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Finite Element Modeling and Validation of Steel Sheathed 
Cold-formed Steel Framed Shear Walls 

Amanpreet Singh1, Tara C. Hutchinson2 

Abstract 

The objective of this paper is to validate the concept of utilizing a truss-element 
based finite element model for capturing the in-plane cyclic response of steel 
sheathed cold-formed steel (CFS) framed shear wall. The model is developed 
within the OpenSees finite element platform. Steel sheathed CFS shear walls 
show shear buckling of their sheathing as a tension field develops. This inelastic 
behavior of the shear walls is replicated by using the Pinching4 material for truss 
elements acting along the tension field. Importantly, the model employs beam-
column elements for framing members, rotational springs for representing frame 
stiffness and vertical springs for modelling hold-downs. The wall models were 
calibrated using experimental data available for 0.030-in. and 0.033-in. steel sheet 
sheathed shear walls with 2:1 and 4:1 aspect ratios and 6-in., 4-in. and 2-in. 
fastener spacing at panel edges. The specimens were subjected to symmetric 
reverse cyclic displacement-controlled loading using the CUREE protocol. 
Comparison amongst the experimental and numerical models demonstrate a high 
degree of accuracy in the estimated shear strength and hysteretic response of the 
shear walls and as such has the potential to be an important building block towards 
modeling full structural systems constructed of cold-formed steel framing. 

Introduction 

The need for low-cost, multi-hazard resilient, mid-rise buildings makes 
Cold-Formed Steel (CFS) a popular choice for construction material offering 
many benefits such as lightweight framing, high durability and ductility, low 
installation and maintenance costs. Buildings framed with closely-spaced CFS 
members repetitively placed in the walls develop lateral resistance through 
sheathing attached to these members. CFS shear walls typically use wood panels 
or steel sheets as sheathing on one or both sides of the wall. The in-plane response 
of both of these systems has been explored extensively using component level 
experiments (eg. Serrette 2010, Liu et al. 2012, Yu 2010 and Shamin et al. 2013). 
Results from these and other experimental campaigns have been incorporated in 
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structural design codes such as North American specifications AISI-S240 (2015) 
and AISI-S400 (2015). These experimental programs have been followed up by 
research on developing computational models that capture the non-linear behavior 
of CFS shear walls. For example, Buonopane et al. (2014) presents a fastener-
based model for OSB sheathed shear walls in which every fastener is modeled by 
a non-linear, radially-symmetric zero length spring element. The fastener 
elements are assigned a material model which includes a softening backbone 
curve, pinching, and loading and unloading parameters. Kechidi et al. (2016) 
developed a new material model called CFSWSWP uniaxialMaterial 
implemented in OpenSees, which can simulate the deteriorating behavior, 
strength and stiffness degradation and pinched hysteretic response of wood-
sheathed cold-formed steel shear walls. To contribute to the growing body of 
numerical modeling approaches for investigating the response of such systems, 
the present study evaluates an efficient truss-element based model for steel 
sheathed CFS shear wall system. 
 
Experimental Program used for Numerical Validation 
 
Fifteen sets each of monotonic and cyclic tests with two nominally identical shear 
walls were conducted to obtain shear strengths for wind loads and seismic loads 
(Yu et al. 2007). From these, nine sets of wall configurations tested cyclically 
were modeled, based on full-scale specimen details (Table 1, Figure 1). Complete 
details of the design and construction of the specimens can be obtained from Yu 
et al. (2007); however, it is noted that the same notation for the wall specimens 
adopted in the experiments have been used herein for consistency. The specimens 
were subjected to lateral cyclic displacement history following the CUREE 
protocol (Krawinkler et al. 2000) with no imposed vertical gravity load. The test 
walls modeled include two aspect ratios: 2:1 (4 ft. × 8 ft.) and 4:1 (2 ft. × 8 ft.), 
two sheet steel thicknesses: 0.033-in. and 0.030-in., and three fastener spacing on 
panel edges: 6-in., 4-in., and 2-in. The framing members (350S162-43 for studs 
and 350T150-43 for tracks, ASTM A1003 Grade 33 steel) were assembled using 
#8 modified truss head self-drilling screws. Back to back double C-shaped 
structural studs were used for chord studs with the webs of these studs stitched 
together using 2-#8 self-drilling screws spaced at 6 in. o.c. Commercially 
available hold downs at each chord stud were used. Two 1/2-in. diameter Grade 
8 were used for each wall. Sheathing was installed on one side using #8 
self-drilling screws. Complete details of the experimental program can be found 
in Yu et al. (2007). 
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Table 1: Test matrix of shear walls modeled (test program of Yu et al. 2007) 

Wall 
Set Test Label 

Wall dimensions 
(width × height × 
framing member 

thickness) 

Steel sheet 
thickness  

Fastener 
spacing, 

Perimeter/ 
Field 

1 4×8×43×33-6/12-C1/C2 4 ft. × 8 ft. × 43 mil 33 mil 6 in./12 in. 
2 4×8×43×33-4/12-C1/C2 4 ft. × 8 ft. × 43 mil 33 mil 4 in./12 in. 
3 4×8×43×33-2/12-C1/C2 4 ft. × 8 ft. × 43 mil 33 mil 2 in./12 in. 
4 4×8×43×30-6/12-C1/C2 4 ft. × 8 ft. × 43 mil 33 mil 6 in./12 in. 
5 4×8×43×30-4/12-C1/C2 4 ft. × 8 ft. × 43 mil 33 mil 4 in./12 in. 
6 4×8×43×30-2/12-C1/C2 4 ft. × 8 ft. × 43 mil 33 mil 2 in./12 in. 
7 2×8×43×33-6/12-C1/C2 2 ft. × 8 ft. × 43 mil 33 mil 6 in./12 in. 
8 2×8×43×33-4/12-C1/C2 2 ft. × 8 ft. × 43 mil 33 mil 4 in./12 in. 
9 2×8×43×33-2/12-C1/C2 2 ft. × 8 ft. × 43 mil 33 mil 2 in./12 in. 

 

 
(a) (b)

Figure 1: (a) Dimensions of 4 ft. × 8 ft. wall assembly, (b) Typical screw 
panel edge and field location schedule (See Table 1) 

 
Description of Numerical Model 
 
A schematic of the numerical model developed in OpenSees (McKenna et al. 
2000) for capturing the in-plane cyclic response of the aforementioned shear wall 
specimens is provided in Figure 2. The CFS frame members, studs and tracks, are 
modeled using linear elastic, displacement beam-column elements. Chord studs 
use the full composite section properties for back to back structural studs. The 
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studs and top/bottom tracks are connected using a rotational spring zero-length 
element to simulate a semi-rigid connection. The rotational stiffness of the spring 
is defined as 100 kip-in./rad [11.3 kN-m/rad], based on approximations from the 
measured lateral stiffness of bare CFS frame tests (Buonopane et al. 2014). Steel 
sheathed shear walls show significant pinching of their hysteretic lateral 
resistance with early onset of shear buckling in the sheathing, followed by 
development of a tension field, and finally by loss in lateral resistance and 
stiffness with damage at screw connections. The sheathing and connections are 
modeled as truss elements assigned with a Pinching4 material (Lowes et al. 2003), 
defined by a multi-linear backbone curve, stiffness and strength degradation, 
unloading and reloading parameters (Figure 3). In the present work, the 
cross-sectional area of the truss elements is assumed to be ten times the steel sheet 
thickness to approximately represent the width of the tension field. Due to the 
very large fastener spacing used for connecting the steel sheathing with the field 
studs, the interaction between the steel sheathing (truss elements) and field studs 
(beam-column element) is ignored in the numerical model. This had the added 
benefit of allowing the orientation of the truss elements to be along the tension 
field. The hold-downs are modeled as uniaxial vertical spring having an elastic 
stiffness of 99.3 kips/in [17.4 kN/mm] in tension, calculated based on published 
values of tensile strength and displacement (Simpson, 2017). In compression, the 
hold downs are bearing against a rigid foundation and thus the compressive 
stiffness is taken as 1000 times that of the tension stiffness (Leng et al. 2013). The 
horizontal DOF is restrained at locations of shear anchors and hold-downs.  
 

 
Figure 2: Numerical model of shear walls in OpenSees 

(shown for the 4 ft long walls) 
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Figure 3: Pinching4 uniaxial material model 

(recreated from Lowes et al. 2003) 
 
Results and discussion 
 
The Pinching4 material requires definition of 39 parameters (Figure 3). To guide 
the definition of these parameters, the backbone for lateral resistance versus 
lateral displacement hysteretic response for each wall set was used to define the 
Pinching4 backbone. The material can be assigned two different backbone curves 
in the positive and negative excursions. However, since the hysteretic response of 
the tested walls was nearly symmetric, a symmetric backbone curve was assumed 
in the numerical representation. Similarly, unloading and reloading parameters 
were calibrated by systematically changing the parameters until a good fit 
between experimental and numerical model was obtained. The strength and 
stiffness degradation parameters of Shamin et al. (2013) were adopted. Table 2 
lists the Pinching4 reloading, unloading and degradation parameters which were 
maintained for all sets of walls modeled. Table 3 lists the calibrated Pinching4 
backbone curve parameters for all modeled walls. Figure 4, as an example, shows 
the comparison of the hysteretic response of the tested walls to that obtained using 
the best fit numerical model for wall set two.  
 

Table 2: Pinching4 reloading, unloading and degradation parameters 
r+δ 0.01 gK1 0.5 gD1 0.2 gF1 0.0 
r-δ 0.01 gK2 0.5 gD2 0.2 gF2 0.0 
r+V 0.1 gK3 1.5 gD3 1.5 gF3 0.0 
r-V 0.1 gK4 1.5 gD4 1.5 gF4 0.0 
u+V -0.2 gKlim 0.8 gDlim 0.25 gFlim 0.0 
u-V -0.2 gE 10.0 Damage type Energy 
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Table 3: Calibrated Pinching4 parameters for positive branch (note that 
symmetric behavior is assumed, thus these also apply for negative branch) 

Wall 
Set 

+V1 
kN 

+V2  
kN 

+V3  
kN 

+V4  
kN 

+δ1 

 (×10-3) 
mm

+δ2 

 (×10-2)  
mm

+δ3 

 (×10-2)  
mm

+δ4 

 (×10-2)  
mm 

1 27.3 56.5 71.0 21.6 6.9 3.3 9.1 18.2 
2 38.5 61.0 77.3 32.1 7.5 3.5 9.0 19.8 
3 59.2 79.2 88.3 40.2 1.5 0.20 8.4 20.0 
4 18.5 43.0 55.5 19.0 11.0 6.0 14.1 28.0 
5 25.5 50.8 64.9 26.0 14.0 5.5 13.2 30.0 
6 33.0 58.5 69.0 31.0 17.0 5.0 10.1 31.0 
7 23.5 57.0 69.9 22.0 0.40 2.8 8.8 22.0 
8 31.0 55.0 79.9 26.0 0.65 2.0 6.4 24.0 
9 33.0 50.0 89.1 26.0 1.0 1.5 5.6 24.0 

 

 
Figure 4: Comparison of experimental and numerical hysteretic 

response for wall set 2. (Specimens C1 and C2 are nominally identical) 
 
Figures 5-7 show a comparison of experimental and numerical backbone curves 
and energy dissipated versus cumulative displacement for all wall sets modeled. 
These comparisons demonstrate the capability of the simple X-brace type 
numerical models proposed herein. Importantly, the OpenSees models are able to 
capture the highly pinched lateral resistance versus displacement hysteretic 
behavior and energy dissipation through formation of the tension field as the cycle 
amplitude increases and the behavior becomes highly non-linear. For walls with 
4:1 aspect ratio, energy dissipation is not correctly captured after cycle with peak 
strength, with error as high as 45% at the end of displacement history. 
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(a) Wall set 1 

(b) Wall set 2 

(c) Wall set 3 
Figure 5: Comparison of experimental and numerical backbone curves and 

cumulative dissipated energy for wall sets 1-3 
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(a) Wall set 4 

(b) Wall set 5 

(c) Wall set 6 
Figure 6: Comparison of experimental and numerical backbone curves and 

cumulative dissipated energy for wall sets 4-6 
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(a) Wall set 7 

(b) Wall set 8 

(c) Wall set 9 
Figure 7: Comparison of experimental and numerical backbone curves and 

cumulative dissipated energy for wall sets 7-9 
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This modeling strategy can be extended to include other steel sheet thicknesses 
and framing member sizes by calibrating against additional experimental datasets. 
This shear wall model can also be used as a building block for models intended to 
capture the coupled shear wall and gravity wall behavior and exploring the 
contribution of gravity walls to the overall lateral resistance. In this study, the 
framing members are modeled as linear elastic members. However, if the intent 
was to capture framing member behavior and other sources of non-linearity and 
energy dissipation, inelastic beam-column elements would be needed to model 
studs and tracks.  
 
Conclusions 
 
A series of wall configurations tested cyclically by Yu et al. (2007) were modeled 
using an efficient, and low degree-of-freedom truss-element based finite element 
model in OpenSees. The parameters of the selected nonlinear Pinching4 material 
model were calibrated to obtain a best fit to the experimental response. The 
models were able to capture the severely pinched hysteretic response and energy 
dissipated through displacement cycles. The study shows the capability of X-
brace type numerical models to capture steel sheathed shear wall behavior and a 
set of calibrated Pinching4 parameters for nine sets of walls considered are 
provided.  
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