
Georgia Southern University

Digital Commons@Georgia Southern

Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of

Fall 2018

Custom Windows Patching Methodology - Comparative
Analysis
Brent Michael Henderson

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

 Part of the Technology and Innovation Commons

Recommended Citation
Henderson, Brent Michael, "Custom Windows Patching Methodology - Comparative
Analysis" (2018). Electronic Theses and Dissertations. 1849.
https://digitalcommons.georgiasouthern.edu/etd/1849

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack
N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia
Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Georgia Southern University: Digital Commons@Georgia Southern

https://core.ac.uk/display/229302429?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1849&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1849&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/1849?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1849&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

CUSTOM WINDOWS PATCHING METHODOLOGY – COMPARITIVE ANALYSIS

by

BRENT HENDERSON

(Under the Direction of CHRIS KADLEC)

ABSTRACT

Windows Server Update Services has been a common mainstay among organizations with a

heavy footprint of Windows operating systems since it was originally released as Software Update

Services in 2002. While the product has grown in scope, the primary allure remains the same: WSUS

offers organizations greater control over the patches that are released to their environment and saves

bandwidth by allowing a centralized device to download and offer patches to internal clients rather than

having each of those clients download the content they require from the Internet. Unfortunately, the

product has a structural limitation in that it lacks the capacity to provide high-availability to the metadata

synchronization process that must occur in order to deliver the most up-to-date patches to endpoints.

WSUS metadata contains details about the individual updates, EULAs, and supersedence relationships.

Due to design limitations and the growing concern of outages, a solution was developed to

supplement and perhaps replace WSUS in certain scenarios. This solution, dubbed the Custom Patching

Manager (CPM), is an extension of a concept originally started by Alejandro Gómez Galindo and finds

middle-ground between Windows Server Update Services and Windows Update using freely available

software. The solution assesses the vulnerabilities of a system or systems, determines whether or not the

patches are part of an approved list, determines whether or not the content for missing updates is available

locally, acquires that content depending on the previous step, and applies the patches to the endpoint.

This proof-of-concept proved functional and reliable but would benefit from some optimizations that have

been recommended as future works.

INDEX WORDS: Windows, Patch, Patching, System updates, Cybersecurity, Security, Windows Server

Update Services, WSUS, PowerShell, Microsoft Baseline Security Analyzer

CUSTOM WINDOWS PATCHING METHODOLOGY - COMPARITIVE ANALYSIS

by

BRENT HENDERSON

B.B.A., Georgia Southern University, 2010

A Thesis Submitted to the Graduate Faculty of Georgia Southern University

in Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

 STATESBORO, GEORGIA

© 2018

BRENT HENDERSON

 All Rights Reserved

1

CUSTOM WINDOWS PATCHING METHODOLOGY - COMPARITIVE ANALYSIS

by

BRENT HENDERSON

Major Professor: Chris Kadlec

Committee: Cheryl Aasheim,

Adrian Gardner

Electronic Version Approved:

December 2018

2

DEDICATION

To Sarah, Cora, Mom, Dad, and P.C.

The trials and tribulations that were endured at basically every step of the creation of this

document are known by and were overcome in large part due to a very short list of people. Your

encouragement bolstered and reinvigorated my resolve in times of wavering confidence, overbearing

exhaustion, and despair at the thought of potential outcomes that fortunately did not come to pass. It is

my hope that this document may serve as a minor monument to our having collectively overcome those

obstacles together.

I want to give thanks to my Mom and Dad, Brenda and Mike Henderson, for being my fiercest

advocates. Your innumerable sacrifices and steadfast support led to me being the person I am today.

To Sarah, my best friend and my wife, I thank you as well. Your love and encouragement made

it possible for us to navigate the incredibly difficult circumstances we have faced throughout the past few

years.

I also owe thanks to my Grandpa, James Monroe Henderson. Memories of your frequent

encouragement to strive for scholastic excellence are second in influence only to your examples of what a

man can be to family, friends, acquaintances, and strangers. Your legacy will always endure in the hearts

and minds of those of us who had the privilege of being a part of your life.

And to my daughter, Cora Elizabeth Henderson: your star burns brightest of all. You will always

be a light for us in dark places where all other lights go out.

3

ACKNOWLEDGMENTS

I would be remiss if I did not begin by thanking my friend and former colleague, Brandon

Kimmons, for going above and beyond in ensuring that I had an easily accessible lab environment during

those late-night hours between midnight and 3AM that I had to myself while I was on one of my many

Cora shifts. The overwhelming majority of the work happened while everyone else slept and the research

that was conducted simply wouldn’t have been possible without your efforts.

I would also like to thank Dr. Christopher Kadlec for putting up with the fact that this thesis has

undergone several false-starts and a couple of topic changes. Your guidance and friendship are

appreciated.

Finally, I would like to thank Dr. Cheryl Aasheim and Dr. Adrian Gardiner for agreeing to assist

this endeavor on relatively short notice. I recognize that there are far more interesting things to read in

one’s leisure time so your assistance and commitment are truly appreciated.

4

3

6

7

8

10

10

11

12

13

14

14

14

15

15

16

16

17

19

20

22

24

24

25

26

26

26

26

27

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS...

LIST OF FIGURES ...

LIST OF TABLES...

NOMENCLATURE AND REFERENCED TECHNOLOGIES..

CHAPTER

1 INTRODUCTION………………………………………….…………….……………….....

Problem Statement...……………………………………………….…….……...........

Background………………………………………………………….….………….....

Contribution to Knowledge…………………………………………….…………......

Hypothesis..........................…………………………………………….……………..

2 LITERATURE REVIEW……………………………………………...…...…..…………....

Overview...

Origins of System Patching...

Windows Update...

Advantages...

Disadvantages...

Windows Server Update Services...

Architecture and Management Style..

Advantages...

Disadvantages...

Structural Changes to Windows Updates..

3 METHOD..…..……………..

Custom Patch Manager: Finding Middle Ground...

Prerequisite Evaluation..

WSUS Offline CAB Validation...

Vulnerability Assessment..

Patch Content Acquisition...

Patch Installation..

Utilization..

5

27

28

29

30

31

31

32

33

39

44

47

47

47

47

48

49

50

52

58

59

62

64

74

76

78

80

92

99

100

Series Breakdown...

Invoke-LabCPM Function Parameters...

Lab Technology...

Lab Specifications...

Advantages..

Disadvantages...

4 PERFORMANCE ANALYSIS...…................……...…....................

Time to Compliance...

Endpoint CPU Utilization..

Bandwidth Considerations...

5 CONCLUSIONS AND RECOMMENDATIONS.....................................……………......................

Time to Completion...

CPU Utilization..

Bandwidth Considerations...

Future Works..

Recommendations..

REFERENCES ...

APPENDICES

Appendix A: START-SERIESMANAGER POWERSHELL FUNCTION..............................

Appendix B: CONNECT-LABVISERVER POWERSHELL FUNCTION..............................

Appendix C: REVERT-LABTOSNAPSHOT POWERSHELL FUNCTION...........................

Appendix D: START-LABMACHINES POWERSHELL FUNCTION..................................

Appendix E: START-LABTESTS POWERSHELL FUNCTION..

Appendix F: STOP-LABMACHINES POWERSHELL FUNCTION.......................................

Appendix G: INVOKE-LABCOMMAND POWERSHELL FUNCTION................................

Appendix H: START-POWERCLIJOB POWERSHELL FUNCTION....................................

Appendix I: INVOKE-LABCPM POWERSHELL FUNCTION..

Appendix J: GETMISSINGPATCHES POWERSHELL SCRIPT..

Appendix K: UPLOAD-LABDATA POWERSHELL FUNCTION...

Appendix L: WINDOWS SERVER UPDATE SERVICES PRODUCTS................................

6

14

18

19

21

33

34

35

36

37

38

39

40

41

42

43

44

46

LIST OF FIGURES

Page

Figure 1: Harvard Mark 1 program tape..

Figure 2: Centralized Management design..

Figure 3: Distributed Management design..

Figure 4: WSUS synchronization errors...

Figure 5: Average Time to Compliance By Series..

Figure 6: Iteration 1 completion results..

Figure 7: Iteration 2 completion results..

Figure 8: Iteration 3 completion results..

Figure 9: Iteration 4 completion results..

Figure 10: Iteration 5 completion results..

Figure 11: Average CPU Utilization Summary..

Figure 12: Iteration 1 CPU averages………...

Figure 13: Iteration 2 CPU averages………...

Figure 14: Iteration 3 CPU averages………...

Figure 15: Iteration 4 CPU averages………...

Figure 16: Iteration 5 CPU averages………...

Figure 17: Bandwidth Savings for WSUS/CPM utilization..

7

34

35

36

37

38

40

41

42

43

44

45

LIST OF TABLES

Page

TABLE 1: Iteration 1 completion statistics...

TABLE 2: Iteration 2 completion statistics...

TABLE 3: Iteration 3 completion statistics...

TABLE 4: Iteration 4 completion statistics...

TABLE 5: Iteration 5 completion statistics...

TABLE 6: Iteration 1 Mean/Median CPU utilization averages..

TABLE 7: Iteration 2 Mean/Median CPU utilization averages..

TABLE 8: Iteration 3 Mean/Median CPU utilization averages..

TABLE 9: Iteration 4 Mean/Median CPU utilization averages..

TABLE 10: Iteration 5 Mean/Median CPU utilization averages..

TABLE 11 Bandwidth Calculations...

8

NOMENCLATURE AND REFERENCED TECHNOLOGIES

• Active Directory Domain Services (Active Directory, AD) – Active Directory Domain Services

is a feature of the server variants of Windows operating systems that provides directory services

to networked resources. As a directory service, it stores and controls access to a hierarchical

collection of network objects and the metadata associated with those objects. One example of

such a relationship is a user object and its underlying metadata in the form of the legal name,

phone number, email, and password of that user.

• Cabinet Files (CAB Files) – CAB files are compressed archives of one or more underlying files

that can assist in the expedient delivery of content between networked resources.

• Endpoint - Any server or workstation client in an IT infrastructure.

• Hypervisor - Hypervisor technology is what makes server virtualization possible, providing an

abstraction layer between “guest” operating systems. This abstraction creates the potential for a

one-to-many relationship in that one set of hardware can be simultaneously utilized by multiple

operating systems. There are two types of hypervisor - Type 1 and Type 2. A Type 1

hypervisor is integrated at the “bare-metal” layer, meaning it sits directly atop the hardware layer

with nothing between the two. In contrast, a Type 2 hypervisor sits atop a host operating system

such as Windows, Linux, or MacOS.

• Microsoft Baseline Security Analyzer (MBSA) – The Microsoft Baseline Security Analyzer is a

proprietary tool provided by the Microsoft Corporation to assist administrators with identifying,

among other things, missing security updates on the endpoints upon which it is invoked or

targeted toward.

• Patching - System patching is the process whereby an administrative or governing body applies

amendments supplied from the vendor to software in order to alter functionality of the original

source code. Within the context of this text, the term is referencing security-related patches.

9

• PowerShell - PowerShell is a command-line shell and scripting language built on top of the

Microsoft .NET framework that is native to the Windows operating system.

• Scripting - A scripting language is typically a high-level programming language that is capable

of being interpreted by a specific runtime environment without being compiled. There are two

primary ways that scripting languages are used - “one-off” solutions to satisfy an immediate need

or, for more complicated problems, “scripts” which encapsulate solutions to more demanding

tasks. Depending on the size and sophistication of the task, scripts may contain many thousands

of lines of code.

• System Center Configuration Manager (SCCM) - SCCM is a systems management suite that

allows for the deployment of software, patches, operating systems, and enforced configurations to

vast numbers of endpoints as required.

• Virtualization - Virtualization is the process whereby multiple instances of operating systems

can be provided with access to a single underlying set of hardware resources.

• Windows Server Update Services (WSUS) - Windows Server Update Services is an

administrative tool that allows for the synchronization, curation, and deployment of first-party

updates from Microsoft to Windows endpoints.

10

CHAPTER 1 - INTRODUCTION

1.1 Problem Statement

Regardless of whether an organization is a small and midsized business or a global

enterprise, the need to protect one’s intellectual property and other sensitive data is tantamount as

the burgeoning concerns of attack frequency, sophistication, and state sponsorship of intrusion

methodologies worsen. Among the most readily addressable cybersecurity concerns is the

presence and formalization of a routine patching strategy. As of 2018, the most commonly

exploited vulnerabilities in the world that resulted in data breaches were enabled via vectors that

the vendor had already released patches for (Higgins, 2018).

Organizations that leverage the modern Windows operating system have historically

leveraged either Windows Server Update Services or Microsoft Update to deliver patches

depending on the size, staffing, and overall capabilities of the organization’s Information

Technology team. More advanced organizations may leverage a configuration management

framework such as System Center Configuration Manager to perform patching but are often still

dependent upon WSUS either directly or indirectly without realizing it. Unfortunately, the

reliability of WSUS has become a growing concern as outages have become more frequent. The

synchronization mechanism is the greatest cause for concern as even “highly available” WSUS

infrastructures ultimately depend on a single upstream server to synchronize metadata with

Microsoft’s update catalog. An organization may find itself without the ability to provide current

updates if the synchronization process fails (Docs.microsoft.com, 2017). Given these challenges,

one can reasonably posit that alternative methodologies are worth exploring and that a data-driven

analysis should be conducted to ascertain the viability of such an effort relative to standard

enterprise practices.

11

1.2 Background

The Windows operating system is no stranger to security vulnerabilities that must be

regularly patched and Windows 10, the latest entry in that family of operating systems, is no

exception (HelpNetSecurity, 2018). The underlying NT architecture, especially in the early 2000

consumer-level release such as Windows XP, created popular targets for malware due to a litany of

questionable security decisions such as Administrative access on the default user, lack of guidance

on password complexity guidance during the creation of the default Administrative account, lack of

guidance to create a non-Administrative account for day-to-day usage, lack of onboard antivirus

scanning capabilities, and firewall functionality being disabled by default. The SANS Institute, a

prolific provider of cyber security research and certifications, released a document entitled

“Windows XP: Surviving the First Day” to address these concerns due to proliferation and

exploitation of these vulnerabilities that could affect an Internet-connected Windows XP device in

less than half an hour (SANS Institute Internet Storm Center, 2003). Organizations needed greater

control of the Windows patching process and Microsoft delivered that control in the form of

Windows Server Update Services. Public disclosures of vulnerabilities are trending upward

industry-wide and the Windows operating system holds a significant portion of market share in the

consumer operating system space (Rains, 2018).

Organizations that have a heavy reliance on Windows generally have an equally heavy

reliance upon Windows Server Update Services (WSUS) or Microsoft Update (Shields, 2016).

With WSUS, this reliance can generally come as either a standalone deployment of WSUS or a

hybrid deployment of WSUS.

In a standalone deployment, the endpoint patching of an organization is handled entirely

from the WSUS instance. Systems Administrators utilize WSUS directly to perform tasks such as

configuring proxy settings, selecting applicable Products and Classifications, synchronizing update

metadata, downloading content, and configuring WSUS maintenance. In this configuration, WSUS

12

can be leveraged exclusively to manage the Microsoft first-party patching requirements of the

organization provided that those products are currently supported (Appendix L).

A hybrid deployment is an indirect utilization of a WSUS instance to facilitate patching.

Certain products such as System Center Configuration Manager leverage a WSUS instance to

accomplish many of the same functions that a standalone deployment would do with the difference

being that SCCM expands upon and obfuscates this native functionality by leveraging the

mechanisms available within WSUS without ever allowing the user to directly interact with it.

While this approach can be powerful, these configurations are hindered by the same limitations and

maintenance demands of a standalone WSUS infrastructure.

1.3 Contribution to Knowledge

The two primary goals of this thesis are to ascertain the relative real-world impact of

different Windows operating system patching methodologies within an enterprise and to analyze

the relative efficacy of a custom solution that was developed without a dependence on Windows

Server Update Services. The existence of an external mechanism for patching could have value as

a backup patching plan in the event that Windows Server Update Services fail given WSUS itself

lacks options for achieving true high-availability with regard to the synchronization of metadata

that drives the process.

The research is comprised of 3 scenarios that represent an individual Windows patching

methodology with the intention to reveal where the optimal utilization of each methodology

resides. Furthermore, the thesis explores where the viability of the Custom Patch Mechanism

(CPM) falls in relation to traditional patching methodologies as both a supplementary tool and as a

potential replacement. The metrics that were captured during the research are as follows:

• Time to Compliance

• Endpoint CPU Utilization

• Network Utilization

13

1.4 Hypothesis

Windows Server Update Services is a common mainstay of businesses that support Windows-

based devices but all supported designs for it are hindered by a single point of failure in the form of the

top-level server that synchronizes and downloads metadata and content from Microsoft. If this top-level

server encounters issues, downstream WSUS servers cannot serve the endpoints that are reliant upon that

metadata to evaluate the applicability of updates.

Leveraging Windows Update is another possibility but exposes organizations to different

problems in the form of excessive bandwidth consumption and a reduction in the ability to curate the

patches. The viability of allowing this communication diminishes at scale not just because of the

bandwidth consumption but also because of support concerns. For example, users whose endpoints were

allowed to access to Windows Update in the first week of October 2018 may have downloaded the initial

release of Windows 10 1809 that has been rescinded due to the deletion of user files (Bowden 2018).

The hypothesis being put forth is that there is a potential middle-ground that can satisfy the needs

of an enterprise and circumvent the most significant limitations of either of the aforementioned

methodologies detailed above. The proof-of-concept that was utilized for the purposes of this thesis was

also created with the expectation that some businesses lack the funding for a Windows Server license that

would be required to utilize WSUS. The Custom Patch Manager (CPM) proof-of-concept and subsequent

management scripts developed for the purposes of collecting data provide an automated, repeatable, and

expandable platform whereby an administrator can remotely invoke the process and simply await the

completion of the process. CPU utilization and Time to Completion were measured to provide some

insight into the relative efficiency of each approach.

14

CHAPTER 2 – LITERATURE REVIEW

2.1 Overview

This chapter begins with a brief note about the origins of operating system patching. The

mechanisms that the Information Technology industry adopted in the past have increased in

sophistication, scope, and usability but the underlying need that the aforementioned mechanisms

addressed largely remain the same. Next, there is an overview of the advent of Windows Update and the

current standard format for Windows patches themselves. Finally, the literary review concludes with an

overview of the design, capabilities, and limitations of Windows Server Update Services as it is a

common requirement for businesses with a heavy Windows footprint.

2.2 Origins of System Patching

The need to formally integrate changes to either fix previously submitted code or expand upon its

functionality is nearly as old as the concept of computing itself. The programmers of previous

generations were no less fallible in their efforts to operate within and expand the realm of computing and

it is that fallibility that made the concept of system patching a natural inevitability.

Figure 1: Harvard Mark 1 program tape with visible patches. Source: Arnold Reinhold, Wikimedia Commons

15

System updates, as the colloquial phrase ‘patch’ implies, originally came in the form of actual

patches that were placed over specific blocks on punch card code to alter the functionality of the program

that it contained. The delivery mechanisms of patches became more sophisticated alongside the industry

itself, transitioning through periods of tape delivery, CD-ROM delivery, and ultimately arriving at the

current standard of Internet-based delivery mechanisms.

2.3 Windows Update

Windows Update was launched alongside Windows 98 when it was released in May of 1998 and

initially offered non-security items on an a la carte basis. Subsequent iterations grew to become more

embedded in the operating system and more aggressively user-facing as the Internet became more heavily

utilized as a vector for malware. This aggressive user interaction eventually culminated in what

implementation of Automatic Updates in Windows XP. Greater flexibility and control were given via the

Windows Update Agent that was paired with Windows Vista/Windows Server 2008 and continued into

subsequent releases such as Windows 7/Server 2008 R2 and through to Windows 8.1/Server 2012 R2.

The current trend that began with Windows 10 and Server 2016 is a movement away from providing

users with fine-grained control of update delivery when Microsoft transitioned to the Windows as a

Service model.

2.3.1 Advantages

The primary strength of Windows Update is that it is ubiquitous across all modern Windows

offerings regardless of whether or not they’re consumer oriented, business oriented, or devoid of a

graphical user interface. This ubiquity ensures that there is always an available avenue that can be

leveraged in order to keep the operating system up-to-date with patches. Internet access is the core

requirement for leveraging Windows Update.

16

2.3.2 Disadvantages

Organizations that opt to leverage Windows Update rather than other methodologies must

contend with the ramifications of allowing every endpoint to download content directly from Microsoft.

Smaller organizations may deem this a negligible disadvantage but organizations with fleets in the

hundreds, thousands, or tens of thousands would understandably be wary of allowing every endpoint to

download hundreds of megabytes of content every month. That said, newer Windows operating systems

have the ability to allow for P2P sharing to local and remote resources that are connected via the Internet

using a feature called Delivery Optimization. This feature is intended to lighten the bandwidth burden of

larger updates such as feature updates and cumulative updates. Delivery Optimization is not available for

operating systems that predate Windows 10/Server 2016.

The lack of fine-grained control in the selection of updates and the lack of an opportunity to

perform rounds of quality assurance on updates that other organizations must consider if and when they

decide to allow their endpoints to have access to Windows Update. In September and October of 2018,

there have been two well-publicized issues in the form of the Windows 1809 release that deleted user data

and the more recent KB4464330 issue that is creating blue screens of death in some HP and Dell systems

(Claburn, 2018). Disruptions such as these would be problematic for any workforce but especially so for

a mobile workforce that takes their laptops home from the office on a regular basis.

2.4 Windows Server Update Services

The trajectory of Windows patch management for businesses has remained relatively flat since

the initial release of Software Update Services. The demands for fine-grained control over which updates

are delivered, what endpoints the updates are delivered to, and the behavior presented to users as a result

of that delivery emerged quickly as the need for system patching grew. In service of these growing

requirements, Microsoft released Software Update Services (SUS) which was later renamed to Windows

Server Update Services (WSUS). The core operating philosophy of the software remained the same in

the transition from SUS to WSUS. These technologies functionally create an arbiter between intranet

17

clients and Windows Update. This arbiter synchronizes metadata with Windows Update and Microsoft

Update, downloads the necessary update content to a local network share, and manages the delivery of the

aforementioned content to clients that are configured to utilize that functionality. WSUS servers can be

configured in a parent-child-grandchild relationship with one parent being capable of possessing multiple

children and the children themselves being capable of possessing children. This delineation of service

responsibility helps administrators prevent the resource exhaustion of any single WSUS server but does

have structural limitations as Microsoft encourages administrators not to go more than 3 levels deep in

their hierarchy guidance (Poggemeyer et al., 2018). The responsibility for the metadata synchronization

with Microsoft’s update servers cannot be shared and stands as a potential single point of failure.

2.4.1 Architecture and Management Style

WSUS infrastructure is relatively straightforward but warrants coverage as its simplicity is

ultimately the hindrance that encourage me to pursue the exploration of a viable alternative. WSUS

offers two management styles that can be individually or simultaneously utilized depending on the needs

of an organization.

• Centralized: A centralized, multi-server hierarchy consists of one upstream server with

subordinate WSUS replica instances. Computer groups and update approval decisions

made at the upstream server flow down to downstream replica servers. Computer groups

replicate to downstream servers but group membership does not so administrators must

address that limitation by either automating the population of group membership or by

manually populating the computer groups of each downstream replica server where

applicable.

18

Figure 2: Centralized Management design. Source: Microsoft.com

• Distributed: The distributed, multi-server hierarchy model allows downstream servers to

be fully configurable by administrators that are local to the branch that the server is

located in.

19

Figure 3: Distributed Management design. Source: Microsoft.com

2.4.2 Advantages

First and foremost, Windows Server Update Services is a simple technology to deploy even if one

has not had the experience of managing it in the past. WSUS is available as a role in Windows Server

operating systems and can be installed with the graphical user interface or via PowerShell. All that is

required to configure a WSUS instance is a lightly provisioned Windows-based server with the following

minimum specifications:

• Processor: 1.4 gigahertz (GHz) x64 processor (2 Ghz or faster is recommended)

• Memory: WSUS requires an additional 2 GB of RAM more than what is required by the

server and all other services or software.

• Available disk space: 10 GB (40 GB or greater is recommended)

• Network adapter: 100 megabits per second (Mbps) or greater

20

• .NET Framework 4.0 or greater

WSUS can be configured to utilize a Microsoft SQL Server database but does not require one as

it natively supports the utilization of a Windows Internal Database.

The core purpose of WSUS is to provide software update services to organizations that utilize

Microsoft products. To that end, the service provides broad support for hundreds of first-party products

(Appendix L). The support list is too extensive to provide here but the list can be found in the appendix

and ranges from products as recent as Server 2016 to products as old as Windows XP. This list was

pulled directly from the WSUS instance that was utilized to create the data for this document.

The cost, usability, and product support list are the foundation of what has made Windows Server

Update Services a common presence in Windows-based enterprises worldwide. Moreover, the adoption

of WSUS provides a considerable savings in the form of bandwidth for content that would have otherwise

needed to be delivered to each endpoint over the WAN. The formula for this reduction of bandwidth is

realized as (N-1)*S with N representing the number of endpoints in an organization and S being the size

of the update content that would otherwise have been downloaded. The actual implications of this

formula will be explored further in the following chapter.

2.4.3 Disadvantages

 Despite its many advantages, Windows Server Update Services has a flaw that has persisted since

its inception. No matter what management style or architectural decisions you make, WSUS still suffers

from the limitation that there may only be one top-level server in a WSUS hierarchy that can synchronize

updates with Microsoft. As such, this synchronization process becomes a single point of failure that can

and frequently does run into issues. This problem is a familiar one for any administrator who has needed

to administer the product.

21

Figure 4: WSUS synchronization errors Source: reddit.com

The list of potential causes for a WSUS synchronization failure are too numerous and varied to

cover within the scope of this thesis but there is a recent example that underscores the sensitivity of the

product. In early September of 2018, synchronization errors were widely reported among websites that

cater to administrators of Windows updates (Leonhard, 2018).

There were two rounds of synchronization problems in September 2018 that were reflected via

feedback to this particular blog. The first problem began in early September when malformed metadata

in a non-security update for Microsoft Office broke the synchronization mechanism of WSUS (Leonhard,

2018). There was no consensus as to a manual fix for the problem and some administrators found

themselves waiting idly for Microsoft to correct whatever had ultimately caused the problem in the first

place. The second such synchronization issue began around the third week of September of 2018 with

similar confusion and a lack of consensus on what steps administrators could take to remediate the broken

22

process (Leonhard, 2018). The aforementioned metadata synchronization issues eventually resolved on

their own within a couple of days according to the discussions that were associated with those articles.

The second most prominent issue with the product stems from a lack of transparency in the

disclosure, support, and remediation of the aforementioned problems. This thesis does not cover the

September 2018 synchronization issues in great detail because Microsoft has not publicly acknowledged

or explained them. The WSUS Product Team Blog is directly maintained by the team that develops,

releases, and supports the product and their last article was released in March of 2018. This lack of

transparency leaves many organizations at the mercy of others who have enterprise support agreements

with Microsoft and can leak private communications and recommendations to the general public. For a

feature that is as critical to the core maintenance of the Windows operating system as WSUS is, one could

be forgiven for finding this level of support to be unacceptable. For comparison, another prominent

problem arose in Microsoft’s ecosystem in September whereby upgrades to Windows 10 1809 resulted in

the deletion of user files. Microsoft publicly acknowledged the error, pulled the version from all

distribution channels, corrected the problem, validated the problem internally, and rereleased the update

to their early-release customers (Cable, 2018). More importantly, Microsoft publicly posted a detailed

technical explanation for what happened and what cues they utilized to see where it originated.

2.5 Structural Changes to Windows Updates

The current state of the updates that are delivered by the aforementioned mechanisms is of

interest as well because Microsoft made a significant departure from decades-long practices in 2016.

Prior to Fall of 2016, Microsoft followed a predictable pattern of releasing individual patches for

Windows on a monthly cycle that is referred to as Patch Tuesday. On the 2nd Tuesday of each month,

Microsoft would publish the individual updates for each product they support and supersede or expire

older updates as necessary. Given the ever-expanding state of discovered vulnerabilities and Microsoft’s

ever-expanding product portfolio, this list of updates grew to numbers that became unwieldy for

23

administrators to handle. In an effort to simply this process, Microsoft introduced two new update

mechanisms for Windows administrators to utilize.

In Fall of 2016, Microsoft transitioned to an update aggregation model via two distinct

mechanisms. The Security-Only update provides the current month’s security fixes for the product it is

applicable to, serving as an ongoing delta that can be applied by organizations that have otherwise kept

their infrastructure up to date. The Monthly Rollup update contain all security and non-security patches

released since the introduction of the new model. With this update, administrators can utilize a single

update to get a system current if it has been patched since the introduction of this new model in 2016.

The aggregation of updates in this fashion has simplified patching in some respects while

complicating it in others. At face value, the idea behind the transition is admirable but has been a source

of frustration due to the all-or-none approach. The overall reliability of Microsoft patches has come into

question due to internal shifts in the way that Microsoft handles the regression testing of updates and OS

releases. Industry leaders have taken note and have begun to speak out about the increasing frequency of

these issues and are now going so far as to poll administrators for feedback. Susan Bradley, a moderator

for the prominent PatchManagement.org mailing list, polled their users and sent a formal letter to

Microsoft in an attempt to raise awareness and compel them to address the increasing frequency of

problems that are making their way to production environments worldwide (Keizer 2018). In the

feedback that Bradley gathered, 69% of respondents indicated that they were either “not satisfied” or

“very much not satisfied” in the quality of Windows updates and servicing that had been foisted upon the

industry by Microsoft.

24

CHAPTER 3 - METHOD

3.1 Custom Patch Manager: Finding Middle Ground

The Custom Patch Manager was developed with four primary objectives in mind. First and

foremost, the CPM was designed to patch Windows operating systems without being dependent upon the

metadata synchronization process that can prevent Windows Server Update Services from acquiring

current patch data and content from Microsoft. In addition to circumventing the WSUS dependency, the

CPM was written to download content once and share it with other resources in order to avoid wasting

bandwidth and potentially exhausting WAN resources. The third objective was to ensure that the CPM

can whitelist or blacklist particular patches to conform to the individual needs of an organization. The

fourth and final objective was to ensure that the CPM was capable of being invoked via command-line so

that it could be integrated into other automation mechanisms and executed remotely at the administrator’s

discretion.

In the initial pursuit of these objectives, my research led me to a promising body of work created

by Alejandro Gómez Galindo. The script that was published on his blog was broken in some areas,

dependent upon deprecated functionality from older Windows operating systems, and in need of some

additional functionality in order to meet the objectives detailed above but was an excellent foundation to

build upon. I discussed the matter with Alejandro and have included his unabridged work as Appendix K

so as to provide proper attribution and so that it may be referenced against the modifications that were

made to it.

The testing of the CPM, Windows Update, and Windows Server Update Services series was

conducted in a simulated environment that consisted of 30 endpoints that were updated to be current as of

September 2018 with the exception of the two updates that each method would be installing. Three

snapshots were created for each virtual machine so that they could be reset to the proper configuration for

the upcoming method simulation that they were intended to execute.

25

The research revolved around three unique series of Windows update methodologies: Windows

Update, Windows Server Update Services, and the Custom Patch Manager. Five iterations were executed

for every series and each iteration was comprised of 30 endpoints. The goal of every series was to install

two specific updates:

• 2018-09 Security Monthly Quality Rollup for Windows Server 2012 R2 for x64-based Systems

(KB4457129, 352.6 MB)

• Microsoft .NET Framework 4.7.2 for Windows Server 2012 R2 for x64 (KB4054566, 68.6 MB)

The updates listed above were selected to serve as a least-common denominator for

vulnerabilities in Windows-based environments. The Security Monthly Quality Rollup released every

month contains the security patches for that month alongside the fixes from previous months. The

Microsoft .NET Framework patch was included because that particular technology cannot be fully

uninstalled from the Windows operating system. These two patches collectively represented 421.2 MB of

data that needed to be distributed and installed on very endpoint.

3.1.1 Prerequisite Evaluation

The first stage of the Custom Patch Manager is to determine if the prerequisites needed for

successful operation are locally available to the device and, if not, download the prerequisites from a

network share. The prerequisites must be available in at least one of the two places or the solution will

not function properly. These prerequisites are detailed below:

• Wsusscn2.cab: This cab file serves as an offline substitute for WSUS and contains metadata for

security updates, update rollups, and service packs.

• Mbsacli.exe: The Microsoft Baseline Security Analyzer (MBSA) is a free tool distributed and

maintained by Microsoft Corporation to help administrators assess vulnerabilities and insecure

settings in their environment. The mbsacli.exe component allows the execution of certain options

via command line and without the amount of dependencies that the graphical user interface has.

26

• Wusscan.dll: This dll is a module that is provided as part of the MBSA installation and is

required for the mbsacli.exe to evaluate the vulnerabilities on endpoints.

3.1.2 WSUS Offline CAB Validation (Optional)

 The CAB must be downloaded each month in order to ensure that the metadata that it contains is

up to date. To that end, there is an optional step whereby the CAB age can be validated and the latest

CAB can be downloaded if the one that is locally available is older than 15 days.

3.1.3 Vulnerability Assessment

After ensuring that the prerequisites are met and that the WSUS Offline CAB are valid, the

Mbsacli.exe program is executed in conjunction with the CAB in order to determine the current security

state of the machine. Upon completion, the executable will generate an XML file that provides the details

of any missing patches and the URLs that can be sourced to download their respective content.

Alternately, the script can be instructed to import previously generated XML to prevent an unnecessary

evaluation from taking place.

3.1.4 Patch Content Acquisition

Once the XML with the vulnerability posture has been created, the CPM parses the update

metadata and determines if the patch is allowed or disallowed. If the update is allowed and missing, the

CPM then scans a local network share for the requisite content. The CPM will copy the content to the

local C:\ drive if it is available on the local network share or it will download the file from the Internet

and then create a copy on the network share so that the content does not have to be downloaded by other

endpoints that require it.

3.1.5 Patch Installation

After the content acquisition has been completed, the CPM transitions into the installation phase.

Windows Updates can come in the form of MSU files, EXE files, or CAB files. The CPM gathers a list

27

of all files to be installed and then installs the update with the mechanism that is appropriate for the file

format that it was provided in.

3.2 Utilization

3.2.1 Series Breakdown

The research revolved around three distinct series representing different patching methodologies.

Each series was invoked as an iteration and every iteration was invoked five times on all 30 endpoints.

Each of these series methods are detailed below:

• wu_series: This series is the Windows Update series. Every iteration of this series automatically

configured and initialized the endpoints in a way that resulted in each endpoint reaching out to

Windows Update, downloading the updates from Microsoft, and installing the updates in an

automated fashion.

• wsus_series: This series is the Windows Server Update Services series. Every iteration of this

series automatically configured and initialized the endpoints reaching out to a local WSUS

instance, copying the required update files across the WAN, and installing the updates in an

automated fashion.

• cpm_series: This series is the Custom Patch Management series. Every iteration of this series

automatically configured and initialized the Custom Patch Management automation. This

automation will be detailed further along in this chapter.

The CPM was designed in such a way that it could be invoked by external automation. The

external automation that was written to drive the research came in the form of 10 PowerShell functions of

varying purposes that are detailed below:

1. Start-SeriesManager: This function served as the catalyst for all of the subordinate automation

that made each iteration of a series run possible. The series manager would make calls to connect

to the Netlab vSphere instance, reset the environment by reverting all virtual machines to the

snapshots that were appropriate for the desired series, power on the virtual machines, monitor for

28

successful Windows startup, invoke an iteration of the specified series, monitor for completion,

and then begin another iteration for as many iterations as it was instructed to perform (Appendix

A).

2. Connect-LabVIServer: Ensured that connectivity to the VMware vSphere server was established

and maintained for the proper execution of all subordinate automation (Appendix B).

3. Revert-LabToSnapshot: Reverted the virtual machines to snapshots that were created to

appropriately fit the desired circumstances and configurations of each series (Appendix C).

4. Start-LabMachines: Powered on the lab machines for each iteration (Appendix D).

5. Invoke-LabCommand: Invoked a command in the guest operating system that it was instructed

to target (Appendix G).

6. Start-LabTests: Managed the specific invocation of every iteration on the endpoints, parsing

input passed from Start-SeriesManager and carrying out the specific series that was requested on

the endpoints it was instructed to target (Appendix E).

7. Invoke-LabCPM: Kicked off the Custom Patch Manager on endpoints. The functionality will be

detailed later in this chapter (Appendix I).

8. Start-PowerCLIJob: A community script that allowed for the parallel invocation of vSphere jobs

via PowerCLI such as reversions to snapshots (Appendix H).

9. Stop-LabMachines: Powered down the lab endpoints in a controlled fashion (Appendix F).

10. Upload-LabData: Copied lab data from the network share to OneDrive (Appendix K).

3.2.2 Invoke-LabCPM Function Parameters

The Invoke-LabCPM function accepts a variety of parameters that can change the behavior

depending on the preferences of the user. The parameters that may be passed to this function are as

follows:

• SourceFolder: This is the source folder for the mandatory prerequisite files. This folder defaults

to C:\temp.

29

• Iteration: Designates the current iteration of the cpm_series that’s being ran so that logs may be

stored with the appropriate name.

• UseNetwork: Indicates whether or not the network share should be searched for matching

updates prior to downloading them from Microsoft.

• NetworkSource: Designates the path of the network share to be searched when used in

conjunction with the UseNetwork parameter.

• ValidateCab: When invoked, this parameter evaluates the age of the CAB and downloads

another if it is out of date by more than 15 days.

• Download: Indicates whether or not updates should be downloaded. Without this parameter, the

function will generate XML output of missing updates and go no further.

• HomeTest: This parameter was utilized to designate what pathing to use for a network share as

the one at home was lengthy and obnoxious to look up.

• PriorXMLPath: If XML has been generated by a previous run, it may be imported with this

parameter to save time and forego the execution of the MBSA evaluation.

3.3 Lab Technology

The lab environment that was utilized to conduct the research, development, and testing of all

scenarios utilized the same overarching infrastructure. The details of the infrastructure technologies that

were employed are as follows:

• Netlab: NetDevGroup (NDG) partners with campuses worldwide to provide easy access to fully

containerized, hands-on lab environments so that students may learn within a realistic

environment that they can administer themselves. The Netlab environment utilized for this

research was tailored for VMware and EMC technologies due to the educational offerings of

Georgia Southern University.

• VMware technologies: VMware is an industry-leader in the virtualization space and the lab

environment was based upon their offerings.

30

o ESXi: A type-1 hypervisor that runs directly atop hardware and abstracts those resources

in such a way that they can be leveraged by many “guest” operating systems.

o vCenter Server: The vCenter Server suite is a central management system that can

manage one or many ESXi “host” servers and enhance them with additional functionality

such as vMotion (Move a virtual machine between hosts), storage vMotion (Move a

virtual machine’s file system from one storage system to another), high-availability

(Automatically move a virtual machine to one host if another fails), fault-tolerance

(Maintain uninterrupted service of a virtual machine if a host fails), and more.

o PowerCLI: This technology is a module built in PowerShell that allows users of that

scripting language to manage VMware technologies.

3.4 Lab Specifications

• Client Specifications:

o OS: Server 2012 R2

o CPU: Dual-Core CPU

o 4GB RAM

• Active Directory Server Specifications

o OS: Server 2012 R2

o CPU: Dual-Core CPU

o 4GB RAM

• WSUS Server Specifications

o OS: Server 2012 R2

o CPU: Dual-Core CPU

o 4GB RAM

• VMware Host Specifications

o OS: VMware ESXi 5.5

o CPU: 8-core Intel Xeons (16 logical processors)

31

o 192GB of RAM

3.5 Advantages

The CPM borrows a number of advantages from both of the standard enterprise patching

solutions. Like Windows Update, the proposed solution has no external dependencies that change from

month to month aside from the CAB file that is updated on a monthly basis. If a system using CPM must

download an update, it copies that update to the network share so that other endpoints may source it

locally rather than also having to utilize WAN bandwidth. In addition, CPM mirrors functionality found

in WSUS in that it can be used to blacklist updates, whitelist updates, and source updates from the

network rather than downloading them from the Internet. The blacklisting and whitelisting functionality

are hardcoded into the script as it was written so future works would be required to make this

functionality dynamic and useful outside of the context of this proof-of-concept.

3.7 Disadvantages

The largest disadvantage comes in the form of limitations to the WSUS offline CAB itself as it

only provides metadata for security updates, update rollups, and service packs. Critical updates and non-

security updates do not fit into those classifications so those patches cannot be deployed with this

solution.

The dependence upon the Microsoft Baseline Security Analyzer can also be considered a

potential disadvantage. While the MBSA is free and publicly available from Microsoft, there is nothing

to prevent them from assigning a price to this software or discontinuing the utility altogether. Future

works would include circumventing this mechanism altogether in favor of a PowerShell-based solution.

32

CHAPTER 4 – PERFORMANCE ANALYSIS

The data collection that was undertaken as part of this research took place between October 4,

2018 and October 7th, 2018 during off-hours when the NDG lab environment was not being utilized by

other students. Every endpoint for every iteration of each series was reset to a snapshot that had been

captured with the appropriate configuration for the applicable series. Prior to the beginning of each

iteration, every endpoint was powered on fresh from the applicable snapshot and the monitoring portion

of the research automation would wait until every endpoint was responsive before initializing the desired

series of testing. Each iteration of each series was executed in isolation so as to avoid resource contention

of the host servers from skewing the results of the guest virtual machines.

There were three incomplete endpoints found throughout the entirety of the dataset and they are

as follows:

• cpm_series, Iteration 2, Client 4

• cpm_series, Iteration 2, Client 13

• wu_series, Iteration 4, Client 25

The problem was found to have been environmental for each of these incomplete endpoints. The

NDG lab operates based on reservations that cannot be programmatically extended and those reservations

ended prior to full completion in two iterations that contained the incomplete endpoints.

One other detail of note that should be considered while evaluating the upcoming results is the

quality of connectivity. The Time to Compliance metric on the Windows Update methodology is more

sensitive to the Internet connectivity of the endpoints than any of the other methodologies due to each

endpoint having to download the content on an individual basis. While the specific connection driving

the NDG lab is unknown as of this writing, several speed tests were undertaken via speedtest.net that

showed results of 250+ Mbps down and 150+ Mbps up. The United States has an average fixed Internet

speed of 101.95 Mbps according to the Speedtest Global Index. The efficacy of the Windows Update

methodology will also be affected by the number of endpoints: while 30 endpoints was not enough to

33

exhaust the network resources of the research lab, that observation will not hold true in real-world

scenarios of hundreds of devices on a slower connection.

4.2 Time to Compliance

Time to Compliance is a simple measurement of the time between the invocations of a method on

an endpoint to the time that the endpoint reported completion. The automation was not invoked until the

endpoint had completed its Windows startup processes and was responsive to the automation that

orchestrated the research.

The following chart is an overview of the averages of the individual endpoint outcomes for all

iterations of each method and provides an overall look at the trends that each method took over the course

of the research.

Figure 5: Average Time to Compliance by Series

4.2.2 Iteration 1 TTC

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M
IN

U
TE

S

CLIENT

AVERAGE TIME TO COMPLIANCE BY SERIES

wu_series wsus_series cpm_series

34

Figure 6: Iteration 1 Completion Results

Table 1: Iteration 1 completion statistics

The Windows Update series possessed the fastest single data point with Client 25 completing its

patch cycle in 40.38 minutes. However, the WSUS series proved to be slightly more consistent overall

with a Standard Deviation of 9.29 minutes. On the opposite end of the spectrum, the Custom Patch

Manager had the least consistency as demonstrated with a Standard Deviation of 15.34 minutes and

proved to be the slowest solution on average with a mean completion of 98.38 minutes and a range of

58.94 minutes between the quickest and slowest endpoint patching duration. Table 1 serves as a reference

for the statistical metrics of all series data that was collected throughout iteration 1.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M
IN

U
TE

S

CLIENT

ITERATION1

wu_series wsus_series cpm_series

Series Iteration Minimum Maximum Range Mean Median Standard Deviation Samples

wu_series 1 40.38 80.7 40.32 63.65 68.005 10.93 30

wsus_series 1 52.27 85.9 33.63 73.79 76.325 9.29 30

cpm_series 1 53.53 112.47 58.94 98.38 105.21 15.34 30

35

4.2.3 Iteration 2 TTC

Figure 7: Iteration 2 Completion Results

Table 2: Iteration 2 completion statistics

The disparity between each series was notably smaller with the most significant overall

improvement coming from the Custom Patch Manager series results. The Custom Patch Manager series

demonstrated a 5.46-minute improvement in the Standard Deviation metric. Nevertheless, the Windows

Update series still narrowly possessed both the fastest individual completion time of 47.82 minutes and

the lowest mean time to compliance with 70.82 minutes. The Windows Update series narrowly proved to

be the least consistent with a Standard Deviation of 10.86 minutes. The Custom Patch Manager again

proved to be the slowest solution in possessing the highest minimum TTC, the highest maximum TTC,

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M
IN

U
TE

S

CLIENT

ITERATION2

wu_series wsus_series cpm_series

Series Iteration Minimum Maximum Range Mean Median Standard Deviation Samples

wu_series 2 47.82 89.52 41.7 70.82 69.765 10.86 30

wsus_series 2 49.33 86.68 37.35 77.04 80.465 9.79 30

cpm_series 2 58.47 105.1 46.63 93.62 95.41 9.88 28

36

the highest mean TTC, and the highest median TTC. Table 2 serves as a reference for the statistical

metrics of all series data that was collected throughout iteration 2.

4.2.4 Iteration 3 TTC

Figure 8: Iteration 3 Completion Results

Table 3: Iteration 3 completion statistics

Iteration 3 demonstrates the first time during testing that the Windows Update series did not

possess the fastest individual completion, losing out on that particular distinction by a margin of 7.89

minutes to Client 9 during its run of the WSUS series. The WSUS series of iteration 3 also had the

distinction of possessing the lowest maximum TTC of any individual endpoint. As was the case with

previous iterations, the Custom Patch Manager featured the most consistently lengthy metrics in all

categories excluding the range between minimum and maximum times to completion. The delta between

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M
IN

U
TE

S

CLIENT

ITERATION3

wu_series wsus_series cpm_series

Series Iteration Minimum Maximum Range Mean Median Standard Deviation Samples

wu_series 3 48.32 85.82 37.5 68.58 67.75 10.27 30

wsus_series 3 40.43 83.95 43.52 70.40 73.66 9.75 30

cpm_series 3 78.65 119.03 40.38 105.60 110 11.82 30

37

the mean times to completion of the other series and CPM during iteration 3 was the most exaggerated of

all iterations at 35.2 minutes (WSUS) and 37.02 minutes (Windows Update) respectively. Table 3 serves

as a reference for the statistical metrics of all series data that was collected throughout iteration 3.

4.2.5 Iteration 4 TTC

Figure 9: Iteration 4 Completion Results

Table 4: Iteration 4 completion statistics

Iteration 4 possessed the narrowest gap between two standard deviations in any iteration with the

WSUS series coming in at 8.23 minutes and the CPM series measuring out to 8.24 minutes. On that note,

the standard deviation of 8.24 minutes shown by the Custom Patch Manager was the best result of that

metric that the methodology earned across all iterations. The WSUS series once again had the distinction

of holding the quickest single time to completion with Client 10 finishing in 47.33 minutes. Windows

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M
IN

U
TE

S

CLIENT

ITERATION4

wu_series wsus_series cpm_series

Series Iteration Minimum Maximum Range Mean Median Standard Deviation Samples

wu_series 4 49.7 94.67 44.97 77.13 76.45 11.93 29

wsus_series 4 47.33 80.4 33.07 70.36 72.325 8.23 30

cpm_series 4 76.8 108.32 31.52 97.41 98.115 8.24 30

38

Update was the least consistent during iteration 4, possessing a standard deviation of 11.93 minutes.

Table 4 serves as a reference for the statistical metrics of all series data that was collected throughout

Iteration 4.

4.2.6 Iteration 5 TTC

Figure 10: Iteration 5 Completion Results

Table 5: Iteration 5 completion statistics

The final iteration was consistent with the overall trends shown previously in that Windows

Update possessed the single fastest data point while WSUS proved to be slightly more consistent due to a

Standard Deviation of 8.27. The range of values for the WSUS series was the smallest in iteration 2 of

any iteration in the research, coming in at 24.95 minutes. The CPM series remained the slowest in most

respects but did notably have a lower range of values than Windows Update. That said, CPM had the

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M
IN

U
TE

S

CLIENT

ITERATION5

wu_series wsus_series cpm_series

Series Iteration Minimum Maximum Range Mean Median Standard Deviation Samples

wu_series 5 40.25 81.8 41.55 63.52 63.26 8.84 30

wsus_series 5 58.42 83.37 24.95 72.44 75.54 8.27 30

cpm_series 5 73.12 108.55 35.43 94.40 98.48 12.30 30

39

highest Standard Deviation of the iteration by a fairly large margin in comparison to the more traditional

methodologies. Table 5 serves as a reference for the statistical metrics of all series data that was collected

throughout iteration 5.

4.3 Endpoint CPU Utilization

The CPU utilization of every endpoint was captured throughout the patching process to get an

idea of how demanding each methodology could be over time. The CPU utilization data for each

endpoint of each iteration was parsed by statistical scripts to gather the mean and median values.

The following chart is an overview of the averages of the individual endpoint outcomes for all

iterations of each method and provides an overall look at the trends that each method took over the course

of the research.

Figure 11: Average CPU Utilization by Series

4.3.2 Iteration 1 CPU Utilization

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M
IN

U
TE

S

CLIENT

AVERAGE CPU UTILIZATION SUMMARY

wu_series wsus_series cpm_series

40

Figure 12: Iteration 1 CPU averages

Table 6: Iteration 1 Mean/Median CPU utilization averages

Iteration 1 sees the establishment of a general trend that holds true across all subsequent iterations

in that the WSUS series had the least CPU utilization and the Windows Update series had the most CPU

utilization with the CPM series hovering in the middle. While the deltas between the averages of

averages vary slightly, the pattern holds across all iterations.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

%
 C

P
U

 U
TI

LI
ZA

TI
O

N
 (

M
EA

N
)

CLIENT

ITERATION1

Windows Update WSUS CPM

Series Iteration Average Mean Average Median

Windows Update 1 22.55 10.92

WSUS 1 21.98 8.74

CPM 1 21.76 9.51

41

4.3.3 Iteration 2 CPU Utilization

Figure 13: Iteration 2 CPU averages

Table 7: Iteration 2 Mean/Median CPU utilization averages

The Windows Update endpoints for Iteration 2 demonstrated the highest CPU utilization numbers

while the WSUS endpoints demonstrated the least. Again, the CPM remained in the middle. Iteration 2

shows the beginning of a trend that holds true for the remainder of the iterations in that the Windows

Update average of median values is nearly double that of the WSUS value for that iteration.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

%
 C

P
U

 U
TI

LI
ZA

TI
O

N
 (

M
EA

N
)

CLIENT

ITERATION2

Windows Update WSUS CPM

Series Iteration Average Mean Average Median

Windows Update 2 24.46 16.18

WSUS 2 19.98 8.80

CPM 2 21.93 8.94

42

4.3.4 Iteration 3 CPU Utilization

Figure 14: Iteration 3 CPU averages

Table 8: Iteration 3 Mean/Median CPU utilization averages

The trends established in the previous iterations continue to hold with WSUS showing the best

performance and Windows Update showing the worst. Subsequent tables and figures are provided

without commentary as there is little difference between them and the first 3 iterations that have been

discussed.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

%
 C

P
U

 U
TI

LI
ZA

TI
O

N
 (

M
EA

N
)

CLIENT

ITERATION3

Windows Update WSUS CPM

Series Iteration Average Mean Average Median

Windows Update 3 24.62 16.39

WSUS 3 19.94 8.71

CPM 3 21.81 8.88

43

Figure 15: Iteration 4 CPU averages

Table 9: Iteration 4 Mean/Median CPU utilization averages

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

%
 C

P
U

 U
TI

LI
ZA

TI
O

N
 (

M
EA

N
)

CLIENT

ITERATION4

Windows Update WSUS CPM

Series Iteration Average Mean Average Median

Windows Update 4 24.57 16.29

WSUS 4 20.02 8.81

CPM 4 21.78 8.86

44

Figure 16: Iteration 5 CPU averages

Table 10: Iteration 5 Mean/Median CPU utilization averages

4.4 Bandwidth Considerations

While the Time to Completion and CPU utilization metrics are interesting, the bandwidth

considerations have more dramatic implications when it comes to which methodology an organization

decides to utilize. The WSUS and CPM methodologies utilize locally cached update content where

possible; if content is not locally available, a single endpoint will download that content and store it

locally so that other endpoints on the network do not have to individually pull that content down on their

own. As was discussed in Chapter 2, the formula for this reduction of bandwidth is realized in the simple

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

%
 C

P
U

 U
TI

LI
ZA

TI
O

N
 (

M
EA

N
)

CLIENT

ITERATION5

Windows Update WSUS CPM

Series Iteration Average Mean Average Median

Windows Update 5 24.54 16.26

WSUS 5 20.01 8.81

CPM 5 21.82 8.89

45

equation of (N-1)*S with N representing the number of endpoints in an organization and S being the size

of the update content that would otherwise have been downloaded.

The research for this thesis was conducted in an environment with 30 endpoints and an Internet

connection that is approximately 2.5 times faster than the average fixed Internet speed of the United

States. Organizations with larger fleets and slower connections would be unlikely to achieve similar

Time to Completion outcomes. The two updates that served as the test candidates for each methodology

collectivity represent 421.2 MB of data and that is the total amount of data that either of the WSUS and

CPM methodologies would have to download to serve their fleets. The table and chart below represent

calculations based upon that amount of data and the equation for bandwidth savings that was previously

established.

Table 11: Bandwidth Calculations

Fleet Size Content Size (MB) Bandwidth Savings (MB) Bandwidth Savings (GB)

30 421.2 12214.8 12.21

100 421.2 41698.8 41.70

500 421.2 210178.8 210.18

1000 421.2 420778.8 420.78

5000 421.2 2105578.8 2105.58

10000 421.2 4211578.8 4211.58

20000 421.2 8423578.8 8423.58

46

Figure 17: Bandwidth Savings for WSUS/CPM utilization

The data above portrays the serious ramifications that can come of choosing a methodology that

is not appropriate for the unique circumstances of an organization. In the research conducted for this

thesis, the data shows that every iteration of the Windows Update methodology consumed 12.21 GB of

data across the WAN that could have otherwise been saved with competing methodologies. Based on that

figure, 61.05 GB of data was consumed by the Windows Update iterations throughout the entirety of the

research.

 The contrasts become starker as the fleet sizes increase. For a fleet of 500 endpoints that

deployed the patches utilized in the research, 210 GB would be consumed unnecessarily on a monthly

basis. A fleet of 5000 endpoints would consume over 2 TB of data. The sharp increase in data

consumption conveys a growth pattern that would likely prove to be unsustainable for medium to large

businesses. The patches that were selected represent what could be considered the bare minimum

coverage in terms of monthly patching: patching other common products such as Internet Explorer,

Adobe Flash, and Microsoft Office would exacerbate the consumption of data to an even greater extent.

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

8000.00

9000.00

30 100 500 1000 5000 10000 20000

B
an

d
w

id
th

 (
G

B
)

Fleet Size

Bandwidth Savings

47

CHAPTER 5 – CONCLUSIONS AND RECOMMENDTIONS

From the onset of this research, the primary goal was to develop a functional solution for

patching the Windows operating system that does not require WSUS or any additional form of licensing.

To that end, the CPM proof-of-concept can be considered a success. With that being said, there are a

variety of improvements that could improve the efficiency of the CPM methodology. The competing

methodologies have their own vulnerabilities that will be explored subsequently.

5.1 Conclusions

5.1.1 Time to Completion

The research conclusively demonstrates that the CPM is the slowest methodology on the whole

and could benefit from some improvements in this area. The WSUS methodology proved to be consistent

and competitive in completions across the board. Windows Update regularly outperformed both of the

aforementioned methodologies but that performance would not hold in environments with inferior

Internet connectivity and a greater number of endpoints.

5.1.2 CPU Utilization

The WSUS and CPM methodologies were close in terms of their utilization of CPU resources

with Windows Update requiring slightly higher CPU resources and generally hovered between 4 and 5

percent higher in CPU utilization than the other methodologies. All of the solutions saw utilization spikes

that consumed all of the available CPU resources on the endpoints which suggests that the behavior is

likely unavoidable no matter what methodology an organization opts to utilize.

5.1.3 Bandwidth Considerations

Basic calculations revolving around the bandwidth consumptions of each individual method paint

a bleak picture for the viability of Windows Update in mid-to-large organizations with 500 or more

clients. WSUS and the CPM both download content once and ensure that it is locally available for any

clients that require it from that point forward whereas clients configured to utilize Windows Update must

48

each download the content to themselves. Using the (N-1)*S formula, we saw that an organization with a

fleet of 500 devices would consume 210 GB of bandwidth just by downloading the two patches from

September 2018 that were utilized for research.

5.1.4 Future Works

The research that was conducted on behalf of this thesis demonstrates that the CPM is a viable

solution that could benefit from some performance enhancements along with changes in process to reduce

the impact of its current deficiencies. The most prominent issue that needs to be addressed is the Time to

Completion as it was the area that was the most problematic when compared to the more common

enterprise patching methodologies.

• MBSA Scanning Options: The Microsoft Baseline Security Analyzer can selectively exclude

certain classifications of vulnerabilities from scanning. By default, the MBSA scans search for

vulnerabilities in the OS, SQL, IIS, and Updates categories.

• Procedural Efficiency: The XML that contains the vulnerability results could be generated prior

to the intended patch time so that the endpoint does not have to evaluate vulnerability

applicability, copy updates, and install those updates at the same time.

• Content Prestaging: The patching content could easily be prestaged as an addendum to the

procedural change suggested above.

• Dependency Elimination: While the Microsoft Baseline Security Analyzer is currently free for

enterprise use, there is nothing that obligates Microsoft to refrain from licensing or discontinuing

the product in the future. I believe it would be prudent to design a WSUS fallback solution that

possesses the same functionality but is entirely PowerShell-based. The same problem is true of

the WSUS Offline CAB that provides the metadata for the MBSA to use.

• Management Console: Much of the approachability and ease-of-use attributed to Windows

Server Update Services would be lost if it were entirely driven from a command-line interface in

49

the way that the CPM currently functions. The development of a PowerShell-based management

console would be beneficial to administrators who lack the technical expertise to work with a

CLI-based utility.

• Supported Products: The WSUS Offline CAB only supports security updates, update rollups, and

service packs. Decoupling the concept from the MBSA and WSUS CAB dependencies would

allow for greater support of an even broader number of update classifications and allow

administrators to provide a more comprehensive offering to their environment.

• Error Handling: As a proof-of-concept in a controlled research environment, the solution has a

bare minimum of error handling. This would need to be remedied for production applications so

as to be easily auditable in the event of failures.

5.1.5 Recommendations

I feel that a supplemental tool to WSUS is critical despite the impressive performance and

consistency that was demonstrated throughout the research. The catalyst for the exploration of an

alternative patching methodology stemmed from an architectural limitation of all WSUS environments

and a lack of outage communication for that product from Microsoft Corporation, two problems which

could potentially manifest at inopportune times. The CPM proof-of-concept was shown to be capable of

patching endpoints despite being slower than the preferred enterprise methodology of WSUS.

The Custom Patch Manager would be best suited as a supplemental tool that could be called upon

in an emergency to ensure that the most critical patches are deployable in an instance where Windows

Server Update Services is down. There is little downside in having the CPM as a backup solution given

that the dependencies that drive it are freely available to any organization. That said, I feel like

functionality proposed in the 5.1.4 Future Works would need to be completed before it could truly be

considered as an outright replacement for WSUS.

50

REFERENCES

Higgins, K. (2018). Unpatched Vulnerabilities the Source of Most Data Breaches. [online] Dark

Reading. Available at: https://www.darkreading.com/vulnerabilities---threats/unpatched-

vulnerabilities-the-source-of-most-data-breaches/d/d-id/1331465 [Accessed 11 Sep. 2018].

Docs.microsoft.com. (2017). Issues with Synchronization. [online] Available at:

https://docs.microsoft.com/de-de/security-updates/windowsupdateservices/18127563

[Accessed 28 Oct. 2018].

"A Five-Year Analysis Of Reported Windows Vulnerabilities - Help Net Security." Help Net

Security. N. p., 2018. Web. 12 Sept. 2018.

Rains, Tim. "Industry Vulnerability Disclosures Trending Up." Cloudblogs.microsoft.com. N. p.,

2014. Web. 12 Sept. 2018.

Keizer, Gregg. "Windows 7 Update Guide: How 'Security-Only' And 'Monthly Rollups' Differ."

Computerworld. N. p., 2018. Web. 8 Oct. 2018.

Keizer, Gregg. "Patch Expert Calls On Microsoft Execs To Fix Windows Updating." Computerworld.

N. p., 2018. Web. 8 Oct. 2018.

Bowden, Z. (2018). Microsoft pulls the Windows 10 October 2018 Update as it investigates user files

going missing. [online] Windows Central. Available at:

https://www.windowscentral.com/microsoft-has-pulled-windows-10-october-2018-update-

users-files-go-missing [Accessed 8 Oct. 2018].

Leonhard, W. (2018). Born: September non-security Office updates blamed for WSUS

synchronization failures @ AskWoody. [online] Askwoody.com. Available at:

https://www.askwoody.com/2018/born-september-non-security-office-updates-blamed-for-

wsus-synchronization-failures/ [Accessed 10 Oct. 2018].

Leonhard, W. (2018). More WSUS Sync failures @ AskWoody. [online] Askwoody.com. Available

at: https://www.askwoody.com/2018/more-wsus-sync-failures/ [Accessed 10 Oct. 2018].

51

Cable, J. (2018). Updated version of Windows 10 October 2018 Update released to Windows Insiders

- Windows Experience Blog. [online] Windows Experience Blog. Available at:

https://blogs.windows.com/windowsexperience/2018/10/09/updated-version-of-windows-10-

october-2018-update-released-to-windows-insiders/ [Accessed 10 Oct. 2018].

Claburn, T. (2018). Microsoft Windows 10 October update giving HP users BSOD. [online]

Theregister.co.uk. Available at:

https://www.theregister.co.uk/2018/10/11/microsoft_windows_10_october_update_fix_still_

stumbling/ [Accessed 13 Oct. 2018].

SANS Institute Internet Storm Center (2003). Windows XP: Surviving the First Day. [online]

Obviousmag.org. Available at:

http://obviousmag.org/archives/uploads/2004/2004081900_Surving_the_first_day.pdf

[Accessed 25 Oct. 2018].

Shields, G. (2016). Geek of All Trades: 6 Tips for 100 Percent WSUS Compliance. [online]

Docs.microsoft.com. Available at: https://docs.microsoft.com/en-us/previous-

versions/technet-magazine/gg537354(v=msdn.10) [Accessed 25 Oct. 2018].

Poggemeyer, L., Decker, J., Kirkland, D. and Plett, C. (2018). Plan Your WSUS Deployment. [online]

Docs.microsoft.com. Available at: https://docs.microsoft.com/en-us/windows-

server/administration/windows-server-update-services/plan/plan-your-wsus-deployment

[Accessed 26 Oct. 2018].

52

Appendix A: START-SERIESMANAGER POWERSHELL FUNCTION

<#

 .SYNOPSIS

 Begin the automated execution of multiple series and iterations.

 .DESCRIPTION

 This function will automatically revert VMs to baseline, power them on, begin the

execution of a test series/iteration, monitor for completion,

 upload the statistical data that is collected, and begin the process for as many cycles it can

while the NETLAB reservation is active.

 .PARAMETER Begin

 The beginning integer suffix of a block of machines you wish to begin a series/iteration

on.

 .PARAMETER End

 The ending integer suffix of a block of machines you wish to begin a series/iteration on.

 .PARAMETER Series

 Please select the type of test series you wish to run.

 .PARAMETER SeriesIterations

 This parameter defines how many iterations of the chosen series that you intend to

perform.

53

 .PARAMETER Iterations

 Please indicate how many iterations to attempt.

 .EXAMPLE

 PS C:\> Start-SeriesManager -Begin $value1 -End $value2 -Series wu_manager -

SeriesIterations 5

 .NOTES

 Additional information about the function.

#>

function Start-SeriesManager

{

 [CmdletBinding()]

 param

 (

 [Parameter(Position = 1)]

 [ValidateRange(1, 30)]

 [int]$Begin = 1,

 [Parameter(Position = 2)]

 [ValidateRange(1, 30)]

 [int]$End = 30,

 [Parameter(Mandatory = $true,

 Position = 3,

 HelpMessage = 'Valid values are wu_series (Windows Update),

wsus_series (WSUS update), sccm_series (SCCM update), or cpm_series (Custom Patch

Method update)')]

54

 [ValidateSet('wu_series', 'wsus_series', 'sccm_series', 'cpm_series')]

 [string]$Series,

 [Parameter(Mandatory = $false,

 Position = 4)]

 [ValidateRange(1, 10)]

 [int]$SeriesIterations = 1

)

 $nextIteration = [int]$(Get-Content -Path "\\192.168.1.98\data\$Series\iteration.txt")

 if ($nextIteration -eq $null) {

 $nextIteration = 1

 }

 else {

 $nextIteration = $nextIteration + 1

 }

 $psdir = "C:\Users\bhenderson\OneDrive\Documents\Education\Thesis Work\scripts"

 $range = "$Begin".."$End"

 $runCount = 0

 Get-ChildItem "${psdir}*.ps1" | Where-Object { $_ -notlike "*TempPoint*" } | Select-

Object -ExpandProperty Fullname | ForEach-Object{ . "$_" }

 do

 {

55

 Connect-LabVIServer | Out-Null

 Revert-LabToSnapShot -Begin $Begin -End $End -Series $Series

 Write-Host "Sleeping 60 seconds for snapshot reversion."

 Start-Sleep -Seconds 30

 Start-LabMachines -Begin $Begin -End $End

 do

 {

 Write-Host 'Waiting for VMs to power on...'

 Start-Sleep -Seconds 2

 }

 until ($($range | ForEach-Object {Get-VM -Name ('HendClient' + "$_") | Where-Object

{$_.PowerState -eq 'PoweredOn'}}).Count -eq $End)

 do

 {

 Write-Host 'Waiting for Windows to complete startup on endpoints'

 Start-Sleep 2

 }

 until ($($range | ForEach-Object {Test-Connection -ComputerName ('HendClient' + $_)

-Count 1 -ErrorAction SilentlyContinue}).Count -eq $End)

56

 Start-LabTests -Begin $Begin -End $End -Series "$Series"

 $trackerMaster = [System.Collections.ArrayList]@{}

 $dropDeadTime = $(Get-Date).AddHours(2)

 $range | ForEach-Object {$trackerMaster.Add('HendClient' + "$_")} | Out-Null

 do

 {

 $count = $(Get-ChildItem -Path "\\192.168.1.98\data\$Series" -Include (-join

('iteration',"$nextIteration",'_','startFinish','_','HendClient','*','.csv')) -Recurse).Count

 Write-Host "$count endpoints have completed the current iteration. There are $($End

- $count) more pending."

 Start-Sleep 3

 }

 until ($count -eq $End -or $(Get-Date) -ge $dropDeadTime)

 $nextIteration ++

 $runCount ++

 Restart-Computer -ComputerName HendSCCM -Verbose -Force

 do

 {

 Write-Host 'Waiting for Windows to complete startup on endpoints'

 Start-Sleep 2

 }

57

 until ([bool]$(Test-Connection -ComputerName HendSCCM -Count 1 -ErrorAction

SilentlyContinue) -eq $true)

 }

 until ($runCount -eq $SeriesIterations)

}

58

Appendix B: CONNECT-LABVISERVER POWERSHELL FUNCTION

function Connect-LabVIServer

{

 Connect-VIServer -Server '141.165.201.182' -User "bhenderson@vsphere.local" -Password $pwd

}

59

Appendix C: REVERT-LABTOSNAPSHOT POWERSHELL FUNCTION

<#

 .SYNOPSIS

 Revert-LabToSnapshot

 .DESCRIPTION

 This function shall revert one, many, or all lab machines to a former state

 by invoking the snapshot functionality provided by VMware vSphere.

 .PARAMETER Begin

 The beginning integer suffix of a block of machines you wish to revert.

 .PARAMETER End

 The ending integer suffix of a block of machines you wish to revert.

 .EXAMPLE

 PS C:\> Revert-LabToSnapshot -Begin $value1 -End $value2

 .NOTES

 Additional information about the function.

#>

function Revert-LabToSnapshot

{

 [CmdletBinding()]

 param

 (

60

 [Parameter(Position = 1)]

 [ValidateRange(1, 50)]

 [int]$Begin = 1,

 [Parameter(Position = 2)]

 [ValidateRange(1, 50)]

 [int]$End = 30,

 [Parameter(Mandatory = $true,

 Position = 3,

 HelpMessage = 'Valid values are wu_series (Windows Update),

wsus_series (WSUS update), sccm_series (SCCM update), or cpm_series (Custom Patch

Method update)')]

 [ValidateSet('wu_series', 'wsus_series', 'sccm_series', 'cpm_series')]

 [string]$Series

)

 $range = "$Begin".."$End"

 switch ($Series) {

 'wu_series'{ $snapShot = 'Stage0' }

 'wsus_series'{ $snapShot = 'Stage1' }

 'sccm_series'{ $snapShot = 'Stage2' }

 'cpm_series'{ $snapShot = 'Stage0' }

 }

61

 foreach ($item in $range)

 {

 $vm = 'HendClient' + $item

 $targetSnap = Get-Snapshot -VM $vm -Name $snapShot

 Set-VM -VM $vm -Snapshot $snapShot -RunAsync -Confirm:$false

 }

}

62

Appendix D: START-LABMACHINES POWERSHELL FUNCTION

<#

 .SYNOPSIS

 Power on laboratory machines for thesis project.

 .DESCRIPTION

 A detailed description of the Start-LabMachines function.

 .PARAMETER Begin

 The beginning integer suffix of a block of machines you wish to power on.

 .PARAMETER End

 The ending integer suffix of a block of machines you wish to power on.

 .PARAMETER All

 A description of the All parameter.

 .EXAMPLE

 PS C:\> Start-LabMachines -Begin $value1 -End $value2

 .EXAMPLE

 PS C:\> Start-LabMachines -All

 .NOTES

 Additional information about the function.

#>

function Start-LabMachines

63

{

 [CmdletBinding()]

 param

 (

 [Parameter(Position = 1)]

 [ValidateRange(1, 30)]

 [int]$Begin = 1,

 [Parameter(Position = 2)]

 [ValidateRange(1, 30)]

 [int]$End = 30

)

 $range = "$Begin".."$End"

 foreach ($item in $range)

 {

 $rand = Get-Random -Minimum 3 -Maximum 5

 $vm = 'HendClient' + $item

 Start-PowerCLIJob -DefaultVIServer $DefaultVIServer -JobName $vm -ArgumentList

$vm -ScriptBlock { Start-VM $using:vm -Confirm:$false }

 Start-Sleep -Seconds $rand

 }

}

64

Appendix E: START-LABTESTS POWERSHELL FUNCTION

<#

 .SYNOPSIS

 Begin the execution of a test series and iteration.

 .DESCRIPTION

 A detailed description of the Start-LabTests function.

 .PARAMETER Begin

 The beginning integer suffix of a block of machines you wish to begin a series/iteration

on.

 .PARAMETER End

 The ending integer suffix of a block of machines you wish to begin a series/iteration on.

 .PARAMETER Series

 Please select the type of test series you wish to run.

 .EXAMPLE

 PS C:\> Start-LabTests -Begin $value1 -End $value2

 .NOTES

 Additional information about the function.

#>

function Start-LabTests

{

65

 [CmdletBinding()]

 param

 (

 [Parameter(Position = 1)]

 [ValidateRange(1, 30)]

 [int]$Begin = 1,

 [Parameter(Position = 2)]

 [ValidateRange(1, 30)]

 [int]$End = 30,

 [Parameter(Mandatory = $true,

 Position = 3,

 HelpMessage = 'Valid values are wu_series (Windows Update),

wsus_series (WSUS update), sccm_series (SCCM update), or cpm_series (Custom Patch

Method update)')]

 [ValidateSet('wu_series', 'wsus_series', 'sccm_series', 'cpm_series')]

 [string]$Series

)

 $range = "$Begin".."$End"

 $pwd = ConvertTo-SecureString "password" -AsPlainText -Force

 $creds = New-Object System.Management.Automation.PSCredential "bhenderson", $pwd

 $global:masterObject = [System.Collections.ArrayList]@()

 $iteration = Get-Content -Path "\\192.168.1.98\data\$Series\iteration.txt"

 if ($iteration -eq $null) {

66

 Set-Content -Path "\\192.168.1.98\data\$Series\iteration.txt" -Value '1' -Force

 $iteration = Get-Content -Path "\\192.168.1.98\data\$Series\iteration.txt"

 }

 else {

 Set-Content -Path "\\192.168.1.98\data\$Series\iteration.txt" -Value ([int]$iteration + 1)

-Force

 $iteration = Get-Content -Path "\\192.168.1.98\data\$Series\iteration.txt"

 }

 $iterationString = 'iteration' + $iteration

 if ($Series -eq 'wu_series' -or $Series -eq 'wsus_series') {

 $completionText = 'Installed [2] Updates'

 $problemText = 'Found [0] Updates in pre search criteria'

 $progressText = 'Accepted [2] Updates ready to Download'

 foreach ($item in $range) {

 $vm = 'HendClient' + $item

 $psWindowsUpdateLog = "\\$vm\c$\PSWindowsUpdate.log"

 #Stagger execution of every 10 items by 5 minutes

 if ($Series -eq 'wu_series') {

 if ($item % 10 -eq 0 -and $item -gt 9) {

 Start-Sleep -Seconds 600

 }

67

 }

 else {

 if ($item % 10 -eq 0 -and $item -gt 9) {

 Start-Sleep -Seconds 180

 }

 }

 #Create array to track overall status

 $tempObject = New-Object psobject

 $tempObject | Add-Member -MemberType NoteProperty -Name 'Hostname' -

Value $vm

 $tempObject | Add-Member -MemberType NoteProperty -Name 'PatchStatus' -

Value 'Unpatched'

 $tempObject | Add-Member -MemberType NoteProperty -Name 'Start' -Value

(Get-Date)

 $tempObject | Add-Member -MemberType NoteProperty -Name 'End' -Value

$null

 $tempObject | Add-Member -MemberType NoteProperty -Name 'Iteration' -

Value $iteration

 #Begin job to monitor patching status of endpoint

 Start-Job -Name ($vm + '-Monitor') -ArgumentList

$psWindowsUpdateLog,$completionText,$tempObject,$Series,$iteration,$vm,$iterationStrin

g -ScriptBlock {

68

 $psWindowsUpdateLog = $using:psWindowsUpdateLog

 $completionText = $using:completionText

 $tempObject = $using:tempObject

 $Series = $using:Series

 $iteration = $using:iteration

 $iterationString = $using:iterationString

 Invoke-Command -ComputerName $using:vm -ArgumentList

$psWindowsUpdateLog,$completionText,$tempObject,$Series,$iteration,$iterationString -

ScriptBlock {

 $cmd = “net use Y: \\192.168.1.98\data /persistent:Yes /user:lab\bhenderson $pwd”

 $cmd2 = 'shutdown /a'

 if ([bool](Test-Path -Path 'Y:\') -eq $false) { Invoke-Expression -Command $cmd |

Out-Null }

 $tempObject = $using:tempObject

 do {

 $patchSuccess = Get-Content $using:psWindowsUpdateLog

-ErrorAction SilentlyContinue | Select-String -SimpleMatch $using:completionText -Quiet

 if ($patchSuccess -ne $true)

 {

 Start-Sleep -Milliseconds 250

 }

 else

69

 {

 Invoke-Expression -Command $cmd2

 $tempObject[0].PatchStatus = 'Patched'

 $tempObject[0].End = Get-Date

 $tempObject | Export-Csv -Path ("C:\$using:Series\$env:COMPUTERNAME\" +

"$using:iterationString" + "_startFinish_$env:COMPUTERNAME.csv") -

NoTypeInformation -Force

 $tempObject | Export-Csv -Path ("C:\" + "$using:iterationString" +

"_startFinish_$env:COMPUTERNAME.csv") -NoTypeInformation -Force

 Copy-Item -Path $using:psWindowsUpdateLog -Destination

("Y:\$using:Series\$env:COMPUTERNAME\" + "$using:iterationString" +

"PSWindowsUpdateLog_$env:COMPUTERNAME.log") -Force

 Copy-Item -Path ("C:\" + "$using:iterationString" +

"_startFinish_$env:COMPUTERNAME.csv") -Destination

("Y:\$using:Series\$env:COMPUTERNAME\" + "$using:iterationString" +

"_startFinish_$env:COMPUTERNAME.csv") -Force

 Copy-Item -Path ("C:\" + "$using:iterationString" +

"_$env:COMPUTERNAME.csv") -Destination

("Y:\$using:Series\$env:COMPUTERNAME\" + "$using:iterationString" +

"_$env:COMPUTERNAME.csv") -Force

 Start-Sleep -Seconds 2

 Restart-Computer -Force

 }

 }

 until ($(Test-Path -Path $using:psWindowsUpdateLog) -eq $true -and

$patchSuccess -eq $true)

70

 }

 }

 #Begin performance monitoring of endpoint

 Invoke-Command -ComputerName $vm -ArgumentList $iterationString,$Series

-AsJob -ScriptBlock {

 $iterationString = $using:iterationString

 $Series = $using:Series

 $cmd = net use Y: \\192.168.1.98\data /persistent:Yes /user:lab\bhenderson $pwd”

 if ([bool](Test-Path -Path 'Y:\') -eq $false) { Invoke-Expression -

Command $cmd | Out-Null }

 #Start-Job -ArgumentList $Series,$iterationString -ScriptBlock { Get-

Counter -ComputerName $env:COMPUTERNAME -Counter "\processor(_total)\%

processor time", "\Network Adapter(*intel*)\Bytes Total/sec" -Continuous | Export-Counter -

Path (-join

("Y:\","$using:series","\","$env:COMPUTERNAME","\","$using:iterationstring","_","$env:

COMPUTERNAME",".csv")) -FileFormat CSV -Force}

 Get-Counter -ComputerName $env:COMPUTERNAME -Counter "\processor(_total)\%

processor time", "\Network Adapter(*intel*)\Bytes Total/sec" -Continuous | Export-Counter

-Path (-join ("C:\","$iterationstring","_","$env:COMPUTERNAME",".csv")) -FileFormat

CSV -Force

 }

 #Execute update installation

71

 Invoke-Command -Credential $creds -ComputerName $vm -ArgumentList

$psWindowsUpdateLog,$completionText,$problemText -AsJob -ScriptBlock {

 try

 {

 Get-WindowsUpdate -Install -NotKBArticleID "KB4457133" -AcceptAll -IgnoreReboot

-ScheduleJob ($(Get-Date).AddMinutes(1)) -Verbose

 }

 finally

 {

 do

 {

 $patchProblem = Get-Content $using:psWindowsUpdateLog -ErrorAction

SilentlyContinue | Select-String -SimpleMatch $using:problemText -Quiet

 $patchProgress = Get-Content $using:psWindowsUpdateLog

-ErrorAction SilentlyContinue | Select-String -SimpleMatch $using:progressText -Quiet

 if ($patchProblem -eq $true -or $patchProgress -eq $null)

 {

 Get-WindowsUpdate -Install -NotKBArticleID

"KB4457133" -AcceptAll -IgnoreReboot -ScheduleJob ($(Get-Date).AddMinutes(1)) -

Verbose

 }

 Start-Sleep -Seconds 300

 }

72

 until ($patchProblem -eq $false -and $patchProgress -eq $true)

 }

 }

 }

 }

 elseif ($Series -eq 'cpm_series')

 {

 foreach ($item in $range)

 {

 $vm = 'HendClient' + $item

 Start-Job -Name ($vm + '-Monitor') -ArgumentList

$creds,$iteration,$iterationString,$Series,$vm -ScriptBlock {

 $creds = $using:creds

 $iteration = $using:iteration

 $iterationString = $using:iterationString

 $Series = $using:Series

 $vm = $using:vm

 $remoteSession = New-PSSession -ComputerName $vm -Credential

$creds

 Invoke-Command -Session $remoteSession -FilePath

"C:\Users\bhenderson\OneDrive\Documents\Education\Thesis Work\scripts\Invoke-

LabCPM.ps1"

 #Used for Iterations 1 through 5

73

 #Invoke-Command -Session $remoteSession -ArgumentList $iteration -ScriptBlock

{Invoke-LabCPM -Iteration $using:iteration -UseNetwork -Download}

 #Used for iterations 5 through 10

 Invoke-Command -Session $remoteSession -ArgumentList $iteration -ScriptBlock

{Invoke-LabCPM -Iteration $using:iteration -UseNetwork -Download -PriorXMLPath

'C:\temp\results.xml'}

 }

 }

 }

}

74

Appendix F: STOP-LABMACHINES POWERSHELL FUNCTION

<#

 .SYNOPSIS

 Power off laboratory machines for thesis project.

 .DESCRIPTION

 A detailed description of the Stop-LabMachines function.

 .PARAMETER Begin

 The beginning integer suffix of a block of machines you wish to power on.

 .PARAMETER End

 The ending integer suffix of a block of machines you wish to power on.

 .PARAMETER All

 A description of the All parameter.

 .EXAMPLE

 PS C:\> Stop-LabMachines -Begin $value1 -End $value2

 .EXAMPLE

 PS C:\> Stop-LabMachines -All

 .NOTES

 Additional information about the function.

#>

75

function Stop-LabMachines

{

 [CmdletBinding()]

 param

 (

 [Parameter(Position = 1)]

 [ValidateRange(1, 50)]

 [int]$Begin = 1,

 [Parameter(Position = 2)]

 [ValidateRange(1, 50)]

 [int]$End = 50

)

 $count = "$Begin".."$End"

 foreach ($item in $count)

 {

 $vm = 'HendClient' + $item

 #Start-PowerCLIJob -DefaultVIServer $DefaultVIServer -JobName $vm -ArgumentList

$vm -ScriptBlock { Start-VM $using:vm -Confirm:$false }

 Start-Job -Name "$vm Stop" -ArgumentList $vm -ScriptBlock { Stop-Computer -

ComputerName $using:vm -Force -Verbose }

 }

}

76

Appendix G: INVOKE-LABCOMMAND POWERSHELL FUNCTION

<#

 .SYNOPSIS

 Execute a scriptblock on one, many, or all of the lab endpoints as needed.

 .DESCRIPTION

 A detailed description of the Invoke-LabCommand function.

 .PARAMETER Begin

 The beginning integer suffix of a block of machines you wish to execute a scriptblock on.

 .PARAMETER End

 The ending integer suffix of a block of machines you wish to execute a scriptblock on.

 .PARAMETER ScriptBlock

 The command/script that you intend to be executed on the targeted endpoints.

 .EXAMPLE

 PS C:\> Invoke-LabCommand -Begin $value1 -End $value2

 .NOTES

 Additional information about the function.

#>

function Invoke-LabCommand

{

77

 [CmdletBinding()]

 param

 (

 [Parameter(Position = 1)]

 [ValidateRange(1, 50)]

 [int]$Begin = 1,

 [Parameter(Position = 2)]

 [ValidateRange(1, 50)]

 [int]$End = 50,

 [Parameter(Mandatory = $true,

 Position = 3)]

 [string]$ScriptBlock

)

 $ScriptBlock = [ScriptBlock]::Create($ScriptBlock)

 $range = "$Begin".."$End"

 foreach ($item in $range)

 {

 $vm = 'HendClient' + $item

 Invoke-Command -ComputerName $vm -ScriptBlock {Invoke-Expression

$using:ScriptBlock} -AsJob

 }

}

78

Appendix H: START-POWERCLIJOB POWERSHELL FUNCTION

Function Start-PowerCLIJob {

param(

 [parameter(mandatory=$True)]

 [VMware.VimAutomation.ViCore.Impl.V1.VIServerImpl]

 $DefaultVIServer,

 [string]

 $JobName,

 [parameter(mandatory=$True)]

 [scriptblock]

 $ScriptBlock,

 [object[]]

 $ArgumentList,

 [psobject]

 $InputObject,

 [string[]]

 $Modules = "VMware.VimAutomation.Core"

)

$ScriptBlockPrepend = {import-module $using:Modules | out-null;

Set-PowerCLIConfiguration -DisplayDeprecationWarnings:$false -Scope Session -confirm:$False |

out-null;

Connect-ViServer -Server $using:DefaultVIServer.name -session

$using:DefaultVIServer.SessionSecret | out-null;

}

79

$ScriptBlock = [ScriptBlock]::Create($ScriptBlockPrepend.ToString() + $ScriptBlock.ToString())

$params = @{scriptblock=$ScriptBlock}

if ($JobName) {$params.Add('name',$JobName)}

if ($ArgumentList) {$params.Add('ArgumentList',$ArgumentList)}

if ($InputObject) {$params.Add('InputObject',$InputObject)}

Start-Job @params

}

80

Appendix I: INVOKE-LABCPM POWERSHELL FUNCTION

<#

 .SYNOPSIS

 Download and install missing patches utilizing offline WSUS CAB file.

 .DESCRIPTION

 This function will scan system, detect missing updates, download the updates, and install

the updates on an endpoint. The function requires the following files:

 -wsusscn2.cab

 -mbsacli.exe

 -wusscan.dll

 .PARAMETER SourceFolder

 This is the source folder for the mandatory files indicated in the Synopsis. Defaults to

C:\temp.

 .PARAMETER Iteration

 A description of the Iteration parameter.

 .PARAMETER UseNetwork

 This parameters determines whether or not the function searched for update files on a

local network share before downloading them from the Internet.

 .PARAMETER NetworkSource

81

 Used in conjunction with the UseNetwork parameter, this parameter identifies the path of

the network share to be utilized.

 .PARAMETER ValidateCab

 Determine whether or not the WSUS Offline CAB is up to date and download the

updated version if it is outdated.

 .PARAMETER Download

 A description of the Download parameter.

 .PARAMETER HomeTest

 A description of the HomeTest parameter.

 .PARAMETER PriorXMLPath

 This parameter is the path for previously generated XML.

 .EXAMPLE

 PS C:\> Invoke-LabCPM -SourceFolder 'Value1'

 .NOTES

 Additional information about the function.

#>

function Invoke-LabCPM

{

 [CmdletBinding()]

 param

82

 (

 [Parameter(Position = 1,

 HelpMessage = 'This is the source folder for the mandatory files

indicated in the Synopsis. Defaults to C:\temp.')]

 [string]$SourceFolder = 'C:\temp',

 [Parameter(Position = 2)]

 [int]$Iteration = 0,

 [Parameter(Position = 3)]

 [switch]$UseNetwork = $true,

 [Parameter(Position = 4)]

 [string]$NetworkSource = '\\192.168.1.98\data_storage',

 [switch]$ValidateCab = $false,

 [switch]$Download = $true,

 [switch]$HomeTest = $false,

 [string]$PriorXMLPath

)

 #Begin performance monitoring

 Start-Job -ArgumentList $Iteration -ScriptBlock { Get-Counter -ComputerName

$env:COMPUTERNAME -Counter "\processor(_total)\% processor time", "\Network

Adapter(*intel*)\Bytes Total/sec" -Continuous | Export-Counter -Path (-join

('C:\','iteration',"$using:Iteration", "_", "$env:COMPUTERNAME", ".csv")) -FileFormat

CSV -Force}

 #Establish network pathing

83

 if ($HomeTest -eq $true) { $NetworkSource =

'C:\Users\Brent\OneDrive\Documents\Education\Thesis Work\source_files' }

 $cmd = 'net use Y: \\192.168.1.98\data /persistent:Yes /user:lab\bhenderson Spec5bh5'

 if ([bool](Test-Path -Path 'Y:\') -eq $false) { Invoke-Expression -Command $cmd | Out-

Null }

 if (!(Test-Path $SourceFolder)) { New-Item -type directory -Force -Path $SourceFolder |

Out-NUll }

 else { Write-Host "Detected: $SourceFolder" }

 if (!(Test-Path ("$SourceFolder\patches"))) { New-Item -type directory -Force -Path

("$SourceFolder\patches") | Out-NUll }

 else { Write-Host ("Detected: " + "$SourceFolder\patches") }

 #Validate existence of prerequisites

 $prerequisites = Get-ChildItem -Path $SourceFolder -Recurse -Include 'mbsacli.exe',

'wsusscn2.cab', 'wusscan.dll' -ErrorAction SilentlyContinue

 if ($($prerequisites).Count -ne '3')

 {

 Copy-Item -Path "$NetworkSource*" -Include 'mbsacli.exe', 'wsusscn2.cab',

'wusscan.dll','results.xml' -Destination $SourceFolder -Force

 }

84

 $wsusscn2_path = Get-ChildItem -Path $SourceFolder -Recurse -Include 'wsusscn2.cab' -

ErrorAction SilentlyContinue | Select-Object -ExpandProperty Fullname

 $mbsacli_path = Get-ChildItem -Path $SourceFolder -Recurse -Include 'mbsacli.exe' -

ErrorAction SilentlyContinue | Select-Object -ExpandProperty Fullname

 #Variable Declarations

 $tempObject = New-Object psobject

 $tempObject | Add-Member -MemberType NoteProperty -Name 'Hostname' -Value

$env:COMPUTERNAME

 $tempObject | Add-Member -MemberType NoteProperty -Name 'PatchStatus' -Value

'Unpatched'

 $tempObject | Add-Member -MemberType NoteProperty -Name 'Start' -Value (Get-Date)

 $tempObject | Add-Member -MemberType NoteProperty -Name 'End' -Value $null

 $tempObject | Add-Member -MemberType NoteProperty -Name 'Iteration' -Value $iteration

 $Series = 'cpm_series'

 #Clean up prior runs

 Get-ChildItem -Path $SourceFolder -Include "iteration*.xml",

"$env:COMPUTERNAME*.xml", 'install_patches.bat' -Recurse | Remove-Item -Force

 Write-Host "Information and content generated from this function will be kept in:

$SourceFolder"

 #WSUS CAB Validation

85

 if ($ValidateCab -eq $true)

 {

 ##Check if wsusscn2.cab is up to date

 $wsusscn2_url = "http://go.microsoft.com/fwlink/?LinkID=74689"

 $system_date = Get-Date

 $wsus_date = [datetime]((Get-ItemProperty -Path $wsusscn2_path -Name

LastWriteTime).lastwritetime)

 $Days = (New-TimeSpan -Start $system_date -End $wsus_date).Days

 if ($Days -lt -15)

 {

 Write-Host "wsusscn2 has not been updated whithin 15 days and could be out of

date"

 $in = Read-Host "Do you want to update the wsusscn2.cab file right now [Y|n]:"

 if ($in -eq "Y" -or $in -eq '')

 {

 $wc = New-Object System.Net.WebClient

 Write-host "Downloading file, this might take a while..."

 $wc.DownloadFile($wsusscn2_url, $wsusscn2_path)

 Write-Host "File download successfully"

 }

 else

 {

 Write-Host "skipping wsusscn2.cab update"

 }

86

 }

 }

 if (!($PriorXMLPath))

 {

 Write-Host "Invoking mbsacli to gather vulnerability information. Please be patient."

 $cmd = -join ('cmd.exe /c ', $mbsacli_path, ' /catalog ', $wsusscn2_path, ' /xmlout >

C:\temp\', 'iteration', "$iteration", '_results_', $env:COMPUTERNAME, '.xml')

 Invoke-Expression -Command "$cmd" -ErrorAction SilentlyContinue | Out-Null

 $UpdateXML = -join ('C:\temp\', 'iteration', "$iteration", '_results_',

$env:COMPUTERNAME, '.xml')

 }

 else

 {

 $UpdateXML = $PriorXMLPath

 }

 #Collecting update information from XML.

 $Updates = [xml](Get-Content $UpdateXML)

 foreach ($Check in $Updates.XMLOut.Check | Where-Object { $_.Name -like 'Windows

Security Updates' })

 {

 Write-Host "Checking for", $Check.Name

 Write-Host $Check.Advice.ToString()

87

 #Checking for files to download

 foreach ($UpdateData in $($Check.Detail.UpdateData | Where-Object {$_.ID -eq

'4457129 -and -ne '4457133''}))

 {

 if ($UpdateData.IsInstalled -eq $false)

 {

 $PatchID = $updateData.ID.ToString()

 Write-Host "$PatchID is not installed on the system"

 if ($Download -eq $true)

 {

 $url = [URI]$UpdateData.References.DownloadURL

 $file = $url.Segments[$url.Segments.Count – 1]

 $networkPatches = Get-ChildItem -Path "Y:_storage\patches" -

Recurse -Include "*.exe", "*.cab", "*.msu"

 if ($networkPatches.Name -contains $file)

 {

 Write-Host $UpdateData.Title, " has been located on

the network share. Copying to local drive for installation."

 Copy-Item -Path "Y:_storage\patches\$file" -

Destination "$SourceFolder\patches" -Force

 }

 else

 {

88

 #Initialize webclient for downloading files

 $webclient = New-Object Net.Webclient

 $webClient.UseDefaultCredentials = $true

 Write-Host "Download the file for KB",

$UpdateData.KBID

 Write-Host "Starting download ", $UpdateData.Title,

"."

 $url = [URI]$UpdateData.References.DownloadURL

 $file = $url.Segments[$url.Segments.Count – 1]

 Write-Host $file

 $toFile = $SourceFolder + "\patches\" + $file

 $webClient.DownloadFile($url, $toFile)

 Write-Host "Download complete."

 Copy-Item -Path (-join

("$SourceFolder",'\','patches','\',"$file")) -Destination "Y:_storage\patches" -Force

 }

 }

 }

 }

 }

 Write-Host "Copying kb4054566 to local cache for installation."

 Copy-Item -Path "Y:_storage\patches\windows8.1-kb4054566-x64.cab" -Destination

"$SourceFolder\patches" -Force

89

 $installationfiles = Get-ChildItem -Path "$SourceFolder\patches" -Recurse -Include

"*.cab","*.exe","*.msu" | Select-Object -ExpandProperty Name

 foreach ($file in $installationfiles)

 {

 Write-host ("Beginning installation of " + $file)

 if ($file.EndsWith(".msu"))

 {

 $exe = 'C:\windows\system32\wusa.exe'

 $arg = -join ("$SourceFolder",'\','patches','\',"$file", ' /quiet /norestart')

 Start-Process -Wait -FilePath $exe -ArgumentList $arg

 }

 elseif ($file.EndsWith(".cab"))

 {

 $exe = 'C:\Windows\system32\Dism.exe'

 $arg = -join ('/Online /Add-Package /PackagePath:', "$SourceFolder\patches\$file", '

/quiet /NoRestart')

 Start-Process -Wait -FilePath $exe -ArgumentList $arg

 }

 elseif ($file.EndsWith(".exe"))

 {

 $exe = ($SourceFolder + '\patches\' + $file)

 $arg = -join (' /passive /norestart')

 Start-Process -Wait -FilePath $exe -ArgumentList $arg

 }

90

 else

 {

 Write-Host 'Unexpected file type found. Please investigate.'

 }

 }

 do

 {

 Start-Sleep -Milliseconds 500

 }

 until ($(Get-HotFix KB4457129, KB4054566).Count -eq '2')

 $tempObject.PatchStatus = 'Patched'

 $tempObject.End = Get-Date

 $tempObject | Export-Csv -Path (-join

('C:\','iteration',"$Iteration",'_startFinish_',"$env:COMPUTERNAME",'.csv')) -

NoTypeInformation -Force

 Copy-Item -Path (-join ("$SourceFolder", '\','iteration',"$Iteration",'_results_',

"$env:COMPUTERNAME", '.xml')) -Destination (-join ('Y:\', "$Series", '\',

"$env:COMPUTERNAME")) -Force

 Copy-Item -Path (-join ('C:\', 'iteration', "$Iteration", '_startFinish_', "$env:COMPUTERNAME",

'.csv')) -Destination (-join ('Y:\', "$Series", '\', "$env:COMPUTERNAME")) -Force

 Copy-Item -Path (-join ('C:\', 'iteration', "$Iteration", '_', "$env:COMPUTERNAME", '.csv')) -

Destination (-join ('Y:\', "$Series", '\', "$env:COMPUTERNAME")) -Force

91

 Start-Sleep -Seconds 2

}

92

Appendix J: GETMISSINGPATCHES POWERSHELL SCRIPT

<#

.Synopsis

 Install missing patches on the system

.DESCRIPTION

 This script will check for missing patches on the system using mbsacli and create a .bat file to

automate the installation of those patches

 The script requires the following mbsa files:

 -Mbsacli.exe

 -wsusscn2.dll

 -wsusscn2.cab

 The files MUST be stored on the same folder

.EXAMPLE

 This command will check for missing patches and list them. Additionally it will generate .bat script

to patch the system automatically

 ./GetMissingPatches -mbsaFolder C:\temp -outputFolder C:\temp

.EXAMPLE

 The -download switch will download missing patches automatically and strore them in

C:\temp\patches folder

 ./GetMissingPatches -mbsaFolder C:\temp -outputFolder C:\temp -download

.EXAMPLE

 The -importResultsXML will import results.xml files generated on isolated environments that

doesn't allow to download updates

 ./GetMissingPatches -importResultsXML C:\temp\results.xml

93

#>

Param (

 [string]$importResultsXML,

 #[Parameter(Mandatory=$False,Position=1)]

 [string]$mbsaFolder = "C:\temp",

 #[Parameter(Mandatory=$False,Position=2)]

 [string]$outputFolder = "C:\temp",

 #[Parameter(Mandatory=$False,Position=3)]

 [switch]$download

)

Write-Host "All information generated by the script will be stored in C:\temp"

Write-Host ""

#Checking parameters

if ($PSBoundParameters.ContainsKey('download'))

{

 $download = $True

 Write-Host "******************Download mode active******************"

94

}

$patchesFolder = $outputFolder + "\patches\"

$installFile = $outputFolder + "\Install_patches.bat"

New-Item -type directory -Force -Path $outputFolder | Out-NUll

New-Item -type directory -Force -Path $patchesFolder | Out-Null

##Check if wsusscn2.cab is up to date

$wsusscn2_url = "http://go.microsoft.com/fwlink/?LinkID=74689"

$wsusscn2_path = $mbsaFolder + "\wsusscn2.cab"

$mbsacli_path = $mbsaFolder + "\mbsacli.exe"

$system_date = Get-Date

$wsus_date = [datetime]((Get-ItemProperty -Path $wsusscn2_path -Name

LastWriteTime).lastwritetime)

$Days = (New-TimeSpan -Start $system_date -End $wsus_date).Days

if ($Days -lt -15)

{

 Write-Host "wsusscn2 has not been updated whithin 15 days and could be out of date"

 $in = Read-Host "Do you want to update the wsusscn2.cab file right now [Y|n]:"

 if ($in -eq "Y" -or $in -eq '')

 {

 $wc = New-Object System.Net.WebClient

95

 Write-host "Downloading file, this might take a while..."

 $wc.DownloadFile($wsusscn2_url, $wsusscn2_path)

 Write-Host "File download successfully"

 }

 else

 {

 Write-Host "skipping wsusscn2.cab update"

 }

}

#if not importing previous results, then execute mbsacli

if (!$PSBoundParameters.ContainsKey('importResultsXML'))

{

 Write-Host "Checking for missing patches, this may take a while..."

 $cmd = "cmd.exe /c $mbsacli_path /catalog $wsusscn2_path /xmlout > C:\temp\results.xml"

 Invoke-Expression -Command "$cmd"

 #cmd.exe /c $mbsacli_path /catalog $wsusscn2_path /xmlout > C:\temp\results.xml

 $UpdateXML = "C:\temp\results.xml"

}

else

{

 $UpdateXML = $importResultsXML

}

#Initialize webclient for downloading files

96

$webclient = New-Object Net.Webclient

$webClient.UseDefaultCredentials = $true

#Get the content of the XML file

$Updates = [xml](Get-Content $UpdateXML)

"@Echo Off" | Out-File $installFile

"REM This script will install missing patches on the system" | Out-File $installFile -Append

for each patch check if it's installed on the system

foreach ($Check in $Updates.XMLOut.Check)

{

 Write-Host "Checking for", $Check.Name

 Write-Host $Check.Advice.ToString()

 #Checking for files to download

 foreach ($UpdateData in $Check.Detail.UpdateData)

 {

 if ($UpdateData.IsInstalled -eq $false)

 {

 $PatchID = $updateData.ID.ToString()

 Write-Host "The patch $PatchID is not installed on the system"

 if ($PSBoundParameters.ContainsKey('download'))

 {

 Write-Host "Download the file for KB", $UpdateData.KBID

97

 Write-Host "Starting download ", $UpdateData.Title, "."

 $url = [URI]$UpdateData.References.DownloadURL

 $fileName = $url.Segments[$url.Segments.Count – 1]

 Write-Host $fileName

 $toFile = $outputFolder + "\patches\" + $fileName

 $webClient.DownloadFile($url, $toFile)

 Write-Host "Done downloading"

 "@ECHO Starting installing " + $fileName | Out-File $installFile -

Append

 if ($fileName.EndsWith(".msu"))

 {

 "wusa.exe " + $fileName + " /quiet /norestart

/log:%SystemRoot%\Temp\KB" + $UpdateData.KBID + ".log" | Out-File $installFile -

Append

 }

 elseif ($fileName.EndsWith(".cab"))

 {

 "start /wait pkgmgr.exe /ip /m:" + $fileName + " /quiet /nostart

/l:%SystemRoot%\Temp\KB" + $UpdateData.KBID + ".log" | Out-File $installFile -Append

 }

 else

 {

 $fileName + " /passive /norestart /log

%SystemRoot%\Temp\KB" + $UpdateData.KBID + ".log" | Out-File $installFile -Append

 }

98

 "@ECHO Installation returned %ERRORLEVEL%" | Out-File

$installFile -Append

 "@ECHO." | Out-File $installFile -Append

 Write-Host

 }

 }

 }

 Write-Host

}

Write-Host "Job done!"

99

Appendix K: UPLOAD-LABDATA

function Upload-LabData

{

 Copy-Item -Path "\\hendsccm\data\" -Destination

"C:\Users\bhenderson\OneDrive\Documents\Education\Thesis Work\" -Recurse -Container -

Force

}

100

Appendix L: WINDOWS SERVER UPDATE SERVICES PRODUCT SUPPORT LIST

Active Directory Rights Management Services Client 2.0 Active Directory Rights

Management Services

Client 2.0 (AD RMS

Client 2.0) is software

designed for your client

computers to help

protect access to and

usage of information

flowing through

applications that use AD

RMS whether installed

on your premises or in a

Microsoft datacenter.

Active Directory Active Directory Product Family

Category

Antigen for Exchange/SMTP Defines the category for Antigen

Updates. This will make

sure that the update with

this category will be

offered only when the

applicability rule is met.

Antigen Antigen Product Family

Category

101

ASP.NET Web and Data Frameworks ASP.NET Web and Data

Frameworks product

family

ASP.NET Web Frameworks ASP.NET Web Framework

Azure File Sync agent updates for Windows Server 2012

R2

Azure File Sync agent updates

for Windows Server

2012 R2

Azure File Sync agent updates for Windows Server 2016 Azure File Sync agent updates

for Windows Server

2016

Azure File Sync Azure File Sync

Bing Bar Get quick access to Bing and

MSN, as well as handy

tools for online safety

and productivity.

Bing Live Search Product Family

Category

BizTalk Server 2002 Category for BizTalk 2002. It

requires SP1 as the

minimum version.

BizTalk Server 2006R2 BizTalk Server 2006R2

BizTalk Server 2009 BizTalk Server 2009

102

BizTalk Server 2013 BizTalk Server 2013

BizTalk Server BizTalk Server Product Family

Category

CAPICOM CAPICOM

Category for System Center Online Client System Center Online Client is

the client software for

Microsoft Asset

Inventory Service (AIS).

Updates offered in this

category will apply only

to computers running the

System Center Online

Client software and will

contain updates

including security

updates.

AIS is an online service

that translates inventory

data into business

intelligence.

AIS is accessible

through the Microsoft

Desktop Optimization

103

Pack for Software

Assurance.

For more information,

see:

http://www.microsoft.co

m/sconline

For tips on how to

configure AIS client

computer behavior by

using Group Policy, see:

(http://technet.microsoft.

com/en-

us/sconline/bb847943.as

px).

Compute Cluster Pack The Compute Cluster Pack

product category will

include updates for the

Microsoft? Compute

Cluster Pack, including

service packs, optional

updates, and critical or

security updates.

Updates offered through

this category will apply

104

only to computers

running Compute Cluster

Pack software.

Data Protection Manager 2006 Data Protection Manager

2006(DPM)is designed

specifically for disk-

based backup. DPM, the

newest member of the

Microsoft Windows

Server System focuses

on disk-based data

protection and recovery.

DPM installs on

Microsoft Windows

Server 2003 SP1 and

protects servers running

Microsoft Windows

2000 Server, Microsoft

Windows Server 2003,

and Windows Storage

Server 2003 to deliver

best-in-class data

protection services.

105

Developer Tools, Runtimes, and Redistributables Developer Tools, Runtimes, and

Redistributables

Device Health This is a category for Device

Health. Device Health is

a windows service to

provide the device?s

health information. By

installing this software,

you are encouraged to

adopt secure practice in

software usage, and the

certified ecommerce and

online banking partners

can provide better

protection based on the

information gotten from

Device Health.

Device Health Device Health products family

Dictionary Updates for Microsoft IMEs Contains the dictionary updates

for Microsoft IMEs.

Dictionary update is a

data file which IME uses

to fix issues in the

106

corresponding

dictionary.

Exchange 2000 Server For Exchange 2000 Products

Exchange Server 2003 For Exchange 2003 Products

Exchange Server 2007 and Above Anti-spam Microsoft Exchange Server 2007

and Above Anti-spam

Exchange Server 2007 Exchange Server 2007

Exchange Server 2010 Exchange Server 2010 Category

Exchange Server 2013 Exchange Server 2013 Category

Exchange Server 2016 Exchange Server 2016 Category

Exchange Exchange

Expression Design 1 Category for checking whether

Expression Design 1 is

installed.

Expression Design 2 Category for checking whether

Expression Design 2 is

installed

Expression Design 3 Category for checking whether

Expression Design 3 is

installed

107

Expression Design 4 Category for checking whether

Expression Design V4 is

installed

Expression Media 2 Category for checking whether

Expression Media 2 is

installed.

Expression Media V1 Expression Media V1

Expression Web 3 Category for checking whether

Expression Web V3 is

installed

Expression Web 4 Category for checking whether

Expression Web V4 is

installed

Expression Expression Product Family

Firewall Client for ISA Server This category includes updates of

Microsoft Firewall

Client.

Forefront Client Security Microsoft Forefront Client

Security provides unified

malware protection for

business desktops,

laptops, and server

operating systems that is

108

easier to manage and

control. Built on the

same highly successful

Microsoft protection

technology already used

by millions of people

worldwide, Forefront

Client Security helps

guard against emerging

threats such as spyware

and rootkits, as well as

traditional threats such

as viruses, worms, and

Trojan horses. By

delivering simplified

administration through

central management and

by providing critical

visibility into threats and

vulnerabilities, Forefront

Client Security helps you

protect your business

with greater confidence

and efficiency. Forefront

Client Security integrates

109

with your existing

infrastructure software,

such as Active Directory,

and complements other

Microsoft security

technologies for better

protection and greater

control.

Forefront Endpoint Protection 2010 Forefront Endpoint Protection is

a single product that

delivers unified security

management and

reporting with

comprehensive,

coordinated protection

across clients, server

applications, and the

network edge.

Forefront Identity Manager 2010 R2 FIM 2010 R2 Category.

Forefront Identity Manager 2010 FIM2010 Category

Forefront Protection Category Product Family category for FPE

& FPSP

110

Forefront Server Security Category Product Family Category for

Forefront

Forefront Threat Management Gateway, Definition

Updates for HTTP Malware Inspection

Forefront Threat Management

Gateway, Definition

Updates for HTTP

Malware Inspection is

the location for malware

inspection definition

updates for Forefront

Threat Management

Gateway.

Forefront TMG MBE Main category for the TMG

updates

Forefront TMG Main category for the TMG

updates (post MBE)

Forefront Forefront

HealthVault Connection Center Upgrades Microsoft HealthVault

Connection Center

Upgrades

HealthVault Connection Center Microsoft HealthVault

Connection Center

Host Integration Server 2000 Category for Host Integration

Server 2000 release. It

111

requires SP2 as the

minimum version

Host Integration Server 2004 Category for Host Integration

Server 2004 release. It

requires RTM as the

minimum version

Host Integration Server 2006 Category for Host Integration

Server 2006 release.

Host Integration Server 2009 Category for Host Integration

Server 2009 release.

Host Integration Server 2010 Category for Host Integration

Server 2010 release.

HPC Pack 2008 The HPC Pack 2008 product

category will include

updates for the Microsoft

HPC Pack 2008 client,

server, and SDK.

Updates may include

service packs, optional

updates, critical updates,

or security updates.

HPC Pack The HPC Pack product family

will include updates for

112

all HPC Pack products

Category

Internet Security and Acceleration Server 2004 This category contains updates

for ISA Server 2004.

Internet Security and Acceleration Server 2006 Main category for ISA 2006.

Internet Security and Acceleration Server Internet Security and

Acceleration Server

Product Family

Microsoft Advanced Threat Analytics Product Family for Microsoft

Advanced Threat

Analytics

Microsoft Advanced Threat Analytics

Microsoft Application Virtualization 4.5 Microsoft Application

Virtualization 4.5

Microsoft Application Virtualization 4.6 Microsoft Application

Virtualization 4.6

Microsoft Application Virtualization 5.0 The category of updates for

Microsoft Application

Virtualization 5.0 Client

and Server

113

Microsoft Application Virtualization Microsoft Application

Virtualization Product

Family

Microsoft Azure Information Protection Client Microsoft Azure Information

Protection helps you

classify and label your

data at the time of

creation, based on a

simple and intuitive

interface

Microsoft Azure Information Protection Product Family for Microsoft

Azure Information

Protection

Microsoft Azure Site Recovery Provider Windows Azure Hyper-V

Recovery Manager

Provider Category for

Product Code :6ccc483c-

ad9e-468d-83f6-

ad7fba2b310b

Microsoft Azure Microsoft Azure product family

Microsoft BitLocker Administration and Monitoring v1 Microsoft BitLocker

Administration and

Monitoring v1

114

Microsoft BitLocker Administration and Monitoring Microsoft BitLocker

Administration and

Monitoring products

family

Microsoft Dynamics CRM 2011 SHS Microsoft Dynamics CRM 2011

SHS

Microsoft Dynamics CRM 2011 Microsoft Dynamics CRM 2011

Microsoft Dynamics CRM 2013 Microsoft Dynamics CRM 2013

Microsoft Dynamics CRM 2015 Microsoft Dynamics CRM 2015

Microsoft Dynamics CRM 2016 SHS Microsoft Dynamics CRM 2016

SHS

Microsoft Dynamics CRM 2016 Microsoft Dynamics CRM 2016

Microsoft Dynamics CRM Microsoft Dynamics CRM

Microsoft HealthVault Microsoft HealthVault Product

Family

Microsoft Lync 2010 Category for Microsoft Lync

2010

Microsoft Lync Server 2010 This is the product category for

Microsoft Lync Server

2010.

115

Microsoft Lync Server 2013 This is the product category for

Microsoft Lync Server

2013.

Microsoft Lync Server and Microsoft Lync Microsoft Communications

Server and Microsoft

Communicator

Microsoft Monitoring Agent (MMA) Microsoft Monitoring Agent

(MMA) product family

Microsoft Monitoring Agent Category for releasing MMA

update

Microsoft Online Services Sign-In Assistant The Microsoft Online Services

Sign-In Assistant

provides end user sign-in

capabilities to Microsoft

Online Services, such as

Office 365

Microsoft Online Services Microsoft Online Services

product family

Microsoft Research AutoCollage 2008 The 2008 version of MSR

AutoCollage

Microsoft Research AutoCollage Microsoft Research AutoCollage

Product Family Category

116

Microsoft Security Essentials Microsoft Security Essentials

Microsoft SQL Server 2008 R2 - PowerPivot for Microsoft

Excel 2010

PowerPivot

Microsoft SQL Server 2012 Microsoft SQL Server 2012

Microsoft SQL Server 2014 Microsoft SQL Server 2014

Microsoft SQL Server 2016 Microsoft SQL Server 2016

Microsoft SQL Server 2017 Microsoft SQL Server 2017

Microsoft SQL Server Management Studio v17 Microsoft SQL Server

Management Studio v17

Microsoft SQL Server PowerPivot for Excel Microsoft SQL Server

PowerPivot for Excel

Microsoft StreamInsight V1.0 Microsoft StreamInsight V1.0

Microsoft StreamInsight Microsoft StreamInsight Product

Family

Microsoft System Center Data Protection Manager Microsoft System Center Data

Protection Manager

Microsoft System Center DPM 2010 This category is for the products

which are installed for

the functioning of

Microsoft System Center

Data Protection Manager

2010

117

Microsoft System Center Virtual Machine Manager 2007 Virtual Machine Manager

provides centralized

administration of a

virtual machine

infrastructure and

enables increased

physical server

utilization and rapid

provisioning of new

virtual machines by the

administrator and

authorized users.

Microsoft System Center Virtual Machine Manager 2008 Microsoft System Center Virtual

Machine Manager 2008

Microsoft Works 8 Software Update for Microsoft

Works 8

Microsoft Works 9 Software Update for Microsoft

Works 9

Microsoft Microsoft

MS Security Essentials Microsoft Security Essentials

helps protect your

computer against

security threats caused

118

by viruses, spyware and

other unwanted software.

Network Monitor 3 Category for all Network

Monitor 3 updates

(including 3.0, 3.1, 3.2

etc).

Listed under the

Network Monitor

product family.

Network Monitor Product Familty Category for

Network Monitor

New Dictionaries for Microsoft IMEs Contains the new dictionaries

published by Microsoft

for Microsoft IMEs, IME

dictionary is a data file

which usually contains

the terms in a domain to

help improve input

accuracy in that domain.

Office 2002/XP Office 2002/XP

Office 2003 Office 2003

Office 2007 Office 2007

Office 2010 Office 2010

119

Office 2013 Office 2013

Office 2016 Office 2016

Office 365 Client Office 365 Client

Office Communications Server 2007 R2 This is the Product category for

Office Communications

Server 2007 R2

Office Communications Server 2007 This is for the Microsoft Office

Communications Server

2007 Product family.

Office Communications Server And Office Communicator Office Communications Server

And Office

Communicator Product

Family Category

Office Communicator 2007 R2 This is the product category for

Office Communicator

2007 R2

Office Live Add-in Microsoft Office Live Add-in for

Office is a small

program that you install

on your local computer

to extend your Microsoft

Office experience to the

Web. The Office Live

120

Add-in installs a new

toolbar in Microsoft

Office XP and Microsoft

Office 2003, and new

menu options in the 2007

Microsoft Office system.

Office Live Office Live Product Family

Category

Office Office

OneCare Family Safety Installation Contains installation files for

Windows Live OneCare

Family Safety, a

program that allows

parents to help protect

their children from

access to inappropriate

website content and

contacts.

OOBE ZDP This category would be used by

the updates that would

meet the ZDP bar.

Photo Gallery Installation and Upgrades Contains installation and upgrade

files for Windows Live

Photo Gallery, a tool for

121

editing photos and

organizing and sharing

photos and videos.

Report Viewer 2005 Report Viewer 2005

Report Viewer 2008 Report Viewer 2008

Report Viewer 2010 Report Viewer 2010

SDK Components SDK Components and Interfaces

Search Enhancement Pack Microsoft Search Enhancement

Pack helps users find

exactly what they are

looking for fast.

Security Essentials Microsoft Security Essentials

helps protect your

computer against

security threats caused

by viruses, spyware and

other unwanted software.

Service Bus for Windows Server 1.1 Service Bus for Windows Server

1.1

Silverlight Microsoft Silverlight is a cross-

browser plug-in for

Microsoft Internet

Explorer and Mozilla

122

Firefox that enables

simplified delivery of

media and rich Internet

applications blending

animation, audio/video,

and interactivity.

Silverlight 1.0 adds

interactivity to media-

centric applications,

including corporate

communications and

training applications,

while maintaining

compatibility and

scalability with

Windows Media Audio

and Video for live and

on-demand streaming up

to HD quality.

Silverlight Silverlight Product Family

Skype for Business Server 2015, SmartSetup This is the product category for

Skype for Business

Server 2015,

SmartSetup.

123

Skype for Business Server 2015 This is the product cateogry for

Skype for Business

Server 2015

Skype for Business Skype for Business

SQL Server 2000 SQL Server Catergory

Description

SQL Server 2005 SQL Server 2005

SQL Server 2008 R2 SQL Server 2008 R2

SQL Server 2008 SQL Server 2008

SQL Server 2012 Product Updates for Setup This is the category used for

updates that can be used

by Product Update E2E.

This category will be

default category that

Setup will search and

will be the category that

we'll ship with.

SQL Server 2014-2016 Product Updates for Setup This is the category used for

updates that can be used

by Product Update E2E.

This category will be

default category that

Setup will search and

124

will be the category that

we'll ship with.

SQL Server Feature Pack The Feature Pack is a collection

of standalone install

packages that provide

additional value for SQL

Server. It includes:

* Latest versions of

redistributable

components for SQL

Server

* Latest versions of add-

on providers for SQL

Server

* Latest versions of

backward compatibility

components for SQL

Server

SQL Server SQL Server Product Family

System Center 1801 - Orchestrator Product category for System

Center 1801 -

Orchestrator

125

System Center 2012 - App Controller System Center 2012 - App

Controller

System Center 2012 - Data Protection Manager System Center 2012 - Data

Protection Manager

System Center 2012 - Operations Manager product category for System

Center 2012 - Operations

Manager.

System Center 2012 - Orchestrator Create category for System

Center 2012 Orchestrator

System Center 2012 - Virtual Machine Manager System Center 2012 Virtual

Machine Manager

System Center 2012 R2 - Data Protection Manager System Center 2012 R2 - Data

Protection Manager

System Center 2012 R2 - Operations Manager Product Category for System

Center 2012 R2 -

Operations Manager

System Center 2012 R2 - Orchestrator Category for System Center 2012

R2 - Orchestrator

System Center 2012 R2 - Virtual Machine Manager Category for System Center 2012

R2 Virtual Machine

Manager

126

System Center 2012 SP1 - App Controller System Center 2012 SP1 - App

Controller

System Center 2012 SP1 - Data Protection Manager System Center 2012 SP1 - Data

Protection Manager

System Center 2012 SP1 - Operation Manager Product category for System

Center 2012 SP1 -

Operations Manager

System Center 2012 SP1 - Virtual Machine Manager Category for System Center 2012

SP1 Virtual Machine

Manager

System Center 2016 - Data Protection Manager System Center 2016 - Data

Protection Manager

System Center 2016 - Operations Manager Product Category for System

Center 2016 - Operations

Manager

System Center 2016 - Orchestrator Product category for System

Center 2016 -

Orchestrator

System Center 2016 - Virtual Machine Manager Category for System Center 2016

- Virtual Machine

Manager

127

System Center Advisor The product category for

Microsoft System Center

Advisor

System Center Configuration Manager 2007 The System Center

Configuration Manager

2007category will allow

Service Packs and

Updates to be offered to

Configuration Manager

product family

System Center Data Protection Manager System Center Data Protection

Manager

System Center Online System Center Online Product

Family Category

System Center Operations Manager 1807 Product Category for System

Center 1801 - Operations

Manager

System Center Version 1801 - Virtual Machine Manager Product category for SCVMM

Version 1801 release

System Center Virtual Machine Manager System Center Virtual Machine

Manager Product Family

Category

System Center System Center products family

128

Systems Management Server 2003 The Systems Management

Server 2003 category

will allow Service Packs

2 and Updates to be

offered to Systems

Management Server

product family.

Systems Management Server Systems Management Server

Prodcut Family Category

Threat Management Gateway Definition Updates for

Network Inspection System

Forefront TMG Network

Inspection System (NIS)

helps guard against

intrusion attempts

targeting known and

newly discovered

vulnerabilities in

network protocols. As a

security best practice,

NIS signatures should be

kept up to date.

TMG Firewall Client Main category for TMG Firewall

Client (RTM)

Virtual PC Microsoft Virtual PC all versions

till VPC 2007 SP1

129

Virtual Server Virtual Server Product Family

Category

Virtual Server Category - app rule detects

virtual server from

registry key

Visual Studio 2005 Visual Studio 2005

Visual Studio 2008 Visual Studio 2008

Visual Studio 2010 Tools for Office Runtime Visual Studio 2010 Tools for

Office Runtime

Visual Studio 2010 Tools for Office Runtime Visual Studio 2010 Tools for

Office Runtime

Visual Studio 2010 Visual Studio 2010

Visual Studio 2012 Visual Studio 2012

Visual Studio 2013 Visual Studio 2013

Windows 10 and later drivers Windows 10 and later drivers

Windows 10 and later upgrade & servicing drivers Windows Drivers

Windows 10 Anniversary Update and Later Servicing

Drivers

Windows 10 Anniversary Update

and Later Servicing

Drivers

130

Windows 10 Anniversary Update and Later Upgrade &

Servicing Drivers

Windows 10 Anniversary Update

and Later Upgrade &

Servicing Drivers

Windows 10 Creators Update and Later Servicing Drivers Windows 10 Creators Update

and Later Servicing

Drivers

Windows 10 Creators Update and Later Servicing Drivers Windows 10 Creators Update

and Later Servicing

Drivers

Windows 10 Creators Update and Later Upgrade &

Servicing Drivers

Windows 10 Creators Update

and Later Upgrade &

Servicing Drivers

Windows 10 Dynamic Update Windows 10 Dynamic Update

Windows 10 Fall Creators Update and Later Servicing

Drivers

Windows 10 Fall Creators

Update and Later

Servicing Drivers

Windows 10 Fall Creators Update and Later Upgrade &

Servicing Drivers

Windows 10 Fall Creators

Update and Later

Upgrade & Servicing

Drivers

Windows 10 Feature On Demand This category would be used by

theWindows 10 Feature

On Demand content.

131

Windows 10 GDR-DU FOD This category will be used for

GDR-DU Feature On

Demand updates

Windows 10 GDR-DU LP This category will be used for

GDR-DU Language

Pack updates

Windows 10 GDR-DU Windows 10 GDR-DU

Windows 10 Language Interface Packs Category for Windows 10

Language Interface

Packs

Windows 10 Language Packs Category for Windows 10

Language Packs

Windows 10 LTSB Windows 10 LTSB

Windows 10 S and Later Servicing Drivers Windows 10 S and Later

Servicing Drivers

Windows 10 S Version 1709 and Later Servicing Drivers

for testing

Windows 10 S Version 1709 and

Later Servicing Drivers

for testing

Windows 10 S Version 1709 and Later Upgrade &

Servicing Drivers for testing

Windows 10 S Version 1709 and

Later Upgrade &

Servicing Drivers for

testing

132

Windows 10 S Version 1803 and Later Servicing Drivers Windows 10 S Version 1803 and

Later Servicing Drivers

Windows 10 S Version 1803 and Later Upgrade &

Servicing Drivers

Windows 10 S Version 1803 and

Later Upgrade &

Servicing Drivers

Windows 10 version 1803 and Later Servicing Drivers Windows 10 version 1803 and

Later Servicing Drivers

Windows 10 Version 1803 and Later Upgrade &

Servicing Drivers

Windows 10 Version 1803 and

Later Upgrade &

Servicing Drivers

Windows 10 Windows 10

Windows 2000 Windows 2000

Windows 7 Windows 7 Category

Windows 8 Dynamic Update This category is used by

Windows Setup and

contains updates to the

Windows 8 Setup

binaries, as well as

critical security updates

and drivers for the

operating system that is

being installed. WSUS

administrators do not

133

need to select this

category.

Windows 8 Embedded Detects Windows 8 versions of

Embedded

Windows 8 Language Interface Packs Category for Windows 8

language interface packs

Windows 8 Language Packs Windows 8 Language Packs

Windows 8.1 and later drivers Windows 8.1 and later drivers

Windows 8.1 Drivers Windows 8.1 Drivers

Windows 8.1 Dynamic Update Windows 8.1 Dynamic Update

Windows 8.1 Language Interface Packs Category for Windows 8.1

language interface packs

Windows 8.1 Language Packs Category for Windows 8.1

Language Packs

Windows 8.1 Windows 8.1

Windows 8 Windows 8

Windows Admin Center Product Family for Windows

Admin Center

Windows Admin Center Windows Admin Center

Windows Azure Pack - Web Sites Windows Azure Pack - Web

Sites

134

Windows Azure Pack: Admin API Windows Azure Pack: Admin

API

Windows Azure Pack: Admin Authentication Site Windows Azure Pack: Admin

Authentication Site

Windows Azure Pack: Admin Site Windows Azure Pack: Admin

Site

Windows Azure Pack: Configuration Site Windows Azure Pack:

Configuration Site

Windows Azure Pack: Microsoft Best Practice Analyzer Windows Azure Pack: Microsoft

Best Practice Analyzer

Windows Azure Pack: Monitoring Extension Windows Azure Pack:

Monitoring Extension

Windows Azure Pack: MySQL Extension Windows Azure Pack: MySQL

Extension

Windows Azure Pack: PowerShell API Windows Azure Pack:

PowerShell API

Windows Azure Pack: SQL Server Extension Windows Azure Pack: SQL

Server Extension

Windows Azure Pack: Tenant API Windows Azure Pack: Tenant

API

Windows Azure Pack: Tenant Authentication Site Windows Azure Pack: Tenant

Authentication Site

135

Windows Azure Pack: Tenant Public API Windows Azure Pack: Tenant

Public API

Windows Azure Pack: Tenant Site Windows Azure Pack: Tenant

Site

Windows Azure Pack: Usage Extension Windows Azure Pack: Usage

Extension

Windows Azure Pack: Web App Gallery Extension Windows Azure Pack: Web App

Gallery Extension

Windows Azure Pack: Web Sites Create high-scale, multi-tenant

website hosting services

Windows Azure Pack Windows Azure Pack products

family

Windows Defender Windows Defender helps protect

your computer against

pop-ups, slow

performance, and

security threats caused

by spyware and other

unwanted software.

Windows Dictionary Updates Windows Dictionary Updates for

Simplified Chinese,

Japanese Input Methods

136

and English (US) Bing

trendy words.

Windows Embedded Developer Update Category for updates to WEDU

client itself.

Windows Embedded Standard 7 Windows Embedded Standard 7

Windows Embedded TLC for windows embedded

team

Windows Essential Business Server 2008 Setup Updates Non security updates applied to

Windows Essential

Business Server 2008 at

MU phase 0, or critical

security update released

by EBS team

Windows Essential Business Server 2008 Updates for Windows Essential

Business Server 2008.

Windows Essential Business Server Preinstallation Tools Updates for the Windows

Essential Business

Server Preinstallation

Tools.

Windows Essential Business Server Windows Essential Business

Server Product Family

Category

137

Windows GDR-Dynamic Update Windows GDR-Dynamic Update

Windows Internet Explorer 7 Dynamic Installer The Window Internet Explorer 7

setup application uses

this category to find

updates to download and

install during installation

of Internet Explorer 7.

More information about

the updates in this

category is available at

http://support.microsoft.c

om/kb/924568. If this

category is not selected,

Internet Explorer 7 will

install successfully but

will not download and

install any applicable

updates during the

installation.

Windows Internet Explorer 8 Dynamic Installer The Window Internet Explorer 8

setup application uses

this category to find

updates to download and

install during installation

138

of Internet Explorer 8.

More information about

the updates in this

category is available at

http://support.microsoft.c

om/kb/948564. If this

category is not selected,

Internet Explorer 8 will

install successfully but

will not download and

install any applicable

updates during the

installation.

Windows Live Toolbar Contains the installation files for

Windows Live Toolbar,

an Internet Explorer

extension that provides

search, anti-virus

protection, customizable

buttons, and quick access

to maps and other

information.

Windows Live Get quick access to Bing and

MSN, as well as handy

139

tools for online safety

and productivity.

Windows Live Contains updates and upgrades

for all Windows Live

programs, some of which

may be distributed via

Automatic Update.

It is strongly

recommended that you

approve all categories

and updates in the

Windows Live product

family as a group,

because files may

contain elements needed

to successfully install or

update multiple

Windows Live programs

at once.

Windows Live Windows Live

Windows Media Dynamic Installer Windows Media Setup Updates

Windows Next Graphics Driver Dynamic update This hidden category will be

scanned during 8.1

upgrade from Store by

140

DU by ignoring

currently installed

drivers. Only Graphics

drivers should be

published to this

category. The best

graphics driver available

for Blue for the users

system will be

downloaded and

included in the upgrade

image.

Windows RT 8.1 Windows RT 8.1

Windows RT Windows RT

Windows Safe OS Dynamic Update This category will be used to

address the Safe OS DU

scenario.

Windows Server 2003, Datacenter Edition Windows Server 2003,

Datacenter Edition

Windows Server 2003 Windows Server 2003

Windows Server 2008 R2 Windows Server 2008 R2

Category

141

Windows Server 2008 Server Manager Dynamic Installer Windows Server 2008 Server

Manager uses this

category to find and

download updates.

Windows Server 2008 Windows Server 2008

Windows Server 2012 Language Packs Windows Server 2012 Language

Packs

Windows Server 2012 R2 and later drivers Windows Server 2012 R2 and

later drivers

Windows Server 2012 R2 Drivers Windows Server 2012 R2

Drivers

Windows Server 2012 R2 Language Packs Category for Windows Server

2012 R2 Language

Packs

Windows Server 2012 R2 Windows Server 2012 R2

Windows Server 2012 Windows Server 2012

Windows Server 2016 and Later Servicing Drivers Windows Server 2016 and Later

Servicing Drivers

Windows Server 2016 Windows 10 Server

Windows Server Drivers Windows Server Drivers

Windows Server Manager ? Windows Server Update

Services (WSUS) Dynamic Installer

Windows Server Manager uses

this category to find and

142

download updates for

Windows Server Update

Services (WSUS).

Windows Server Solutions Best Practices Analyzer 1.0 Windows Server Solutions Best

Practices Analyzer scans

and finds problems on

Windows Small

Busienss Server 2011,

Windows Storage Server

2008 Essentials R2, and

Windows Multipoint

Server 2011.

Windows Server Technical Preview Language Packs Category for Windows Server

Technical Preview

Language Packs

Windows Small Business Server 2003 This is the top level category

from Windows Small

Business Server 2003

Windows Small Business Server 2008 Migration

Preparation Tool

Updates offered through this

category will apply only

to computers running

Migration Preparation

Tool for Windows Small

Business Server 2008.

143

Windows Small Business Server 2008 Category for Windows Small

Business Server 2008

Windows Small Business Server 2011 Standard SBS7

Windows Small Business Server Windows Small Business Server

Product Family

Windows Ultimate Extras Category for Windows Ultimate

Extras

Windows Vista Dynamic Installer Windows Vista Dynamic

Updates category.

Windows Vista Ultimate Language Packs Category for Windows Vista

Ultimate Language

Packs

Windows Vista Windows Vista

Windows XP 64-Bit Edition Version 2003 Windows XP 64-Bit Edition

Version 2003

Windows XP Embedded Category for XP WEPOS and

POSReady 2009

Embedded Machines for

SP3

Windows XP x64 Edition Windows XP x64 Edition

Windows XP Windows XP

144

Windows Windows

Works 6-9 Converter Software Update for Microsoft

Works 6-9 Converter

Works Works Product Family Category

Writer Installation and Upgrades Contains installation and upgrade

files for Windows Live

Writer, a program

designed to make it

easier to edit and publish

rich content to your blog.

	Custom Windows Patching Methodology - Comparative Analysis
	Recommended Citation

	tmp.1543931208.pdf.oacbD

