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Abstract

Among difference vertex labelings of graphs, α-labelings are the most restrictive
one. A graph is an α-graph if it admits an α-labeling. In this work, we study a new
alternative to construct α-graphs using, the well-known, series-parallel operations on
smaller α-graphs. As an application of the series operation, we show that all members
of a subfamily of all trees with maximum degree 4, obtained using vertex amalgamation
of copies of the path P11, are α-graphs. We also show that the one-point union of up to
four copies of Kn,n is an α-graph. In addition we prove that any α-graph of order m and
size n is an induced subgraph of a graph of order m+ 2 and size m+ n. Furthermore,
we prove that the Cartesian product of the bipartite graph K2,n and the path Pm is
an α-graph.

1 Introduction

A difference vertex labeling of a graph G of size n is an injective mapping f from V (G) into
a set N of nonnegative integers, such that every edge uv of G has assigned a weight defined
by |f(u) − f(v)|. The labeling f is called graceful when N = {0, 1, . . . , n} and the set of
induced weights is {1, 2, . . . , n}. If this is the case, G is called a graceful graph. Let G be a
bipartite graph and {A,B} be the natural bipartition of V (G), we refer to A and B as the
stable sets of V (G) and assume that |A| = a and |B| = b. A bipartite labeling of G is an
injection f : V (G)→ {0, 1, . . . , s} for which there is an integer λ, named the boundary value
of f , such that f(u) ≤ λ < f(v) for every (u, v) ∈ A × B, that induces n different weights.
This is an extension of the definition of bipartite labeling given by Rosa and Širáň [14]. From
the definition we may conclude that s ≥ |E(G)|; furthermore, the labels assigned by f on
the vertices of A and B are in the sets {0, 1, . . . , λ} and {λ + 1, λ + 2, . . . , s}, respectively.
If s = n, the function f is an α-labeling and G is an α-graph. If f is an α-labeling of a tree
and f−1(0) ∈ A, then its boundary value is λ = a− 1.

Suppose that f : V (G)→ {0, 1, . . . , n} is a graceful labeling of a graph G of size n:

• f : V (G) → {0, 1, . . . , n}, defined for every v ∈ V (G) as f(v) = n − f(v), is the
complementary labeling of f . Note that f preserves the weights induced by f .

• g : V (G)→ {c, c+1, . . . , c+n}, defined for every v ∈ V (G) and c ∈ N as g(v) = c+f(v),
is the shifting of f in c units. Note that this labeling preserves the weights induced by
f .

Suppose now that f is an α-labeling of G with boundary value λ.

• f̂ : V (G) → {0, 1, . . . , n}, defined for every v ∈ V (G) as f̂(v) = λ − f(v) if f(v) ≤ λ,
and f̂(v) = n + λ + 1 − f(v) if f(v) > λ, is the reverse labeling of f . Note that f̂ is
also an α-labeling with boundary value λ.

• g : V (G)→ N, defined for every v ∈ V (G) and any positive integer d as g(v) = f(v) if
f(v) ≤ λ and g(v) = f(v) + d− 1 if f(v) > λ, is the d-graceful labeling of G obtained
from f . The labels assigned by g on the stable sets of V (G) are in the intervals [0, λ]
and [λ+ d, n+ d− 1] and the set of induced weights is {d, d+ 1, . . . , n+ d− 1}.
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For example: let f be an α-labeling of a tree T of size n with boundary value λ. Suppose
that f is transformed into a d-graceful labeling shifted c units. Then the elements of A are
labeled with the integers in [c, λ + c], the elements of B are labeled with the integers in
[c+ λ+ d, c+ n+ d− 1], and the induced weights form the interval [d, n+ d− 1].

Several graph operations involving graceful and/or α-graphs have been studied in the
last fifty years. The Cartesian product has been extensively investigated for several families
of graphs, as well as the union and the one-point union, the corona product, the join, the
tensor product, and many other ways to combine graceful graphs to obtain new greaceful
and α-graphs. A good account of the newest techniques can be found in [11].

In Section 2 we perform series-parallel operations on α-graph to create new α-graphs; in
addition, we prove that the one-point union of up to four copies of Kn,n results in a new α-
graph. In addition we present another example of a family of α-trees that can be constructed
using the series operation. In Section 3 we show that any α-graph of order m and size n is
an induced subgraph of an α-graph of order m + 2 and size m + n. We close this section
showing that the Cartesian Product K2,n × Pm is an α-graph for all positive values of m
and n. The reader interested in graph labelings is refered to Gallian’s survey [9] for more
information about the subject. In this paper we follow the notation and terminology used
in [8] and [9].

2 Series-Parallel Operations with α-Graphs

In this section we investigate how to operate α-graphs to produce larger α-graphs using
the well-known series-parallel operations. We start analyzing the series operations, showing
that we can always combine smaller α-graphs to produce new and larger α-graphs. As a
consequence of this result we prove that the one-point union, of up-to four copies of Kn,n,
is an α-graph. We also prove here that all trees with maximum degree 4, obtained applying
the series operation to a collection of α-labeled copies of P11, are α-graphs when the distance
between any pair of consecutive vertices of degree 4 is even. The last part of the section is
devoted to the study of the parallel operation on a family of α-graphs.

2.1 The Series Operation

A series-parallel graph with distinguished terminals l and r, denoted (G, l, r), is defined
recursively as follows:

• The graph consisting of a single edge v1v2 is a series-parallel graph (G, l, r) with l = v1,
and r = v2.

• A series operation (G1, l1, r1)�s (G2, l2, r2) forms a series-parallel graph by identifying
r1 with l2.

• A parallel operation (G1, l1, r1)�p(G2, l2, r2) forms a series-parallel graph by identifying
l1 with l2 and r1 with r2.
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Let f be an α-labeling of a graph G of size n with boundary value λ. Let u, v ∈ V (G)
such that f(u) = λ + 1 and f(v) = n. In the following result, these vertices correspond to
the vertices l and r in the definition of series-parallel graph.

Theorem 2.1. If G1 and G2 are α-graphs, then (G1, l1, r1)�s (G2, l2, r2) is an α-graph.

Proof. For i ∈ {1, 2}, let Gi be an α-graph of size ni. Suppose that fi is an α-labeling of Gi

with boundary value λi. The labels on G1 are shifted λ2 + 1 units; so, the new labels in G1

are in the set {λ2 + 1, λ2 + 2, . . . , λ1 + λ2 + 1} ∪ {λ1 + λ2 + 2, λ1 + λ2 + 3, . . . , n1 + λ2 + 1},
and the set of induced weights is still {1, 2, . . . , n}. The labeling of G2 is transformed into a
(n1 + 1)-graceful labeling. In this case, the labels in G2 are in the set {0, 1, . . . , λ2} ∪ {n1 +
1+λ2, n1 +2+λ2, . . . , n1 +n2} and the set of induced weights is {n1 +1, n1 +2, . . . , n1 +n2}.
Thus, both graphs have a vertex labeled n1 +1+λ2 that corresponds to the vertices r1 of G1

and l2 of G2. The boundary value of the labeling of the new graph is λ = λ1 + λ2 + 1.

As a consequence of this result we can prove that the one-point union of up to four
complete bipartite graphs Kn,n is an α-graph. This result is related to some other problems
that we can find in the literarture. For example, in [15], Selvaraju worked with α-labelings
of the one point union of complete bipartite graphs, showing that there is an α-labeling for
the one-point union of the following graphs: Km,n1 and Km,n2 ; Km1,n1 , Km2,n2 , Km3,n3 when
m1 ≤ m2 ≤ m3 and n1 < n2 < n3; and Km1,n, Km2,n, Km3,n where m1 < m2 < m3 ≤
2n. In a related line, Sethuraman and Selvaraju [16], proved that the one-point union of
any number of non-isomorphic complete bipartite graphs is a graceful graph. Sudha [17]
showed that the graph formed with any number of complete bipartite graphs that share
one stable set, is graceful. Barrientos [5] proved that the graph obtained as the one-point
union of Km1,n1 , Km2,n2 , . . .Kmt,nt , where each Kmi,ni

appears at most twice in that list and
gcd(n1, n2, . . . , nt) = 1, is graceful.

Proposition 2.1. For the one-point union of two copies of Kn,n, there exists an α-labeling
that assigns the label 2n2 to the vertex of degree 2n.

Proof. Let A = {u1, u2, . . . , un} and B = {v1, v2, . . . , vn} be the stable sets of Kn,n. Let f be
the α-labeling of Kn,n defined by f(ui) = i−1 and f(vi) = in for every 1 ≤ i ≤ n. Thus, the
boundary value of f is n−1. Suppose that two copies of Kn,n have been labeled using f . The
labeling of the first copy of Kn,n is transformed into a (n2 + 1)-graceful labeling. Hence, the
induced weights are n2 + 1, n2 + 2, . . . , 2n2 and the labels used form the sets {0, 1, . . . , n− 1}
and {n2 + n, n2 + 2n, . . . , 2n2}. The labeling of the second copy of Kn,n is transformed into
its complementary labeling and then shifted 2n− 1 units. In this way, the induced weights
are 1, 2, . . . , n2 and the labels used form the sets {n2 + n, n2 + n + 1, . . . , n2 + 2n − 1} and
{2n− 1, 3n− 1, . . . , n2 + n− 1}.

Since the intersection between all these label sets is n2 + n, we can identify the two
vertices with this label to produce an α-labeled version of the one-point union of two copies
of Kn,n, where n2+n−1 is the boundary value of the associated α-labeling. Thus, the reverse
labeling places the label 2n2 on the vertex of degree 2n that results of the amalgamation.

Consider now Kn,n with the α-labeling described within the proof of Proposition 2.1, so,
one of the stable sets of Kn,n has a vertex labeled n and this is the smallest label in that
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stable set. By Proposition 2.1, we know that there is an α-labeling, of the one-point union
of two copies of Kn,n, that places the highest label, 2n2, on the vertex of maximum degree.
Therefore we can apply Theorem 2.1 to prove that the one-point union of three copies of Kn,n

is an α-graph. On the case of the one-point union of four copies of Kn,n, we use Theorem 2.1
on two copies of the one-point union of two Kn,n. We start with two copies of the one-point
union of two Kn,n labeled using Proposition 2.1; once this is done, one of these labelings is
transformed into its reverse labeling. In this way, the vertex of highest degree in the first
copy is labeled 2n2 and in the second copy is labeled n2 + n− 1. Hence Theorem 2.1 can be
applied to prove the following theorem.

Theorem 2.2. The one-point union of three or four copies of Kn,n is an α-graph.

In Figure 1 we show an example of these results for the case of K3,3.

15 22

29 12 21 27

28 18 23 24

1 2

8 5

33 36

31 32

0

11

12 5

1 2

18

21

22

24 27

13 14 8 11

0

15 23

13

8

1

15

11

12

0

14

5

2

18

30

Figure 1: α-labeling of the one-point union of four, three, and two copies of K3,3

2.2 A Chain of Paths Crossing: An Application

Suppose that for every 1 ≤ i ≤ t, P i is a path of length at least four with distinguished
vertices vi1 and vi2 such that they are not leaves. A tree T is said to be a chain of paths
crossing if for every 1 < i < t, vi−12 is amalgamated with vi1 and vi2 is amalgamated with
vi+1
1 . Thus, there are t − 1 crossings of paths (or vertices of degree 4) in T ; this implies

that the order of T is
∑t

i=1 |V (P i)| − (t− 1)=
∑t

i=1 |V (P i)| − t+ 1. Since the distinguished
vertices, used in the amalgamation of P i and P i+1, are interior vertices, we may calculate
the number of leaves in T (vertices of degree 1) to be 2t. Therefore, the number of vertices
of degree 3 is

∑t
i=1 |V (P i)| − 4t+ 2.

When the distinguished vertices are taken in an ad hoc manner, we can apply the series
operation to produce an α-labeling of this type of tree. Rosa [12], proved that for every
v ∈ V (Pn), n ≥ 1, there exists an α-labeling f of Pn such that f(v) = 0, except when v
is the central vertex of P5. Thus, for a given path Pn, n ≥ 4, with an α-labeling f , the
distinguished vertices v1 and v2 are those where f(v1) = 0 and f(v2) = λ, where λ is the
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boundary value of f . We want to show how powerful is the series operation, to do that,
we work here with the case where the P i are copies of P11; certainly the next result can be
modified to include paths of other lengths.

Before presenting the theorem, let us introduce the α-labelings of P11 that are used in its
proof. We show these labelings in Figure 2. On each path, we have highlighted the vertices
labeled 0 and λ, which are crucial to apply the series operation.

10 0 9 1 8 2 7 3 6 4 5

1 9 0 10 3 8 2 6 5 7 4

9 1 10 0 7 2 8 4 5 3 6

2 8 1 9 0 10 5 6 4 7 3

φ4 :

φ3 :

φ2 :

φ1 :

Figure 2: Different types of α-labelings of P11

Theorem 2.3. If T is a chain of paths crossing where every path is a copy of P11 and the
distance between any pair of consecutive vertices of degree four is even, then T is an α-tree.

Proof. Suppose that T is a chain of paths crossing formed with t copies of P11 in such a way
that the distance between the distinguished vertices, vi1 and vi2, of the ith copy of P11 is even,
that is, dist(vi1, v

i
2) ∈ {2, 4, 6, 8}. Note that the labelings of P11 in Figure 2 can be used here

because, for every j ∈ {1, 2, 3, 4}, under the labeling φj, dist(vi1, v
i
2) = 2j. The first and the

last copy of P11 can be labeled with any of the labelings in Figure 2. For every 1 < i < t,
the labeling of the ith copy of P11 is determined by the distance between the distinguished
vertices of P11; thus, if dist(vi1, v

i
2) = 2j, then the selected labeling is φj.

Assuming that the ith copy of P11 has been labeled, its initial α-labeling is amplified
to produce a (10i + 1)-graceful labeling; finally this transitory labeling must be shifted
conveniently to produce the desired α-labeling of T .

In Figure 3 we show an example of this construction for a tree T of size 60 where the
sequence of distances, in between vertices of degree four, is 6, 4, 2, 8.

It may seem that this result does not contribute that much in the discovery of new
graceful trees, however, it produces a large amount of them. In fact, for the case that we
have under consideration, that is, for P11, the number of non-isomorphic trees constructed
with t copies of P11 is of the order of 22t−1.

Theorem 2.4. Let t ≥ 3 be an integer, the number of trees formed as a chain of t paths
crossing, where every path used is isomorphic to P11, and the distance between distinguished
vertices belong to {2, 4, 6, 8}, is given by

(i) 22t−1 + 2t when t is odd,
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Figure 3: α-labeling of a chain of paths crossing

(ii) 22t−1 + 2t−1 when t is even.

Proof. Let T be a tree that is a chain of paths crossing, formed using t ≥ 3 copies of P11

such that the distance between consecutive vertices of degree four belongs to D = {2, 4, 6, 8}.
Every copy of P11 is labeled with one of the labelings in Figure 2. Since we have four different
α-labelings of P11, there are 4t different posibilities for T . Each of these α-labeled trees has
associated a string of length t−2, where every number on this string comes from D. But the
string and its reverse represent the same tree and some strings are reversible, that is, they
are the same when read backwards. So, in order to determine the number of different strings
(or non-isomorphic trees formed in the prescribed way) we need to calculate the number of
reversible strings.

When t is odd, there is an integer s such that t − 2 = 2s + 1. Thus, the number of
reversible strings of length t− 2 is given by (4s)(4)(1s), where the first factor is the number
of strings of length s, the second factor is the amount of elements of D that can be placed
in the median position of the string. The third factor is the number of options for the last
s positions in the string; recall that these integers are determined by the selection made for
the first s entries in the string. Thus, we have 4s+1 reversible strings of length t − 2. But
this number does not consider the first and the last copy of P11 in T . So, the number of
symmetric chains of t paths crossing is 4 ·4s+1 = 4s+2. Hence, the number of non-isomorphic
chains of t paths crossing is

1

2
(4t + 4s+2) =

1

2
(22t + 22s+4) =

1

2
(22t + 2t+1) = 22t−1 + 2t.

When t is even, there is an integer r such that t−2 = 2r. Hence, the number of reversible
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strings of length t − 2 is given by (4r)(1r) = 4r. As in the odd case, the first factor is the
number of strings of length r and the second factor is the number of options for the last r
entries of the string. The number 4r does not consider the first and the last copy of P11 in
T . So, the number of symmetric chains of t paths crossing is 4 · 4r = 4r+1. Now the number
of non-isomorphic chains of t paths crossing is

1

2
(4t + 4r+1) =

1

2
(22t + 22r+2) = (22t−1 + 22r+1) = 22t−1 + 2t−1.

This concludes the proof.

Let a(t) be the number of non-isomorphic trees T we can form in this way. In Table 1
we show the first values of a(t), showing how fast this number grows. The sequence formed
by the consecutive values of a(t) corresponds to OEIS sequence A032121 [6].

t 3 4 5 6 7 8 9 10 11 12
a(t) 40 136 544 2080 8320 32896 131584 524800 2099200 8390656

Table 1: Number of non-isomorphic trees formed by a chain of paths crossing with t copies
of P11

2.3 The Parallel Operation

Now we turn our attention to graphs that can be constructed using the parallel operation.
If G is an α-graph of size n, then G is bipartite. Let A and B be the stable sets of G, we
assume that |A| ≤ |B|. For i = 1, 2 let Gi be an α-graph of size ni and let fi be an α-labeling
of Gi, with boundary value λi, such that the label λi is assigned to a vertex of Ai. We say
that G1 and G2 are compatible if

(i) the vertices xi and yi of Gi labeled 0 and λi are leaves and

(ii) n1 = λ1 + λ2.

We claim that the graph G obtained, using the parallel operation on G1 and G2, is an
α-graph.

Theorem 2.5. If G1 and G2 are compatible graphs, then there exist vertices x1, y1 ∈ G1 and
x2, y2 ∈ G2, such that G = G1 �p G2 is an α-graph.

Proof. For i = 1, 2, let xi, yi ∈ V (Gi) such that fi(xi) = 0 and fi(yi) = λi. Let f ′1 be the
labeling of the vertices of G1 given by

f ′1(u) =


0 if u = y1,

f1(u) + λ2 if u 6= y1 and f(u) ≤ λ1,

f1(u) + λ2 − 1 if u 6= y1 and f(u) > λ1,

The labels assigned by f ′1 are in the set {0} ∪ {λ2, 1 + λ2, . . . , λ1 − 1 + λ2} ∪ {λ1 + 1 +
λ2, λ1 +2+λ2, . . . , n1 +λ2} and the induced weights form the set {1, 2, . . . , n1}. The labeling
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f2 is transformed into a (n1 + 1)-graceful labeling, denoted f ′2. Thus, the labels assigned by
f ′2 are in the set {0, 1, . . . , λ2}∪{n1 + 1 +λ2, n1 + 2 +λ2, . . . , n1 +n2} and the set of induced
weights is {n1 + 1, n1 + 2, . . . , n1 + n2}.

Note that f ′1(x1) = λ2, f
′
1(y1) = 0, f ′2(x2) = 0, and f ′2(y2) = λ2. Hence, when x1 is

identified with y2 and y1 is identified with x2, we obtain an α-labeling of G = G1 �p G2

which boundary value is λ = λ1 + λ2 − 1.

Now we present a construction that produces compatible α-graphs. Suppose that G is
an α-labeled graph of size n with an α-labeling f . If the vertex labeled 0 by f is not a leaf,
then we create a graph G′ by attaching a leaf to the vertex labeled n in G, in such a way
that the new vertex is labeled 0 and all the other labels are increased by one unit, we obtain
an α-labeling of G′ where the vertex labeled 0 is a leaf. Something similar can be done to
G if its labeling f does not assign the label λ to a leaf. In this case the new graph G′′, is
obtained by attaching a leaf to the vertex labeled λ + 1. The α-labeling of G′′ is obtained
assigning the label λ+ 1 to this leaf and adding one unit to each original label greater than
λ. Clearly, if this does not assign the labels 0 and λ to leaves of G, a graph G′′′ can be
formed applying these modifications. As an example, in Figure 4 we show, step by step, how
the standard α-labeling of G = C8 can be used to transform G into a self-compatible graph.

0 5

2

4

37

1

8

1 6

3

5

48

2

9

0 1 8

3

5

26

0

9

4

3 7

1

10

29

4

6

5

0

G : G′ : G′′ : G′′′ :

Figure 4: Creating compatible graphs

In Figure 5 we show some examples of the graphs obtained using the parallel operation
on the cycles C16, C12, C8, and C4.

The family E , of all caterpillars of even diameter, provides infinitely many pairs of com-
patible graphs. Rosa [13] proved that for any given caterpillar (or path), there exists an
α-labeling f that assigns the label 0 to a vertex of maximum eccentricity, and in the case
where the diameter is even, the vertex labeled λ (where λ is the boundary value of f) is the
other extreme of the path of maximum length that has one extreme at the vertex labeled
0. So, for any given caterpillar X of size n in E with stable sets of cardinalities a and b,
any caterpillar X ′ in E having one stable set of cardinality n − a is compatible with X.
Therefore, X �pX

′ is an α-graph. Note that the graph X �pX
′ is a type of unicyclic graph

named hairy cycle; that is, a cycle with pendant vertices attached. In [4], Barrientos proved
that all hairy cycles are graceful; when the girth of the cycle is even, the labeling used to
proved that result is in fact an α-labeling.
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Figure 5: Parallel α-graphs obtained using modified cycles

3 α-Graphs Inside α-Graphs

In [2], it was proved that given a graceful graph G and an α-graph H, there is a vertex
amalgamation of G and H that results in a graceful graph. This idea is a generalization of
the quite natural construction of newer graceful graphs by attaching pendant vertices to the
vertex labeled zero. In this section, we explore how to extend an α-labeled graph to a larger
α-graph. Let G be an α-graph of order n + 1 and size n. As usual, we are assuming that
there exists an α-labeling of G that assigns its boundary value to a vertex of the stable set
A. We claim that there exists an α-graph H of size 2n+ 1 and order n+ 3 that contains G
as an induced subgraph.

In fact, let f be an α-labeling of G that assigns labels from the sets {0, 1, . . . , λ} and
{λ+ 1, λ+ 2, . . . , n}. So |A| ≤ λ+ 1 and |B| ≤ n− λ.

If f is shifted n− λ units, then the labels used are taken from {n− λ, n− λ+ 1, . . . , n}
and {n + 1, n + 2, . . . , 2n − λ}. Once this is done we amplified this labeling by adding the
constant λ+ 1 to every vertex label in B, so the second set of labels becomes {n+λ+ 2, n+
λ+ 3, . . . , 2n+ 1}, and the set of induced weights is {λ+ 2, λ+ 3, . . . , n+ λ+ 1}.

A new vertex, labeled n + 1, is connected with every vertex in A, inducing the weights
λ + 1, λ, . . . , and 1. Another new vertex, labeled 0, is connected with every vertex in B,
inducing the weights n+ λ+ 2, n+ λ+ 3, . . . , 2n+ 1.

Therefore, we have a graph of order n + 3, size 2n + 1, together with a labeling that
assigns the labels from {0, 1, . . . , 2n+ 1} and induces the weights {1, 2, . . . , λ+ 1, λ+ 2, λ+
3, . . . , n + λ + 1, n + λ + 2, n + λ + 3, . . . , 2n + 1}. In addition, since the vertex label 0 is
attached to the vertices in B and the vertex labeled n+1 is attached to the vertices in A, this
is an α-labeling with boundary value n. In this way we have proven the following theorem.

Theorem 3.1. For each α-graph G of order n+ 1 and size n, there exists an α-graph H of
order n+ 3 and size 2n+ 1, such that G is an induced subgraph of H.
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In Figure 6 we show two examples of this procedure. In the first case G is a caterpillar
of size 8; in the second case, G is a disconnected α-graph of size 7.
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13 5

7 12

0 14 6 8

4 15

Figure 6: α-labelings of graphs containing smaller α-graphs

Using the construction of α-graphs just presented, many other graphs of this type can be
obtained. To explain this statement we can analyze the first graph in Figure 6. There, the
edges are located in three levels: level 1 contains the edges incident to the vertex labeled 0,
level 2 contains the edges of G, and level 3 contains the edges incident to the vertex labeled
9 (or λ+ 1 in a more general version). We can delete some of the edges in levels 1 and 3 and
still have an α-graph; if we delete, from left to right, any number of consecutive edges of level
1, and from right to left, any number of consecutive edges on level 3, then the labeling of
the resulting graph can be transformed into an α-labeling. We illustrate this fact in Figure
7.
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Figure 7: A way to obtain smaller α-graphs
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4 An α-labeling of K2,n × Pm
In this section we present a new family of α-graphs that are the result of the Cartesian
product of K2,n and Pm. The graph K2,n×Pm has order m(n+2) and size 3mn+2m−n−2.
In the next theorem we use the following well-known α-labelings of K2,n. First, suppose that
A = {u1, u2} and B = {v1, v2, . . . , vn} are the stable sets of K2,n:

• f(u1) = 0, f(u2) = n, and f(vi) = n+ i for all 1 ≤ i ≤ n.

• g(u1) = 2n, g(u2) = 2n− 1, and g(vi) = 2(i− 1) for all 1 ≤ i ≤ n.

Essentially these labelings are adaptations of the α-labeling of Km,n introduced by Rosa
[13].

Theorem 4.1. For all positive values of m and n, the graph K2,n × Pm is an α-graph.

Proof. Let R1, R2, . . . , Rm be the m copies of K2,n in K2,n × Pm. The stable sets of Rj,
1 ≤ j ≤ m, are Aj = {uj1, u

j
2} and Bj = {vj1, v

j
2, . . . , v

j
n}. Suppose that the inital labeling of

Rj is f when j is odd and g when j is even. Regardless of the parity of j, this initial labeling
is transformed into a δj-graceful labeling shifted εi units, where δj = (3n+ 2)(m− j) + 1 and

εj =

{
(3n+ 2)(j − 1)/2 if j is odd,

(3n+ 2)(j − 2)/2 + n+ 2 if j is even.

Assume that j is even. The new labels of the vertices in Aj and Bj form the sets

LAj
= {(3n+ 2)(2m− j)/2, (3n+ 2)(2m− j)/2− 1}

and

LBj
= {(3n+ 2)(j − 2)/2 + n+ 2i : 1 ≤ i ≤ n},

respectively.
For j − 1 and j + 1, if Rj+1 exists, we get the following sets:

LAj−1
= {(3n+ 2)(j − 2)/2, (3n+ 2)(j − 2)/2 + n},

LBj−1
= {(3n+ 2)(2m− j)/2 + n+ 1 : 1 ≤ i ≤ n},

LAj+1
= {(3n+ 2)j/2, (3n+ 2)j/2 + n},

LBj+1
= {(3n+ 2)(2m− j − 2)/2 + n+ 1 : 1 ≤ i ≤ n}.

Since maxLAj−1
< minLBj

≤ maxLBj
< minLAj+1

and minLBj−1
> maxLAj

> minLAj
>

maxLBj+1
, we conclude that we have an injective assignment of labels. Furthermore, the

smallest label assigned is minLA2−1 = 0 and the largest one is maxLB2−1 = (3n + 2)(2m −
2)/2 + n+ n = 3mn+ 2m− n− 2.

Now we turn our attention to the weights induced by this labeling on the edges of K2,n×
Pm. Let h denote the labeling of our graph. As we said before, when h is restricted to Rj,
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1 ≤ j ≤ m, it is an amplification of an α-labeling, so the weights on the edges of K2,n × Pm

form the set

WRj
= {(3n+ 2)(m− j) + i : 1 ≤ i ≤ 2n}.

Note that for every 2 ≤ j ≤ m, minWRj−1
− maxWRj

= n+ 3.
One more time, suppose that j is even. Then, for every 1 ≤ i ≤ n,

h(uj1)− h(uj−11 ) = (3n+ 2)(2m− j)/2− (3n+ 2)(j − 2)/2

= (3n+ 2)(m− j + 1),

h(uj2)− h(uj−12 ) = (3n+ 2)(2m− j)/2− 1− (3n+ 2)(j − 2)/2− n
= (3n+ 2)(m− j + 1)− (n+ 1),

h(vj−11 )− h(vj1) = (3n+ 2)(2m− j)/2 + n+ i− (3n+ 2)(j − 2)/2− n− 2i

= (3n+ 2)(m− j + 1)− i.

Hence, the weights of the edges connecting Rj−1 and Rj form the set

Wj−1,j = {(3n+ 2)(m− j + 1)− k : 0 ≤ k ≤ n+ 1}

and

WRj−1
∪Wj−1,j = [(3n+ 2)(m− j + 1)− n− 1, (3n+ 2)(m− j + 1) + 2n].

On the other side, and assuming that j is even, for every 1 ≤ i ≤ n, we get

h(uj1)− h(uj+1
1 ) = (3n+ 2)(2m− j)/2− (3n+ 2)j/2

= (3n+ 2)(m− j),
h(uj2)− h(uj+1

2 ) = (3n+ 2)(2m− j)/2− 1− (3n+ 2)j/2− n
= (3n+ 2)(m− j)− (n+ 1),

h(vj+1
i )− h(vj1) = (3n+ 2)(2m− j − 2)/2 + n+ i− (3n+ 2)(j − 2)/2− n− 2i

= (3n+ 2)(m− j)− i.

The weights of the edges connecting Rj and Rj+1 form the set

Wj,j+1 = {(3n+ 2)(m− j)− k : 0 ≤ k ≤ n+ 1}

and

WRj
∪Wj,j+1 = [(3n+ 2)(m− j)− n− 1, (3n+ 2)(m− j) + 2n].

Since min(WRj−1
∪Wj−1,j)−max(WRj

∪Wj,j+1) = ((3n+2)(m−j+1)−n−1)−((3n+2)(m−
j) + 2n) = 1, we can see that every weight appears exactly once. In addition, the largest
weight, obtained on R1, equals (3n+ 2)(m− 2 + 1) + 2n = 3mn+ 2m− n− 2, which is the
size of the graph. Recall that the weight 1 is obtained on Rm because when h is restricted
to Rm, h is just a shifting of an α-labeling.
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Since the bipartite nature of the inital α-labelings of the Rj is not affected by any of the
transformations applied to them and the fact that when one stable set of Rj has the largest
labels, the corresponding stable set on Rj+1 has the smallest labels assigned to the (j+ 1)th
copy of K2,n. Hence, the labeling h of K2,n × Pm is bipartite with boundary value

λ =

{
n+ (3n+ 2)(m− 1)/2 if m is odd,

(3n+ 2)m/2− 2 if m is even.

In addition, min{h(v) : v ∈ V (K2,n × Pm)} = 0 and max{h(v) : v ∈ V (K2,n × Pm)} =
3mn+ 2m− n− 2. Therefore, h is an α-labeling of K2,n × Pm.

In Figure 8 we show an example for the case K2,7 × P4.
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Figure 8: α-labeling of K2,7 × P4

5 Conclusions

The two operations introduced in this work can be used to find new families of graceful or
α-graphs. The series operation was used here to prove that any tree that is a chain of t
paths crossing, where the paths are isomorphic to P11 and the distance between any pair of
vertices of degree 4 is even. In this context we can ask the following: if T is any chain of
t paths crossing, is T an α-tree? In other terms, can we obtain an α-tree independently of
the parity of the distance between any pair of vertices of degree 4? Also, if not all the paths
used in T are isomorphic, is the result still valid? Aldred, Širáň, and Širáň [1] proved that
the number of graceful labelings of Pn grows at least as fast as (5

3
)n; Cattell [7] proved that

in the majority of the cases, for any vertex v in Pn and any label r ∈ {0, 1, . . . , n− 1}, there
exists a graceful labeling f of Pn such that f(v) = r. These two results together with Rosa’s
result [12], provide support to our idea that all trees that are a chain of paths crossing, are
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in fact α-trees, regardless of the paths used and the parity between consecutive crossings
(vertices of degree 4).

In order to apply the parallel operation, we just need two compatible graphs. In the
example given in Figure 5, the cycles can be replaced by any graph obtained identifying
the corresponding end-vertices of any number of paths of even size, the labeling of the new
parallel graph follows the same pattern that the one exhibited in Figure 5. We can also
apply the parallel operation to any pair of compatible path-like trees, defined by Barrientos
in [3] (these trees are called TP by Hegde and Shetty [10]), because their α-labelings are
based on Rosa’s α-labelings of caterpillars [13]. Thus, when the diameter of these trees is
even, the labels 0 and λ are placed in the extreme vertices of a path of maximum length;
the resulting graph is, as in the case of the caterpillars mentioned in Section 2, a unicyclic
α-graph. In this way we obtain more evidence that support Truszczyński’s conjecture [18]
that all unicyclic graphs are graceful.

Finally, we have three questions related to Theorem 4.1, where we proved that the Carte-
sian product of K2,n and Pm is an α-graph. For which values of n1, is the graph Kn1,n2 ×Pm

an α-graph? Let Tm be any tree of order m. Is K2,n × Tm an α-graph? Is Kn1,n2 × Tm an
α-graph?
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Catalunya, Barcelona, 2004.

[4] C. Barrientos. Graceful graphs with pendant edges. Australas. J. Combin., 33:99–107,
2005.

[5] C. Barrientos. Graceful arbitrary supersubdivisions of graphs. Indian J. Pure Appl.
Math., 38:445–450, 2007.

[6] C. G. Bower, https://oeis.org/A032121, 2017.

[7] R. Cattell. Graceful labellings of paths. Discrete Math., 307:3161–3176, 2007.

[8] G. Chartrand and L. Lesniak. Graphs & Digraphs, 2nd ed., Wadsworth & Brooks/Cole
(1986).

14

Theory and Applications of Graphs, Vol. 6 [2019], Iss. 1, Art. 4

https://digitalcommons.georgiasouthern.edu/tag/vol6/iss1/4
DOI: 10.20429/tag.2019.060104



[9] J. A. Gallian. A dynamic survey of graph labeling. Electronic J. Combin., 20(#DS6.),
2017.

[10] S. M. Hegde and S. Shetty. On graceful trees. Appl. Math. E-Notes., 2:192–197, 2002.
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