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Flexural Strength of continuous-span Z-purlins with paired 
torsion braces using the Direct Strength Method 

Michael W. Seek1 

Abstract 

A procedure is presented to calculate the local and distortional flexural buckling 
strength of continuous span purlins with paired torsion braces using the Direct 
Strength Method. Displacement compatibility is utilized to determine the forces 
interacting between the purlin, the flexible diaphragm and the torsion braces. The 
biaxial bending and torsion effects caused by this interaction are superimposed, 
and the actual distribution of stresses within the cross section are calculated at 
critical locations along the span. With this distribution of stresses, a finite strip 
buckling analysis is performed to determine the local and distortional buckling 
strength. In current design practice, results from a simple span Base Test are 
extrapolated to multi-span systems using a constrained bending stress distribution. 
In previous work, a variation of the presented method was compared to simple 
span base test results with good correlation. In this paper, the simple span stresses 
are compared to the stresses of continuous span systems. Significant, although 
typically conservative differences in the stress distributions and, as a result the 
predicted flexural strength, are observed in the comparison between simple span 
and multi-span systems. Additionally, significant changes in the distribution of 
stresses are observed as roof slope effects are considered.  Increases in the flexural 
strength with increasing roof slope are reported and compared to the strength 
predicted by the current base test method. 

Introduction 

In the United States, purlins with one flange attached to standing seam sheathing 
are designed according to the Base Test Method (AISI 2013).  According to this 
method, the purlin system is tested in a vacuum chamber in a simple span 
configuration to determine the nominal flexural strength.  While the standing 
seam sheathing provides lateral and torsional restraint to the purlin, this restraint 
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is very flexible.  Attempts to analytically calculate the flexural strength have been 
generally unsuccessful and thus the need of the industry to rely on the Base Test 
Method.  With the Base Test Method, a reduction factor, R, determined from the 
base test is applied to account for the flexibility of the restraint provided by the 
sheathing. The nominal flexural strength, Mn, of the purlin is then calculated from 
the AISI Specification Appendix A Section I6.2.2 (AISI 2016) 
 
 n n oM R M    (1) 
 
where Mnℓo is the nominal flexural strength considering local buckling only with 
a constrained bending stress distribution. 
 
Although the Base Test is performed on a flat-slope, simple-span specimen, 
extensive testing at Virginia Tech (AISI 2013) showed that the results of the base 
test could be conservatively extrapolated to multi-span roof systems. To account 
for slope effects, external anchors must be designed to resist downslope forces. 
The Base Test must be representative of the conditions in the field, therefore, if 
modifications to the system are desired, additional base testing is required. 
 
A method to predict the flexural strength of purlins with paired torsion braces was 
first presented by Seek et. al. (2016) and further modified by Seek and Parva 
(2018). The methodology considers displacement compatibility between the 
purlin, standing seam sheathing, and the paired torsion braces to determine the 
interacting forces between the components.  By superimposing these interacting 
forces with the externally applied system forces, the true distribution of stresses 
on the cross section can be determined.  This distribution of stresses considers the 
biaxial bending stresses caused by a flexible diaphragm and the distribution of 
torsion stresses that result from torsion along the span of the purlin. Additionally, 
because these systems can be very flexible, the methodology approximates 
additional second order stresses that may be introduced.  With this true 
distribution of stresses, a finite strip buckling analysis is performed to determine 
the local and distortional buckling strength. 
 
Seek and Parva (2018) compared this methodology to a series of base tests and 
found good correlation between the tested strength and predicted strength. 
Additionally, the methodology was able to predict and provide rationale for some 
anomalies in the tests:  flexural buckling failures away from the mid-span at the 
brace location, and failures varying between upslope purlin and downslope purlin 
in the tests. 
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Because most purlin roof systems are designed as continuous, the methodology is 
expanded herein to account for bending continuity and roof slope. For the 
equation development, continuous systems are approximated with rigidly fixed 
ends.  To demonstrate the methodology and to highlight the variation in predicted 
strength when compared to the base test method, purlin strength is calculated at 
several roof pitches.  
 
Calculating cross section stresses 
 
Displacement compatibility is utilized to determine the forces interacting between 
the purlin, standing seam sheathing, and torsion braces.  Lateral displacement 
compatibility between the purlin and sheathing is determined at the torsion brace 
location. Similarly, torsion rotation compatibility between the purlin and the 
torsion braces is determined at the location of the torsion brace. In this formulation 
of torsion compatibility, the torsion braces are considered to be rigid and the 
torsion restraint provided by the sheathing is ignored. In most cases, this approach 
is conservative.   
 
The first step in the process is to determine the horizontal restraining force in the 
diaphragm, wrest, that results from the unsymmetric bending of the purlin and the 
downslope forces on the sloped roof. Previously developed equations by Seek and 
Parva, used the symbol, , to represent the proportion of the gravity load that was 
translated into an in-plane force in the diaphragm.  For sloped roof systems, it is 
more appropriate to define the in-plane force in the diaphragm relative to the 
applied force perpendicular to the plane of the sheathing.  To highlight this subtle 
distinction, the terminology was changed such that the term, ρ, represents the 
proportion of the force applied perpendicular to the plane of the sheathing that 
results in an in-plane force in the diaphragm.  Therefore uniform force in-plane 
force in the diaphragm is   
 
  restw w cos    (2) 
 
where w is the uniformly applied load in the gravity direction and  
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In Eq. (3), L is the span of the purlin, G’ is the stiffness of the diaphragm, spa is 
the depth of the diaphragm tributary to the purlin (generally the purlin spacing), 
Imy is the modified moment of inertia about the orthogonal y-axis as defined by 
Zetlin and Winter (1955), and coefficients C1 and C2 are derived from 
displacement compatibility.    
 

          
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In the above equations, c is the distance from the end of the span to the location 
of the torsion brace.   
 
Accurately quantifying the horizontal restraining force of the diaphragm is 
important because it has a large impact on the torsion along the length of the 
purlin. Because the horizontal restraining force is applied at an eccentricity 
relative to the shear center of the purlin, esy, it imparts a uniform torsion along the 
purlin. This eccentricity should include the effective standoff, s, of the clip 
connection between the purlin and sheathing as shown in Figure 1 and defined by 
Seek and McLaughlin (2017). The uniform torsion from the horizontal diaphragm 
restraint is combined with the torsion caused by the eccentricity, esx, of load 
applied perpendicular to the plane of the sheathing to create a net uniform first 
order torsion, t1st, where 
 
    1stt =     sy sxw cos e e  (6) 

    
The restraining force in the diaphragm is also used to define the mid-span lateral 
displacement of the purlin relative to the support location, Δmid, where 
  

    
2

mid
LΔ = w

8G'
  cos sin

spa
 (7) 
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Figure 1. Axes and positive force directions 

  
The lateral displacement is positive for an upslope translation and negative for 
downslope translation.  The lateral displacement of the purlin relative to the 
supports causes a second order torsion with a parabolic distribution.  The peak 
torsion at mid-span, t2nd is  
 
  2ndt =    midw cos  (8) 
 
The torsion introduced along the length of the purlin is resisted at the brace 
locations. Displacement compatibility between the purlin and the brace, assuming 
a rigid brace, is enforced at the brace location to determine the magnitude of the 
brace forces. Because purlin torsion behavior is dominated by warping torsion, 
the balance of torsion eliminates consideration of pure torsion which greatly 
simplifies the equations and results in negligible difference in the calculated 
results.  The brace torque resulting from the first order uniformly distributed 
torsion, T1st, is 
 1st 1stT = -C t L3   (9) 
 where 

 C =

  
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The brace torque from the second order effects with a parabolic load distribution, 
T2nd, is 
 2nd 2ndT = -C t L4  (11) 

 
where 

 C =

            
     
      
   

3 4

4 2

c c c
3 5 3

L L L1
15 c c

2 3
L L

 (12) 

 
Because paired torsion braces are often not anchored externally, to balance the 
restraining torque at each end of the brace, a shear force, V, is generated at each 
end of the brace as shown in Fig. 2.   
 

 
 1st2 T + T ξ

V =
spa

2nd  (13) 

 Where ξ = 1 for the downslope purlin and -1 for the upslope purlin. 
 

 
Figure 2.  Shear forces to balance brace moment 

 
For flexible standing seam diaphragms, at low slope, the system of purlins 
translates laterally upslope. The second order torsion induced by this displacement 
dominates, causing an uphill rotation of the purlin. The moment generated in the 
torsion braces as they resist this rotation of the purlin is directed as shown in Fig. 
(2).  The shear force acts downward on the upslope purlin, increasing the moment 
about the x-axis in the purlin by as much as 20%. Correspondingly, downslope 
purlin will experience a decrease in the moment about the x-axis.  As a result, for 
identical purlins, the upslope purlin will be the first to fail.  As the slope of the 
roof increases, the second order torsion is reduced, and the resisting moment in 

T

V V
VV

TTT

downslope upslope
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the brace will reverse directions.  Correspondingly, the shear force will reverse 
directions, and the downslope purlin will become critical.   
 
Upon defining the magnitude and direction of the additional shear force generated 
at the brace, the bending normal stresses can be determined. For simplicity, forces 
are oriented along the orthogonal x- and y- axes perpendicular and parallel to the 
web respectively.  There are 3 contributions to the bending stress: (1) the applied 
uniformly distributed force parallel to the web, (2) the uniformly distributed force 
provided by the sheathing perpendicular to the web, and (3) the shear force 
generated by the torsion brace. As previously discussed, the force generated in the 
sheathing is directly proportional to the applied force parallel to the web of the 
purlin by the factor ρ.  The stresses are mapped according to the modified 
moments of inertia as presented by Zetlin and Winter (1955). Because the shear 
forces generated by the torsion brace are equal and opposite, an axial force will 
be generated in the brace, balancing unsymmetric bending effects. Therefore, the 
stress distributions that result from the torsion brace shear forces will conform to 
the constrained bending distribution.   
 
In the length of the purlin between the end of the purlin and the torsion brace, ie. 
z ≤ c, the bending stresses can be mapped by at coordinates x and y across the 
purlin cross section by 
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Similarly, in the region of the purlin between the brace and mid-span, ie. c ≤ z ≤ 
L/2, the bending stresses can be mapped by .    
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Although the equations are generalized to calculate stresses at any location, for a 
uniformly distributed load, the critical locations to check stresses are the brace 
location, ie. z = c, and at mid-span, z = L/2. 
 
Torsion stresses are superimposed on the bending stresses to get the net 
distribution of stresses.  Warping torsion normal stresses, fw are calculated as 
presented AISC Torsion Analysis Design Guide (Seaburg and Carter, 1997). 

 
 w Nf E W ''     (16) 
 
In Eq (16), WN is the normalized warping function at a specific point on the cross 
section and ϕ`` is the second derivative of the rotation function for the applied 
load with respect to the z-axis along the span of the beam. At the critical stress 
locations (mid-span and brace location), rotation functions are derived for each 
torsion function acting on the purlin (uniform, parabolic, concentrated torque at 
braces).     
 
At the mid-span location, the rotation functions are: 
 
Uniform Torsion 

 1st
u

t L'' = -1
GJ Lsinh

a

 
 
       
  

  

1
2a

 (17) 

Parabolic Torsion 

 
2 2

2nd
p 2 2

t 4a 1 8a'' = + -1
GJ LL Lsinh
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   
    
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L 1
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 (18) 

 
Concentrated Brace Torsion 

 1st 2nd
brace

T + T 1 c'' = 1- cosh
GJ a a Lsinh

2a

  
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At the brace location, the rotation functions are: 
 
Uniform Torsion 

 1st
u
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'' = cosh - sinh -1

GJ a

   
                                      

L
cosh

2aL c L c
2a 2a aL

sinh
2a

 (20) 

 
Parabolic Torsion  
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Concentrated Brace Torsion 
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Calculating local and distortional buckling strength 
 
To evaluate the local and distortional buckling strength, a uniformly distributed 
force is applied to the purlin. Cross section stresses are calculated according to 
the previous section at critical locations along the span of the purlin.  From the 
stress distribution, the peak stress, fmax is determined. The moment about the x-
axis, Mx, that corresponds to the critical location is calculated.  For example, the 
moment about the x-axis at the mid-span of the purlin is  

 
   

2w L
M = +

 2
x,mid i

cos c
V

24 L
 (23) 

The cross section stresses are then scaled by a factor of Fy/fmax to equate the 
stresses to the point of first yield. In the same fashion, the moment about the x-
axis is scaled by the same scale factor to determine the yield moment, My, for use 
in calculations. Using the scaled stress distribution, a finite strip buckling analysis 
is performed using CUFSM v.4.05 (Li and Schafer, 2010) to determine the local 
and distortional buckling load factors. The critical local and distortional buckling 
moments, Mcrℓ and Mcrd, respectively, are calculated as the product of the buckling 
load factor and the yield moment. The nominal local buckling moment, Mnℓ, is 
calculated according to AISI Specification (2016) Section F3.2 with Fn = Fy and 
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the nominal distortional buckling moment, Mnd, is calculated according to AISI 
Section F4.1.  The minimum of the local and distortional buckling moment is the 
nominal strength, Mn. which is then compared to the moment about the x-axis, 
Mx.  If Mn > Mx, the purlin has sufficient capacity to support the uniform load.  
Because the methodology includes approximate second order effects, as long as 
Mn > Mx, second order effects have been over-estimated and the result is 
conservative.  If the precise value of the maximum nominal moment that the purlin 
can sustain is desired, some iteration is required. 
 
Predicted Strength of Sloped Roofs 
  
The philosophy of the design of sloped roof systems has been to determine the 
strength of the purlin system in a flat roof condition using the base test and any 
slope effects are resisted by the anchorage system. The lateral deflection of the 
system is limited to L/360 for most systems and L/180 for torsion braces. While 
this approach is generally considered to be conservative, it is hypothesized that 
increased capacity can be realized by including slope effects to evaluate the actual 
strength. It is also desirable to relax lateral deflection limits, which is reasonable 
when the strength of the purlin directly incorporates the effects of lateral 
deformations. 
 
To test this hypothesis, a system of purlins was evaluated on slopes varying from 
a 0:12 pitch to a 4:12 pitch.  To provide a baseline for comparison, the system of 
purlins evaluated is derived from the system of base tests performed by Emde 
(2010). The same system of base tests was evaluated by Seek and Parva (2018) 
using a variation of the methodology presented in this paper with good correlation. 
From the series of tests, two purlins were evaluated: an 8ZS2.00x057 (Test ID 
8Z16-1A) and an 8ZS2.00x100 (Test ID 8Z12-2D).  The measured cross section 
dimensions reported by Emde were used.  The purlin span, L = 27 feet, and the 
torsion braces are spaced at c = 10.5 feet from the ends. The diaphragm stiffness 
values were the same as used by Seek and Parva (2018), who calibrated diaphragm 
stiffness to measured deflections. Test parameters are summarized in Table 1.      
 

Table 1.  Purlin System Analysis Parameters 
Purlin Fy G’ standoff, s eccentricity, esx 
 (ksi) (lb/in) (in) (in) 
8Zx057 70.8 230 2.5 0.333 
8Zx100 79.1 110 2.5 0.333 

  
The relationship between the predicted maximum supported uniform load in the 
gravity direction and roof slope is shown Figure 3 for the 8Zx057 purlin and in 
Figure 4 for the 8Zx100 purlin. Maximum supported uniform load is used as a  
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Figure 3. Maximum uniform load vs. roof slope, 8Zx057  

 
comparison rather than the moment at failure because the moment at failure 
fluctuates considerably as a result of the brace shear.  In both Fig 3 and Fig 4, the 
strength predicted by the R-factor derived from the base test is also plotted as a 
base line.  The small increase in strength in the strength derived from the base test 
with increasing roof slope results from the subdivision of the gravity load into 
components perpendicular and parallel to the plane of the sheathing. 
 
For the 8Zx057 purlin, at the flat roof condition, the strength predicted from the 
Direct Strength Method is slightly less than that predicted by Base Test Method. 
The relatively large lateral deflection results in biaxial bending stresses that 
increase the web stresses and cause local buckling of the web.  In Table 2, the 
calculated local and distortional buckling load factors at both the mid-span and 
brace location are provided, as well as the predicted maximum supported load 
predicted from the buckling load factors with the controlling load highlighted. 
Table 2 also reports the uniform load equivalent to the base test R-factor as well 
as the predicted buckling load factors from the base test for comparison to the 
sloped multi-span system results. Table 3 presents the stress scale factors, 
predicted failure mode and location, as well as the lateral deflection of the system.   
 
As the slope of the roof system increases, and the downslope component of the 
gravity load begins to contribute downslope forces to the diaphragm, the lateral 
deflection of the purlins decreases.  Correspondingly, the brace moments decrease 
as second order torsion decreases and the stress scale factor increases, indicating 
the redistribution of stresses away from the web.  The supported uniform load 
increases as a result of the change in distribution of stresses. With increasing 
slopes, the failure mode changes. At slopes higher than a 3:12 pitch, the lateral 
deflection of the purlin transitions downslope.  The lateral bending effect in this 
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case shifts stresses towards the flange tips.  The combination of lateral bending 
and concentrated torsion at the brace location cause the failure mode to shift to 
local buckling of the flange stiffener at the brace location. This shift in stresses 
causes the supported uniform load to rapidly decline. However, in this case, peak 
stresses occur in the tension flange, so additional strength may be realized by 
considering inelastic reserve capacity.  
   

Table 2: Buckling load factors and maximum uniform loads for 8Zx057 purlin 
 Buckling Load Factors Uniform Load (lb/ft)  
 Mid-span Brace Mid-span Brace 

Min.  Local Dist. Local Dist. Local Dist. Local Dist. 
Base Test 0.60 0.67 0.62 0.66 - - - - 216 
0:12 0.59 1.02 0.92 0.83 198 218 230 203 198 
0.5:12 0.59 0.93 0.85 0.78 206 220 242 214 206 
1:12 0.58 0.85 0.78 0.74 215 223 255 227 215 
2:12 0.58 0.71 0.61 0.67 237 230 285 266 230 
3:12 0.58 0.59 0.52 0.82 262 237 241 257 237 
4:12 0.70 0.59 0.63 1.00 261 221 201 216 201 

 
Table 3. Analysis comparisons 8Zx057 purlin 

   Failure  Deflection 
 Max 

wn Fn/Fy Up/Down Location Mode Brace 
Moment Lateral Ratio 

L/ 
 (lb/ft)     (lb-ft) (in)  
Base 
Test 216 1.457 Downhill Mid Dist. 387 1.86 174 

0:12 198 1.406 Uphill Mid Local 2935 2.78 117 
0.5:12 206 1.406 Uphill Mid Local 2474 2.45 132 
1:12 215 1.414 Uphill Mid Local 1895 2.09 155 
2:12 230 1.457 Uphill Mid Dist. 305 1.24 260 
3:12 237 1.578 Uphill Mid Dist. -1529 0.28 1166 
4:12 201 1.374 Downhill Brace Local -2675 -0.59 553 
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Figure 4. Maximum uniform load vs. roof slope, 8Zx100 

 
The relationship between the roof slope and the supported uniform load as shown 
in Fig. 4 for 8Zx100 is similar to that of the 8Zx057 purlin.  At the flat slope, the 
strength predicted by the direct strength method is less than that predicted by base 
test R-factor.  With increasing slope, the strength predicted by direct strength 
method increases with a maximum at a pitch of approximately 3:12, then begins 
to dramatically decrease. Although the overall trends between the thicker and 
thinner purlin are similar, the predicted behavior as summarized in Table 4 and 5 
for the 8Zx100 purlin is different.  For the thicker purlin, the large lateral 
deflections cause substantial second order torsions which causes large torsion 
brace moments. The predicted failure mode is distortional buckling at the brace 
location.     
 
Table 4: Buckling load factors and maximum uniform loads for 8Zx100 purlin 

 Buckling Load Factors Uniform Load (lb/ft)  
 Mid-span Brace Mid-span Brace 

Min.  Local Dist. Local Dist. Local Dist. Local Dist. 

Base Test 1.72 1.90 2.54 1.52 - - - - 435 
0:12 1.59 N/A 3.21 2.07 437 N/A 376 370 370 
0.5:12 1.59 3.5 3.1 1.86 466 472 412 393 393 
1:12 1.58 2.43 2.83 1.7 498 506 464 431 431 
2:12 1.57 1.74 2.41 1.35 581 553 590 511 511 
3:12 1.55 1.18 1.57 1.16 696 588 824 689 588 
4:12 1.94 1.02 1.73 1.88 692 543 530 508 508 
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Table 5: Analysis comparisons 8Zx100 purlin 
   Failure  Deflection 

 Max 
wn Fn/Fy Up/Down Location Mode Brace 

Moment Lateral Ratio 
L/ 

 (lb/ft)     (lb-ft) (in)  
Base 
Test 435 1.105 Uphill Brace Dist. 5362 6.17 53 

0:12 370 1.017 Uphill Brace Dist. 13777 5.44 60 
0.5:12 393 1.048 Uphill Brace Dist. 12977 4.95 65 
1:12 431 1.075 Uphill Brace Dist. 11419 4.30 75 
2:12 511 1.156 Uphill Brace Dist. 8541 3.30 98 
3:12 588 1.210 Downhill Mid- Dist. -28 1.21 268 
4:12 508 1.044 Downhill Brace Dist. -8796 -1.00 323 

 
As the slope increases, the second order torsion decreases and the predicted 
supported uniform load increases. Similar to the thinner purlin, as the lateral 
deflection of the purlin transitions downslope at pitches greater than 3:12, the 
predicted strength decreases. As for the thin purlin, the tension stresses are 
significantly higher than the compression stresses, so additional strength can 
likely be realized by considering inelastic reserve capacity. 
 
Conclusions 
 
A method is presented to predict the local and distortional buckling strength of 
purlins with one flange attached to standing seam sheathing and braced by paired 
torsion braces using the Direct Strength Method. The methodology uses 
displacement compatibility between the purlin, sheathing, and braces, to calculate 
the actual stress distribution of the stresses in the cross section. With the inclusion 
of roof slope, the distribution of stresses can change significantly, which changes 
the predicted load carrying capacity, failure mode and failure location. The 
presented method, which conservatively ignores the additional strength from the 
torsional restraint provided by the sheathing, predicts strength slightly less than 
the base test at low slopes and greater strength at higher slopes. Therefore, the 
presented method may not only be replacement to base test method, but it may 
allow for increases in strength at certain roof slopes.  Additionally, the presented 
method links the strength of the purlin directly to the restraint provided by the 
sheathing and the deformation of the system. In most cases, although the lateral 
deflection falls outside the limits allowed by the AISI Specification, the purlin 
does not experience a loss in strength until the lateral deflection shifts downslope. 
Therefore, the presented method provides evidence that the AISI lateral deflection 
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limits may be relaxed provided that the second order effects caused by lateral 
deflection in incorporated into the analysis.      
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