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Biaxial bending of cold-formed steel storage rack uprights - 
Part I: FEA and parametric studies  

 
 

Nima Talebian1, Benoit P. Gilbert1, Cao Hung Pham2, Romain Chariere1 and 
Hassan Karampour1  

 

 
Abstract 
 
This paper first introduces an advanced finite element model to determine the 
biaxial bending capacity of cold-formed steel storage rack upright sections. The 
model is found to accurately predict published experimental results with an 
average predicted to experimental capacity ratio of 1.02. Second, the validated 
model is used to run parametric studies and analyse the biaxial response of 
slender, semi-compact and compact unperforated storage rack upright cross-
sections. Analyses are run for local and distortional buckling failure modes only. 
Ten and four different cross-sectional shapes are analysed for local and 
distortional buckling, respectively, and nine biaxial bending configurations are 
considered per cross-section and buckling mode. Results show that a nonlinear 
interactive relationship typically governs the biaxial bending of the studied 
uprights. This relationship is discussed in some details and analysed for the 
different failure modes and cross-sectional slenderness.  
 
 
Introduction 

Rack-supported buildings, also referred to as “clad racks”, are gaining popularity. 
In this type of buildings, stored goods and building enclosure are both supported 
by the storage racks, resulting in more economical buildings but also complex 
structural systems. The uprights, i.e. the vertical members of the storage racks 
which are usually perforated monosymmetric open sections, undergo biaxial 
bending due to combined actions of wind loading and the vertical loads of the 
stored goods (Talebian et al. 2018). Current cold-formed steel structures design 
specifications (North American Specification AISI-S100 (AISI 2016), the 
Australian and New Zealand Standard AS/NZS 4600:2005 (AS/NZS 2005) and 
the Eurocode 3 EN1993-1-3 (CEN 2006)) consider a linear interaction equation to 
design members under biaxial bending. Nevertheless, previous studies have shown 
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that a nonlinear relationship governs the biaxial bending behaviour of cold-
formed steel members and the linear equation is conservative (Put et al. 1999; 
Torabian et al. 2016, 2014a, 2015; Talebian et al. 2018).  

An experimental investigation on the local and distortional biaxial bending 
behaviour of cold-formed steel storage rack uprights (Talebian et al. 2018) has 
recently been performed at Griffith University, Australia. The investigation 
included tests on two different types of storage rack uprights. One of the upright 
sections was tested with and without regular perforations while the other one was 
perforated. Results showed that the linear interaction equation is conservative and 
underestimates the biaxial bending capacity by up to 68%.  

As part of an ongoing research project, this paper presents an advanced Finite 
Element (FE) model to accurately capture the local and distortional biaxial 
bending capacities of cold-formed steel storage rack upright sections. The 
software package ABAQUS (2015) is used for this purpose and the experimental 
results in Talebian et al. (2018) are compared to the numerical ones to verify the 
accuracy of the FE model. The model is subsequently used to run parametric 
studies and quantify the local and distortional biaxial bending capacities of 
slender, semi-compact and compact unperforated storage rack upright cross-
sections. Ten and four different cross-sections are considered for local and 
distortional buckling, respectively, and analyses are run for nine biaxial bending 
configurations per cross-section type and buckling mode. Biaxial bending 
responses of all studied uprights are discussed and presented in the paper. 

 
Published experimental tests 

Experimental set-up 

In Talebian et al. (2018), two different types of storage rack upright cross-
sections, referred to as “Type A” and “Type B”, were tested. Type A upright had 
a nominal wall thickness of 1.5 mm, a width-to-depth ratio of 0.71 and a semi-
compact cross-sectional shape. Type B upright had a nominal wall thickness of 
2.0 mm, a width-to-depth ratio of 0.5 and was compact. To investigate the effect 
of perforations on the member capacity and biaxial bending interaction, Type A 
uprights were tested with and without regular perforations along their length, 
whereas all tested Type B uprights were perforated. To ensure local and 
distortional buckling failure modes, the length of the uprights varied and was 
equal to 400 mm for local buckling, and 900 mm (Type B) and 1,100 mm (Type 
A) for distortional buckling. 10 mm thick, 220 mm × 220 mm steel plates were 
welded to both ends of the uprights to connect to the test rig and restrained 
warping. The full test rig is detailed in Talebian et al. (2018). 
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To obtain a sufficient number of points and apprehend the biaxial bending 
interaction curve, seven different biaxial bending configurations per upright type 
were tested in Talebian et al. (2018). These included bending about x-axis of 
symmetry (Conf 1), Mx = 2My (Conf 2), My = 2Mx (Conf 3), bending about minor 
y-axis when web is in compression (Conf 4), Mx = -2My (Conf 5), My = -2Mx (Conf 
6) and bending about minor y-axis when flanges are in compression (Conf 7), 
where Mx and My are the moments applied about x- and y-axes, respectively. Tests 
were typically repeated twice for each configuration and upright type. In total, 78 
tests were performed. 

Geometric imperfection measurements 

The structural performance of cold-formed members is highly sensitive to initial 
geometric imperfections (Dubina, et al., 2000, Schafer and Peköz, 1998). 
Accurately measuring these imperfections is essential to reproduce the observed 
buckling behaviour in FEA (Dubina and Ungureanu, 2002). Therefore, geometric 
imperfections of semi-compact Type A upright, with and without perforations, 
were measured prior to testing for all local and distortional specimens. As Type 
B upright had a compact cross-section, imperfections were not recorded. 

An imperfection measurement set-up, similar to the one used by Schafer and 
Pekoz (1998), was built to capture imperfections along the upright length using 
Linear Variable Displacement Transducers (LVDT). Locations of LVDT were 
chosen to account for local and distortional buckling modes. In total, 
imperfections were measured along fifteen lines. 

 
Finite element model 

Element type, mesh size and boundary conditions 

The uprights and end plates were modelled using S4R shell elements (ABAQUS, 
2015). Convergence studies showed that an element size of approximately 3 mm 
x 3 mm was adequate for all cases. Similar boundary conditions as in the 
experimental tests were used: (i) warping was restrained by using end plates 
rigidly connected to the ends of the uprights, (ii) the uprights were simply 
supported by pinning the end plates at the location of the uprights centroidal axis. 
A concentrated biaxial bending moment was then applied at the pinned joints to 
replicate the test set-up. Figure 1 shows the FE model and boundary conditions 
for a 1,100 mm Type A upright. Note that only the main perforations were 
modelled for the perforated uprights. 
Material modelling 

Material non-linearity in the specimens was considered using with the von Mises 
yield criteria and isotropic hardening. The average coupon test results reported in 
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Talebian et al (2018) were used for the material properties of the flat parts of the 
cross-sections. The stress-strain relationships (derived from the coupon tests) 
were described by multi-linear curves, as showed in Figure 2 for all upright types. 
As the coupon material tests also measured the effect of residual stresses in the 
material, the membrane residual stresses were ignored in this model. 

The enhanced yield ΔFy stress in the corner zones of the upright sections was 
determined by the following equations (Karren,1967): 
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where Fu is the ultimate strength, Fy the yield stress, r the inside bending radius of 
the corner and t the wall thickness. The corner zone consists of the curved areas 
and two equivalent flat areas on both sides of each curved area of length equal to 
1/2πr. The measured thickness of the uprights was used to calculate the enhanced 
corner strength. The inside bending radius of the corners was 3 mm and 2 mm, 
for Type A and B uprights, respectively. An elastic–perfectly plastic behaviour 
was assumed for the corners with enhanced yield strength as per the stress-strain 
curves in Karren (1967). 

 
Figure 1. FE model and boundary conditions (shown for 1,100 mm perforated Type A 

upright) 
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Figure 2. Multi-linear stress–strain curve adopted in the numerical simulations 

 
To account for the change of cross-sectional dimensions of the coupons during 
testing, true engineering stress and strain were employed in the numerical model. 
The nominal stress (σn) and strain (ɛn) were converted to true stress (σt) and strain 
(ɛt) using the following equations (Chung and Ip, 2000):  

 (1 )t n t  = +  (4) 

 (1 )t nln = +  (5) 

Geometric imperfections 

As mentioned earlier, imperfections were measured for semi-compact Type A 
upright. The readings collected by the data logger were smoothed using a Fourier 
Transform to filter the noise. The geometric imperfections at each measured line 
were then added to the “perfect” model assuming an undeformed cross-section at 
both ends of the uprights. Linear interpolations were assumed between each 
measured lines in the “imperfect” model.  

For Type B upright, geometric imperfections were introduced in the model using 
axial compressive buckling modes. An initial linear buckling analysis (LBA) was 
carried out on a “perfect” model to generate the deformed shape of the local or 
distortional buckling modes. The geometric imperfections were then introduced 
to the “perfect” mesh by means of linearly superimposing the first local (for the 
400 mm long specimens) or the first distortional (for the 900 mm and 1,100 mm 
long specimens) elastic buckling mode onto the mesh. The elastic buckling 
deformed shapes were scaled using the recommendations in the Australian 
standard AS4084 (2012). For the first local buckling mode, the following 
amplitude Sol was used: 
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and for the first distortional buckling mode, the amplitude Sod: 
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where t is the thickness of the upright, Fy is the yield stress, Fol the elastic local 
buckling stress and Fod the elastic distortional buckling stress. 

Analysis  

The arc-length method (Riks) was selected to perform geometric and material 
nonlinear analyses in ABAQUS.  

 
Validation of FE model  

Table 1 shows the ultimate test to predicted bending moment ratios (Mtest/MFEA) 
for the local and distortional buckling investigations and for all tested 
configurations. The table shows that the FE model is able to accurately predict the 
ultimate experimental moment capacities with a maximum difference between the 
predicted and experimental ultimate bending moment of 10%. The mean values 
of the test-to-predicted bending strength ratios are 0.98 and 1.03 for all local and 
distortional buckling tests, respectively, and the corresponding coefficient of 
variation (COV) are 5% and 5.8%, respectively. 

Figure 3 to Figure 5 show the FEA and experimental failure modes of the 400 mm 
long uprights. Similarly, Figure 6 to Figure 8 show the FEA and experimental 
failure modes of the 900 mm and 1,100 mm long uprights. The FEA model is also 
able to well capture the different experimentally observed biaxial bending failure 
modes of the uprights. 

 
 (a)  (b) 

Figure 3. Deformed shapes of the 400 mm long upright tested in Conf 4 for non-
perforated Type A upright a) FE failure mode and b) experimental failure mode 
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Table 1. Comparison of test results with FEA results  
Upright 

type 

Local Distortional 
Number of 

tests  Conf. (Mtest/MFEA) Number of 
tests  Conf. (Mtest/MFEA) 

Non-
perforate
d Type A 

2 1 0.93 2 1 0.94 
  0.93   0.98 

2 2 1.02 2 2 1.10 
  1.02   1.03 

2 3 1.04 2 3 1.07 
  1.00   1.10 

2 4 1.00 2 4 1.08 
  0.98   1.05 

2 5 0.95 2 5 1.05 
  0.94   1.07 

2 6 0.94 2 6 0.99 
  0.94   0.93 

2 7 0.99 2 7 1.08 
  1.01   1.10 

Perforate
d Type A 

2 1 0.90 2 1 0.99 
  0.93   0.95 

2 2 0.97 2 2 1.08 
  1.00   1.07 

2 3 1.01 2 3 1.1 
  1.02   1.08 

2 4 1.00 2 4 1.09 
  0.99   1.09 

2 5 0.93 2 5 1.07 
  0.90   1.06 

2 6 0.94 2 6 0.9 
  0.96   1.02 

2 7 1.00 2 7 1.08 
  0.97   1.10 

Perforate
d Type B 

1 1 1.03 2 1 1.00 
1 2 0.96   0.95 
1 3 0.92 2 2 1.01 
1 4 1.03   0.96 
1 5 1.01 2 3 1.09 
2 6 1.10   1.01 
1 7 1.08 2 4 1.1 
     0.99 
   2 5 0.91 
     0.94 
   2 6 0.98 
     0.98 
   2 7 1.02 
     1.04 

 Average         0.98 Average 1.03 
 COV (%)         5.00 COV (%) 5.80 
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 (a)  (b) 

Figure 4. Deformed shapes of the 400 mm long upright tested in Conf 3 for perforated 
Type A upright a) FE failure mode and b) experimental failure mode 

 

 
 (a)  (b) 

Figure 5. Deformed shapes of the 400 mm long upright tested in Conf 2 for perforated 
Type B upright a) FE failure mode and b) experimental failure mode 

(a)  

(b)  
Figure 6. Deformed shapes of the 1,100 mm long upright tested in Conf 1 for non-

perforated Type A upright a) FE failure mode and b) experimental failure mode 
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 (a)  (b) 

Figure 7. Deformed shapes of the 1,100 mm long upright tested in Conf 4 for perforated 
Type A upright a) FE failure mode and b) experimental failure mode 

 

 
 (a)  (b) 
Figure 8. Deformed shapes of the 9100 mm long upright tested in Conf 1 for perforated 

Type B upright a) FE failure mode and b) experimental failure mode 
 
Parametric studies 

Parametric studies are performed in this paper over a wider range of section 
slenderness values than the ones encountered in Talebian et al. (2018) to fully 
capture the biaxial bending behaviour of cold-formed steel storage rack uprights. 
Slender, semi-compact and compact unperforated upright cross-sections are 
considered for both local and distortional buckling failure modes. Note that 
unperforated uprights are considered for simplicity as experimental results in 
Talebian et al. (2018) tend to show that the biaxial bending behaviour of the 
uprights is not influenced by the regular perforations along their length.  
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Tested configurations and upright lengths 

Ten and four upright cross-sectional shapes were investigated for local and 
distortional buckling failure modes, respectively. These upright cross-sectional 
shapes are shown in Figure 9 and are either commercially available or taken from 
the literature (Lau and Hancock, 1987; Bernuzzi and  Simoncelli, 2015). In total, 
twelve different cross-sectional shapes are considered with Types D and F used 
for both local and distortional analyses. The thickness of Types J, K and L has 
been intentionally reduced to increase their slenderness ratio. The main cross-
sectional dimensions and properties of all upright types are given in Table 2. Note 
that depending on the value of the biaxial moments, it is possible to have different 
range of slenderness ratio per upright type. In general, a section is considered to 
be slender when its slenderness ratio is greater than 1.25 (Martins et al. 2016).  

 
  

(a) Type C (b) Type D (c) Type E 

 
 

 

(d) Type F (e) Type G (f) Type H 

  
 

(g) Type I (h) Type J (i) Type K 

  
 

(j) Type L (k) Type M (l) Type N 
Figure 9. Upright cross-sections considered  

  

480



 
Table 2. Nominal cross-sectional dimensions and properties of investigated uprights 

 Thick. 
(mm) 

Depth 
(mm)  

Width 
(mm) 

Second moment 
of area 

IMajor  / IMinor 

Local buckling 
upright length 

(mm) 

Dist. buckling 
upright length 

(mm) 
Type C 2.0 140 100 2.53 200 -- 
Type D 1.2 90 72 1.58 120 860 
Type E 1.2 90 72 2.06 120 -- 
Type F 1.5 125 100 1.79 200 1240 
Type G 1.5 100 110 0.94 220 -- 
Type H 1.5 100 90 1.41 350 -- 
Type I 1.5 100 80 2.13 240 -- 
Type J 0.6 140 100 2.53 300 -- 
Type K 0.8 90 72 1.57 200 -- 
Type L 0.8 90 72 2.03 260 -- 
Type M 1.8 80 60 2.17 -- 800 
Type N 1.5 80 90 1.17 -- 600 

 
Nine biaxial bending configurations, shown in Table 3, were considered per 
buckling mode and upright type. The numerical analyses were run using similar 
models to the ones presented in Section “Finite Element model”. Characteristics 
specific to the parametric studies and used in the present models are given later in 
Section “Modelling characteristics”.  

The length of the tested uprights were determined based on elastic buckling 
analyses performed in CUFSM (2006) with simply supported and free-to-warp 
beams. For local buckling, the upright length for each upright type was taken as 
four times the longest local buckling half-wave length of the nine biaxial bending 
configurations. This criterion ensured that the uprights were short enough so 
distortional buckling did not occurred. For distortional buckling, the upright 
length for each upright type was taken equal to 1 to 2 times the longest distortional 
buckling half-wave length of the nine investigated configurations, effectively 
preventing global buckling. To avoid local-distortional buckling interaction to 
occur, LBA were carried out in ABAQUS on the warping restrained beams for all 
nine biaxial bending configurations. Any configuration for which the ratio of the 
elastic local bending moment (Mol) to the elastic distortional bending moment 
(Mod) was less than 1.3 (Martins et al., 2016) was excluded from the analyses. The 
lengths of all uprights are given in Table 2. 

Modelling characteristics 

In the parametric studies, the stress-strain curve of the flat parts of the upright 
sections used in all analyses is similar to the one for Type A presented in Figure 
2, but with a Young’s modulus of 200 GPa and a yield stress of 450 MPa. An 
elastic-perfectly plastic material is also used for the corner zones with the yield 
stress calculated from Eqs. 3-5.  
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Table 3. Tested biaxial bending configurations in parametric studies 
Configuration 0 Configuration 1 Configuration 2 

Mx > 0 and My = 0 
 

Mx > 0, My > 0 and 
Mx = 2.5My 

Mx > 0, My > 0 and 
Mx = My 

  
  

Configuration 3 Configuration 4 Configuration 5 
Mx > 0, My > 0 and 

My = 2.5Mx 
Mx = 0 and My > 0 

 
Mx > 0, My < 0 and 

Mx = -2.5My 

 
 

 
Configuration 6 Configuration 7 Configuration 8 

Mx > 0, My < 0 and 
Mx = -My 

Mx > 0, My < 0 and 
My = -2.5Mx 

Mx = 0 and My < 0 
 

 
 

 
 

Mx > 0 generates compression in the bottom flange, My > 0 generates compression in the lip stiffeners 
and My < 0 generates compression in the web 
 
Geometric imperfections are introduced in the analyses following the 
methodology described in Section “Geometric imperfections” for Type B upright. 
In other words, the first local or distortional buckling mode deformed shape in 
pure compression is used and scaled by the factors obtained from Eqs.  6-7. 

Biaxial bending response of the uprights and interactive behaviour  

Local buckling 

Elastic and inelastic local buckling failure modes were observed for all specimens 
investigated for local buckling. Denoting, the bending moment capacities about 
the x- and y-axes, Mbx and Mby, respectively, the normalised biaxial ultimate 
moment capacities (Mx/Mbx and My/Mby) for all upright types are summarised in 
Table 4 with local slenderness ratio λl (determined from FE model running LBA) 
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and the associated interactive biaxial moment capacity obtained from the linear 
equation (AISI-S100, 2016; AS/NZS 4600:2005; EN 1993-1-3, 2006). Figure 10 
illustrates differently the linear equation versus the normalised biaxial bending 
results obtained from the nine different investigated configurations and local 
buckling. Similar observations to the ones presented in Talebian et al. (2018), but 
on a larger range of cross-sections can be established. Table 4 and Figure 10 show 
that the governing interaction relationship is not linear and that the linear equation 
is conservative for all investigated uprights. For Configurations 1 to 3 (My > 0, lip 
stiffeners in compression), the linear equation gives interaction ratios ranging 
from 1.12 (Type H and Configuration 1) to 1.35 (Type L and Configuration 1). 
For Configurations 5 to 7 (My < 0, web in compression), the linear equation gives 
ratios ranging from 1.03 (Type L and Configuration 7) to 1.39 (Type E and 
Configurations 5 and 6). When the web is in compression, the biaxial bending 
responses of the uprights tend to be closer to the linear interaction curve. This is 
more highlighted for Type K and L uprights.  

 
Figure 10. Biaxial bending interaction points for local buckling – All uprights  

 

Distortional buckling 

For distortional buckling analyses, Type D, E and M uprights tested with the web 
in compression (Configurations 5 to 8) did not meet the Mol /Mod ratio less than 
1.3 (Martins et al., 2016) and would have failed in local or local-distortional 
buckling interaction. Therefore, these configurations were excluded from the 
analyses. The normalised ultimate moment capacities (Mx/Mbx and My/Mby) for the 
upright types considered for distortional buckling are summarised in Table 5 with 
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distortional slenderness ratio λd (also determined from LBA in Abaqus) and the 
interactive biaxial moment linear equation. Similar to Figure 10, Figure 11 
illustrates the linear interaction equation versus all normalised biaxial bending 
numerical results obtained for distortional buckling failure modes.  
 
The linear equation is also found to be conservative for distortional buckling and 
gives interaction ratios ranging from 1.00 (Type F and Configuration 1) to 1.46 
(Type N and Configuration 2) for all biaxial bending configurations. Biaxial 
bending responses of Type F upright tend to be closer to the linear interaction 
curve than other uprights.  

 
Figure 11. Biaxial bending interaction points for distortional buckling – All uprights  

 
Conclusion 

This paper presented a FE model to capture the biaxial bending response of cold-
formed steel storage rack uprights. The model was validated against experimental 
results and found to be accurate. Parametric studies were then performed to 
evaluate the accuracy of the linear biaxial bending design equation in international 
design specifications (AISI-S100 (2016), AS/NZS 4600:2005 (AS/NZS, 2005) 
and EN 1993-1-3 (2006)). Analyses were performed for local and distortional 
buckling failure modes only. The biaxial bending interaction relationship was 
found to be nonlinear and the linear biaxial bending design equation to be 
conservative with failure occurring at ratios given by the design equation ranging 
from 1.00 to 1.46. 
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Table 4. Comparison of parametric studies results to linear equation for local buckling 

Up- 
right Conf. λl   

Mx/
Mbx 

My/
Mby 

 Linear 
equation 

Up- 
right  Conf. λl   

Mx/
Mbx 

My/
Mby 

Linear 
equation 

Type 
C 

0 0.57 1.00 0.00 1.00 

Type 
H 

0 1.30 1.00 0.00 1.00 
1 0.78 0.70 0.60 1.30 1 1.17 0.76 0.36 1.12 
2 0.83 0.42 0.89 1.30 2 1.08 0.54 0.64 1.18 
3 0.74 0.19 1.03 1.22 3 1.03 0.29 0.85 1.14 
4 0.71 0.00 1.00 1.00 4 1.06 0.00 1.00 1.00 
5 0.52 0.80 0.52 1.32 5 1.06 0.85 0.36 1.22 
6 0.43 0.50 0.80 1.30 6 1.01 0.60 0.63 1.23 
7 0.40 0.24 0.95 1.19 7 1.09 0.32 0.86 1.18 
8 0.41 0.00 1.00 1.00 8 1.23 0.00 1.00 1.00 

Type 
D 

0 0.58 1.00 0.00 1.00 

Type 
I 

0 0.83 1.00 0.00 1.00 
1 0.61 0.74 0.41 1.15 1 0.72 0.76 0.46 1.22 
2 0.62 0.51 0.70 1.21 2 0.72 0.49 0.75 1.24 
3 0.60 0.26 0.89 1.15 3 0.64 0.24 0.94 1.18 
4 0.61 0.00 1.00 1.00 4 0.62 0.00 1.00 1.00 
5 0.47 0.83 0.42 1.25 5 0.90 0.76 0.52 1.28 
6 0.46 0.59 0.75 1.34 6 1.02 0.45 0.77 1.22 
7 0.44 0.29 0.94 1.24 7 0.98 0.22 0.94 1.16 
8 0.45 0.00 1.00 1.00 8 1.01 0.00 1.00 1.00 

Type 
E 

0 0.90 1.00 0.00 1.00 

Type 
J 

0 1.88 1.00 0.00 1.00 
1 1.19 0.71 0.58 1.30 1 1.65 0.67 0.61 1.29 
2 1.30 0.43 0.87 1.30 2 1.74 0.38 0.87 1.25 
3 1.08 0.19 0.99 1.18 3 1.54 0.17 0.99 1.16 
4 1.05 0.00 1.00 1.00 4 1.48 0.00 1.00 1.00 
5 0.52 0.91 0.48 1.39 5 1.71 0.88 0.41 1.29 
6 0.48 0.59 0.79 1.39 6 1.39 0.58 0.68 1.26 
7 0.42 0.29 0.96 1.24 7 1.29 0.31 0.90 1.21 
8 0.39 0.00 1.00 1.00 8 1.30 0.00 1.00 1.00 

Type 
F 

0 0.64 1.00 0.00 1.00 

Type 
K 

0 0.88 1.00 0.00 1.00 
1 0.71 0.69 0.47 1.15 1 0.91 0.75 0.44 1.19 
2 0.69 0.47 0.80 1.26 2 0.90 0.51 0.75 1.26 
3 0.66 0.22 0.94 1.17 3 0.87 0.26 0.97 1.23 
4 0.68 0.00 1.00 1.00 4 0.89 0.00 1.00 1.00 
5 0.58 0.78 0.43 1.21 5 1.18 0.63 0.46 1.09 
6 0.52 0.53 0.74 1.28 6 1.36 0.40 0.73 1.13 
7 0.47 0.26 0.89 1.15 7 1.47 0.20 0.91 1.11 
8 0.47 0.00 1.00 1.00 8 1.65 0.00 1.00 1.00 

Type 
G 

0 1.03 1.00 0.00 1.00 

Type 
L 

0 1.43 1.00 0.00 1.00 
1 0.87 0.98 0.29 1.27 1 1.89 0.74 0.61 1.35 
2 0.72 0.76 0.57 1.32 2 1.90 0.43 0.89 1.31 
3 0.50 0.45 0.84 1.29 3 1.72 0.19 0.98 1.17 
4 0.42 0.00 1.00 1.00 4 1.68 0.00 1.00 1.00 
5 0.92 0.90 0.29 1.18 5 1.31 0.71 0.44 1.14 
6 0.84 0.72 0.57 1.29 6 1.45 0.43 0.67 1.10 
7 0.67 0.45 0.90 1.35 7 1.41 0.21 0.82 1.03 
8 0.52 0.00 1.00 1.00 8 1.46 0.00 1.00 1.00 
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Table 5. Comparison of parametric studies results with linear equation for distortional 
buckling  

Up- 
right Conf. λd   

Mx/
Mbx 

My/
Mby 

 Linear 
equation 

Up- 
right  Conf. λd  

Mx/
Mbx 

My/
Mby 

Linear 
equation 

Type 
D 

0 0.74 1.00 0.00 1.00 

Type 
F 

0 0.78 1.00 0.00 1.00 
1 0.76 0.71 0.39 1.09 1 0.83 0.64 0.36 1.00 
2 0.76 0.50 0.69 1.18 2 0.80 0.45 0.63 1.08 
3 0.72 0.25 0.87 1.12 3 0.75 0.23 0.81 1.03 
4 0.74 0.00 1.00 1.00 4 0.77 0.00 1.00 1.00 

Type 
M 

0 0.63 1.00 0.00 1.00 

Type 
N 

0 1.29 1.00 0.00 1.00 
1 0.66 0.74 0.40 1.14 1 1.39 0.80 0.61 1.42 
2 0.63 0.46 0.62 1.08 2 1.32 0.50 0.96 1.46 
3 0.57 0.24 0.81 1.05 3 1.26 0.24 1.15 1.39 
4 0.59 0.00 1.00 1.00 4 1.25 0.00 1.00 1.00 
5 0.36 0.85 0.43 1.28       
6 0.31 0.59 0.75 1.33       
7 0.30 0.30 0.94 1.24       
8 0.33 0.00 1.00 1.00       
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