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Optimum Slot Weld Width for Cold-Formed Steel 

Emilee A. Martin1 and Fredrick R. Rutz2

Abstract 

Slot welds can be used for connections in cold-formed steel (CFS) structures.  

However, structural engineers will find AISI S100, “North American 

Specification for the Design of Cold-Formed Steel Structural Members” (AISI 

2016) - which can be used for guidance in calculating structural capacity of 

many welds types - silent on this specific application.   

Research at the University of Colorado Denver has been directed toward 

determination of the strength of slot welds in sheet steel.  A comprehensive 

series of tests were performed to determine structural capacity and ductility of 

various slot weld widths using a metal inert gas (MIG) welding process.  A slot 

weld connection between two pieces of sheet steel was designed, one with 

punched slots of various widths, and the other a blank piece to receive the weld.  

Weldability problems associated with slot welds of various widths on galvanized 

sheet steel were encountered.  The testing program to investigate slot widths to 

address these concerns is reported upon. 

A program of monotonic tension tests was conducted.  This testing program 

built on 1979 research by Pekoz and McGuire at Cornell University for fillet 

welds on lap joint specimens.  While AISI is silent on slot weld design criteria, 

the authors found certain slot widths were more advantageous than others.   
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Introduction 

 

Slot welds can be used for connections in cold-formed steel structures.  Slots can 

be punched in a piece of sheet steel, referred to as a “gusset plate”, which can 

overlap studs or tracks.  AISI S100, “North American Specification for the 

Design of Cold-Formed Steel Structural Members,” (AISI 2016) which is used 

by structural engineers internationally, can be used for guidance in calculating 

structural capacity of many welds types but it is silent on the specific application 

of slot welds.  The aim of this research is to determine the optimum width of slot 

for such slot welds.    

 

In an August 2017 article from Structure magazine, Dr. Roger LaBoube 

discussed how “in cold-formed steel construction, welding is a viable 

connection method” (LaBoube, 2017).  In cold-formed steel construction, 

prefabrication of trusses and wall panels is very common.  When shop 

manufacturing is used, welding is a desirable connection joining method 

because it is faster and more economical than using mechanical fasteners.  The 

governing design standards for welded connections in cold-formed steel (CFS) 

are AISI S100-16 (AISI 2016) and the Structural Welding Code – Sheet Steel 

AWS D1.3 (AWS 2008).  These standards provide provisions for groove welds, 

arc spot welds, arc seam welds, fillet welds, flare groove welds, and plug welds. 

 

There are many different welding processes used today, but for the scope of this 

research Gas Metal Arc Welding (GMAW), also known as metal inert gas 

(MIG), was the sole process used in this study.  The MIG process uses a fed 

wire at an adjustable speed and an argon-based shielding gas that protects the 

weld puddle against elements in the atmosphere, including oxygen, hydrogen, 

and nitrogen.  The MIG welds for this testing program were made both manually 

and robotically. 

 

It is the purpose of this paper to provide test data and design guidance for slot 

welded connections in CFS with the goal of the determination of an optimum 

width for slot welds in cold formed sheet steel.  Through executing a 

comprehensive variable width slot weld study an optimum slot width was 

determined. 

 

Description 

 

Tests of welded connections were conducted by J.R. Harris & Company in 

2017.  A connection using 14 gage metal, welded at punched slots to 16 gage 

metal, was designed.  The test configuration was designed to be on a simple 

rectangular sheet. 
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All weld tests were conducted at the University of Colorado Denver (UCD) 

Structures Laboratory in Denver, CO using a 20-kip MTS testing machine.  A 

total of 40 weld specimens were tested.  All tests were run in monotonic tension 

under displacement control at a rate of 0.006”/sec (0.152mm/sec).   

 

Recognizing that narrow slots present weldability concerns related to welder tip 

access into the slot and wide slots present weldability concerns related to burn-

through of the lower sheet, a study of multiple slot widths was conducted.  The 

purpose of this research was to determine an optimum slot width in an attempt to 

balance weldability, fusion, and strength, all with the goal of achieving an 

optimum width.   

 

Both the 14 and 16 gage plates were 4” (102mm) wide by 10” (254mm) long, as 

shown in Figure 1.  Each connection consisted of one slot of variable width by 

2” long (51mm).  The testing program included the following four variable slot 

widths: 1/8” (3.18mm), 3/16” (4.76mm), 1/4" (6.35mm), and 3/8” (9.53mm).  

The design of the test is shown in Figure 1 and a photo of a typical slot width 

test specimen is shown in Figure 2.  Variable manual welding parameters for the 

widths under consideration are summarized in Table 1. 

 

 
Figure 1.  Variable slot width test specimen arrangement design. 
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Figure 2.  Typical slot weld test specimen, consisting of a 14 gage sheet 

slot welded to a 16 gage sheet, mounted in the bracing jig and installed in 

a 20 kip (89 kN) MTS testing machine. 

 

Table 1.  Welding parameters used for the variable slot weld widths (manual).  

Slot width x length in. 

(mm) 
Voltage V 

Wire feed speed in. / min 

(mm/min) 
Weld pattern 

1/8 x 2  

(3.175 x 50.8) 
18.3 

320 

(8128) 
Straight push 

3/16 x 2 

(4.76 x 50.8) 
18.0 

305 

(7747) 
Small loops 

1/4 x 2 

(6.35 x 50.8) 
17.6 

300 

(7620) 
Weave 

3/8 x 2 

(9.525 x 50.8) 
17.0 

290 

(7366) 
Weave 

3/8 x 2 

(9.525 x 50.8) 
16.5 

290 

(7366) 

3 Fillet Weld 

Passes 

 

Results 

 

A typical graph of the displacement vs. time is shown in Figure 3.  A typical 

load developed vs. time graph and typical load developed vs. displacement 

graph are shown in Figure 4 and Figure 5.  Graphs summarizing the data shown 

in Figure 6, Figure 7, Figure 8, and Figure 9, followed by a brief discussion of 

the results.  The average maximum strength achieved for each monotonic test 

group is shown in Table 2.  
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Figure 3.  Graph of displacement vs. time. The testing protocol was 

monotonic tension using displacement control at the rate of 0.006 inches 

(0.152mm) per second. 

 

 
Figure 4.  Typical graph of load developed vs. time 
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Figure 5.  Typical graph of load developed vs. displacement 

  

 
Figure 6.  Tension load results for variable slot widths. The specimens are 

grouped by like slot widths. The bars represent the maximum tension load 

achieved.  Welds that failed in direct shear are indicated by an asterisk 

(*). 
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As the test results in Table 2 show, as the width of slot increased, the average of 

the ultimate tension load for that group increased slightly.  Table 2 shows that a 

slot width of 3/16-inch (4.76mm) had the lowest coefficient of variation and the 

1/8-inch (3.18mm) and 1/4-inch (6.35mm) had the highest; the 1/8-inch 

(3.18mm) slot width tends to have less predictable strengths.  78% of the 1/8-

inch (3.18mm) slot width group had the specimen’s failure mode as direct shear 

through the body of the weld.  No other groups experienced a weld failure 

through the body of the weld.  

 

Table 2.  Summary of results. 
Variable Slot Width Testing Summary 

 1/8in 

(3.18mm) 

3/16in 

(4.76mm) 

1/4in 

(6.35mm) 

3/8in 

(9.53mm) 

Mean, kips 

(kN) 

11.3 

(50.3) 

12.4 

(55.2) 

12.7 

(56.5) 

13.6 

(60.5) 

COV 0.073 0.041 0.076 0.044 

 

 

 
Figure 7.  Tension load per unit length for variable slot widths 
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Figure 8 shows the ultimate tension load per perimeter inch of slot for each slot 

width.  The graph shows that the strength of a slot weld is slightly less than 3 

kips per inch (0.525 kN/mm) of slot perimeter regardless of the slot width.  This 

suggests the slot weld strength more closely relates to perimeter length of slot 

than simply the overall length of slot. 

 

 
Figure 8.  Tension load per unit perimeter length for variable slot widths 

 

Strain energy is derived from the area under the force vs. displacement plots 

(linearly extrapolated to zero force when plot does not end at zero force).  Strain 

energy is stored within a material when work has been done on the material.  For 

the applied load, the work done is the straining or yielding the material.  A high 

strain energy per unit length means more energy is being absorbed through 

permanent deformation in the specimen prior to failure.  In other words, the 

connection deformed and slowly tore the sheet steel material prior to complete 

loss of capacity.  A low strain energy per unit length indicates that there was 

little inelastic deformation occurring prior to failure; those specimens exhibited 

brittle behavior. Figure 9 shows strain energy for the various slot widths. 
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Figure 9.  Strain energy per unit length for variable slot widths 

 

Figure 10 and Figure 11 show a force versus displacement plot for a 3/16-inch 

(4.76mm) slot weld.  The force rises until its ultimate load is reached then 

decreases as the specimen continues to deform until failure occurs.  Inelastic 

deformation of the test specimen was seen as stretching (also seen for elastic) 

and tearing in the 16 gage plate surrounding the slot weld.  Figure 12 shows a 

force versus displacement plot for a 1/8” (3.18mm) slot weld that failed in shear 

through the body of the weld.  The force rose until its ultimate load is reached 

and then suddenly failed with virtually no further deformation.  The test 

specimen during loading showed little signs of yielding prior to a quick and 

sudden failure.   
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Figure 10.  Example of a ductile failure in a 3/16” (4.76mm) wide manual 

weld sample result with ultimate fracture in the 16 gage sheet metal 

 

 
Figure 11.  Example of a ductile failure in a 3/16” (4.76mm) wide robotic 

weld sample result 

 

 

336



 
Figure 12.  Example of weld shear failure upon completion of test.  The 

area under this curve is significantly less at 1/8” wide slot than the area 

under the curves shown in Figure 10 and Figure 11, indicating 

significantly less strain energy in a the 1/8” (3.18mm) slot width 

compared to a 3/16” (4.76mm)  wide slot width.  Further, the sudden 

drop-off in strength is indicative of a sudden, brittle failure. 

 

Discussion 

The goal of the variable slot width test was to determine an optimal slot width 

that yields consistent results, ductile failures, good weldability, and good 

strength. 

  

The 1/8-inch (3.18mm) by 2-inch (50.8mm) slot is a standard slot weld size for a 

current building system.  Nine slot welds of this width were tested, three manual 

and six robotic.  The welders (manual) were comfortable and familiar with 

welding this slot.  The results are as follows:  

• Mean strength = 11.3 kip (50.1 kN) 

• High variability (COV=0.073) 

• 7 of 9 (78%) direct shear failure through body of weld 

 

A direct shear failure through body of weld is a sudden failure where ultimate 

strength drops to zero virtually instantaneously (see Figure 12).   The controlling 

failure was observed to occur as a shear through the body of the weld metal, a 

shear failure parallel to the plane of the sheet metal pieces.  This failure is 

sudden (i.e. brittle).  The brittle failure mode in direct shear is distinctly different 

from the ductile failure mode of tearing in the 16 gage metal around the 
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perimeter of the slot.  Comparison of Figure 12 with Figure 10 and Figure 11 

illustrate why direct shear failure through the body of the weld is an undesirable 

failure.  This type of failure is brittle and loses all strength once it’s ultimate load 

is reached. 

 

Ductility is the extent to which the weld connection can undergo increased 

deformation without failure, a property particularly important during seismic 

events.  A ductile failure in terms of this study refers to the tearing of the sheet 

metal adjacent to the slot weld, a failure that happens slowly and allows for 

large deformations.  This is indicative of the weld’s high energy dissipation 

capability prior to failure during a seismic event.  The direct shear failure 

through the body of the weld is an undesired, brittle failure.  Little deformation 

occurs before sudden failure.  Seven of nine of the 1/8-inch (3.18mm) slot welds 

underperformed because of brittle behavior. 

 

 

Figure 13.  Photograph of 16 gage sheet with failed weld subject to 

“direct shear through the body of weld.”  The failure occurred on a shear 

plane parallel to and between the two sheets of metal, instead of tearing 

the 16 gage metal around the perimeter of the weld.  The dashed outline 

encloses the direct shear failure plane. 

 

 

Eleven 3/16-inch (4.76mm) by 2-inch (50.8mm) slot welds were tested to 

ultimate tension failure, five manual and six robotic. Some of the welders 

(manual) reported that the extra width compared to the 1/8” (3.18mm) width 

made it easier to see the wire position in the slot.  The results are as follows: 
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• Mean strength = 12.4 kip (55.3kN) 

• Lowest variability (COV = 0.041) 

• No direct shear failure through body of weld 

 

Ten 1/4-inch (6.35mm) by 2-inch (50.8mm) slot welds were tested to ultimate 

tension failure, five manual and five robotic.  (The increase in size led to burn-

through weldability issues.  Travel speed was increased in attempt to mitigate 

burn-through.)  The results are as follows: 

• Mean strength = 12.7 kip (56.4 kN) 

• High variability (COV = 0.076) 

• No direct shear failure through body of weld 

 

Ten 3/8-inch (9.53mm) by 2-inch (50.8mm) slot welds were tested to ultimate 

tension failure, five manual and five robotic.  Burn-through often occurred, and 

many specimens had to be remade.  One of the five manual welds was made 

with a slightly different technique in that the welder made two fillet welds, one 

on each side of the slot and a third pass to close the gap between those two fillet 

welds.  The results are as follows: 

• Mean strength = 13.6 kip (60.5kN) 

• COV = 0.044 

• Welders had difficulty with burn-through 

• One of five manual welds was made with (2) fillet welds instead of slot 

weld. This technique was more constructible than other slot welds 

made using weaves for the 3/8” width (9.53mm). 

 

In Figure 14, the average tension load for each variable slot width is shown.   

There is not a significant increase in strength from the 3/16” wide slot to the ¼” 

or 3/8” wide slots.  This further supports the 3/16” wide slot as the 

recommended optimum slot width. 
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Figure 14.  The average tension load for each variable slot width 

 

Conclusions and Recomendations 

 

The goal of the variable slot width test was to determine an optimal slot width 

that yielded consistent results, ductile failures, good weldability, and good 

strength.  From the results discussed, the 3/16-inch (4.76mm) slot width best fits 

these criteria.  There were no brittle shear failures through body of weld in this 

test group.  Failure modes were ductile and strength was good.  The welders 

(manual) preferred the 3/16” (4.76mm) width.  The 3/16-inch (4.76mm) slot 

width yielded consistent results, ductile failures, and good strength.  Therefore, 

the authors recommend utilizing 3/16” (4.76mm) widths for slots in 14 gage 

metal welded to 16 gage metal. 

 

Limitations 

 

The limitations of this study include the following: test specimens were 

comprised of 14 gage plates welded to 16 gage plates.  All welds were made 

with a metal inert gas (MIG) process.  This paper does not address a comparison 

between manually and robotically welded specimens.  
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