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Using Generalized Beam Theory to assess the behavior of 
curved thin-walled members 

Nuno Peres1, Rodrigo Gonçalves1 and Dinar Camotim2 

Abstract 

In this work, the first-order behavior of naturally curved thin-walled bars with 
circular axis, without pre-twist, is assessed with the help of the Generalized Beam 
Theory (GBT) formulation previously developed by the authors. With respect to 
the previous work, which dealt with simple cross-sections, the present paper 
presents a method to obtain the deformation modes for arbitrary flat-walled cross-
sections. Despite the complexity involved in this generalization, the standard GBT 
kinematic assumptions are kept, since they are essential to (i) subdivide the modes 
in a meaningful way and (ii) reduce the number of DOFs necessary to obtain 
accurate solutions. It is shown that the curvature of the bar influences significantly 
the deformation mode shapes. Furthermore, a standard displacement-based finite 
element (FE) is employed to solve several examples that highlight the peculiar 
behavior of curved members. For validation and comparison purposes, results 
obtained using shell FE models are provided. Finally, the superiority of a mixed 
GBT-based FE format is demonstrated. 

1. Introduction

Generalized Beam Theory (GBT) is a thin-walled bar theory incorporating cross-
section deformation through the consideration of hierarchical and structurally 
meaningful cross-section DOFs, the so-called “cross-section deformation 
modes”. GBT was initially proposed and developed by Schardt (1966, 1989), and 
it is currently well-established as an efficient, versatile, accurate and insightful 
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approach to assess the structural behavior of thin-walled prismatic bars (e.g., 
Camotim et al., 2010a, 2010b). 

Quite recently, the authors developed, for the first time, a linear GBT formulation 
for elastic thin-walled bars with circular axis, without pre-twist (Peres et al., 
2016). This formulation extends the classic prismatic case while still making it 
possible to incorporate (or not) the usual GBT strain assumptions. Moreover, it 
extends the classic theories of Winkler (1868) and Vlasov (1958). Although all 
types of cross-section deformation modes can be handled, their systematic 
determination for complex cross sections was not developed, since the so-called 
“natural Vlasov modes” (complying with Vlasov’s assumption) need to be 
calculated using a complex constraint for curved bars. This paper closes the 
previous work by proposing a procedure for the calculation of the cross-section 
deformation modes for members with circular axis and arbitrary flat-walled cross-
sections, extending the concepts introduced for the prismatic case in (Gonçalves 
et al., 2010; 2014; Bebiano et al., 2015). The modes are hierarchized and 
subdivided using specific kinematic constraints (such as the Vlasov assumption), 
to keep the usual efficiency of the GBT analyses, namely to ensure that the modal 
decomposition of the solution provides in-depth insight into the mechanics of the 
problem under analysis. A set of representative numerical examples is presented, 
to show the capabilities of the finite element (FE) implementation of the proposed 
formulation. Moreover, it is demonstrated that a mixed format is more efficient 
than a standard displacement-based format. 

2. First-Order GBT for Members with Circular Axis

For completeness of the paper, the fundamental equations derived in (Peres et al., 
2016) are reviewed. Fig. 1 shows the global cylindrical (θ, Z, R) and the local 
wall (x, y, z) coordinate systems for an arbitrary curved thin-walled member. The 
member axis arc-length coordinate X defines the arbitrary cross-section “center” 
C, lies on the Z = ZC horizontal plane and has curvature equal to 1/RC. For the wall 
local axes, y and z define the mid-line and through-thickness directions, 
respectively, and x is concentric to X. Moreover, ϕ is the wall rotation angle. 

The standard GBT variable technique is employed for the membrane 
displacements (u, v, w) along (x, y, z), respectively, 

𝑢𝑢𝑀𝑀 = 𝒖𝒖�𝑇𝑇(𝑦𝑦) 𝝓𝝓′(𝑋𝑋),       𝑣𝑣𝑀𝑀 = 𝒗𝒗�𝑇𝑇(𝑦𝑦) 𝝓𝝓(𝑋𝑋),       𝑤𝑤𝑀𝑀 = 𝒘𝒘�𝑇𝑇(𝑦𝑦) 𝝓𝝓(𝑋𝑋), (1) 
where bold letters indicate column vectors, the “bar” vectors contain the 
deformation mode functions, the 𝝓𝝓 vectors collect the corresponding amplitude 
functions, the commas indicate derivatives (e.g., f,x = ∂f/∂x) and the prime ' is used 
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for a derivative with respect to X. Using small-strains and Kirchhoff’s thin-plate 
assumption, to eliminate plate-like shear locking and write the displacements in 
terms of the membrane displacements, the strains are given by 

𝜺𝜺 = 𝜺𝜺𝑀𝑀 + 𝜺𝜺𝐵𝐵 = �
𝜀𝜀𝑥𝑥𝑥𝑥
𝜀𝜀𝑦𝑦𝑦𝑦
𝛾𝛾𝑥𝑥𝑥𝑥

� = 𝚵𝚵𝜺𝜺 �
𝝓𝝓
𝝓𝝓′
𝝓𝝓′′

�,          𝚵𝚵𝜺𝜺 = �
𝝃𝝃11𝑇𝑇 𝟎𝟎 𝝃𝝃13𝑇𝑇

𝝃𝝃21𝑇𝑇 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝝃𝝃32𝑇𝑇 𝟎𝟎

�, (2) 

𝝃𝝃11𝑀𝑀 = 𝛽̅𝛽�𝐾𝐾𝑦𝑦𝒘𝒘� − 𝐾𝐾𝑧𝑧𝒗𝒗��,   𝝃𝝃13𝑀𝑀 = 𝛽̅𝛽𝒖𝒖�,   𝝃𝝃21𝑀𝑀 = 𝒗𝒗�,𝑦𝑦,   𝝃𝝃32𝑀𝑀 = 𝛽̅𝛽𝒗𝒗� + 𝛽̅𝛽𝐾𝐾𝑧𝑧𝒖𝒖� + 𝒖𝒖�,𝑦𝑦, (3) 

𝝃𝝃11𝐵𝐵 = −𝑧𝑧𝛽̅𝛽�−𝐾𝐾𝑧𝑧𝒘𝒘� ,𝑦𝑦 + 𝛽̅𝛽𝐾𝐾𝑦𝑦2𝒘𝒘� − 𝛽̅𝛽𝐾𝐾𝑦𝑦𝐾𝐾𝑧𝑧𝒗𝒗��,  𝝃𝝃13𝐵𝐵 = −𝑧𝑧𝛽̅𝛽2𝒘𝒘� ,  𝝃𝝃21𝐵𝐵 = −𝑧𝑧𝒘𝒘� ,𝑦𝑦𝑦𝑦,  (4) 

𝝃𝝃32𝐵𝐵 = −𝑧𝑧𝛽̅𝛽�2𝒘𝒘� ,𝑦𝑦 + 2𝛽̅𝛽𝐾𝐾𝑧𝑧𝒘𝒘� − 𝐾𝐾𝑦𝑦𝒖𝒖�,𝑦𝑦 + 𝛽̅𝛽𝐾𝐾𝑦𝑦𝒗𝒗� − 𝛽̅𝛽𝐾𝐾𝑦𝑦𝐾𝐾𝑧𝑧𝒖𝒖��, (5) 

where M/B designate membrane/bending terms, Ky = cosϕ/RC, Kz = −sinϕ/RC are 
the curvatures along the local axes and 𝛽̅𝛽 = 𝑅𝑅𝐶𝐶/𝑅𝑅�, where 𝑅𝑅� is the mid-line radius. 

Fig. 1. Global and local (wall) axes for a naturally curved thin-walled member 

The homogeneous form of the differential equilibrium equations reads 

𝐂𝐂𝝓𝝓′′′′ − (𝐃𝐃 − 𝐅𝐅 − 𝐅𝐅𝑇𝑇)𝝓𝝓′′ + (𝐆𝐆 + 𝐄𝐄 + 𝐄𝐄𝑇𝑇 + 𝐁𝐁)𝝓𝝓 = 𝟎𝟎, (6) 

where 𝐃𝐃 = 𝐃𝐃1 − 𝐃𝐃2 − 𝐃𝐃2
𝑇𝑇 and the GBT modal matrices read 

𝐁𝐁 = ∫ 𝐸𝐸
1−𝜈𝜈2𝐴𝐴

𝑅𝑅
𝑅𝑅𝐶𝐶
𝝃𝝃21𝝃𝝃21𝑇𝑇 𝑑𝑑𝑑𝑑, 𝐂𝐂 = ∫ 𝐸𝐸

1−𝜈𝜈2𝐴𝐴
𝑅𝑅
𝑅𝑅𝐶𝐶
𝝃𝝃13𝝃𝝃13𝑇𝑇 𝑑𝑑𝑑𝑑, (7) 

𝐃𝐃1 = ∫ 𝐺𝐺𝐺𝐺
𝑅𝑅𝐶𝐶
𝝃𝝃32𝝃𝝃32𝑇𝑇 𝑑𝑑𝑑𝑑𝐴𝐴 , 𝐃𝐃2 = ∫ 𝜈𝜈𝜈𝜈

1−𝜈𝜈2𝐴𝐴
𝑅𝑅
𝑅𝑅𝐶𝐶
𝝃𝝃21𝝃𝝃13𝑇𝑇 𝑑𝑑𝑑𝑑, (8) 

𝐄𝐄 = ∫ 𝜈𝜈𝜈𝜈
1−𝜈𝜈2𝐴𝐴

𝑅𝑅
𝑅𝑅𝐶𝐶
𝝃𝝃11𝝃𝝃21𝑇𝑇 𝑑𝑑𝑑𝑑, 𝐅𝐅 = ∫ 𝐸𝐸

1−𝜈𝜈2𝐴𝐴
𝑅𝑅
𝑅𝑅𝐶𝐶
𝝃𝝃11𝝃𝝃13𝑇𝑇 𝑑𝑑𝑑𝑑, (9) 

𝐆𝐆 = ∫ 𝐸𝐸
1−𝜈𝜈2𝐴𝐴

𝑅𝑅
𝑅𝑅𝐶𝐶
𝝃𝝃11𝝃𝝃11𝑇𝑇 𝑑𝑑𝑑𝑑. (10) 
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In these expressions, A is the cross-section area, E is Young’s modulus, ν is 
Poisson’s ratio and G is the shear modulus. If 𝜀𝜀𝑦𝑦𝑦𝑦𝑀𝑀 = 0 is assumed, the Poisson 
terms for the membrane strains are eliminated and membrane/bending coupling is 
eliminated by taking 𝑅𝑅/𝑅𝑅𝐶𝐶 ≈ 𝑅𝑅�/𝑅𝑅𝐶𝐶 = 1/𝛽̅𝛽. In Peres et al. (2016) the equilibrium 
equations are also written in terms of stress resultants, and the external load terms 
and the natural boundary conditions are also given.  

3. Cross-section Deformation Modes

For the determination of the deformation modes, the cross-section is discretized 
using (i) “natural” nodes, automatically located at wall mid-line intersections and 
free edges, and (ii) “intermediate” nodes, arbitrarily located in the walls, between 
natural nodes, defining the discretization level. An initial basis for the modes is 
generated using three DOFs per node: two in-plane displacements (the in-plane 
rotations are condensed, as in the classic GBT formulations) and one warping. 
Between nodes, as usual, Hermite cubic functions are employed for 𝑤𝑤�𝑘𝑘 and linear 
functions for 𝑣̅𝑣𝑘𝑘 and 𝑢𝑢�𝑘𝑘. For members with circular axis, linear 𝑢𝑢�𝑘𝑘 functions can 
be shown to be consistent with the Vlasov (𝛾𝛾𝑥𝑥𝑥𝑥𝑀𝑀 = 0) and 𝜀𝜀𝑦𝑦𝑦𝑦𝑀𝑀 = 0 assumptions, 
which read, from the strain-displacement equations, 

𝑣̅𝑣𝑘𝑘,𝑦𝑦 = 0,        𝑣̅𝑣𝑘𝑘 = −𝑢𝑢�𝑘𝑘,𝑦𝑦

𝛽𝛽�
− 𝐾𝐾𝑧𝑧𝑢𝑢�𝑘𝑘. (11) 

It is noted that the latter is significantly more complex to handle than its prismatic 
member counterpart. However, it is fundamental to subdivide the deformation 
modes – for open sections it is generally acceptable to consider only the modes 
with 𝛾𝛾𝑥𝑥𝑥𝑥𝑀𝑀 = 0 – and eliminate shear locking. For illustrative purposes, Fig. 2 shows 
the initial modes for a lipped channel discretized with a single intermediate node 
in the web, leading to 21 modes. 

The final deformation modes are calculated from the initial basis through change 
of basis operations using the GBT modal matrices and assuming 𝑅𝑅/𝑅𝑅𝐶𝐶 ≈ 1/𝛽̅𝛽, 
leading to membrane-bending uncoupling. The following mode sets are defined: 

• Vlasov natural modes, generated from the natural node warping DOFs and
satisfying 𝛾𝛾𝑥𝑥𝑥𝑥𝑀𝑀 = 𝜀𝜀𝑦𝑦𝑦𝑦𝑀𝑀 = 0. As in the classic GBT, this set is subdivided into (i)
distortional and (ii) rigid-body modes (extension, bending and, for open
sections, torsion).

• Local-plate modes, also satisfying 𝛾𝛾𝑥𝑥𝑥𝑥𝑀𝑀 = 𝜀𝜀𝑦𝑦𝑦𝑦𝑀𝑀 = 0 but involving essentially
plate bending.

• Shear modes (𝛾𝛾𝑥𝑥𝑥𝑥𝑀𝑀 ≠ 0 and 𝜀𝜀𝑦𝑦𝑦𝑦𝑀𝑀 = 0), which are subdivided into (i) cell shear
flow modes for closed sections (torsion is included), (ii) warping functions of
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the Vlasov modes and (iii) additional warping functions. The shear modes 
generated by the intermediate node DOFs are included in the latter subset. 

• Transverse extension modes, satisfying 𝜀𝜀𝑦𝑦𝑦𝑦𝑀𝑀 ≠ 0, including the intermediate
node DOFs.

Fig. 2. Lipped channel (a) geometry and discretization, (b) initial deformation modes. 

From the strain-displacement relations, it is observed that modes complying with 
the Vlasov constraint span the nullspace of 𝐃𝐃1𝑀𝑀, whereas the null membrane 
transverse extension modes belong in the nullspace of 𝐁𝐁𝑀𝑀. Both matrices are 
necessarily positive semi-definite and one solves 

(𝐁𝐁𝑀𝑀 − 𝜆𝜆𝑰𝑰)𝒗𝒗 = 𝟎𝟎, (12) 

where the 𝜆𝜆 ≠ 0 eigenvectors define the 𝐁𝐁𝑀𝑀-orthogonal transverse extension 
modes. The 𝜆𝜆 = 0 eigenvectors satisfy 𝜀𝜀𝑦𝑦𝑦𝑦𝑀𝑀 = 0 and thus contain the remaining 
mode sets. One then solves, in the latter space, 

(𝐃𝐃1𝑀𝑀 − 𝜆𝜆𝑰𝑰)𝒗𝒗 = 𝟎𝟎, (13) 

where the 𝜆𝜆 = 0 eigenvectors define a basis for the Vlasov and local-plate modes. 
These modes are hierarchized as in the procedure proposed by Schardt (1989) for 
prismatic members, namely by solving 

�𝐁𝐁𝑀𝑀 − 𝜆𝜆(𝐂𝐂𝑀𝑀 + 𝐂𝐂𝐵𝐵)�𝒗𝒗 = 𝟎𝟎, (14) 
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with the 𝜆𝜆 = 0 eigenvectors defining the rigid-body mode subspace and the 
remaining eigenvectors corresponding to the Vlasov distortional and local-plate 
modes. The rigid-body modes are extracted as in the classic formulations for 
beams with circular axis (e.g. Dabrowski, 1968): C coincides with the centroid 
and the first three modes correspond to tangential (mode 1), radial (mode 2) and 
out-of-plane (mode 3) rigid-body displacements. Using Eq. (6b), it can be shown 
that mode 3 involves a torsional rotation equal to −1/𝑅𝑅𝐶𝐶. 

The torsion mode for open sections is calculated by working in the 4-D rigid-body 
mode space and calculating the 𝜆𝜆 ≠ 0 eigenvector of 

(𝐃𝐃1𝐵𝐵 − 𝜆𝜆𝐂𝐂𝑀𝑀)𝒗𝒗 = 𝟎𝟎, (15) 

since the nullspace of 𝐃𝐃1𝐵𝐵 corresponds to 𝛾𝛾𝑥𝑥𝑥𝑥𝐵𝐵 = 0 and matrix 𝐂𝐂𝑀𝑀 ensures 
orthogonality of the torsion warping stress resultant with respect to the first three 
modes. For closed sections, the torsional mode belongs to the shear mode space, 
as discussed next. 

The determination of the shear modes is based on the procedure proposed in 
(Gonçalves et al., 2014) for the prismatic case. This set is subdivided into: (I) cell 
shear flow modes, which only exist in closed sections, (II) warping functions of 
the Vlasov modes and (III) additional warping functions. The II modes are 
obtained by retaining only the warping functions of the Vlasov natural modes, 
excluding mode 1 (extension). For the III modes, the orthogonal complement (in 
the 𝐂𝐂𝑀𝑀 sense) of the II subset plus mode 1, in the warping mode space, is first 
obtained. The modes are orthogonalized and hierarchized through 

(𝐃𝐃1𝑀𝑀 − 𝜆𝜆𝐂𝐂𝑀𝑀)𝒗𝒗 = 𝟎𝟎. (16) 

For the I modes, a basis pertaining to independent 𝑣̅𝑣 displacements of the walls is 
obtained and added to the II and III shear modes, excluding the warping functions 
of modes 2 and 3 (the bending modes). Then, one solves 

�𝐁𝐁𝐵𝐵 − 𝜆𝜆(𝐁𝐁𝐵𝐵 + 𝐃𝐃1𝑀𝑀)�𝒗𝒗 = 𝟎𝟎, (17) 

where the eigenvectors for 0 < 𝜆𝜆 < 1 define the I shear subspace excluding 
torsion. The torsional mode is obtained from the 𝜆𝜆 = 0 eigenvectors (the 
nullspace of 𝐁𝐁𝐵𝐵), by calculating the single non-null eigenvalue of 

(𝐃𝐃1𝐵𝐵 − 𝜆𝜆𝐃𝐃1𝑀𝑀)𝒗𝒗 = 𝟎𝟎, (18) 

The final deformation modes are normalized as follows: (i) the rigid-body modes 
correspond to unit displacement/rotations, (ii) the Vlasov, local-plate and I shear 
modes have a maximum unit in-plane displacement, (iii) the II and III shear modes 
have a maximum unit warping displacement and (iv) the transverse extension 
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modes have a maximum unit membrane transverse extension. The proposed 
procedure was implemented in MATLAB (The MathWorks, 2010). With an Intel 
Core i7-9700HQ CPU@2.60 GHz processor and an open cross-section with about 
20 modes, the runtime is approximately 0.2 seconds. For a closed cross-section 
with 50 modes, the runtime increases to about 2 seconds.  

Figs. 3 and 4 show the deformation modes for two cross-sections, considering 
𝑅𝑅𝐶𝐶 = 0.4 m and 𝑅𝑅𝐶𝐶 = 100 m (Fig. 4c shows only selected modes). In both cases 
C is taken as the cross-section centroid. It is observed that the mode configurations 
change with 𝑅𝑅𝐶𝐶, becoming less symmetric or anti-symmetric as this parameter 
decreases. Note that, for 𝑅𝑅𝐶𝐶 = 0.4, mode 1 does not correspond to uniform 
warping and mode 3 includes a torsional rotation, as already discussed. Note also 
that, in Fig. 4b, the center of rotation of mode 4 is slightly offset to the right of 
the centroid. 

4. Numerical Examples

All examples concern 90º cantilevers subjected to end forces, with E = 210 GPa 
and  ν = 0.3. Examples 4.1 to 4.3 are solved using a standard displacement-based 
GBT FE (see, e.g., Gonçalves & Camotim 2011, 2012), using Hermite cubic and 
Lagrange quadratic functions, the latter for the deformation modes involving only 
warping. To prevent locking, 3-point Gauss (reduced) integration along X is used. 
Along y, 5 Gauss points are employed between cross-section nodes. Along z, 
analytical integration is carried out due to the 𝑅𝑅/𝑅𝑅𝐶𝐶 ≈ 1/𝛽̅𝛽 assumption. Finally, 
example 4.4 compares the performance of the displacement-based element with 
that of a mixed displacement-strain element, to demonstrate that the latter is 
particularly efficient for curved members. 

The FE procedure was implemented in MATLAB. Although uniform 
discretizations along X are employed in all cases, the procedure is quite fast – e.g., 
with an Intel Core i7-9700HQ CPU@2.60 GHz processor, the runtime is below 
0.5 seconds for a discretization with 50 elements and 15 deformation modes. For 
comparison purposes, results obtained with refined 4 node MITC shell FE models, 
using ADINA (Bathe, 2017), are presented. 

4.1 Lipped channel beam subjected to two out-of-plane tip loads 

The first example concerns a lipped channel section cantilever subjected to two 
out-of-plane tip loads, as shown in Fig. 5 (recall also Fig. 3). The GBT cross-
section analysis was carried out with 7 nodes, as displayed in the figure.  
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Fig. 3. Lipped channel cross-section deformation modes: (a) geometry, discretization and 
material parameters, (b) deformation modes for 𝑅𝑅𝐶𝐶 = 0.4 m and (c) 𝑅𝑅𝐶𝐶 = 100 m. 
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Fig. 4. Three-cell cross-section deformation modes: (a) geometry, discretization and 
material parameters, (b) deformation modes for 𝑅𝑅𝐶𝐶 = 0.4 m and (c) 𝑅𝑅𝐶𝐶 = 100 m. 
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Fig. 5. Lipped channel 90º cantilever subjected to two out-of-plane tip loads. 

The table in Fig. 5 shows the tip vertical displacements obtained with a refined 
shell FE model and the GBT solution, using 50 FEs and different combinations of 
mode sets: (i) rigid-body (RB), (ii) Vlasov distortional (D) and (iii) local-plate 
modes (LP) – the shear (S) and transverse extension (TE) modes have a very small 
influence and therefore were left out. It is concluded that the GBT solution 
including only the RB modes falls very short of the shell model result. This 
difference is due to the influence of the D (mostly) and the LP modes, whose 
inclusion in the analysis leads to results that virtually match those of the shell 
model, as the deformed configurations displayed in the figure clearly show. This 
demonstrates that, as in the case of prismatic open sections, only the RB+D+LP 
modes are normally required to achieve very accurate results. 

In spite of the influence of the D and LP modes, they are hardly visible in the 
deformed configurations. A more in-depth analysis can only be achieved from the 
mode amplitude graphs in Fig. 5. These graphs show that, although the B and T 
modes are naturally dominant, the D mode 5 plays a relevant role, namely near 
the support. The LP modes are only visible in the bottom-right graph, even though 
their inclusion lowers the displacement error by more than 3 %. 
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4.2 Three-cell beam subjected to an out-of-plane tip load 

A beam with the cross-section of Fig. 4 is analyzed, as shown in Fig. 6. The GBT 
analyses were carried out with several combinations of mode sets. The table 
shows that a virtually “exact” GBT solution is obtained when the RB+D+LP 
modes are included in the analysis. The deformed configurations demonstrate the 
excellent agreement between the GBT and shell model results: cross-section 
torsion and distortion are visible throughout the beam and significant local-plate 
deformation occurs near the fixed end (see the detail in the figure). The mode 
amplitude graphs confirm these findings: although the RB+D modes are 
predominant, the LP modes also play a significant role, even if their participations 
are one order of magnitude below the other ones. 

Fig. 6. Three-cell section 90º cantilever subjected to an out-of-plane tip load. 
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4.3 Twin trapezoidal cell beam subjected to an out-of-plane tip load 

This example consists of a twin cell section taken from (Garcea et al., 2016) and 
shown in Fig. 7, whose discretization leads to 51 deformation modes – the most 
relevant ones are displayed in the figure.  

Fig. 7. Twin trapezoidal cell cross-section deformation modes for RC = 2.0 m. 

Fig. 8 shows the results obtained when a single concentrated eccentric vertical 
force is applied at the free end cross-section of a 90º cantilever. It is once more 
concluded that the RB modes alone do not provide accurate results. In particular, 
the three Vlasov D modes (6-8 in Fig. 7) play a significant role. A small 
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improvement is obtained when either (i) all the LP (9-17) or (ii) the distortional 
cell shear flow (5) or (iii) all the shear modes are added to the analysis. The 
deformed configurations clearly demonstrate that there is an excellent match 
between the shell and GBT models. The bottom-left modal participation graph 
makes it possible to conclude that the B and T modes are dominant. Nevertheless, 
the bottom-right graph shows that all three Vlasov D modes are also quite relevant 
throughout the beam length, followed by the cell shear flow mode 5. The LP 
modes are only important near the fixed end. 

Fig. 8. Twin trapezoidal cell section 90º cantilever subjected to an out-of-plane tip load. 

4.4 Comparison between compatibility and mixed elements 

In this example, the displacement-based FE is compared with a mixed strain-
displacement FE. The latter is obtained using the Hellinger-Reissner principle and 
approximating the strains associated with each deformation mode using linear 
functions. The additional DOFs are subsequently eliminated at the element level. 
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Fig. 9 compares the performance of the two GBT-based FE with the classic 
Winkler solution, for a 90º cantilever subjected to a tip load. It is observed that 
the displacement-based FE requires 10 elements to achieve accurate results, 
whereas the mixed element leads to good results with just one or two elements. 

Fig. 9. I-section 90º cantilever subjected to an in-plane tip load. 

5. Concluding Remarks

This paper improved the first-order GBT formulation for curved thin-walled 
members introduced by Peres et al. (2016) by presenting a systematic procedure 
to obtain the cross-section deformation modes for arbitrary flat-walled cross-
sections (open, closed or “mixed”). This procedure retains the nomenclature of 
the deformation mode subsets defined for prismatic members, by handling 
adequately the complex kinematics pertaining to curved bars. In particular, it was 
shown that (i) very accurate solutions are generally obtained with only a small set 
of modes and (ii) the modal features of the GBT solution can provide in-depth 
insight into the structural behavior of naturally curved bars. Finally, it was shown 
that a mixed strain-displacement FE format is much more accurate than its 
displacement-based format. This mixed element is currently being developed to 
include all deformation modes. The results will be presented in the near future. 
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