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Abstract: In this paper, we obtain some new criteria for the oscillation of certain third-order difference equations using comparison
principles with a suitable couple of first-order differenceequations. The presented results improve and extend the earlier ones. Examples
are provided to illustrate the main results.

Keywords: Third-order delay difference equation, damping term, oscillation.

1 Introduction

Consider the third-order nonlinear delay difference
equation of the form

∆(an∆(bn(∆xn)
α))+ pn(∆xn+1)

α +qn f (xσ(n)) = 0,

n≥ n0,
(1)

wheren0 ∈ N is a fixed integer andα ≥ 1 is a quotient of
odd positive integers. Throughout this paper, we assume
that the following hypotheses hold:

(H1) {an}, {bn} and{qn} are real positive sequences for
all n≥ n0;

(H2) {pn} is a nonnegative real sequence for alln≥ n0;
(H3) {σ(n)} is a real nondecreasing sequence of integers

with

σ(n)≤ n and σ(n)→ ∞ as n→ ∞;

(H4) f : R→R is a continuous function such that

u f(u)> 0 and
f (u)

uβ ≥ M > 0 for all u 6= 0,

whereβ ≤ α is a ratio of odd positive integers.

By a solution of (1), we mean a nontrivial sequence{xn}
defined for alln ≥ n0 − σ(n0) that satisfies (1) for all

n ≥ n0. A solution of (1) is said to be oscillatory if it is
neither eventually positive nor eventually negative, and
nonoscillatory otherwise. A difference equation is called
nonoscillatory (oscillatory) if all its solutions are
nonoscillatory (oscillatory).

Oscillation problems for third-order difference
equations have been investigated in recent years, see, for
example, [2–6, 8–18] and the references contained
therein. However, compared to second-order difference
equations, the study of third-order difference equations
has received considerably less attention even though such
equations have applications in economics, mathematical
biology and other areas of mathematics [1,7].

The aim of this paper is to complement the very
recent studies [6,12,14,17] on asymptotic and oscillatory
properties of (1). The methods and arguments used in the
present paper are different than those in [6, 14, 17]. We
rely on the assumption that the related second-order
difference equation

∆(an∆zn)+
pn

bn+1
zn+1 = 0 (2)

is nonoscillatory, and we obtain that all solutions of (1) are
oscillatory.

It is interesting to note how the asymptotic behavior
of (1) changes when the middle term is inserted. As an
example, we consider the following difference equation
for demonstration.

∗ Corresponding author e-mail:bohner@mst.edu
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Example 1.The difference equation

∆3xn+3∆xn+1+
1
8

xn = 0

admits three oscillatory solutions. But the corresponding
equation without damping

∆3xn+
1
8

xn = 0

has one nonoscillatory solution and two oscillatory
solutions.

Because of the middle termpn(∆xn+1)
α , the problem

of nonexistence of a nonoscillatory solution{yn} with
yn∆yn < 0 seems to be crucial and challenging. We recall
the related existing result for the caseα = β = 1.

Lemma 1(see [6, Lemma 2.4]). Let {µn} be a positive
real sequence defined for n≥ n0 and set

φn = bn+2∆(an+1∆ µn)+ µnpn.

Furthermore, assume that

∆ µn ≥ 0, φn ≥ 0,

∆(bn+2∆(an+1∆ µn))≥ 0 (or ∆(µnpn)≤ 0)

for n≥ n0

and
∞

∑
n=n0

(kµnqn−∆φn) = ∞,

where
kµnqn−∆φn ≥ 0 for n≥ n0.

If ∑∞
n=n0

1
bn

= ∞ and {xn} is a nonoscillatory solution of
(1) which satisfies xn(an∆xn) ≤ 0 for n sufficiently large,
thenlimn→∞ xn = 0.

However, since the proof of Lemma1 uses the
summation by parts formula, it cannot be generalized for
α 6= 1. In this paper, we will take this problem into
account and use a different method to obtain oscillation
results for (1). On the other hand, in [14], the authors
offered a partial result for (1) in the sense that either every
solution{xn} of (1) is oscillatory or{an∆(bn(∆xn)

α)} is
oscillatory, and the oscillation of all solutions of (1) is left
as an interesting open problem.

In view of the above observations, in this paper, we
obtain sufficient conditions for the oscillation of all
solutions of (1) by using Riccati-type transformations and
comparison theorems.

2 Preliminary Results

As in [14], we define

L0(xn) = xn,

L1(xn) = bn((∆xn)
α),

L2(xn) = an∆(L1(xn)),

and

L3(xn) = ∆(L2(xn))

for all n≥ n0. With this notation, (1) can be rewritten as

L3(xn)+
pn

bn+1
L1(xn)+qn f (xσ(n)) = 0, n≥ n0. (3)

Following [14], we define the functions

R1(n,N) =
n−1

∑
s=N

1

b1/α
s

,

R2(n,N) =
n−1

∑
s=N

1
as
,

R3(n,N) =
n−1

∑
s=N

(

R2(s,N)

bs

)
1
α
,

and

R(σ(n),n) =
R3(σ(n),N)

R3(n+1,N)

for all n ≥ N ≥ n0. Throughout and without further
mentioning, it will be assumed that

R1(n,n0)→ ∞ and R2(n,n0)→ ∞ as n→ ∞.

All the functional inequalities considered in this paper are
assumed to hold eventually, that is, they are satisfied for all
n large enough.

In the sequel, we present several auxiliary results
which will be used to prove our main results.

Lemma 2. Let {zn} be a solution of(2) which is positive
for all n ≥ N. Then

∆zn > 0 (4)

and

∆
(

zn

R2(n,N)

)

≤ 0 (5)

for all n ≥ N.

Proof. Let {zn} be a solution of (2) with zn > 0 for all
n≥ N. Then∆(an∆zn)< 0 for all n≥ N, so that{an∆zn}
is decreasing forn ≥ N. First assume thataN1∆zN1 < 0
for someN1 ≥ N. Thenan∆zn ≤ aN1∆zN1 = c < 0 for all
n≥ N1, and thus

zn = zN1 +
n−1

∑
s=N1

∆zs ≤ zN1 + c
n−1

∑
s=N1

1
as

= zN1 − c
N1−1

∑
s=N

1
as

+ cR2(n,N)→ ∞ as n→ ∞,

a contradiction. Thus (4) holds. Next, letn≥ N. Then

zn ≥ zn− zN =
n−1

∑
s=N

1
as

as∆zs ≥ an∆znR2(n,N),

c© 2017 NSP
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and we see that

∆
(

zn

R2(n,N)

)

=
R2(n,N)∆zn− zn

1
an

R2(n+1,N)R2(n,N)
≤ 0.

Hence{zn/R2(n,N)} is nonincreasing for alln≥ N. This
completes the proof.

Lemma 3(see [17, Theorem 2.1]). Assume that{zn} is a
positive solution of(2) for n≥ n0. Then

∆(an∆(bn(∆xn)
α))+ pn(∆xn+1)

α

=
1

zn+1
∆
(

anznzn+1∆
(

bn

zn
(∆xn)

α
))

(6)

for all n ≥ n0.

If (2) is nonoscillatory, then a nontrivial solution{zn}
of (2) is called principal solution (unique up to a constant
multiple) provided

∞

∑
n=n0

1
anznzn+1

= ∞.

Since every eventually positive solution of (2) is
increasing, the principal solution of (2) satisfies

∞

∑
n=n0

1
anznzn+1

= ∞ and
∞

∑
n=n0

(

zn

bn

)1/α
= ∞. (7)

In the proofs of our theorems, an equivalent form of (1)
without damping term will be used repeatedly. This will
allow us to take into account the possible case ofL2(xn)
being oscillatory, which was missing in the previous
results.

Lemma 4(see [14, Lemma 2.1]). Suppose that(2) is
nonoscillatory. If{xn} is a nonoscillatory solution of(1)
for all n ≥ n0, then there exists an integer N≥ n0 such
that

xnL1(xn)> 0 (8)

or
xnL1(xn)< 0 (9)

for all n ≥ N.

Lemma 5. If {xn} is a nonoscillatory solution of(1) with
xnL1(xn)> 0 for all n ≥ N ≥ n0, then

xnL2(xn)≥ 0 and xnL3(xn)< 0

for all n ≥ N.

Proof. Let {xn} be a nonoscillatory solution of (1), say
xn > 0, xσ(n) > 0 andL1(xn) > 0, for all n ≥ N. By (3),
we see thatL3(xn) < 0 for all n≥ N, soL2(xn) is strictly

decreasing for alln ≥ N. Now assume that there exists
N1 ≥ N with L2(xN1)< 0. Then, forn≥ N1, we have

L1(xn) = L1(xN1)+
n−1

∑
s=N1

∆(L1(xs))

= L1(xN1)+
n−1

∑
s=N1

L2(xs)

as

≤ L1(xN1)+L2(xN1)R2(n,N1)→ ∞ as n→ ∞,

a contradiction. This completes the proof.

Lemma 6(see [14, Lemma 2.2]). Let {xn} be a
nonoscillatory solution of(1) with xnL1(xn) > 0 for all
n≥ N ≥ n0. Then

L1(xn)≥ R2(n,N)L2(xn), n≥ N (10)

and
xn ≥ R3(n,N)L1/α

2 (xn), n≥ N. (11)

Lemma 7. Let {xn} be a nonoscillatory solution of(1)
with xnL1(xn)> 0 for all n ≥ N ≥ n0. If, for every k> 0,

∞

∑
n=N

1
an

∞

∑
s=n

(

ps

bs+1
+ kqsR

β
1 (σ(s),N)

)

= ∞, (12)

thenlimn→∞ L1(xn) = ∞.

Proof. Let {xn} be a nonoscillatory solution of (1).
Without loss of generality, we may assumexn > 0,
xσ(n) > 0 andL1(xn) > 0 for all n ≥ N ≥ n0. Then, by
Lemma 5, L2(xn) ≥ 0 and L1(xn) is increasing, so
L1(xn)≥ L1(xN) = d > 0. Clearly,

xσ(n) ≥ d1/αR1(σ(n),N) for n≥ N.

Using both estimates in (3) and summing fromn to ∞, one
obtains

L2(xn)≥ d
∞

∑
s=n

ps

bs+1
+Mdβ/α

∞

∑
s=n

qsR
β
1 (σ(s),N).

Summing again the last inequality fromN to ∞, we obtain
the desired result using (12). This completes the proof.

Lemma 8. Assume (12) holds. Let {xn} be a
nonoscillatory solution of(1) with xnL1(xn) > 0 for all
n≥ N ≥ n0. Then there exists an integer N1 > N such that

xσ(n) ≥ R(σ(n),N)xn+1 for all n ≥ N1. (13)

Proof. Let {xn} be a nonoscillatory solution of (1), say
xn > 0, xσ(n) > 0 andL1(xn)> 0 for all n≥ N. From (10),
we have

∆
(

L1(xn)

R2(n,N)

)

=
R2(n,N)L2(xn)−L1(xn)

R2(n,N)R2(n+1,N)an
≤ 0

c© 2017 NSP
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for n ≥ N1. Thus,{ L1(xn)
R2(n,N)} is nonincreasing forn ≥ N1,

and, moreover, this fact yields

xn =xN +
n−1

∑
s=N

R1/α
2 (s,N)L1/α

1 (xs)

b1/α
s R1/α

2 (s,N)

≥
L1/α

1 (xn)

R1/α
2 (n,N)

n−1

∑
s=N

R1/α
2 (s,N)

b1/α
s

=
R3(n,N)L1/α

1 (xn)

R1/α
2 (n,N)

(14)

for n≥ N. Hence,

∆
(

xn

R3(n,N)

)

=
L1/α

1 (xn)R3(n,N)− xnR
1/α
2 (n,N)

b1/α
n R3(n,N)R3(n+1,N)

≤ 0

for n≥ N1, which implies that{ xn
R3(n,N)} is nonincreasing

for all n≥ N1. Thus, ifσ(n)≥ N1, then

xσ(n) ≥
R3(σ(n),N)

R3(n,N)
xn ≥ R(σ(n),N)xn+1

for n≥ N1. This completes the proof.

Lemma 9. Let {xn} be a nonoscillatory solution of(1)
with xnL1(xn)> 0 for all n ≥ N ≥ n0. If, for every k> 0,

∞

∑
n=N

(

ps

bs+1
R2(s,N)+ kqsR

β
3 (σ(s),N)

)

= ∞, (15)

thenlimn→∞
xn

R3(n,N) = 0.

Proof. Let {xn} be a nonoscillatory solution of (1).
Without loss of generality, we may assumexn > 0,
xσ(n) > 0 and L1(xn) > 0 for n ≥ N. By the discrete
L’Hôpital rule [1], it is easy to see that

lim
n→∞

xn

R3n,N
= lim

n→∞
L2(xn).

Assume to the contrary thatL2(xn) ≥ d > 0 for all n≥ N.
Summing (3) from N to n−1 and then using (10) and (11),
we find

L2(xn) ≥
n−1

∑
s=N

ps

bs+1
L1(xs)+

n−1

∑
s=N

qs f (xσ(n))

≥ d
n−1

∑
s=N

ps

bs+1
R2(s,N)+dβ/α

n−1

∑
s=N

qsR
β
3 (σ(s),N).

Letting n→ ∞, one obtains a contradiction with (15), and
sod = 0. This completes the proof.

3 Main Results

In this section, we present the main results of the paper.
We begin with the following lemma.

Lemma 10. Assume(2) is nonoscillatory. If

∞

∑
n=N

R1/α
2 (n,N)

b1/α
n

( ∞

∑
s=n

∑∞
t=sqt

asR2(s,N)

)1/α
= ∞, (16)

then any solution{xn} of (1) with xnL1(xn)< 0 converges
to zero as n→ ∞.

Proof. Assume to the contrary that{xn} is a nonoscillatory
solution of (1), sayxn > 0, xσ(n) > 0 andL1(xn) < 0 for
n≥ N ≥ n0, such that

lim
n→∞

xn = d ≥ 0.

Using(H4) and (6) in (1), we have

∆
(

anznzn+1∆
(

bn

zn
(∆xn)

α
))

+Mqnzn+1xβ
σ(n) ≤ 0 (17)

for n≥ N. Then, by [17], xn satisfies

∆xn < 0,

∆
(

bn

zn
(∆xn)

α
)

> 0,

∆
(

anznzn+1∆
(

bn

zn
(∆xn)

α
))

< 0

(18)

for all n≥N. Summing (17) from n to ∞ and usingxσ(n) ≥
d, we obtain

∆
(

bn

zn
(∆xn)

α
)

≥
Mdβ

anznzn+1

∞

∑
s=n

qszs+1. (19)

Since{zn} is increasing by (4), we have from (19) that

∆
(

bn

zn
(∆xn)

α
)

≥
d1

anzn

∞

∑
s=n

qs,

whered1 = Mdβ > 0. Summing the last inequality fromn
to ∞ and using (5) from Lemma2, we find

−(∆xn)
α ≥ d1

zn

bn

∞

∑
s=n

∑∞
t=sqt

aszs

≥ d1
R2(n,N)

bn

∞

∑
s=n

∑∞
t=sqt

asR2(s,N)
, n≥ N.

Finally, by summing the last inequality fromN to n−1,
we have

xN ≥ d1/α
1

n−1

∑
s=N

R1/α
2 (s,N)

b1/α
s

( ∞

∑
t=s

∑∞
j=t q j

atR2(t,N)

)1/α
.

Lettingn→∞, we obtain a contradiction with (16). Hence,
d = 0, and the proof is complete.

c© 2017 NSP
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Theorem 1. Assume that(2) is nonoscillatory. Suppose
conditions (12), (15), and (16) hold. If there exists a
constant c> 0 and a positive real sequence{ρn} such
that

lim
n→∞

sup
n−1

∑
s=N

[

MρsqsR
β (σ(s),N)−

αα

(α +1)α+1

Aα+1
s

Bα
s

]

= ∞, (20)

where, for n≥ N,

An =
∆ρn

ρn+1
−

ρn

ρn+1

pn

bn+1
R2(n,N)

and

Bn = βcβ/α−1 ρn

ρn+1

(

R2(n,N)

bnρn+1

)
1
α

Rβ/α−1
3 (n+1,N),

then every solution{xn} of (1) is either oscillatory or
converges to zero as n→ ∞.

Proof. Let {xn} be a nonoscillatory solution of (1) for all
n ≥ N. Without loss of generality, we may assume that
xn > 0 andxσ(n) > 0 for n ≥ N ≥ n0. From Lemma4, it
follows thatL1(xn)> 0 orL1(xn)< 0 for all n≥ N.

First, we assumeL1(xn) > 0 for n≥ N. By Lemma5,
L2(xn) ≥ 0 for n ≥ N. Using the estimate (13) in (3) and
(H4), we obtain

L3(xn)+
pn

bn+1
L1(xn)+MRβ (σ(n),N)qnxβ

n+1 ≤ 0 (21)

for all n≥ N1 ≥ N. Define

wn = ρn
L2(xn)

xβ
n

> 0 for n≥ N1. (22)

From (22), we have

∆wn = ρn
∆(L2(xn))

xβ
n+1

+
∆ρnL2(xn+1)

xβ
n+1

−
ρnL2(xn)

xβ
n xβ

n+1

∆xβ
n ,

and using (21) and (10), we obtain

∆wn ≤−MρnqnRβ (σ(n),N)+Anwn+1

−β
ρn

ρn+1
wn+1

∆xn

xn+1
. (23)

From the definition ofL1(xn) and (10), we obtain

∆xn =

(

L1(xn)

bn

)1/α
≥

(

R2(n,N)

bn

)1/α
L1/α

2 (xn).

Thus,

∆xn

xn+1
≥

(

R2(n,N)

bnρn+1

)1/α
w1/α

n+1xβ/α−1
n+1 ,

and the inequality (23) becomes

∆wn ≤−MρnqnRβ (σ(n),N)+Anwn+1

−β
ρn

ρn+1

(

R2(n,N)

bnρn+1

)1/α
w1/α

n+1xβ/α−1
n+1 . (24)

By Lemma9, it follows from (15) that

0<
xn+1

R3(n+1,N)
≤ L2(xN1) = c for all n≥ N.

Hence,

xβ/α−1
n+1 ≥ cβ/α−1(R3(n+1,N))β/α−1. (25)

Using (25) in (24), we obtain

∆wn ≤−MρnqnRβ (σ(n),N)+Anwn+1−Bnw1/α
n+1 (26)

for n≥ N1. Using the inequality

Cu−Du1+1/α ≤
αα

(α +1)α+1

Cα+1

Dα for D > 0,

we obtain from (26) that

∆wn ≤−MρnqnRβ (σ(n),N)+
αα

(α +1)α+1

Aα+1
n

Bα
n

holds for alln≥ N1. Summing the last inequality fromN1
to n, we get

n

∑
s=N1

(

MρsqsR
β (σ(s),N)−

αα

(α +1)α+1

Aα+1
s

Bα
s

)

≤ wN1,

which contradicts (20).
Next, assume thatL1(xn) < 0 for n ≥ N. By Lemma

10, (16) ensures that any solution of (1) tends to zero as
n→ ∞. This completes the proof.

Remark.Note that Lemma10 and Theorem1 extend the
results in [6].

In the following, we obtain sufficient conditions for the
oscillation of all solutions of (1).

Theorem 2. Assumeσ(n) < n for all n ≥ n0. Let the
hypotheses of Theorem1 hold except(16). If there exists a
constant c∗ > 0 such that

lim
n→∞

sup
n−1

∑
s=σ(n)

R1/α
2 (s,N)

b1/α
s

(

n−1

∑
t=s

∑n−1
j=t q j

atR2(t,N)

)1/α

= c∗,

(27)
then every solution of(1) is oscillatory.

c© 2017 NSP
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Proof. Assume to the contrary that{xn} is a nonoscillatory
solution of (1), sayxn > 0, xσ(n) > 0 andL1(xn) < 0 for
n≥ N ≥ n0. As in the proof of Lemma10, we obtain that
{xn} is a solution of (17) satisfying (18) for all n ≥ N.
Sinceα ≥ β , there exists an integerN1 ≥ N such that

xβ−α
σ(n) ≥ cβ−α (28)

for all n≥ N1 and everyc> 0. Using (28) in (17), we have

∆
(

anznzn+1∆
(

bn

zn
(∆xn)

α
))

+Mcβ−αqnzn+1xα
σ(n) ≤ 0,

(29)
n≥ N1. Summing (29) twice froms to n−1,n> s+1, one
obtains

−∆xs ≥ Mcβ−α
(

zs

bs

)1/α
(

n−1

∑
t=s

∑n−1
j=t q jzj+1xα

σ( j)

atztzt+1

)1/α

.

(30)
Using the property (5) of {zn}, the inequality (30) becomes

−∆xs ≥ Mcβ−α
(

R2(s,N)

bs

)1/α
(

n−1

∑
t=s

∑n−1
j=t q jxα

σ( j)

atR2(t,N)

)1/α

.

Summing the above inequality fromσ(n) to n− 1, we
obtain

xσ(n)

≥ Mcβ−αxσ(n)

n−1

∑
s=σ(n)

R1/α
2 (s,N)

b1/α
s

(

n−1

∑
t=s

∑n−1
j=t q j

atR2(t,N)

)1/α

,

which is a contradiction with (27). This completes the
proof.

Next, we present another condition in which the
function{pn} is directly included.

Theorem 3. Assume thatσ(n)< n for all n≥ n0. Let the
hypotheses of Theorem1 hold except(16). If there exists a
constant c∗ > 0 such that

lim
n→∞

sup







n−1

∑
s=σ(n)

1

b1/α
s

(

n−1

∑
t=s

1
at

n−1

∑
j=t

Q j

)1/α






> 1, (31)

where

Qn =

(

Mcβ−α
∗ qn−

pnR2(n,N)

bn+1Rα
3 (n,σ(n))

)

> 0, n≥ N1,

then every solution of(1) is oscillatory.

Proof. Assume to the contrary that{xn} is a nonoscillatory
solution of (1), sayxn > 0, xσ(n) > 0 andL1(xn) < 0 for
n≥ N ≥ n0. ConsiderL2(xn). The caseL2(xn) ≤ 0 cannot

hold for all n≥ N1 ≥ N since by summing this inequality,
we see that

∆xn =

(

L1(xn)

bn

)1/α
≤

(

L1(xN1)

bn

)1/α
, n≥ N1,

which contradicts the positivity of{xn}. Therefore, either
L2(xn) > 0 or L2(xn) changes sign for alln ≥ N1. From
the proof of Lemma10, we obtain that{xn} is a positive
solution of (17) satisfying (18) for all n≥ N. Now, fors≥
j ≥ N, we obtain

x j − xs=−
s−1

∑
t= j

(

zt

bt

)1/α(bt

zt
(∆xt)

α
)1/α

≥−∆xs

(

bs

zs

)1/α s−1

∑
t= j

(

zt

bt

)1/α

≥
−L1/α

1 (xs)

R1/α
2 (s,N)

s−1

∑
t= j

(

R2(t,N)

bt

)1/α

=
−L1/α

1 (xs)R3(s, j)

R1/α
2 (s,N)

.

(32)

Usings= n, j = σ(n) and−L1(xn)> 0 in (32), we obtain

xσ(n) ≥
R3(n,σ(n))

R1/α
2 (n,N)

(−L1/α
1 (xn)) for all n≥ N,

i.e.,

L1(xn)≥
−R2(n,N)

Rα
3 (n,σ(n))

xα
σ(n).

Using this inequality in (3), we obtain

−L3(xn)≥

(

Mqnxβ−α
σ(n) −

pnR2(n,N)

bn+1Rα
3 (n,σ(n))

)

xα
σ(n),

n≥ N. Since{xn} is decreasing andα ≥ β , there exists an
integerN1 ≥ N such that

xβ−α
σ(n) ≥ cβ−α (33)

for everyc> 0 and for alln≥ N1. Thus, we have

−L3(xn)≥

(

Mcβ−αqn−
pnR2(n,N)

bn+1Rα
3 (n,σ(n))

)

xα
σ(n)

=Qnxα
σ(n) > 0 for n≥ N1.

(34)

Hence,L3(xn)< 0, and similarly as in the proof of Lemma
5, we see thatL2(xn) ≥ 0 for all n ≥ N1. Summing (34)
from s to n−1,n> s+1, we obtain

L2(xs)≥
n−1

∑
t=s

Qtx
α
σ(t).

Summing again froms to n−1, we get

−L1/α
1 (xs)≥

(

n−1

∑
t=s

1
at

n−1

∑
j=t

Q jx
α
σ( j)

)1/α

.
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Finally, summing the last inequality formσ(n) to n− 1,
we find

xσ(n) ≥ xσ(n)

n−1

∑
s=σ(n)

1

b1/α

(

n−1

∑
t=s

1
at

n−1

∑
j=t

Q j

)1/α

,

which in view (31) results in contradiction. This completes
the proof.

From the above theorems, we obtain the following
corollary.

Corollary 1. Assume thatσ(n)< n for all n≥ n0. Let the
hypotheses of Theorem1 hold except(16). If there exists
a constant c∗ > 0 such that(27) or (31) holds, then every
solution of (1) is oscillatory.

Remark.The condition (31) slightly differs from the one
used in [14] but this correctly takes into account the class
of nonoscillatory solutions such thatxnL2(xn) is
oscillatory.

4 Examples

In this section, we provide two examples to illustrate the
importance of the main results.

Example 2. Consider the third-order delay difference
equation of the form

∆3xn +
1

6n2 ∆xn+1 +

(

1−
1

6n2

)

xn−3 = 0, n ∈ N.

(35)

Note that ∆2zn + 1
5n2 zn+1 = 0 is nonoscillatory

by [2, Theorem 1.14]. Here,R1(n,1) ∽ n, R2(n,1) ∽ n,

R3(n,1) ∽ n2

2 . By a simple calculation, we can show that
all conditions of Theorem1 are satisfied. Hence, every
solution of (35) is oscillatory. In fact,{xn} = {cosnπ

3 } is
one such solution of (35). We believe that the conclusion
is not deducible from the oscillation criteria in [6, 14,17]
or other known results.

Example 3.Consider the difference equation

∆2(n1/4(∆xn)
1/3)+

3

16n7/4
(∆xn+1)

1/3

+
10

n25/12
x1/3

n−2 = 0, n∈ N. (36)

Here,an= 1,bn =n1/4, pn =
3

16n7/4 , qn=
10

n25/12 , α = β = 1
3

andσ(n) = n−2. By a simple calculation, one can show
that all conditions of Theorem2 are satisfied. Hence, every
solution of (36) is oscillatory. Again, it is not possible that
the conclusion is deducible from the results in [6,14,17].

5 Conclusion

The results presented in this paper are new and of high
degree of generality. From the results in [6, 12, 15, 16],
one can conclude that every solution of (1) is either
oscillatory or tends to zero asn → ∞ whenα = β = 1.
Further, from the results obtained in [14], one can
conclude that every solution{xn} of (1) is either
oscillatory or {L2(xn)} is oscillatory. Also note that to
apply the results in [17], one should know explicitly at
least one nonoscillatory solution of (2), but that is not
required in this paper. Therefore, the results presented in
this paper improve and complement those
in [5,6,8,9,11–18].

It might be also interesting to extend the results of this
paper to higher-order difference equation of the form

∆(an∆(bn(∆m−2xn)
α))

+ pn(∆m−2xn+1)
α +qn f (xσ(n)) = 0,

wherem∈N is odd. This would be left to further research.

References

[1] Ravi P. Agarwal. Difference equations and inequalities,
volume 228 ofMonographs and Textbooks in Pure and
Applied Mathematics. Marcel Dekker, Inc., New York,
second edition, 2000. Theory, methods, and applications.

[2] Ravi P. Agarwal, Martin Bohner, Said R. Grace, and Donal
O’Regan. Discrete oscillation theory. Hindawi Publishing
Corporation, New York, 2005.

[3] Ravi P. Agarwal, Martin Bohner, Tongxing Li, and
Chenghui Zhang. Hille and Nehari type criteria for third-
order delay dynamic equations.J. Difference Equ. Appl.,
19(10):1563–1579, 2013.

[4] Ravi P. Agarwal, Martin Bohner, Tongxing Li, and
Chenghui Zhang. A Philos-type theorem for third-
order nonlinear retarded dynamic equations.Appl. Math.
Comput., 249:527–531, 2014.

[5] Ravi P. Agarwal, Said R. Grace, and Donal O’Regan. On the
oscillation of certain third-order difference equations.Adv.
Difference Equ., (3):345–367, 2005.

[6] Mustafa Fahri Aktaş, Aydın Tiryaki, and Ağacık Zafer.
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