be a monotone

map whose nondegenerate preimages of points are the circles Cn only. Then the

mapping e : ω−1(t) → [0, 1] defined by e(P ) = the left end point of m(P ) is an

embedding, so ω−1(t) is an arc.

Case 2: 0 < t < ω(Cn) for some n ∈ {1, 2, . . . }. Denote by I the set of all

indices that satisfy ω(Ci) > t. Since ω(Ci) tends to zero, as i tends to infinity,

the set I is finite. Note that the continua Ci are terminal in X, so each element

E of ω−1(t) is either contained in some Ci or, if E ∩ Ci ̸= ∅, then Ci ⊂ E.
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Figure 4. A Whitney level of X.

Let m : X → Y be a map that shrinks every circle Ci, for i /∈ I, to a point.

We will show that ω−1(t) is homeomorphic to Y . Note that continuum Y is the

union of some finite number of circles m(Ci), for i ∈ I, and some spirals. A

continuum like that is pictured in Figure 4, they may be different by the number

of circles and possibly, if ω(C1) ≥ t, there may be an outer spiral approximating

the biggest circle. Clearly the Whitney levels are planar.

Define e : ω−1(t) → Y by the following conditions:

• if P ⊂ A, then e(P ) is the image under m of the lowest point of P ,

• if P ⊂ Ci for some i ∈ I, then e(P) is the image under m of the most

counterclockwise point of P ,

• in all other cases e(P ) is the image under m of the point of P ∩ (X \ A)

that is farthest away from the origin.

One can verify that e is one-to-one and continuous and that the image of ω−1(t)

under e is Y without an arc in the center, so it is homeomorphic to Y . �
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