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Abstract

The matching preclusion number of a graph with an even number of vertices is the
minimum number of edges whose deletion results in a graph with no perfect matchings.
In this paper we determine the matching preclusion number for the generalized Petersen
graph P (n, k) and classify the optimal sets.

Keywords: perfect matching; Petersen graph; generalized Petersen graph.

1 Introduction

A matching in a graph is a set of edges such that each vertex is incident to at most one
edge in the set. Each vertex incident to an edge in a matching is said to be saturated by
the matching. A perfect matching is a matching which saturates each vertex of the graph.
Clearly, any graph with a perfect matching has an even number of vertices; we call such
graphs even. To study the structure of perfect matchings in even graphs, Brigham et al. [3]
introduced the notion of a matching preclusion set : a set of edges F is a matching preclusion
set of an even graph G if the subgraph of G obtained by removing the edges of F (denoted
by G − F ) has no perfect matching. The matching preclusion number of an even graph G,
denoted by mp(G), is defined as the minimum cardinality of a matching preclusion set of
G. A matching preclusion set which achieves the minimum cardinality is called an optimal
matching preclusion set.

A natural way to eliminate all perfect matchings in a graph is to remove all edges incident
to some vertex. A graph with mp(G) = δ(G) is said to be maximally matched, as it attains
the upper bound. A matching preclusion set whose removal isolates a vertex is said to be
trivial, and a graph where every optimal matching preclusion set is trivial is super matched.
This property can be viewed as optimal, in the sense that it provides the most stringent
possible restriction on the structure of the matching preclusion sets of a graph. We note
that if a graph is super matched, then it is necessarily maximally matched, but the converse
need not be true. For other graph theory terminology not described here, we refer the reader
to [14].

Graph models are used to study various problems in a variety of different areas: examples
include molecular chemistry, operations research, activity networks, and species migration.
In particular, models of computer and processor networks have a natural representation as
graphs. For some applications in high-performance computing, each processor node in a
network may need to be paired with a single partner. For such applications, the matching
preclusion number gives a natural measure of the robustness of the network in the event of
link failure. For more information, see [3]. The matching preclusion problem has been studied
for several well-known families of graphs, including the hypercubes, alternating group graphs,
and pancake graphs [5–8,10, 11,16,18]. A number of generalizations of matching preclusion
have also been studied, including conditional matching preclusion [4–7,9,12], where no vertex
in the graph may be isolated by the removal of edges, and strong matching preclusion [17],
where vertices as well as edges may be removed.
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2 Generalized Petersen graphs

The generalized Petersen graphs P (n, k), as the name suggests, are a family of graphs based
on the construction of the well-known Petersen graph. The vertex set of P (n, k) consists
of n outer vertices a0, . . . , an−1 and n inner vertices b0, . . . , bn−1, for n ≥ 3. For notational
convenience, we say that if i ≡ j (mod n), then ai = aj and bi = bj. The edges of P (n, k)
consist of outer edges of the form aiai+1, inner edges bibi+k, and spokes aibi, for 0 ≤ i ≤ n−1.
We can see that each outer edge joins two outer vertices, each inner edge joins two inner
vertices, and each spoke joins an inner vertex to an outer vertex.

For fixed n and k, let d = gcd(n, k) and q = n
d
. From the definition, we observe that

P (n, k) consists of a cycle of length n (the outer cycle) which is joined by the spokes to
d vertex-disjoint cycles of length q (the inner cycles). We can also deduce that P (n, k) is
isomorphic to P (n, n − k), and that P (n, k) is 3-regular when n 6= 2k, so we require that
n > 2k in order to eliminate redundant cases and ensure that P (n, k) is a simple graph.

We recover the Petersen graph as P (5, 2) (see Figure 1). The properties of the genera-
lized Petersen graphs have been widely studied regarding perfect 2-colorings, the decycling
number, and domination number [2, 13, 15]. A number of notable 3-regular graphs arise as
generalized Petersen graphs; some examples are listed in Table 1.

Figure 1: The Petersen graph P(5,2)

The matching preclusion problem has been previously studied for some cases of the
generalized Petersen graphs, all of which are even graphs. The Petersen graph P (5, 2) is
known to be maximally matched but not super matched. The matching preclusion number
of P (n, 3) has also been determined in [12]. Previous work investigated P (n, k) under the
strong matching preclusion problem, in which both edges and vertices can be removed [1].
In this paper, we aim to extend these results and solve the matching preclusion problem for
P (n, k) for all k > 1 and n > 2k. We do not consider the case k = 1 here as the matching
preclusion problem in the prism graph P (n, 1) requires a different, though simpler, analysis
than when k > 1.

3 Main results

To study the matching preclusion problem for P (n, k), we consider the removal of a set F of
three edges and determine the conditions under which P (n, k)− F has a perfect matching.

2

Theory and Applications of Graphs, Vol. 6 [2019], Iss. 1, Art. 5

https://digitalcommons.georgiasouthern.edu/tag/vol6/iss1/5
DOI: 10.20429/tag.2019.060105



Graph generalized Petersen graph
Cubic symmetric graph F048A P (24, 5)

Cubical graph P (4, 1)
Desargues graph P (10, 3)

Dodecaheadral graph P (10, 2)
Durer graph P (6, 2)

Möbius-Kantor graph P (8, 3)
Nauru graph P (12, 5)

Petersen graph P (5, 2)
Prism graph P (n, 1)

Table 1: Examples of generalized Petersen graphs [19]

The following result is clear from the construction of P (n, k).

Lemma 3.1. If F consists of three non-spoke edges, then P (n, k)−F has a perfect matching
consisting of all the spokes.

We consider three additional cases based on the number of spokes in F .

Theorem 3.2. Let k > 1. If F consists of one spoke and two non-spokes, and F is not a
trivial matching preclusion set, then P (n, k)−F has a perfect matching for any (n, k) 6= (5, 2).

bi

ai

bi−k bi+k

bi

ai

bi−k bi+k

Figure 2: Top: the set S1 in red, and S2 in orange. Bottom: the set S3 in green, and S4 in
blue.

Proof. Suppose that F is a non-trivial matching preclusion set of P (n, k). Let aibi be the
spoke in F . Consider the four sets of edges

S1 = {aiai+1, ai+kai+k+1, bibi+k, bi+1bi+k+1},

S2 = {aiai−1, ai−k−1ai−k, bibi−k, bi−1bi−k−1},

S3 = {aiai−1, ai+k−1ai+k, bibi+k, bi−1bi+k−1},

S4 = {aiai+1, ai−kai−k+1, bibi−k, bi+1bi−k+1},
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illustrated in Figure 2. Since n > 2k ≥ k + 1, each of these sets consists of four distinct,
independent edges, and thus forms a matching in P (n, k) − F which can be extended to a
perfect matching by including the remaining spokes not incident to matched vertices. Thus
for F to be a matching preclusion set, each of these edge sets must contain at least one of
the two non-spoke edges in F .

Since F is not a trivial matching preclusion set, F contains at most one of aiai+1 and
aiai−1, and at most one of bibi+k and bibi−k. When n > 2k + 2, it is clear that i, i − 1, i +
1, i + k, i + k − 1, i + k + 1, i − k, i − k − 1, and i − k + 1 are all distinct modulo n. This
means that the vertices with these labels are all distinct, so it is straightforward to check
that no set of two edges can intersect all of the sets Sj other than those that form a trivial
matching preclusion set. When n = 2k + 2 we have i − k − 1 ≡ i + k + 1 (mod n), but all
the edges in the sets Sj are distinct, so we can once again check that only a trivial matching
preclusion set intersects all of the Sj. When n = 2k + 1, we have i− k ≡ i+ k + 1 (mod n)
and i − k − 1 ≡ i + k (mod n), so ai+kai+k+1 = ai−kai−k−1 is present in both S1 and S2.
However, when k 6= 2 no other edge is present in both S3 and S4, so only a trivial matching
preclusion set intersects all of the Sj. When k = 2, we have i + k − 1 ≡ i + 1 (mod n) and
i−k+1 ≡ i−1 (mod n), so the edge bi−1bi+k−1 = bi+1bi−k+1 = bi−1bi+1 is an element of both
S3 and S4. From this, we can see that P (5, 2) has a non-trivial matching preclusion set of
the form {aibi, bi−1bi+1, ai+2ai−2}, but otherwise, when F is not a trivial matching preclusion
set and (n, k) 6= (5, 2), P (n, k)− F has a perfect matching.

Theorem 3.3. Let k > 1 and n 6= 3k. If F consists of three spokes, then P (n, k)− F has a
perfect matching.

Proof. Recall that d = gcd(n, k) and q = n
d
. If P (n, k) − F is spanned by even cycles, a

perfect matching exists. This occurs when n and q are both even.
In all other cases, n and d have the same parity, so n − d will be even and each inner

cycle has an odd number of vertices. When n 6= 3k, since n > 2k we have q > 3, thus
we can choose d consecutive spokes aibi, . . . , ai+d−1bi+d−1 in P (n, k) − F . The subgraph of
P ′ = P (n, k)− F induced by the vertices not incident to these spokes consists of one outer
path of n− d vertices joined by the remaining spokes to d inner paths of q− 1 vertices each.
As both n − d and q − 1 are even, each of these paths is saturated by a matching, so by
taking these matchings together we obtain a perfect matching of P ′. Taking this matching
together with the d consecutive spokes gives a perfect matching of P (n, k)− F .

Theorem 3.4. Let k > 1 and n 6= 3k. If F consists of two spokes and one non-spoke, then
P (n, k)− F has a perfect matching.

Proof. Three different cases can be considered:
Case 1: d = gcd(n, k) = 1. This means there is one inner cycle.
If n is even, P (n, k) − F consists of an even cycle joined to one path with an even

number of vertices, so P (n, k) − F has a perfect matching. Thus, suppose n is odd. Since
gcd(n, k) = 1, we can construct an automorphism φ of P (n, k) by taking φ(ai) = bk∗i and
φ(bi) = ac∗i, where ck ≡ 1 (mod n). As we can see that φ interchanges the outer and inner
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cycles, we may assume without loss of generality that the non-spoke edge in F is aiai+1. If
one of aibi and ai+1bi+1 is not an element of F , say aibi, then the outer cycle without ai
and the inner cycle without bi are each paths with an even number of vertices, so we can
construct a perfect matching of P (n, k) − F by taking a matching saturating each of those
paths together with the spoke aibi. If both aibi and ai+1bi+1 are elements of F , and n > 3,
then ai+n−2 and ai+1 are distinct vertices, and ai+n−2 is incident to a spoke in P (n, k)− F .
Then P1 = ai+1, ai+2, . . . , ai+n−2, bi+n−2, bi+n−2+k, . . . , bi+n−2−k and P2 = ai+n−1ai are two
paths, each with an even number of vertices, that span the vertices of P (n, k) − F . Thus
taking a matching saturating each of these paths gives a perfect matching of P (n, k)− F .

Case 2: d = gcd(n, k) > 1, and n and q = n
d

are even.
In this case, the vertices of P (n, k) are spanned by the outer and inner cycles, all of which

are even. Thus the vertices of P (n, k) − F are spanned by a collection of even cycles and
one path with an even number of vertices, so we can find a perfect matching of P (n, k)−F .

Case 3: n is odd and d > 1, or n, k are even and q is odd.
In this case, we know that n and d have the same parity, so n− d is even, and each inner

cycle has an odd number of vertices.
First, we suppose that the non-spoke edge in F is an outer edge, say aiai−1. Since n ≥ 3d,

we can find d consecutive spokes ajbj, . . . , aj+d−1bj+d−1 in P (n, k)−F such that either ai−1bi−1
and aibi are both among them or j−i is even modulo n. To see this, suppose that no collection
of d consecutive spokes in P (n, k)−F contains both ai−1bi−1 and aibi. Then there are three
possibilities: if ai−1bi−1 and aibi are both in F , then ai+2bi+2, . . . , ai+d+1bi+d+1 is clearly the
desired collection of spokes, with i + 2 − i ≡ 2 (mod n) even. If only one of ai−1bi−1 or
aibi is in F , then one of ai+2bi+2, . . . , ai+d+1bi+d+1 or ai+n−dbi+n−d, . . . , ai−1bi−1 is the desired
collection of spokes, as the other spoke in F can only be in one of the two disjoint collections.
If neither of ai−1bi−1 or aibi is in F , then let ai+sbi+s and ai+tbi+t be the spokes in F , with
0 ≤ s < t ≤ n − 1. Then the number of spokes in ai+t+1bi+t+1, . . . aibi, . . . , ai+s−1bi+s−1 is
n−t+s−1, which must be strictly less than d. But then we have (t−1)−(s+1)+1 ≥ n−d−1 ≥
2d − 1 ≥ d + 1, so either ai+s+1bi+s+1, . . . , ai+s+dbi+s+d or ai+s+2bi+s+2, . . . , ai+s+d+1bi+s+d+1

is the desired collection of spokes, as one of s+ 1 or s+ 2 is even modulo n.
If the vertices incident to the consecutive spokes are removed, the remaining outer vertices

form either one path, if the consecutive spokes include at least one of ai−1bi−1 or aibi, or two
paths otherwise, each with an even number of vertices, since n and d have the same parity
and as there are an even number of vertices in ai, . . . , aj−1 in the latter case. Additionally,
the remaining vertices of each inner cycle form a path with q−1 vertices, which is even since
q is odd. Therefore we can find matchings saturating each of these paths, and taking these
matchings together with the d consecutive spokes gives a perfect matching of P (n, k)− F .

We now suppose the non-spoke edge in F is an inner edge, say bibi+k. Let asbs and atbt
be the spokes in F , for some 0 ≤ s < t ≤ n − 1. Then there are t − s − 1 indices r with
s < r < t, and n + s − t − 1 with 0 ≤ r < s or t < r ≤ n − 1. Since n > 2k ≥ 2d,
max{t−s−1, n+s− t−1} ≥ d, so either we can choose d consecutive spokes in P (n, k)−F
such that one of aibi or ai+kbi+k is among them, or alternatively that both are elements of
F . In the former case, the outer vertices not incident to these spokes form a path with n−d
vertices, and the remaining inner vertices form a collection of paths, each with q−1 vertices.
Since n − d and q − 1 are even, we can find matchings saturating each of these paths, and
taking these matchings together with the d consecutive spokes gives a perfect matching of
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P (n, k)− F .
In the latter case, since n 6= 3k, we have q > 3, so q ≥ 5 for odd q. This implies that

bi−k, bi, bi+k, bi+2k, and bi+3k are all distinct vertices, and that we can find d consecutive
spokes in P (n, k) − F such that ai+3kbi+3k is among them. The outer vertices not incident
to these spokes form a path with n − d vertices, the inner cycle containing bi forms a path
with q− 5 vertices after excluding bi−k, bi, bi+k, bi+2k, and bi+3k, and the vertices not incident
to the spokes in the remaining inner cycles form paths with q − 1 vertices each. Taking
these matchings, the d consecutive spokes, and the edges {bi−kbi, bi+kbi+2k} together gives a
perfect matching of P (n, k)− F . This completes the proof.

We note that when n = 3k, the edge set F = {aibi, ai+kbi+k, ai+2kbi+2k} is a non-trivial
matching preclusion set of P (3k, k), as its removal leaves the graph disconnected with two
odd components. Furthermore, the edge set F = {bibi+k, aibi, ai+kbi+k} is also a non-trivial
matching preclusion set as the vertices bi and bi+k have degree 1 in P (n, k)−F , and their only
neighbor is in common. These constructions justify the condition that n 6= 3k in Theorem 3.3
and Theorem 3.4.

Synthesizing the results above, we obtain the following classification.

Theorem 3.5. Let k > 1 and n > 2k. Then P (n, k) is maximally matched. Furthermore,
P (n, k) is super matched when n 6= 3k and (n, k) 6= (5, 2).

Proof. Let F be a set of edges of P (n, k). When |F | = 3, n 6= 3k and (n, k) 6= (5, 2)
Theorems 3.2, 3.3, and 3.4 indicate that P (n, k)−F has a perfect matching or F is a trivial
matching preclusion set. Furthermore, minor modifications to the proofs of these theorems
show that when |F | ≤ 2, P (n, k)−F has a perfect matching for any k > 1 and n > 2k. Thus
mp(P (n, k)) = 3 = δ(P (n, k)), so P (n, k) is maximally matched for any k > 1 and n > 2k,
and P (n, k) is super matched when n 6= 3k and (n, k) 6= (5, 2).

4 Conclusion

In this paper, we determined the matching preclusion number for the family of generalized
Petersen graphs, and classified the optimal matching preclusion sets. A natural extension
of this work involves the derivation of similar results for some of the generalizations of
the matching preclusion problem, including the strong matching preclusion and conditional
matching preclusion problems. We conjecture that these problems have a similar “optimal”
solution for the generalized Petersen graph, in that the optimal sets for each problem can
be constrained in the best possible way outside of a small number of exceptional cases.
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