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Abstract: In this paper, we obtain some new criteria for the oscillat certain third-order difference equations using corigoar
principles with a suitable couple of first-order differemepiations. The presented results improve and extend tlier @mes. Examples
are provided to illustrate the main results.
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1 Introduction n > ng. A solution of (1) is said to be oscillatory if it is
neither eventually positive nor eventually negative, and
Consider the third-order nonlinear delay difference nonoscillatory otherwise. A difference equation is called

equation of the form nonoscillatory (oscillatory) if all its solutions are
nonoscillatory (oscillatory).
A(anA (bn(A%1)")) + pn(AX%n 1) +0n f (Xgm)) =0, Oscillation problems for third-order difference
n>no, equations have been investigated in recent years, see, for

(1) example, -6, 8-18] and the references contained
whereno € N is a fixed integer and > 1 is a quotient of ~ therein. However, compared to second-order difference
odd positive integers. Throughout this paper, we assum&guations, the study of third-order difference equations
that the following hypotheses hold: has received considerably less attention even though such

equations have applications in economics, mathematical
(H1) {an}, {bn} and{qgn} are real positive sequences for pjology and other areas of mathematits7].

alln> no; _ The aim of this paper is to complement the very
(Hz2) {pn} is a nonnegative real sequence foralt no; recent studiesd, 12, 14, 17] on asymptotic and oscillatory
(Hs) {o(n)} is a real nondecreasing sequence of integergroperties of {). The methods and arguments used in the
with present paper are different than those 6n1{4, 17]. We
rely on the assumption that the related second-order
o(n)<n and o(n)—c as n-—o; difference equation
(Hs) f:R — Ris a continuous function such that A(anAz0) + bp” Zni1=0 )
n+1
uf(u)>0 and Lg) >M>0 forall u#o0, is npnoscillatory, and we obtain that all solutions Hfdre
u oscillatory.

It is interesting to note how the asymptotic behavior
of (1) changes when the middle term is inserted. As an
By a solution of ), we mean a nontrivial sequen¢®, } example, we consider the following difference equation
defined for alln > ng — o(ng) that satisfies 4) for all for demonstration.

wheref3 < a is a ratio of odd positive integers.
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Example 1.The difference equation

1
A3 + 30Xy 1+ g% = 0

and

L3(Xn) = A(L2(Xn))

admits three oscillatory solutions. But the correspondingfor all n > no. With this notation, {) can be rewritten as

equation without damping

1
A3Xn + éXn - 0

has one nonoscillatory solution and two oscillatory
solutions.

Because of the middle terpn(Ax,.1)%, the problem
of nonexistence of a nonoscillatory solutidiy,} with
Ynlyn < 0 seems to be crucial and challenging. We recall
the related existing result for the case= 3 = 1.

Lemma 1(see [6, Lemma 2.4]). Let{un} be a positive
real sequence defined forxhny and set

¢h = bni2A(ant14A n) + Unpn.
Furthermore, assume that

AUnZQ %207

A(bn 24 (an14AUn)) >0 (or A(pnpn) < 0)
for n>ng

and

[ee]

> (KinGn—Agn) = o,

N=nNg
where
KtnGn —Agh >0 for
If 3 hn, b—ln = o and {x,} is a nonoscillatory solution of

(1) which satisfies ((anAxn) < 0 for n sufficiently large,
thenlimp o Xy = 0.

n>no.

However, since the proof of Lemma uses the

Pn

Ls (Xn) + m

Ll(Xn) + qnf (Xg(n)) =0, n>np (3)

Following [14], we define the functions

n-1

Ri(n,N) = s;bé%
Re(n.N) = :ai
Rs(n.N) =s§;(@)
and
o= She

for all n > N > ng. Throughout and without further
mentioning, it will be assumed that

Ri(n,ng) — 0 and Rp(n,ng) — o as n-—co.

All the functional inequalities considered in this pape ar
assumed to hold eventually, that is, they are satisfied for al
n large enough.

In the sequel, we present several auxiliary results
which will be used to prove our main results.

Lemma?2. Let{z,} be a solution of(2) which is positive
foralln > N. Then

summation by parts formula, it cannot be generalized for

o # 1. In this paper, we will take this problem into

account and use a different method to obtain oscillation

results for ¢). On the other hand, inl1{], the authors
offered a partial result forl] in the sense that either every
solution{xn} of (1) is oscillatory or{a,A(bn(Ax,)%)} is
oscillatory, and the oscillation of all solutions df) (s left
as an interesting open problem.

In view of the above observations, in this paper, we
obtain sufficient conditions for the oscillation of all
solutions of () by using Riccati-type transformations and
comparison theorems.

2 Preliminary Results
As in [14], we define

LO(Xn) = Xn,
L1(%n) = bn((Axn)9),
L2(Xn) = and (L1 (Xn)),

Az, >0 (4)
and
Zn
2 < ®

foralln > N.

Proof. Let {z,} be a solution of Z) with z, > 0 for all
n>N. ThenA(an,Az,) < 0 for alln> N, so that{apAz,}
is decreasing fon > N. First assume thaty,Azy, < 0
for someN; > N. ThenanAz, < an,Azy, = ¢ < O for all
n> N, and thus

n-1
Zn =2y + %Azsgle‘FC
S=Ng

n-1
S=Njp as
Np—1

:ZNl_CZV_—FCRZ(n’N)_)OO as n— oo,
<N 8

a contradiction. Thus4j holds. Next, len > N. Then

n-1
1
h=Zh—2n= ) —alZs>andzaRe(n,N),
N8

(@© 2017 NSP
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decreasing for alh > N. Now assume that there exists
N; > N with Ly(xn, ) < 0. Then, fom > Ny, we have

and we see that

Zn _ RZ(nvN)AZn_zn% <0
RZ(nvN) RZ(n+1aN)R2(n7N) -

n—-1
L1(Xn) = La(xn,) + % A(L1(xs))

Hence{z,/Rx(n,N)} is nonincreasing for alh > N. This 1
completes the proof. La(Xs)

ds

= Ll(XN1)+
. s=Np
Lemma 3(see[17, Theorem 2.1]). Assume thaf{z,} is a < L1(y) + La0t JRo(N,Ny) = 00 @S n—s oo,

positive solution o0f2) for n > ng. Then
a contradiction. This completes the proof.
A(anA (bn(8%)?)) + Pn(A%ns+1)®
1 by Lemma'6(see [14, Lemma 2.2]). Let {x} be a
= Zn—+1A (anznzn+1A (Z(Axn)“)> (6)  nonoscillatory solution of(1) with x,L1(x) > O for all

n> N > ng. Then

foralln > no. L1(¥) > Ro(n,N)Lo(xy), n>N (10)
If (2) is nonoscillatory, then a nontrivial solutidiz, } and
of (2) is called principal solution (unique up to a constant Xn > Ra(N N)Ll/a(x ), n>N (11)
n — ’ 2 njs = ¥

multiple) provided

Lemma?. Let {xn} be a nonoscillatory solution ofl)
— o0, with X,L1(Xy) > Ofor alln > N > ng. If, for every k> 0,

Zwamn( P kaRl(o ))=oo,

thenlimp e L1(Xn) =

Proof. Let {xn} be a nonoscillatory solution ofl}.
Without loss of generality, we may assumxg > O,
In the proofs of our theorems, an equivalent form bf ( Xo(m) > 0 @andLi(x,) > 0 for all n > N > no. Then, by
without damping term will be used repeatedly. This will Lemma 5, La(x,) > 0 and Li(xn) is increasing, so
allow us to take into account the possible casexk,)  L1(Xn) =Li(xn) =d > 0. Clearly,

being oscillatory, which was missing in the previous

i 1
n=ng anzr12n+1

Since every eventually positive solution of)( is (12)

increasing, the principal solution a2)(satisfies

o 1/a
=o and z(bﬁ> =o. (7)

i 1
n=ng anzr12n+1

results.

Lemma4(see [14, Lemma 2.1]). Suppose thaf2) is
nonoscillatory. If{xn} is a nonoscillatory solution of1)
for all n > ng, then there exists an integer X ng such
that

XnL1(Xn) > 0 (8)

or
XnL1(Xn) < O 9)

foralln > N.

Lemmab. If {x,} is a nonoscillatory solution of1) with
XnL1(Xn) > Oforalln > N > ng, then

XnLk2(Xn) >0 and xLs(xp) <O
foralln > N.
Proof. Let {x,} be a nonoscillatory solution ofl), say

Xn > 0, Xg(n) > 0 andLy(x,) > 0, for all n > N. By (3),
we see that3(xn) < 0 for alln > N, soL(X,) is strictly

Xo(n = YRy (o(n),N) for n>N.

Using both estimates ir8f and summing fronm to o, one
obtains

[oe]
) >
X“*SZ

Summing again the last inequality fraxhto c, we obtain
the desired result usind ). This completes the proof.

+ MdP/@ i 4R (a(s),N).

bs+ 1

Lemma8. Assume (12) holds. Let {x,} be a
nonoscillatory solution of(1) with x,L1(xn) > O for all
n> N > ng. Then there exists an integef ¥ N such that

Xo(n) = R(G(N),N)Xns1 forall n>Nj. (13)
Proof. Let {x,} be a nonoscillatory solution ofl}, say
Xn > 0, Xg(n) > 0 andLy(x,) > 0 for alln > N. From (L0),
we have

A L1(Xn) _ Ra2(n,N)L2(Xn) — L1(Xn)

RZ(na N)

<0
RZ(n7 N)Rz(ﬂ—f— 17 N)an o

(@© 2017 NSP
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for n > Nj. Thus,
and, moreover, thls fact ylelds

1/0{ 1/a
(s,N)L7" " (%)
Xn—XN't-Zw bl/aRl/a N
LY/ (%) "t Ré”’(s,N)
“RY(n,N) Zw 2
~ Re(n,N)LY (xn)
1/a(n N)

(14)

for n > N. Hence,

) ( Xn ) L (%)Ra(n,N) — xRy (n,N)
- 1/a
Ra(n,N) n “Ra(n,N)Rs(n+1,N)

<0

for n > Ny, which implies that{R } is nonincreasing
foralln > Nj. Thus, ifo(n) > Ny, then

Rs(a(n),N)
Xo(n) 2 W

for n> Nj. This completes the proof.

X > R(0(n),N)Xn11

Lemma9. Let {x,} be a nonoscillatory solution of1)
with x,L1(Xn) > O for alln > N > ng. If, for every k> 0,

fN (bps Ro(s,N) + kasRE (0 (s)
n= s+1

N)) —w,  (15)

thenlimp_ % =0.

n,N)
Proof. Let {x,} be a nonoscillatory solution of1).
Without loss of generality, we may assunxg > O,
Xy > 0 andLi(x,) > 0 for n > N. By the discrete
L'Hopital rule [1], it is easy to see that

lim
n—oo R3n

= lim La(x,).

Assume to the contrary thab(xn) > d > 0 for alln > N.
Summing 8) from N ton— 1 and then usingl(Q) and (1),
we find

Ps n-1
> Zw b—Ll(Xs) + Z\Jqu(XG(M)
>d Z\t +dP/a §Nqs

Letting n — o, one obtains a contradiction with%), and
sod = 0. This completes the proof.

(8);N).

3 Main Results

Lemma 10. Assumé2) is nonoscillatory. If

S RN (& sEa Vg
nZN %/O’ asRa(s,N) ’

s=n

then any solutiofx,} of (1) with x;,L1(X,) < O converges
to zero as n— o,

Proof. Assume to the contrary théx, } is a nonoscillatory
solution of (1), sayx, > 0, Xg(n) > 0 andL;(x,) < O for
n> N > ng, such that

lim x,=d > 0.
N—o00

Using (H4) and @) in (1), we have

b
A (anznanA <£(4Xn)a>> + MQnZnJrlXB <0 (17)

forn> N. Then, by 7], x, satisfies

Axn < 0,
bn
A —(Ax)% ) >0,
Zn

A (anznanA (%(AXn)“» <0

(18)

foralln>N. Summing {7) fromnto o and usingy(n) >
d, we obtain

B
A (%(Axn)“> > Md
Zy anZnZni1 &

Z OsZst-1- (19)

Since{z,} is increasing by4), we have from 19) that

bn ) dj_
Al =(Ax)% ) > —
()= 25

z an
s=n

whered; = MdP > 0. Summing the last inequality from
to co and using %) from Lemma2, we find

Zn o Yiesh
—(AX))? > dp— § £
(Axa)" 2 1bn gn asZs

RZ(n N) Zi” st
n> N.
bn SZH ast(S N) -

> dp

Finally, by summing the last inequality froM to n—1,
we have

> o5 RN (Z 3749 )1/"
S;\J %/a t=satR2(t7N) .

In this section, we present the main results of the paper-ettingn — c, we obtain a contradiction witfiig). Hence,

We begin with the following lemma.

d=0, and the proof is complete.

(@© 2017 NSP
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Theorem 1. Assume thaf2) is nonoscillatory. Suppose
conditions (12), (15), and (16) hold. If there exists a
constant c> 0 and a positive real sequendgn} such
that

- n—1 ﬁ aC{ Ag+l
rllmosups; [Mpsqu (0(8):N) = G a1 B
— @, (20)
where, for n> N,
A
A, = Pn Pn Pn Ro(n,N)

Pnsl Pnsl bnga

and

Bn — BCB/C{*lﬂ
Pn+1

1
Rz(n,N)>" Ja—1
= 7 n-+1,N),
< PnPnt1 Rg ( )

then every solutioxn} of (1) is either oscillatory or
converges to zero as-f .

Proof. Let {xn} be a nonoscillatory solution ol for all

n > N. Without loss of generality, we may assume that

Xn > 0 andXg(n) > 0 forn > N > ng. From Lemma4, it
follows thatLj(X,) > 0 orLy(xn) < O foralln > N.

First, we assumeéj(xn) > 0 for n > N. By Lemmab,
L2(xn) > 0 for n > N. Using the estimatel@) in (3) and
(Ha), we obtain

P Ly (%) + MRE(0 (), N)an, , < O (21)

L3(xn) + b1

for all n > N; > N. Define

Wh = Pn LZ(;(”) >0 for n>Ni. (22)
Xn
From @22), we have
A(La(X% ApnLa(X Lo (X
AWn = pn ( ;( n)) Pn ;( n+l) _ pnﬁ Zé n)AXE,
Xn+1 Xn+1 Xn Xn+1
and using 21) and (L0), we obtain
Awp < —MPnQnRﬁ(U(n)7 N) + AnWnt1
Pn AXn
— W, 23
Bpn+1 nJrlxn+1 (23)

From the definition ot (x,) and (L0), we obtain

Axn = <'-1(Xn))l/a > <M>W L3/ (%)

and the inequalityd3) becomes

Aw, < —MPnCInRﬁ(G(n)v N) + AWn 1

Pn Rz(n,N)>1/an/a B/a—1
_— | = X . (24
Pni1 < bnpn+1 n+1"n+1 ( )
By Lemma9, it follows from (15) that
Xn+1
— < = > N.
0 Ro(n+ LN = Lo(xn,) =c forall n>N
Hence,
X4 > PR+ LN)POL (25)

Using 25) in (24), we obtain

AW, < ~MpnanRP(0(n). N) + AW 1 — B, (26)
for n > Nj. Using the inequality

a a+1
Cu—Dutva < a ¢

S{a+pedips

D >0,

we obtain from 26) that

5 a? Ag+1
Awp < —MpntnR° (o (n),N) + (@101 By
holds for alln > N;. Summing the last inequality fromd;
ton, we get

; (MPSQSRﬁ(U(S)a N)— WB—g

which contradictsZ0).

Next, assume thdt;(x,) < 0 for n > N. By Lemma
10, (16) ensures that any solution of)(tends to zero as
n — co. This completes the proof.

Remark. Note that Lemmad.0 and Theoreml extend the
results in p].

In the following, we obtain sufficient conditions for the
oscillation of all solutions ofX).

Theorem 2. Assumeo(n) < n for all n > ng. Let the
hypotheses of Theorebhold excep{16). If there exists a
constant ¢ > 0 such that

bn bn 1

_ ja
n—1 Rl/O’(S N) (=t zn_thj
Thus, lim sup 2 = =c.,
/ ISP Y T\ & AR
> ’ wHaxp/a-1 ' is 0sCi
P ( brPnr1 n+1%n41 then every solution ofl) is oscillatory.

(@© 2017 NSP
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Proof. Assume to the contrary théxk, } is a nonoscillatory
solution of (1), sayxn > 0, Xg(n > 0 andLy(x) < O for
n> N > ng. As in the proof o% Lemmd.0, we obtain that
{Xn} is a solution of 17) satisfying (8) for all n > N.
Sincea > (3, there exists an integ®&; > N such that

ﬁ_

a( Cﬁ_a

(28)

forall n > N; and everyc > 0. Using @8) in (17), we have

b
A (anznzn+1A (Z”(Axn)"» +McP@ OnZn+1Xg(n) < O,

(29)
n> N;. Summing 29) twice fromston—1,n>s+1, one
obtains

—Axe > McB@ (5

S t=s

_ 1
)1/“ 13000z axg '
&zzi1 '

(30)
Using the propertys) of {z,}, the inequality 80) becomes

1/a
R2<s,N>>1/“ A
b, 3 aRin) )
Summing the above inequality fromi(n) to n—1, we
obtain

—Axs > McP~ “(

Xa(n)
n—1 1/0’(3 N) n-1 zﬂ*lq- Ya
> McP~% ’ =t ,
o(n) k;n) %/a (tZS aRo(t,N)

which is a contradiction with27). This completes the
proof.

Next, we present another condition in which the
function{pn} is directly included.

Theorem 3. Assume thatr(n) < n for all n > ng. Let the
hypotheses of Theoretrhold excep{16). If there exists a
constant ¢ > 0 such that

) n—-1 1 n-1 1 n—-1 Ya
imswe) 5 S| ZazQ) (> e
s=ao(n)
where
. Ro(n,N)
_(m@ _pn#)w, >Ny,
@ ( T baRE (n,a(n) -

then every solution ofl) is oscillatory.

Proof. Assume to the contrary théxk, } is a nonoscillatory
solution of (1), sayxn > 0, X5(n) > 0 andL4(x,) < O for
n> N > ng. ConsidelLy(xy). The casé.(x,) < 0 cannot

hold for alln > N; > N since by summing this inequality,

we see that
1/a L ( 1/a
1 XNl)
< | ——= >N
) _< bn ) =T

Ll(Xn)
AXn = < by
which contradicts the positivity ofx,}. Therefore, either
L2(X%h) > 0 or Ly(X,) changes sign for alh > N;. From
the proof of Lemmal0, we obtain thafx,} is a positive
solution of (L7) satisfying (L8) for all n > N. Now, fors >
j > N, we obtain

s—1 Zt)l/a <bt a)l/d
Xj —Xg=— — — (A%
J %(b[ % (ax)
1/as-1

b 1a
oe(z) 2 (5)
>—Li/“<xs>S§(Rz<t,N>>l/“ 2
TRYYsN) G\ b
L ()Rs(s. 1)
1/“(3 N)
Usings=n, j = g(n) and—L1(x,) > 0 in (32), we obtain
Xo(n) > %(—Lim(xn)) forall n> N,

ie.,
_Rz(na N) a

R§(n,a(n)) o’

Using this inequality in§), we obtain
anZ(naN) ) X

bn1R3 (n, o (n))

n> N. Since{x,} is decreasing and > f3, there exists an
integerN; > N such that

Ll(Xn) >

7(7

o(n)

a
a(n)

—L3(Xn) > (qux

xg(*n‘)’ > cha (33)
for everyc > 0 and for alln > N;. Thus, we have
anZ(naN) )
—L3(x McP g — — 22 T )X
) = (M bre1RE (n,o(m)) ) o) (34
—an >0 for n>Nj.

Hencel3(xn) <0, and similarly as in the proof of Lemma
5, we see thaty(x,) > 0 for all n > N;. Summing 84)
fromston—1,n> s+ 1, we obtain

n—-1
La(xs) > Z thg(t)
t=s
Summing again fronston— 1, we get

> (nflnf@]

1/cr

)l/d

(@© 2017 NSP
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Finally, summing the last inequality form(n) ton—1, 5 Conclusion
we find
The results presented in this paper are new and of high
degree of generality. From the results & 12, 15, 16],
one can conclude that every solution df) (is either
oscillatory or tends to zero as— o whena = 3 = 1.
Further, from the results obtained irl4, one can
conclude that every solutiolx,} of (1) is either
oscillatory or{Ly(x)} is oscillatory. Also note that to
apply the results in1[7], one should know explicitly at
least one nonoscillatory solution oR)( but that is not
required in this paper. Therefore, the results presented in
this paper improve and complement those
in[5,6,8,9,11-19).

It might be also interesting to extend the results of this
paper to higher-order difference equation of the form

which in view 31) results in contradiction. This completes
the proof.

From the above theorems, we obtain the following
corollary.

Corollary 1. Assume that'(n) < nfor alln> ng. Let the

hypotheses of Theoreinhold excepi(16). If there exists
a constant ¢ > 0 such that(27) or (31) holds, then every
solution of (1) is oscillatory.

Remark. The condition 81) slightly differs from the one
used in [L4] but this correctly takes into account the class
of nonoscillatory solutions such thak\La(Xn) is
oscillatory.

A(@nd (bn(A™ 2x0)7))
+ pn(Am_zanrl)a + an (Xa(n)) =0,

whereme N is odd. This would be left to further research.
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