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Outline
uWhy microwaves.
uMicrowave materials characterization.
u Contributions to SHM.
uExamples of cement-based materials 

characterization.
u Chloride permeation and ASR.
uHolographical imaging and steel rebar 

corrosion detection.
u 3D real-time microwave imaging principles 

& ”Microwave Camera”.
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Why µ- & mm-Wave NDT&E
u Limitation associated with “standard”

techniques.
u These signals penetrate into dielectric 

materials, and composites.  
u Sensitive to dielectric property variation:

üabrupt (boundaries)
ülocal (inclusions)
ügradual (gradient in material change).

u Polarization, frequency, measurement 
parameter (near-field vs. far-field) & probe 
type diversity-degrees of freedom.

u Correlation of microwave properties to 
physical, chemical and mechanical properties.
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Why µ- & mm-Wave NDT&E
u Coherent properties – magnitude & phase.
u Large available bandwidth.
u Life-cycle inspection possibilities.
uElectromagnetic modeling (analytical, 

numerical and empirical).
uOn-line and real-time inspection.
uOperation in industrial environments.
u Little to no need for operator expertise.
uRelatively inexpensive.
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µ- & mm-Wave Spectra
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300 MHz 300 GHz30 GHz
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Microwave 
Characterization of 

Cement-Based Materials
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Microwaves & Materials
u Interaction of materials with microwave 

signals is macroscopically described by the 
complex dielectric constant -

u It describes the ability of a material to 
store and absorb microwave energy.

u It depends on material chemistry, mixture 
content, etc. – e.g. bound vs. free water.

u It can be measured in many different ways.
uMicrowave signal properties are directly 

influenced by this parameter.

ε r = ε r
, − jε r

,,
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Contributions
uNDT applications for SHM:

üConcrete materials characterization (w/c, s/c, 
ca/c) & correlation with compressive strength

üChloride permeation assessment 
üASR development, evolution & assessment 
üSteel fiber density assessment
üSteel rebar corrosion detection & imaging
üGlass rebar detection & imaging
üCFRP-strengthened member inspection & 

imaging

uEM modeling.
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Correlation to Materials

Material
Constituents

Mixing Model

Effective
Dielectric
Constant

|G|
e.g., Compressive

Strength

Individual
Dielectric
Properties
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Hardened Paste @ 3 GHz vs. w/c
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Cement Paste |G| vs. w/c & C.S.
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Concrete @ 10 GHz
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Hardened Concrete @ 10 & 3 GHz
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Salt Water Permeation in Mortar @ 3 GHz
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Salt Water Permeation in Mortar @ 3 GHz

Open-Ended Rectangular
Waveguide Probe

Specimen Under Test

Successive Chloride
Penetration

Approximate Depth to which Microwave Signal 
Irradiates the Specimen

  εr1   εr2   εrNOpen-Ended 
Rectangular

Waveguide Probe

t1 2
t

Infinite
Half-Space
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Modeling Process
uThe general equation for the temporal 

water/saltwater distribution is given by:

where k1, k2, k3 are empirical factors 
and k4 is the amplitude of the distribution 
function for each day.
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Salt Water Permeation in Mortar @ 3 GHz
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Cycle 1 @ 3 GHz
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Alkali-Silica Reaction
(ASR)
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Alkali-Silica Reaction - ASR
u Reaction between 

the alkalies (Na & 
K) in portland
cement and certain 
siliceous minerals 
(opaline chert, 
strained quartz, 
and acidic volcanic 
glass) in some 
aggregates.

u Products of 
reaction may cause 
abnormal expansion 
and cracking of 
concrete in service. Oriented Cracking

Cracking Near Joints
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ASR

Paste Alkali-Silica 
Gel

H O

Paste
Coarse Aggregate

u ASR gel tends to form and accumulate in reaction 
rims around reactive aggregates.

u Over time, ASR gel imbibes water from its 
surroundings and swells expansion & cracking.
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Sources of Alkali
u Portland cement
uOther cementing materials

üFly ash
üSlag
üSilica fume

u Chemical admixtures
uWash water (if used)
uAggregates
uExternal sources

üSeawater
üDeicing chemicals
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SEM Micrographs
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Sample Preparation
u Samples demolded ~24 hours after mixing.

u S-parameter measurements were conducted at S-
band (2.6-3.95 GHz).

u After measurement, they were placed in an ambient 
humidity of ~99%.

Reactive       Non-reactive
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Sample Preparation
u Container was stored in an oven at a constant 

temperature of 38oC.  
u Initially the samples were placed in the oven 

~15 hours after demolding.
u Every 2-3 days the samples were removed 

from the oven, measured and immediately put 
back. 

u Mass of each sample was measured as well. 
u After 22 days samples were placed in room 

conditions till day 36 when a set of final 
measurements was conducted.
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Measurement Setup
u Transmission coefficient, |S21|, indicates signal 

attenuation through sample.
u Higher |S21| (in dB) means less attenuation and vice 

versa.
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Measurements – S-Band



IN
S

PI
RE

 U
ni

ve
rs

it
y 

Tr
an

sp
or

ta
ti

on
 C

en
te

r W
eb

in
ar

Modeling Results vs. Measurements
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

Fig. 6. Measured and modeled dielectric constants of: a) permittivity of ASR-reactive and nonreactive samples and b) loss factor of ASR-reactive and
nonreactive samples.

The k values were determined through a process which
involved changing both volume fractions of the inclusions
and empirical factors iteratively in order to achieve a good
match between the measured and modeled effective dielectric
constant.

VI. VOLUME FRACTIONS AND MODELING RESULTS

During the measurement time period, the mass of mortar
samples was also measured in order to determine the amount
of water absorbed by the samples from the humid environment.
This information is related (through the density of water) to
the volume fraction of the water inclusion in this model. The
percentage change in mass (with respect to the mass at the
first day of each period) is shown in Fig. 4. As can be seen,
the mass of nonreactive samples increased more as compared
to the reactive samples during humid condition. This may
be attributed to higher air content in the nonreactive samples
compared to the reactive samples (assuming pores are partially
filled by ASR gel in the reactive samples), which facilitates
absorption of more water by the former. From the results
of Fig. 4, the average (over the three samples of each type)
volume fraction of water can be inferred accordingly, as shown
in Fig. 5(a) (nonreactive) and (b) (reactive).

Most classical NDT approaches in ASR evaluation are
based on linear expansion measurements, and any quantita-
tive data on the amount of produced ASR is inadequate in
those approaches [47]–[50]. However, when reported quanti-
tatively, those values range between 0.2%–2% as a function of
aggregate, alkali content, environmental conditions, and other
factors [51]. As such, this range was used as a starting point to
determine ASR gel volume in the mixing model. Subsequently,
those volume fractions were adjusted (iteratively) to obtain the
best match between the modeled and measured dielectric con-
stant. The resulting gel temporal volume fraction determined
for the reactive samples during the humid and ambient periods
is shown in Fig. 5(b).

The other important volume fraction is that of alkaline
pore solution. Since NaOH was used in the mixing water of
both sets of samples, the initial (first day) volume fraction of
alkali solution is assumed to be the same for both sample
types. However, the rate of change (of the pore solution

fraction), determined empirically through the iterative process,
is different for the two sample types. The temporal volume
fraction of pore solution is shown in Fig. 5(a) (nonreactive)
and (b) (reactive).

Out of the four inclusions, the only volume fraction that
could be measured directly was the air content (bulk porosity)
of the samples. Following the approach outlined in [52],
the air content of the samples was measured (after com-
pletion of the measurements) to be 5.3%, on average. This
value was incorporated into the model initially as start-
ing point. However, the final air content values [shown in
Fig. 5(a) and (b)] were iteratively adjusted in accordance with
the changes of the other inclusions in order to achieve a good
match between the measured and modeled effective dielectric
constant. A decrease in air content (during humid conditions)
signifies that it has become filled with either (absorbed)
water or ASR gel.

Related to the porosity of the samples is the relationship
between the volume fractions of air and absorbed water. For
the nonreactive samples, as shown in Fig. 5(a), during both
humid and ambient conditions, the changes in these two quan-
tities are mutually compensating. In other words, a reduction in
air content of the samples corresponds to an identical increase
volume fraction of water, and vice versa. This trend represents
how the empty or air-filled pores are filled with water taken
into the sample from the humid environment. On the other
hand, when the samples were kept in ambient conditions,
the additional water within the pores evaporates. As a result,
the volume fraction of air increases accordingly (representing
the water lost through evaporation).

Comparing the changes in temporal volume fraction of
alkaline pore solution in the nonreactive samples versus the
reactive samples, it can be clearly seen that the amount
of available pore solution is reduced faster in the reactive
samples. This may be an indication of a higher tendency
of the reactive samples to incorporate available water and
pore solution cations and hydroxyl ions into the ASR gel.
Comparing the amount of absorbed water within the two
types of samples, it can be seen that reactive samples gained
less water from the humid environment compared to the
nonreactive samples. This trend is consistent with measured

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
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Fig. 6. Measured and modeled dielectric constants of: a) permittivity of ASR-reactive and nonreactive samples and b) loss factor of ASR-reactive and
nonreactive samples.

The k values were determined through a process which
involved changing both volume fractions of the inclusions
and empirical factors iteratively in order to achieve a good
match between the measured and modeled effective dielectric
constant.

VI. VOLUME FRACTIONS AND MODELING RESULTS

During the measurement time period, the mass of mortar
samples was also measured in order to determine the amount
of water absorbed by the samples from the humid environment.
This information is related (through the density of water) to
the volume fraction of the water inclusion in this model. The
percentage change in mass (with respect to the mass at the
first day of each period) is shown in Fig. 4. As can be seen,
the mass of nonreactive samples increased more as compared
to the reactive samples during humid condition. This may
be attributed to higher air content in the nonreactive samples
compared to the reactive samples (assuming pores are partially
filled by ASR gel in the reactive samples), which facilitates
absorption of more water by the former. From the results
of Fig. 4, the average (over the three samples of each type)
volume fraction of water can be inferred accordingly, as shown
in Fig. 5(a) (nonreactive) and (b) (reactive).

Most classical NDT approaches in ASR evaluation are
based on linear expansion measurements, and any quantita-
tive data on the amount of produced ASR is inadequate in
those approaches [47]–[50]. However, when reported quanti-
tatively, those values range between 0.2%–2% as a function of
aggregate, alkali content, environmental conditions, and other
factors [51]. As such, this range was used as a starting point to
determine ASR gel volume in the mixing model. Subsequently,
those volume fractions were adjusted (iteratively) to obtain the
best match between the modeled and measured dielectric con-
stant. The resulting gel temporal volume fraction determined
for the reactive samples during the humid and ambient periods
is shown in Fig. 5(b).

The other important volume fraction is that of alkaline
pore solution. Since NaOH was used in the mixing water of
both sets of samples, the initial (first day) volume fraction of
alkali solution is assumed to be the same for both sample
types. However, the rate of change (of the pore solution

fraction), determined empirically through the iterative process,
is different for the two sample types. The temporal volume
fraction of pore solution is shown in Fig. 5(a) (nonreactive)
and (b) (reactive).

Out of the four inclusions, the only volume fraction that
could be measured directly was the air content (bulk porosity)
of the samples. Following the approach outlined in [52],
the air content of the samples was measured (after com-
pletion of the measurements) to be 5.3%, on average. This
value was incorporated into the model initially as start-
ing point. However, the final air content values [shown in
Fig. 5(a) and (b)] were iteratively adjusted in accordance with
the changes of the other inclusions in order to achieve a good
match between the measured and modeled effective dielectric
constant. A decrease in air content (during humid conditions)
signifies that it has become filled with either (absorbed)
water or ASR gel.

Related to the porosity of the samples is the relationship
between the volume fractions of air and absorbed water. For
the nonreactive samples, as shown in Fig. 5(a), during both
humid and ambient conditions, the changes in these two quan-
tities are mutually compensating. In other words, a reduction in
air content of the samples corresponds to an identical increase
volume fraction of water, and vice versa. This trend represents
how the empty or air-filled pores are filled with water taken
into the sample from the humid environment. On the other
hand, when the samples were kept in ambient conditions,
the additional water within the pores evaporates. As a result,
the volume fraction of air increases accordingly (representing
the water lost through evaporation).

Comparing the changes in temporal volume fraction of
alkaline pore solution in the nonreactive samples versus the
reactive samples, it can be clearly seen that the amount
of available pore solution is reduced faster in the reactive
samples. This may be an indication of a higher tendency
of the reactive samples to incorporate available water and
pore solution cations and hydroxyl ions into the ASR gel.
Comparing the amount of absorbed water within the two
types of samples, it can be seen that reactive samples gained
less water from the humid environment compared to the
nonreactive samples. This trend is consistent with measured

Semi-Empirical 
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Semi-Empirical Modeling Results

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HASHEMI et al.: EMPIRICAL MULTIPHASE DIELECTRIC MIXING MODEL 5

Fig. 3. ASR gel measurements setup.

et al. [44]. Samples produced with alkali-to-silica ratios of
1–3 were more fluid and those at four and five were more
solid. The dielectric constant of all twelve ASR gel samples
were measured using the open-ended waveguide technique,
at X-band (8.2–12.4 GHz) using the method outlined in [45].
Measurements were conducted at X-band due to the limited
amount of synthesized gels (an X-band waveguide probe
has smaller dimensions than an R-band probe). However,
the influence of frequency on the dielectric constant of ASR
gel is not significant due to its relatively small volume fraction
in the mortar samples, as shown in Section V. Fig. 3 shows
the setup used to measure the dielectric constant of the ASR
gel samples. The detailed measurement methodology and full
results are reported in [46].

Since the pore solution contains both Na+ and K+ ions,
the average value of the twelve dielectric constant measure-
ments was used and incorporated into the mixing model to
mimic a more realistic case. The average dielectric constant
of the ASR gel was determined to be εgel = 50.27–j27.29.

V. MIXING MODEL

Having determined the dielectric constant of the inclusions,
the Pearce model was used for the nonreactive samples with
three inclusions (alkaline pore solution, water, and air), and for
the reactive samples with the additional ASR gel, as shown in
the following:

εeff(Non-Reactive) =
3∑

i=1

(εi − εh)(1 − ki )vi

1 − kivi
+ εh (10)

εeff(Reactive) =
4∑

i=1

(εi − εh)(1 − ki )vi
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Since the samples were exposed to different condi-
tions (humid versus ambient), different empirical factors (k)
were determined. These k values may represent other impor-
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Fig. 4. Average mass change of the samples.
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might take place concurrently with formation of ASR. Equa-
tions (12)–(15) show the empirical factors incorporated into
the model for each period for samples with reactive (R) and
nonreactive (NR) aggregate
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Fig. 3. ASR gel measurements setup.
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Imaging Technique
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Synthetic Aperture Focusing
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Composite under Inspection
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SAR 2D Measurement
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Microwave 3D Imaging

uSwept-frequency approach can be used to 
produce images with high range-resolution 
(i.e., depth) with reasonable penetration 
depth.

uThis results in high-resolution 3D images 
with capability of producing image slices at 
various depths.

uCoherent summation over frequencies is 
possible, which improves the signal-to-noise 
(SNR) ratio associated with an image.



IN
S

PI
RE

 U
ni

ve
rs

it
y 

Tr
an

sp
or

ta
ti

on
 C

en
te

r W
eb

in
ar

Microwave 3D Imaging

Frequency Band, Bandwidth (B) and Range-Resolution (RR)

X-Band

X-band (8.2 GHz - 12.4 GHz): B = 4.2 GHz, RR~16 mm 

Ku-Band

Ku-band (12.4 GHz – 18 GHz): B = 5.6 GHz, RR~12 mm

K-Band

K-band (18 GHz – 26.5 GHz): B = 8.5 GHz, RR~8 mm 
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Sample #1

12” by 12” by 5”
(305 mm by 305 mm by 127 mm)
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Sample #1

~100 mm

~25 mm

~125 mm

Shallow

Deep

~125 mm
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Results - Sample #1

3D Image @ Ku-band

General View

Side View
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Results - Sample #1

(2.6)

X-band Ku-band K-band
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Results - Sample #1

Side View
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Sample #2

Grinded Area Filled with Rust

50 mm

75 mm

12” by 7.5” by 5”
(305 mm by 190 mm by 125 mm)
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Results - Sample #2

(2.6)

Hologram Slices

X-band Ku-band K-band
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Corroded Rebar in Concrete
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Real-Time Techqniues

http://amntl.mst.edu/
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Basic Schematic

Transmitter antenna (can be anywhere
Multiple antennas can be used)

Subsurface anomaly

Target

Transmitter

Control, DAQ
Processing 

Display

Scattered electric field distribution to 
be measured

illuminating electric field

Camera System

Wy
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Retina
Courtesy: Professor Bolomey @ Supelec
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Real-Time Imaging System 

Ghasr, M.T., et al., “Portable Real-Time Microwave Camera at 24 GHz”, IEEE Transactions on Antennas and Propagation, vol. 60, no. 
2, pp. 1114-1125, February 2012. 
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3D Real-Time Camera
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