
Georgia Southern University

Digital Commons@Georgia Southern

Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of

Spring 2019

Building A Classification Model Using Affinity
Propagation
Christopher R. Klecker

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

 Part of the Other Computer Engineering Commons

Recommended Citation
Klecker, Christopher R., "Building A Classification Model Using Affinity Propagation"
(2019). Electronic Theses and Dissertations. 1917.
https://digitalcommons.georgiasouthern.edu/etd/1917

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack
N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia
Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Georgia Southern University: Digital Commons@Georgia Southern

https://core.ac.uk/display/229301389?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1917&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1917&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/1917?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1917&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

BUILDING A CLASSIFICATION MODEL USING AFFINITY PROPAGATION

by

CHRISTOPHER KLECKER

(Under the Direction of Ashraf Saad)

ABSTRACT

Regular classification of data includes a training set and test set. For example for Naïve Bayes, Artificial

Neural Networks, and Support Vector Machines, each classifier employs the whole training set to train

itself. This thesis will explore the possibility of using a condensed form of the training set in order to get a

comparable classification accuracy. The technique explored in this thesis will use a clustering algorithm to

explore which data records can be labeled as exemplar, or a quality of multiple records. For example, is it

possible to compress say 50 records into one single record? Can a single record represent all 50 records and

train a classifier similarly? This thesis aims to explore the idea of what can label a data record as exemplar,

what are the concepts that extract the qualities of a dataset, and how to check the information gain of one

set of compressed data over another set of compressed data. This thesis will explore using affinity

propagation, categorical data, exploring entropy within cluster sets, and testing the compressed data using

Cosine Similarity as a classifier.

INDEX WORDS: Classification, Clustering, Clustering analysis, Condensed dataset, Prediction model,

Affinity propagation, Damping factor, Preference value, Categorical data, Elbow method

BUILDING A CLASSIFICATION MODEL USING AFFINITY PROPAGATION

by

CHRISTOPHER KLECKER

B.S., Purdue University, 1997

A Thesis Submitted to the Graduate Faculty of Georgia Southern University

in Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

STATESBORO, GEORGIA

© 2019

CHRISTOPHER KLECKER

All Rights Reserved

1

BUILDING A CLASSIFICATION MODEL USING AFFINITY PROPAGATION

by

CHRISTOPHER KLECKER

Major Professor: Ashraf Saad
Committee: Murali Medidi

Hong Zhang
Amar Rasheed

Electronic Version Approved:
May 2019

2

ACKNOWLEDGMENTS

I would like to thank Dr. Ashraf Saad for his direction and advisory role in the creation of my project and

thesis. I would like to thank Dr. Ray Hashemi for his time and class instruction which aided in the theories

used in this thesis. I would like to thank Jeffery Young, Brennen Lemieux, my friends, and family for their

support and help in the building and writing of this thesis. I would like to thank Saint Vincent College, PA,

and William Barnes, the assistant Director of Saint Vincent College for their resources in this thesis,

particularly the student enrollment database which was used as an example to test the technique described

in this thesis.

3

TABLE OF CONTENTS
Page

ACKNOWLEDGMENTS .. 2

LIST OF FIGURES .. 4

LIST OF TABLES .. 5

CHAPTER .. 6

1 INTRODUCTION ... 6

Data Mining and Clustering .. 6

 The Purpose of This Study .. 8

2 CLUSTERING WITH AFFINITY PROPAGATION ... 10

What is Affinity Propagation? .. 10

Why Use Affinity Propagation?.. 13

Algorithm for Affinity Propagation .. 14

A Similarity Matrix for Categorical Data ... 17

Preference Value ... 20

Evaluating a preference value using the Elbow Method ... 21

Summary of Technique ... 24

3 CLASSIFICATION MODEL AND PREDICTION FUNCTION .. 25

Classification Using Affinity Propagation Exemplars .. 25

Algorithm of Technique .. 27

4 ILLUSTRATING OUR PREDICTION MODEL ON VARIOUS DATASETS....................... 29

Breast Cancer .. 29

Breast Cancer Dataset #2 .. 30

Mushroom Dataset .. 31

Student Enrollment Data ... 33

5 CONCLUSIONS AND FUTURE WORK .. 36

Future Work .. 37

REFERENCES ... 39

APPENDICES .. 41

 A PYTHON CODE FROM PROJECT………………………………………………………….41

4

LIST OF FIGURES

 Page

Figure 1: Graphical Representation of the Affinity Propagation Prediction Model……………………….. 8

Figure 2: Cluster Example From Affinity Propagation……………………………………………………10

Figure 3: Message Passing in Affinity Propagation. ………………………………………………………11

Figure 4: Convergence in Affinity Propagation. ………………………………………………………….12

Figure 5: Equation to calculate Responsibilities. …………………………………………………………14

Figure 6: Algorithm to Update Responsibility Matrix…………………………………………………….15

Figure 7: Equation for calculating availability of data record i. …………………………………………..15

Figure 8: Equation for self-availability of data record k. ………………………………………………….16

Figure 9: Algorithm for Updating Availability Matrix………………………………………………….....16

Figure 10: Algorithm for Updating Assignment Record j to Cluster record i……………………………...17

Figure 11: Distance Between Attribute values x and y for Ai with respect to Attribute Aj. ……………….18

Figure 12: Equation for distance between values x and y in any given attribute Ai. ……………………..19

Figure 13: Equation for the distance between record D1 and D2………………………………………….19

Figure 14: Application of Law of Cosines to measure entropy between cluster sets……………………...23

Figure 15: Elbow Method analysis of 3400 records of Data……………………………………………….23

Figure 16: Algorithm: Training for classification using Affinity Propagation (binary classifier) ………..24

Figure 17: Cosine Similarity Equation………………………………………………….............................25

Figure 18: Example of exemplars from Affinity Propagation Clustering…………………………………26

Figure 19: Record to test classifier…………………………………………………...................................26

Figure 20: Algorithm for Classification Model (for binary classifiers only) ……………………………..28

Figure 21: Comparison of accuracy between 3 classification models……………………………….…….35

5

LIST OF TABLES

Page

Table 1: Breast Cancer Dataset #1 Results classified with AP Classification .. 29

Table 2: Breast Cancer Dataset Results Classified with Naive Bayes .. 30

Table 3: Breast Cancer Dataset #2 Results with AP Classification .. 30

Table 4: Breast Cancer Dataset #2 Results with Naive Bayes Classification ... 31

Table 5: Mushroom Dataset Results using AP Classifier ... 32

Table 6: Mushroom Dataset Results Using Naive Bayes Classification .. 33

Table 7: Student Enrollment Dataset Results using Affinity Propagation Classification 33

Table 8: Student Enrollment Dataset Results Using Naive Bayes classification .. 34

Table 9: Student Enrollment Dataset from 2018 applied as Test data against 2017 Training set 35

6

CHAPTER 1

INTRODUCTION

Data Mining and Clustering

Data Mining is the use of methodologies to discover patterns in a data set. Many of these

methodologies are an amalgamation of approaches to machine learning and statistics1. Clustering is one

such methodology which groups data into meaningful categories often times employing statistical models

such as conditional probability or measuring the distance of actual data points to discover groups in physical

space. Each cluster describes a similarity between the data points existing in the cluster. This can be

desirable in the context of customer data to find similarities in customers’ attributes. It can be used to

discover basic qualities of customer groups and target those qualities. Clustering is an exploratory

technique2, which aims to discover an optimal grouping of data points. Clustering seeks what features of

the dataset will drive the shape and number of the resulting clusters which can either be predetermined or

discovered naturally. The overall goal is to optimize the groups of data points so that meaningful patterns

emerge. For example, a particular pattern might be what are the majority values for each attribute in each

cluster?

Most clustering algorithms work from a similarity matrix which defines a “distance” or relationship

of records from each other using the features of the records. The features of the record correspond to the

attribute values of each record. By analyzing two records in our dataset and performing a similarity function,

a similarity value is returned. A higher similarity value indicates the two records are highly similar, whereas

a lower similarity value indicates the two records are highly dissimilar. Each record is compared to all other

records, except itself, and a similarity is calculated and stored resulting in a similarity matrix3. Features of

1 Frans Coenen, "Data Mining: Past, Present and Future," The Knowledge Engineering Review 26,

no. 1 (2011): 25-29, doi:10.1017/s0269888910000378.
2 Vipin Kumar et al., "Cluster Analysis: Basic Concepts and Methods," in Introduction to Data

Mining, 2nd ed. (New York, NY: Pearson Education, 2005).
3 Daniel Lawson and Daniel Falush, "Similarity Matrices and Clustering Algorithms for Population

Identification Using Genetic Data," FineSTRUCTURE, March 1, 2012, , accessed April 15, 2019,
https://people.maths.bris.ac.uk/~madjl/finestructure/.

7

records can be categorical, numerical, or both. In the case of numeric data similarities between records

calculates their distance from each other using a distance equation such as Euclidian Squared Distance, for

example. Furthermore the centroids of numerical data describe the overall location and shape of the data

on a plane. Datasets containing categorical features must use alternate methods to calculate a distance as

categorical features do not physically map to any dimension of a plane.

Clustering algorithms output a cluster set which contain the data points mapped to a particular

cluster. Each cluster contains a centroid, a center of the cluster if the features of the data are numerical. For

categorical features, referring to the centroid as the “center,” is not applicable. The centroid of a cluster

with categorical features is described by the features which represent the majority of features found in the

cluster from the data assignments. Because this thesis works with categorical data and explores clustering

and classification of categorical data, this thesis will concentrate on clustering algorithms that can handle

categorical features and return clusters and centroids that describe the features of the cluster through the

features of the centroid. These centroids may prove useful in summarizing a dataset, therefore acting as

training data for a classification model.

Classification is the task of assigning objects to a predefined category or class4. Classification

models require input data, or a collection of records that are sent to an indicator decision function which

chooses the “best” decision based on some optimization method known as a prediction model5. Prediction

models can range from numeric input to train an Artificial Neural Network, or from determining a potential

feature of an attribute that is unknown. These are called predictive models. Predictive Models are used in

data mining to analyze historical and current data in order to generate a model for predicting future

outcomes6.

4 Vladimir S. Cherkassky and Filip Mulier, Learning from Data: Concepts, Theory, and Methods, 2nd

ed. (Hoboken, NJ: IEEE Press/Wiley-Interscience, 2007).
5 Ibid.
6 Hal Kalechofsky, "HomeA Simple Framework for Building Predictive Models," M Squared

Consulting, September 2016, , accessed April 15, 2019, http://www.msquared.com/.

8

The Purpose of This Study

The purpose of this study is to illustrate a new technique of taking a whole dataset, applying a

clustering algorithm with respect to its class attribute to condense the data and apply a classification on this

condensed data form. The algorithm will split the original dataset into two datasets with respect to the class

features of the dataset. Each dataset is applied to a clustering algorithm which will output centroids and the

labels for each centroid, that is, matching records to specific clusters. The centroids outputted from the

clustering algorithm will be used as a classification model which describes the features of each class through

these centroids. The features represent the most relevant records therefore creating a condensed dataset of

just the relevant records. The prediction function then takes test records, records not included in the initial

clustering algorithm, and are applied to each compressed dataset representing each class whereas the

classifier will return a class using Cosine Similarity. This classification model takes a summary of the

dataset and is still able to function as a classifier, in some cases, only 1% of the actual data is used. Figure

1 shows an illustration of the technique proposed for this thesis.

This thesis will explain the clustering algorithm used, affinity propagation, and will explain the

technique used to construct and compute the similarity matrix for categorical features. It will discuss

methods of calculating a preference value and damping factor to be used with affinity propagation, which

will determine the number of clusters and the integrity of the clustered result. This thesis will discuss

datasets that can work with this technique and datasets that are not applicable. It will discuss the prediction

model, how it will predict new records and the classification feature of the new record. It is the goal of this

Figure 1: Graphical Representation of the Affinity Propagation Prediction Model

9

thesis to have an accuracy of 90% or higher, especially for a classifier that is binary, or contains only two

classes. A classifier which predicts around 50% for a binary classifier, or two classes, is no better than

chance.

A few purposes of the creation of this classifier are to create a classifier that works with categorical

data without having to perform a “One Hot Conversion”. One Hot is a technique to convert categorical data

into a vector representation which is then used instead of the categorical name. The problem with this

conversion is in retrieving the categorical values back. Also all records are converted to be a long vector

string which is difficult for a human to understand the features of the record. This technique doesn’t alter

the categorical values in any way. The centroids returned are actually the categorical strings themselves.

Because of this feature, this technique provides a fully transparent classifier, and a fully transparent cluster

set. The centroids which describe the features of the cluster set can be understood easily. This technique

could also be used as a means to fill in missing attribute data. Currently this technique is written to classify

only binary classifiers, however it can easily be augmented to have N classes. The centroids created for the

classifier can also be saved and used later. It will also show how centroids created as a training set can exist

for records that cover a whole year. That is, running this classifier against 2017 data, and outputting a

training set, the very same training set can be used for 2018 with high accuracy results.

10

CHAPTER 2

CLUSTERING WITH AFFINITY PROPAGATION

What is Affinity Propagation?

Affinity propagation is a modern unsupervised clustering algorithm that “takes as input a collection

of real-valued similarities between data points, where the similarity 𝑠𝑠(𝑖𝑖,𝑘𝑘) indicates how well the data point

k is suited to be the exemplar for data point i 7. Affinity propagation can also be called “Exemplar Based

Clustering” as it returns actual data points as exemplars over arbitrary averaged data values within the

cluster itself. The output of affinity propagation therefore becomes a compressed version of the overall data

where the exemplars represent data points that define the properties found in the assignments. This is shown

in Figure 2.

Figure 2: Cluster Example From affinity propagation

The exemplar is shown as the first record after the header. Notice how the features of the exemplar

contain a majority of features in the respective attribute. Not all features in the attribute of the cluster are

the same. For example, the attribute for “Breast-Quad” contains 3 different features. The value “left-low”

appears in the attribute the most, therefore this value should be the feature value represented in the

exemplar. The goal of affinity propagation is to discover these data points, or exemplars, which represent

the whole of the dataset. It does this through finding the maximal value of the responsibility and availability

of each data point by passing messages between each data point until a maximum availability and

7 B. J. Frey and D. Dueck, "Clustering by Passing Messages Between Data Points," Science 315, no.

5814 (2007): , doi:10.1126/science.1136800.

11

responsibility is achieved. The responsibility of a data point is defined by a measure of how the data point

is suited to be assigned to an exemplar, and the availability of a data point is the measurement of how the

point is suited to be an exemplar8. This procedure is illustrated in Figure 3.

Affinity propagation runs iteratively through each data point passing messages and singling out

exemplars until a convergence is achieved. This is when the availabilities and responsibilities for each data

point no longer update. At each iteration exemplars will emerge, and clusters will form. When convergence

is reached a set of exemplars is selected and the clusters take their final shape. Convergence of affinity

propagation is shown in Figure 4 9.

In affinity propagation clustering happens naturally. The algorithm does not take an initialization

of K and outputs exactly K clusters for the dataset. The number of clusters is determined through a series

of equations that update the responsibility and availability of each data point in reference to all other data

points. There is a possibility that convergence will not happen. If this is the case, the number of clusters

and data assignments are determined by when the algorithm terminates, not on any convergence. It is not

necessarily true that the resultant clusters are incorrect, however because clustering did not happen

8 B. J. Frey and D. Dueck, "Clustering by Passing Messages Between Data Points," Science 315, no.

5814 (2007): , doi:10.1126/science.1136800.
9 ibid

Figure 3: Message Passing in Affinity Propagation.

12

naturally, the result will not be the same if affinity propagation is run again as the termination of the

algorithm happens in the middle of data points switching between assignments and being or not being an

exemplar to a cluster. Therefore, convergence is an important aspect to this technique and convergence will

be sought when determining exemplars.

There are a couple of methods which can help with affinity propagation reach convergence: raise

the damping factor or raise the number of iterations. The damping factor decreases the oscillations resulting

from the message passing between data nodes. The damping factor smooths and normalizes the new values

for each data point making convergence easier to achieve. Increasing the number iterations can also help if

convergence does not happen even with a high damping factor, however increasing the iteration for a

clustering result which did converge will not change the clustering result in any way. affinity propagation

clusters naturally and will stop when convergence is reached. By increasing the number of iterations it only

makes it more possible for convergence to be reached if the number of iterations necessary is high. If

convergence is reached in 150 iterations and the max iterations is 200, raising the number of iterations will

not matter in the clustering result as convergence happened at 150 iterations. However if the iterations were

lowered below 150, this will cause the algorithm to not converge which will result in a premature clustering

Figure 4: Convergence in Affinity Propagation.

13

result. Therefore, although raising the number of iterations for affinity propagation will not affect a

clustering result if it converges at a lower iteration point, lowering the number of iterations can prevent

convergence from happening.

Why Use Affinity Propagation?

The classification function of this project contains exemplars from the cluster set for each class. It

is important for this technique to have a set of centroids that are constant, that is, each time we run the

clustering algorithm the same output is returned. If exemplar features are not constant it is difficult to be

assured the exemplars used are a good representation of the dataset. In contrast, clustering algorithms like

K-Means and BIRCH will select random data points which are initialized as centroid points, however each

iteration will shift the centroid from its current position to its new position to represent it as being centroid

to its data assignments. This results in a different clustering set each time such clustering algorithms are

run10. Additionally, because centroids of clusters created by these algorithms like K-Means and BIRCH are

most likely not actual records in our dataset, therefore additional work must be done to get the features of

the centroids from surrounding data points in the cluster. Affinity propagation eliminates this step,

returning exemplars, centroids which are actual data points, therefore no additional work is needed to

extract the features of the centroid.

Accuracy is also very important in the clustering algorithm due to the centroids needing to represent

as best as possible the data assignments of the cluster. Therefore choosing an algorithm that results in low

error is preferable and affinity propagation will return errors that are lower compared with other clustering

algorithms11. For these reasons, this thesis will focus on affinity propagation to create the clusters from the

datasets generated and use its exemplars for our prediction model function.

10 A. K. Jain, M. N. Murty, and P. J. Flynn, "Data Clustering: A Review," ACM Computing

Surveys 31, no. 3 (1999): , doi:10.1145/331499.331504.
11 John Trono, Dave Kronenberg, and Patrick Redmond, "Affinity Propagation, and Other Data

Clustering Techniques," Affinity Propagation, and Other Data Clustering Techniques, , accessed April 15,
2019, http://academics.smcvt.edu/.

http://academics.smcvt.edu/

14

Algorithm for Affinity Propagation

Like most clustering algorithms, affinity propagation computes the clusters by using a similarity

matrix the user constructs beforehand. The similarity matrix is symmetrical, an N x N matrix, where N is

the number of records being clustered. Each value in the similarity matrix, (Np, Nq), where p is record p

and q is record q, is calculated by finding the distance between record p and record q. The construction of

this similarity matrix will be discussed in the next section.

Affinity propagation generates two additional matrices during initialization called R for

responsibilities, and A for availabilities. Each matrix is also symmetrical like the Similarity Matrix, and

exactly the same size. Each index pair in each matrix is associated to each other. R[i, j] is associated with

A[i, j] and S[i, j]. The diagonal represents self-availability for the availability matrix, and self-responsibility

for the responsibility matrix, and the preference value for the dataset is stored in the diagonal of the

similarity matrix.

 Affinity propagation calculates responsibilities for each data point i and stores this in matrix R

using the formula shown in Figure 5 12. This finds the maximum value of all data points from the

availability matrix A at 𝐴𝐴(𝑖𝑖,𝑘𝑘′) where k’ is not data point k, added to all 𝑠𝑠(𝑖𝑖,𝑘𝑘′) where k’ is not data point

k.

Accessing the similarity matrix value at matrix location (i, k), all other data points k’ where k’ is

not k are accessed from the availability matrix and similarity matrix and added together. Messages do not

get passed to themselves. We are looking for the maximum value returned for this summation with each

message passed. This maximum value found is subtracted from the similarity matrix value 𝑆𝑆(𝑖𝑖,𝑘𝑘). This

12 B. J. Frey and D. Dueck, "Clustering by Passing Messages Between Data Points," Science 315, no.

5814 (2007): , doi:10.1126/science.1136800

𝑟𝑟(𝑖𝑖,𝑘𝑘) ← 𝑠𝑠(𝑖𝑖,𝑘𝑘)− max
𝑘𝑘′𝑠𝑠.𝑡𝑡.𝑘𝑘′≠𝑘𝑘

{𝑎𝑎(𝑖𝑖,𝑘𝑘′) + 𝑠𝑠(𝑖𝑖,𝑘𝑘′)}

Figure 5: Equation to calculate Responsibilities.

15

value is then stored as the responsibility value at 𝑅𝑅(𝑖𝑖,𝑘𝑘). We increment i to the next data point and the

process is repeated until all data points have been calculated. The algorithm to calculate all responsibilities

for each data point i with respect to data point k is shown in Figure 6 13.

Algorithm 1 shows the usage of the damping factor variable which exists to limit oscillations during

this process of updating Responsibilities which can help the algorithm converge more efficiently. The

authors of affinity propagation recommend a damping factor of .5. For situations where convergence does

not occur with a damping factor of .5, raise the damping factor until convergence occurs. The highest

damping factor can be .9.

Once all responsibilities are calculated for matrix R, availabilities for matrix A are calculated for

each data point. The availability equations for affinity propagation are shown in Figure 7 and 8 14.

𝑎𝑎(𝑖𝑖,𝑘𝑘) ⟵ 𝑚𝑚𝑖𝑖𝑚𝑚{0, 𝑟𝑟(𝑘𝑘,𝑘𝑘) + � max{0, 𝑟𝑟(𝑖𝑖′,𝑘𝑘)}
𝑖𝑖′𝑠𝑠.𝑡𝑡.𝑖𝑖′∉{𝑖𝑖,𝑘𝑘}

}

Figure 7: Equation for calculating availability of data record i.

13 "Affinity Propagation - Java," Cognitive Foundry, , accessed April 15, 2019,

https://foundry.sandia.gov/releases/latest/javadoc-api/index.html.
14 B. J. Frey and D. Dueck, "Clustering by Passing Messages Between Data Points," Science 315, no.

5814 (2007): , doi:10.1126/science.1136800

Figure 6: Algorithm to Update Responsibility Matrix

16

𝑎𝑎(𝑘𝑘,𝑘𝑘) ⟵ � max{0, 𝑟𝑟(𝑖𝑖′,𝑘𝑘)}
𝑖𝑖′𝑠𝑠.𝑡𝑡. 𝑖𝑖′≠𝑘𝑘

Figure 8: Equation for self-availability of data record k.
The summation of all maximum positive values for all responsibilities of 𝑟𝑟(𝑖𝑖′,𝑘𝑘) where i’ are all

data points not i (or 0, whichever value is greatest) is assigned to the self-availability, the diagonal of the

availability matrix. This value is also added to the self-responsibility, the diagonal of the responsibility

matrix. The availably of point i with respect to point k is assigned the minimum value of the summation or

0, whichever is smaller. All points i are iterated through until all availabilities and self-availabilities are

calculated. The algorithm for finding availabilities for all data points i with respect to data point k is shown

in Figure 9 15.

Figure 9: Algorithm for Updating Availability Matrix

The total likelihood that data point i is assigned then to data point k is the sum of the self-availability

and self-responsibility values. If the value is not zero, data point k can be assigned to data point i. At each

iteration several exemplars start to emerge. affinity propagation continues to iterate and update

responsibilities and availabilities until convergence occurs which results in a final set of exemplars.

Assignments are made by checking each matching matrix field in availability and responsibility. The sum

15 "Affinity Propagation - Java," Cognitive Foundry, , accessed April 15, 2019,

https://foundry.sandia.gov/releases/latest/javadoc-api/index.html.

17

of the availability and responsibility therefore determine if record i is assigned to exemplar record j. The

algorithm for updating data point i to cluster k is shown in Figure 10 16.

Figure 10: Algorithm for Updating Assignment Record j to Cluster record i

The time complexity for affinity propagation requires O(k*n2)17 where k is the number of iterations

and n is the number of data points. This time complexity is important as data which contains a large number

of records can take a substantial amount of time to converge. Furthermore, construction of a similarity

matrix for large dataset will process slowly.

A Similarity Matrix for Categorical Data

The similarity matrix holds a measurement of similarity or dissimilarity between records in an N x

N matrix where N is the number of records in the dataset. Datasets with numeric features are quite simple

to calculate similarity as such records can be plotted in N-Dimensional space and the physical distance

between records can be the measurement of their similarity. This distance can be measured using such

equations like Euclidian Squared Distance or Manhattan Distance18 to name a few. Categorical data, data

16 16 "Affinity Propagation - Java," Cognitive Foundry, , accessed April 15, 2019,

https://foundry.sandia.gov/releases/latest/javadoc-api/index.html.
17 R. Refianti, A.B. Mutiara, and S. Gunawan, "Time Complexity Comparison Between Affinity

Propagation Algorithms," Journal of Theoretical and Applied Information Technology 95, no. 7 (April 15,
2007):

18 Paul Barrett, "Euclidean Distance Raw, Normalized, and Double‐scaled Coefficients," The
Technical Whitepaper Series, September 2005, , accessed April 15, 2019,
https://www.pbarrett.net/techpapers/euclid.pdf.

18

whose features are categories or strings, presents a challenge in that categorical values cannot be represented

as existing in some physical space like numeric data. For example, expressing the distance between Male

and Female cannot be achieved by plotting Male and Female onto a plane. However, if we recognize that

categorical data is dataset dependent, that is the dataset used will contain only the categories included in

each attribute, it may be possible to think of a distance between two categorical values with respect to all

categories in the dataset.

This approach, written by Amir Ahmad and Lipika Dey titled, “A K-Mean Clustering Algorithm

for Mixed Numeric and Categorical Data”19, uses a conditional probability approach to find a similarity

measurement between two categorical values x and y in Attribute i. The algorithm calculates the co-

occurrence of values x and y in Ai with all other categorical values in Attributes j. where j does not equal

i. For example, I have three attributes where Attribute A has the following categories: Male, Female, and

Undeclared, Attribute B has the following categories, Yes, and No, and Attribute C has the following

categories, House, Apartment, and Condo. To find the distance between Male and Female, I find the

conditional probability of Yes, given Male, and Yes given Female. Then I find the conditional probability

of No, given Male, and No given Female, and continue this process until all conditional probabilities are

computed for all attribute features. This measurement of co-occurrence is calculated by finding the

maximum of the conditional probability of X given Aj(Category) and Y given Aj(Category). We first define

the distance between values x and y of attribute I with respect to Attribute j shown in Figure 11 20.

where w is a subset of values and ~w is the complement of w, of Aj which maximizes the value of

𝑃𝑃𝑖𝑖(𝜔𝜔 | 𝑥𝑥) + 𝑃𝑃𝑖𝑖(~𝜔𝜔 | 𝑦𝑦). For example, for x = Male, and y = Female, the distance between Male and Female

19 Amir Ahmad and Lipika Dey, "A K-mean Clustering Algorithm for Mixed Numeric and

Categorical Data," Data & Knowledge Engineering 63, no. 2 (2007): , doi:10.1016/j.datak.2007.03.016.
20 ibid

Definition 1: 𝛿𝛿𝑖𝑖𝑖𝑖(𝑥𝑥,𝑦𝑦) = 𝑃𝑃𝑖𝑖(𝜔𝜔 | 𝑥𝑥) + 𝑃𝑃𝑖𝑖(~𝜔𝜔 | 𝑦𝑦)
Figure 11: Distance Between Attribute values x and y for Ai with respect to Attribute Aj.

19

requires the conditional probability of all categories in Attributes j ≠ i. If the categories in Attribute j are

Yes, and No, then, 𝛿𝛿𝑖𝑖𝑖𝑖(𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀,𝐹𝐹𝑀𝑀𝑚𝑚𝑎𝑎𝑀𝑀𝑀𝑀) = 𝑚𝑚𝑎𝑎𝑥𝑥(𝑃𝑃1(𝑌𝑌𝑀𝑀𝑠𝑠|𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀),𝑃𝑃1(𝑌𝑌𝑀𝑀𝑠𝑠|𝐹𝐹𝑀𝑀𝑚𝑚𝑎𝑎𝑀𝑀𝑀𝑀)) + 𝑚𝑚𝑎𝑎𝑥𝑥(𝑃𝑃1(𝑁𝑁𝑁𝑁|𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀),

𝑃𝑃1(𝑁𝑁𝑁𝑁|𝐹𝐹𝑀𝑀𝑚𝑚𝑎𝑎𝑀𝑀𝑀𝑀)).

Definition 2 21, shown in Figure 12, expands the equation of finding the maximum of the

conditional probabilities of our first definition to find the maximum of the conditional probabilities for all

attribute features. The total of all maximum conditional probability values is then divided by the number of

attributes – 1. This is the “distance” for this categorical pair. For example, if we expanded our first example

to find the maximum probability of all attribute features and the number of attributes is 10, then

𝛿𝛿(𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀,𝐹𝐹𝑀𝑀𝑚𝑚𝑎𝑎𝑀𝑀𝑀𝑀) = � 1
10−1

�∑ 𝛿𝛿𝑖𝑖𝑖𝑖(𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀,𝐹𝐹𝑀𝑀𝑚𝑚𝑎𝑎𝑀𝑀𝑀𝑀)𝑖𝑖=1…10,𝑖𝑖≠𝑖𝑖 , where j represents the attribute other than

Attribute I.

Because this technique will not use numeric attributes, definition 3 of Ahmad and Lipika’s paper

is altered to not include numeric attributes. Therefore, definition 3 22 is rewritten as the sum of all distance

pairs between two categories as the similarity of two records: D1, and D2. This equation is shown in Figure

13.

where m represents all categorical attributes. If data contains numeric values for attributes, this thesis will

convert the attribute into bins, where the bin name will represent the categorical value for the binned data

itself. How binning will be performed on the attribute is task dependent and must be done as to not over

simplify the distribution of the values in the attribute. The reason for eliminating the process of converting

21 Amir Ahmad and Lipika Dey, "A K-mean Clustering Algorithm for Mixed Numeric and Categorical

Data," Data & Knowledge Engineering 63, no. 2 (2007): , doi:10.1016/j.datak.2007.03.016
22 ibid

Definition 2: 𝛿𝛿(𝑥𝑥,𝑦𝑦) = � 1
𝑚𝑚−1

�∑ 𝛿𝛿𝑖𝑖𝑖𝑖(𝑥𝑥,𝑦𝑦)𝑖𝑖=1…𝑚𝑚,𝑖𝑖≠𝑖𝑖

Figure 12: Equation for distance between values x and y in any given attribute Ai.

Definition 3: 𝐷𝐷𝑖𝑖𝑠𝑠𝐷𝐷(𝐷𝐷1,𝐷𝐷2) = ∑ (𝛿𝛿(𝑋𝑋𝑡𝑡 ,𝑌𝑌𝑡𝑡))2𝑚𝑚
𝑡𝑡=1

Figure 13: Equation for the distance between record D1 and D2

20

numeric values using Ahmad and Dey’s approach is that the technique did not perform well with any

clustering algorithm, especially affinity propagation. It created clusters with large errors. In order to simply

the process, this thesis eliminates numeric attributes by binning them manually.

Preference Value

The preference value is the priori suitability of a point i to serve as an exemplar23. The Preference

value is set to the diagonal of the similarity matrix. Data points that maximize the sum of the availability

and responsibility and exceed this preference value are defined as an exemplar. Preference values that are

too low will produce many clusters, as most if not all data points are going to exceed a low preference

value. Preferences that are high in value produce low number of clusters. Because of this the authors of

affinity propagation suggest the preference value be set around the median value found in the similarity

matrix24. In reference to the classification technique affinity propagation raises the question of how accurate

are the clusters returned, and will the resultant exemplars serve the purpose of producing a high enough

accuracy with as few clusters as possible?

This is the challenge to affinity propagation raising the importance of finding an ideal preference

value. If there are too many centroids then the compression of the dataset is minimal. If there are too few

centroids then the compression of the dataset is too extreme. Therefore it is necessary to isolate the

preference value and find an ideal setting.

Isolating this preference value can be achieved in a few ways. One way is to analyze the data to see

if the clusters contain good patterns and meaning. If not, the preference is changed, forming a new cluster

set until meaning is achieved. For small data this could be plausible, yet for large data, analysis in this

fashion is not practical. Another method automates this process by calculating information gain in the

23 B. J. Frey and D. Dueck, "Clustering by Passing Messages Between Data Points," Science 315, no.

5814 (2007): , doi:10.1126/science.1136800
24 ibid

21

resultant cluster set with respect to another resultant cluster set from a different preference value. This

method is called The Elbow Method.

 Evaluating a preference value using the Elbow Method

The Elbow Method calculates the variance of change. The challenge is to find something within

affinity propagation which can represent change between different cluster results. One element of change

can be explained as a function of the number of clusters with respect to the error of the clusters. The elbow

method can then use entropy to ascertain a method of information gain to choose a number of clusters so

that adding more clusters does not give a better model of the data25. Entropy characterizes the amount of

information found within our cluster result, whereas information gain is the amount of information gained

in the addition of another process. One way to perceive information gain from a clustered result is to analyze

the average error in the clustered dataset. When any clustering algorithm creates a set of resultant clusters,

there is always error in the clusters, represented by the distance of the data point in the cluster from its

centroid. In the case of categorical values this will be the value of the similarity matrix M(i, k) where i is

the data point and k is the exemplar. The entropy from one clustered result to another is the difference of

the average error between each cluster result. If the error delta is small, the entropy is small and thus the

information gain is small. We want to maximize the information gain by finding where the error has a

significant delta. This might not be the largest delta if a specific run of affinity propagation did not result

in convergence. Clustering a dataset without convergence can lead to distortion in the cluster set and thus

effect the error. For example, if affinity propagation does not converge for preference value -2, but does for

preference value 1, a cluster set result may have an error much higher or lower than 1. It can result in a

spike or valley in the resultant line graph that will distort our measurements. If this happens, this method

will ignore that preference value as convergence is desirable in affinity propagation. The Elbow method

will show the entropy of each clustered result to discover the cluster set which will have the greatest

25 Purnima Bholowalia and Arvind Kumar, "EBK-Means: A Clustering Technique Based on Elbow

Method and K-Means in WSN," International Journal of Computer Applications 105, no. 9 (November
2014): , https://pdfs.semanticscholar.org/5771/aa21b2e151f3d93ba0a5f12d023a0bfcf28b.pdf.

22

information gain. From this clustered result a preference value should be related. It is the ideal preference

value.

An example can give some insight to this method. Let us say we have a similarity matrix defined

from categorical data using the technique of categorical difference pairs above and now we desire to cluster

this dataset. Taking the median of the similarity matrix and expanding the value for a range of about 10 to

15 preference values, we can run affinity propagation for each preference value of the dataset. For each run

of affinity propagation, we calculate the average error of the total clustered dataset as well as store the

number of clusters and the preference value which produced this number of clusters.

An example illustration is shown in Figure 14. In this example the x-axis represents the number of

clusters which represents a preference value range of -8 to 5 and y-axis represents the error the cluster result

set produced. Each value of the x-axis represents affinity propagation run with a specified preference value

which returns the number of clusters on the x-axis. The line chart shows, starting with the lowest number

of clusters, the error is large and eventually as the cluster number increases the delta in the error decreases.

From cluster number 74 to cluster number 241 we see very little change in error, thus a low entropy from

adding more clusters starting with a result of 74 clusters. From the line graph we can show a “Goldilocks

Zone” where the entropy of error is the highest compared to all clustering results. This zone represents

affinity propagation converging at 17, 22, and 74 clusters. It would be up to the individual to decide which

clustering amount is preferable to the problem at hand. That is, a user might feel 74 clusters is too many,

therefore selecting 22 or 17 as preferable. The decision of what preference value to use is task dependent.

If our clustered result is to be used for a prediction model, using 74 exemplars might be acceptable. In the

case of a predictive model, it might be beneficial to try all three convergence results in our graph and

calculate accuracy.

23

Running affinity propagation 10 to 15 times for any given dataset is tedious, thus it would be

beneficial if there was some way to automate it. By using the Law of Cosines, we can design an algorithm

that runs AP between a range of preference values and measures the change of error by measuring the angle

at a point in the line. The equation of the law of Cosines and its application to our graph is shown in Figure

15.

Whichever point produces an angle that is small we save for consideration as smaller angles represent high

entropy. We can then analyze each point where the elbow measurement was significant, and we can get a

preference value that will produce for us the number of clusters at that elbow point. This technique will be

used to get the preference value when running affinity propagation on any dataset.

Figure 15: Elbow Method analysis of 3400 records of Data

𝑎𝑎2 = 𝑏𝑏2 + 𝑐𝑐2 − 2𝑏𝑏𝑐𝑐 cos𝐴𝐴

Figure 14: Application of Law of Cosines to measure entropy between cluster sets

c

b

a

24

Summary of Technique

The entire technique described in this chapter can be summarized as our training function for our

classifier. That is, the process of training our classifier uses affinity propagation to get exemplar data from

datasets. The entire process is shown in the algorithm in Figure 16.

Figure 16: Algorithm: Training for classification using affinity propagation (binary classifier)

The algorithm trains the data by loading the dataset which is in CSV format, comma delimited,

then splits the data into two sets: a training set and test set. It sets the test set aside and splits the training

data set again into two datasets (or more datasets) which reflect the classes we are matching against. It takes

each class dataset and constructs a similarity matrix for each. Each similarity matrix is sent to a method to

calculate the ideal preference value using the elbow method and returns that preference value for that

similarity matrix. affinity propagation is then run against each similarity matrix with the preference paired

to that similarity matrix. affinity propagation returns the exemplars we are after. We save the exemplars

from each class to a file which we will use for our testing. This file serves as the memory for our classifier

as this thesis will show exemplars from earlier training sets work on datasets in the future. These files could

be expanded as well with new exemplars added and others removed based on newer models constructed.

25

CHAPTER 3

CLASSIFICATION MODEL AND PREDICTION FUNCTION

Classification Using Affinity Propagation Exemplars

The classification process is quite simple as the training process has already been completed. The

training data represents exemplar data for each class. This exemplar data describes potential clusters which

exist for that class. The classifier will take each record and determine the probability of match for each

class. Whatever class returns the highest probability of match, becomes the class. This is novel compared

to Naïve Bayes, and Decision Trees which use the whole dataset to calculate conditional probabilities for

records belonging to a particular class then uses the same process to calculate the test data. A great feature

contained in Naïve Bayes and Decision Tree classifiers is the total transparency of the classification

function. For businesses it is important to not only know to what class a customer may belong, but the

features of the customer that placed it into the class. Classifiers like Artificial Neural Networks, and Support

Vector Machines have high accuracy, but very little transparency when it comes to how the classes are

determined. In the case of ANNs and SVMs the transparency is analogous to a black box, there is no way

to determine practically how the classification was made, other than to trust the computations that

performed the classification. Full transparency is sought in this thesis as it provides practical knowledge of

what constitutes the qualities of being defined in a particular class, and the output of the clustering result

set provides full transparency of the qualities which make up each feature set.

The basic idea behind the classifier is to calculate a probability of match for each class and classify

the record based on which class returns the highest probability of match. The classification process uses an

algorithm known as Cosine Similarity. The equation for Cosine Similarity is shown in Figure 17 26.

𝑠𝑠𝑖𝑖𝑚𝑚𝑖𝑖𝑀𝑀𝑎𝑎𝑟𝑟𝑖𝑖𝐷𝐷𝑦𝑦 = cos(𝜃𝜃) =
𝐴𝐴 ∙ 𝐵𝐵

‖𝐴𝐴‖‖𝐵𝐵‖
=

∑ 𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖𝑛𝑛
𝑖𝑖=1

�∑ 𝐴𝐴𝑖𝑖2𝑛𝑛
𝑖𝑖=1 �∑ 𝐵𝐵𝑖𝑖2𝑛𝑛

𝑖𝑖=1

Figure 17: Cosine Similarity Equation

26 Edel Garcia, "Cosine Similarity Tutorial," Minerazzi, April 10, 2005, , accessed April 15, 2019,

http://www.minerazzi.com/tutorials/cosine-similarity-tutorial.pdf.

26

Cosine Similarity uses vector dot products which would mean having to convert each record into a

vector representation, however because of how we can represent the categorical data, the following process

produces the exact same result as Cosine Similarity every time. The process is as follows.

Figures 18 shows one class set for “Applied”. Another class set exists for all records “No Decision”.

Figure 19 shows a test record we want to test against each class set.

Figure 18: Example of exemplars from affinity propagation Clustering

F Non Hispanic/Latino WH PAID FF Catholic Y Boyer Transcript Mailed College Recr

Figure 19: Record to test classifier

If we check each attribute of the test record against each attribute of the first record we see that 6

of the 9 attributes match, giving us 9/9 for the probability of match. The second record returns 6/9 for

probability of match, and so on. If we were to use Cosine Similarity we would have to convert the test

record to a vector. One method of conversion is called “One Hot Conversion”. This converts features of an

attribute to a binary vector representation where one of the binary values is toggled as 1. For example, the

first attribute contains 2 features, therefore the binary representation contains two bits: male = 01, and

female = 10. One of the bits is toggled to 1. Attribute 3 contains 6 features, therefore the binary

representation contains 6 bits: white = 100000, black = 010000, Asian = 001000, and so on. If this

conversion extends the length of the record for each attribute, a vector representation will emerge containing

only 1s and 0s. The number of 1s in the vector will always be the number of attributes in the record

according to One Hot Conversion.

 Taking the equation in Figure 17, the numerator is a dot product of the test record vector and the

record in the training set we are matching against. If the vector representation of the test record is

27

(A) 00100000 100 01000 10000 01 001 010 0010 01

The spacing clearly represents the delineation between the attribute features. Normally this vector is all one

single binary value. The first training record is represented as

(B) 00100000 100 01000 10000 01 001 010 0010 01

The dot product is 𝐴𝐴 ∙ 𝐵𝐵 which takes each 𝐴𝐴𝑖𝑖 and 𝐵𝐵𝑖𝑖 and multiplies them together. If either vector value is

zero the result is zero, therefore only the vector values where both are 1 remain. In this example we will

have the following result from the dot product of A and B.

00100000100010001000001001010001001

The denominator is the magnitude of the vector A multiplied by the magnitude of the vector B. The

magnitude is measured by summing the number of 1s in our vector. For A and B they will always be the

same because each vector is a representation of each attribute feature. Each record contains the same

number of attribute features; thus the magnitude of A and B are always the same. Thus plugging our values

into the equation for Figure 17 we have the following,

9
√9√9

=
9

3 ∗ 3
=

9
9

= 1

This is the same value we got from our initial matching algorithm. Applying this method to the second

training record we get the following,

6
√9√9

=
6
9

= .6667

This application of Cosine Similarity can be done for each training record. A mean must be taken so as to

normalize the value in case either class set is not equal or contains more records than the other. The class

set which returns a higher probability of match will be the class the record will be classified as.

Algorithm of Technique

The technique proposed in this thesis can be represented through the following algorithm shown in

Figure 19: The testing function takes each record and looks for a class of exemplars that returns the highest

28

probability of match. This exemplar class becomes the prediction class and this is compared to the actual

class the record belongs. It is important to realize the testing data was not a part of the training set and was

therefore not a part of the clustering algorithm. It is also worth noting that the exemplars saved during the

process of creation, the exemplars which are compared with the test records according to the algorithm

above, are saved to a file. This file can be edited by removing exemplars that are not “important” and adding

new exemplars if a new dataset is received. For example if you clustered a dataset for 2017 then received a

new dataset for 2018, it is possible to combine the datasets together. Once a training set is computed, it is

not required to run a clustering of the dataset again. All new records can be compared to a new dataset. This

thesis will show how testing a new dataset on a previous year’s dataset has highly favorable results.

Figure 20: Algorithm for Classification Model (for binary classifiers only)

29

CHAPTER 4

ILLUSTRATING OUR PREDICTION MODEL ON VARIOUS DATASETS

Breast Cancer

To help illustrate this algorithm and technique this thesis will use four datasets: three from UCI

data repository and a real world dataset containing student enrollment data from a university of 4000

students. The first dataset this thesis will explore is a dataset for Breast Cancer. Taken from the UCI

Repository, the dataset contains 286 records, 9 attributes and all data records are categorical27.

The results using this technique, shown in table 1, were not favorable.

BREAST CANCER DATASET #1

 AP Classification
Model

PRECISION 28%
RECALL 19%
ACCURACY 61%
FSCORE 23%

Table 1: Breast Cancer Dataset #1 Results classified with AP Classification

A reason for the unfavorable results is most likely due to the lack of data and therefore the lack of

exemplars to represent the data. Clustering algorithms need a good representation of data to develop the

clusters that help explain the data. If there isn’t enough information, the clusters become sparse and the

error will be significantly higher. The overall accuracy of the clusters for this training set averaged around

70% which is not very good, but okay.

To compare these results with another classifier I have chosen Naïve Bayes due to its similarities

and its ease of use with categorical data. I also compared the results to using Cosine Similarity on the entire

set, which therefore compares the use of the same classifier with two different training sets: a whole training

27 Milan Soklic and Matjaz Zwitter, "Breast Cancer Data Set," UCI Machine Learning Repository,

July 11, 1988, , accessed April 15, 2019, https://archive.ics.uci.edu/ml/datasets/Breast Cancer.

30

set and a compressed training set. Naïve Bayes did fare better at 61%, shown in Table 2, thus Naïve Bayes

appears stronger with fewer records on a potentially rich dataset. Cosine Similarity also returned very good

results from using the whole dataset. The lesson from this dataset shows that the prediction function fails

when the training data is too small. When we have a richer feature set and more records our prediction

function improves dramatically..

BREAST CANCER DATASET #1

 Naïve Bayes Cosine Similarity

PRECISION 28% 42%
RECALL 19% 55%
ACCURACY 61% 72%
FSCORE 23% 48%

Table 2: Breast Cancer Dataset Results Classified with Naive Bayes and Cosine Similarity

Breast Cancer Dataset #2

A second dataset for breast cancer exists based on a Wisconsin study. The dataset contains 699

records, 10 attributes, and a binary classifier for benign or malignant. Created by Dr. William H. Wolberg

from the university of Wisconsin, Madison in 199228, the results of the technique, shown in table 3, on this

dataset are far more favorable.

BREAST CANCER DATASET #2

 AP Classification
Model

PRECISION 86%
RECALL 98%
ACCURACY 88%
FSCORE 92%

Table 3: Breast Cancer Dataset #2 Results with AP Classification

28 William H. Wolberg, "Breast Cancer Wisconsin (Original) Data Set," UCI Machine Learning

Repository, July 15, 1992, , accessed April 15, 2019, https://archive.ics.uci.edu/ml/datasets/Breast Cancer
Wisconsin (Original).

31

This dataset shows with enough records and features, it will improve the accuracy of the classifier.

This goes without saying as any dataset will need enough data for any classifier to have a higher accuracy.

Also a dataset where the features are well represented helps to increase not only accuracy, but a well-defined

cluster set. Running the same dataset on Naïve Bayes produced results shown in Table 4. Naïve Bayes fared

well with its prediction model, however our classification model uses less data and results in a higher

accuracy.

What is more interesting are the results for cosine similarity. Comparing these results to our

classifier the measurements are comparable. The difference between the two classifications is that the AP

Classification training set used 37% of the original dataset used by this run of Cosine Similarity. Although

my accuracy for AP Classification is 3% lower, the fact the numbers are so close shows potential.

BREAST CANCER DATASET #2

 Naïve Bayes Cosine Similarity

PRECISION 83% 88%
RECALL 94% 99%
ACCURACY 84% 91%
FSCORE 88% 93%

Table 4: Breast Cancer Dataset #2 Results with Naive Bayes Classification

Mushroom Dataset

The next dataset contains information about various mushrooms also from the UCI Machine

Learning Repository. It is a dataset which contains 8124 records, 22 attributes, with all data stored as

categorical values. The records themselves are drawn from the Audubon Society Field Guide to North

32

American Mushrooms29. The classification is binary: poisonous or edible. The classification technique

presented in this thesis provided the following results shown in Table 5.

MUSHROOM DATASET

 AP Classification
Model

PRECISION 85%
RECALL 97%
ACCURACY 90%
FSCORE 91%

Table 5: Mushroom Dataset Results using AP Classifier

An accuracy of 90% is excellent indeed, more so recall of 97% demonstrates low False Positive

results from this analysis which are less desirable than True Negatives. Also analysis of the data shows a

perfect 50% split in the classification data. Further analysis into the output of the algorithm itself showed

the number of exemplars produced for each classification was around 140. The training set is roughly 5686

records with roughly 50% of the records in each classification. This means the exemplars themselves

represent about 5% of the original data, with the test set represent 2500 records. As the classification shows,

having a complete training set where the exemplars indeed represent the data assignments well, we can

build a prediction model that uses a fraction of the data, and still classify the data well, and in some cases

perfectly.

29 Jeff Schlimmer, "Mushroom Data Set," UCI Machine Learning Repository, April 27, 1987, ,

accessed April 15, 2019, https://archive.ics.uci.edu/ml/datasets/Mushroom.

33

Applying the same data to Naïve Bayes and Cosine Similarity, the results are shown in table 6.

MUSHROOM SET

 Naïve Bayes Cosine Similarity

PRECISION 56% 83%
RECALL 93% 96%
ACCURACY 59% 88%
FSCORE 70% 89%

Table 6: Mushroom Dataset Results Using Naive Bayes Classification

From this analysis we see that our AP classifier, which is using only 5% of the original training set, is now

out performing Cosine Similarity which uses the whole training dataset. Let’s do one more test with student

enrollment data.

Student Enrollment Data

A final dataset comes from a private institution, Saint Vincent College in Latrobe Pennsylvania.

The records consist of around 19000 enrollment records with 15 attributes. The data was truncated to 8000

records as 17000 out of the 19000 records are related to a single class feature. This would have biased the

data greatly. Therefore the data was truncated so the class distribution is 25% for “Applied” and 75% for

“No Decision”. Removing more records with the Attribute feature “No Decision” in my mind might corrupt

the data. The idea of this prediction is to decide if a student who fills out an inquiry form will formally

apply to the school. The results of this test are shown in table 7.

STUDENT ENROLLMENT DATASET

 AP Classification Model

PRECISION 98%
RECALL 77%
ACCURACY 94%
FSCORE 86%

Table 7: Student Enrollment Dataset Results using affinity propagation Classification

34

The results in testing this same dataset using Naïve Bayes and Cosine Similarity on the whole training set

are shown in table 8.

STUDENT ENROLLMENT DATASET

 Naïve Bayes Cosine Similarity

PRECISION 97%
RECALL 65%
ACCURACY 77% 90%
FSCORE 78%

Table 8: Student Enrollment Dataset Results Using Naive Bayes classification

The AP Classifier is using only 1% of the training set used by Cosine Similarity in the results shown

in Table 8. The AP classifier is again out performing a classification of the whole dataset.

One additional test is to use the training set saved from the student enrollment cluster set from 2017

and apply a dataset from 2018 to see how accurate future records can be classified using older exemplars.

The one unique feature of this technique is that it saves the training data in a file. This file can be edited in

order to improve the quality of the training set. The training file is initialized with a single data set at first,

however it is possible to run another dataset through affinity propagation to compile another set of

exemplars and include these exemplars into the training set. The following test run does not add or alter the

training set from 2017 in any way and is run against the entirety of 2018 dataset containing the same

attributes, features, and about 19000 records. The results of this run are shown in table 9.

35

STUDENT ENROLLMENT DATASET

 AP Classification Model

PRECISION 97%
RECALL 74%
ACCURACY 93%
FSCORE 84%

Table 9: Student Enrollment Dataset from 2018 applied as Test data against 2017 Training set

Figure 21: Comparison of accuracy between 3 classification models

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Breast Cancer
Dataset #1

Breast Cancer
Dataset #2

Mushroom
Dataset

Student
Enrollment

Student
Enrollment (2017)

AP Classification Model Naïve Bayes Cosine Similarity Whole

36

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

Conclusions

This thesis illustrates a novel way to build a training set for classification purposes by using a

reduced dataset represented as exemplars from the output of affinity propagation as a training set. It shows

that even a subset of the dataset, as long as this subset contains the most important records, measured by

their return as exemplars from a clustered output, will serve as training data for a classifier and will classify

as well as Naïve Bayes and Cosine Similarity on the whole training set. This thesis also shows that the

exemplars chosen from a dataset at one point, will still represent new data records for the same dataset for

at least one year into the future with an accuracy of over 90%. This illustrates that the exemplars from a

given year of data can still act as exemplars for another given year of data. However, as data can fluctuate

over time, the accuracy of the training data for a given year will start to produce lower accuracies over time.

This can be addressed by creating new exemplars for additional data.

Another key feature to this technique is the training data itself. The training data is saved to a file

which is sent to a classification model. This file can be edited. It can be added to, and even exemplars

removed. Additional logic could be added to the file to show which exemplars are getting the most hits

from new records. The exemplars that are getting fewer hits, could be exemplars worth removing.

Clustering new data with new exemplars outputted can be added to the training file as well. If this is done,

procedures to make sure that no duplicates exist and that there is a clear delineation between the exemplars

of all classes would need to be done. A process was performed for the binary exemplar data to ensure that

no exemplar matches another exemplar in the other class.

This technique is also transparent. That is, how it classifies records is intuitive to the user by reading

the training file which contains all exemplars containing the feature information from the dataset unaltered.

Each exemplar array describes the qualities which make up the class. This information can be used easily

37

to explain features in the data using real words and not numeric values such as the output returned from

other classifiers as Artificial Neural Networks and Support Vector Machines.

Some of the negative features of the technique are shown with the breast cancer data where small

datasets do not give a good accuracy result. The overhead in creating the exemplars is extensive, however

once the training set is created it does not have to be recreated. As shown with the student data for 2018

which was tested with exemplars created using 2017, the accuracy for prediction was still very strong. Also

classification is biased towards the clustering of the data itself. This occurs in other classifiers as well where

the distribution of records for the classifications are not even or close to even. For example, if the number

of records which contains class = A is 10% of the whole dataset, the dataset needs to be truncated. This is

the same for other classifiers where the number of records which contain information for each class needs

to be evenly distributed. Finally, this technique is not tested for numeric data. However given the classifier

is built for discrete values, and small features sets for attributes, datasets containing numeric attributes like

age or distance will not cluster well unless these numerical attributes are “binned”, that is specific ranges

are translated into a category or bin. All datasets for this technique are tested using only datasets containing

full categorical values. If any attributes were numeric, they were converted to categories before running

affinity propagation.

Future Work

Expanding this technique to be able to include numeric attributes would lend itself well to many

more datasets. The categorical algorithm used to calculate a categorical pair’s distance can be expanded to

include numerical values and can be found in Ahmad and Dey’s paper30. Other techniques not explored are

adding to the exemplar records based on clustering of another dataset. Benchmarking this technique against

30 Amir Ahmad and Lipika Dey, "A K-mean Clustering Algorithm for Mixed Numeric and

Categorical Data," Data & Knowledge Engineering 63, no. 2 (2007): , doi:10.1016/j.datak.2007.03.016.

38

other classifiers such as Artificial Neural Networks, and Decision Trees to calculate where it stands with

accuracy.

Related to the affinity propagation, other ways to zero in on an ideal preference value, and an ideal

damping factor could help increase accuracy. Either value is highly volatile to the creation of clusters so

that a value that is not ideal can result in distorted cluster sets or not enough clusters or too many clusters

to describe the dataset. This extension of the algorithm lends itself well to the idea of adaptive techniques

especially related to affinity propagation. Because of affinity propagation strong connection to the values

of the preference and damping factor, it is possible to get entirely different cluster returns, and in some

cases no cluster returns at all. By applying adaptive techniques which can gauge the damping factor’s effect

on convergence, and the preference value’s effect on the quality of the returned clusters, it is possible to

increase the accuracy of the exemplars chosen and thus increase the performance and accuracy of the

classifier.

What if other clustering algorithms were used? KMeans was not used as it does not provide clear

cut features when it returns its centroids. The centroids for KMeans are not actual data points. However a

data point could be extracted using a few methods. For example, it may be possible to get a data record that

is an exemplar to the cluster by finding the closest record to the centroid. However what if the cluster is

sparse? Then it may be necessary to “build” an exemplar from the majority of values found in all data

assignments. Either way, this process will take more time in constructing the training dataset. KMeans out

performs affinity propagation in relation to the execution time. That is affinity propagation can be slow in

reaching convergence, however KMeans reaches convergence quickly, therefore for very large dataset, it

may be more practical to use an adapted technique of using KMeans over affinity propagation to get the

exemplars of clusters from a dataset. affinity propagation starts to get impractical if you have around 10,000

records, therefore depending on the speed of the computer, this could mean a matter of minutes to get

exemplars over a matter of days.

39

REFERENCES

"Affinity Propagation - Java." Cognitive Foundry. Accessed April 15, 2019.
https://foundry.sandia.gov/releases/latest/javadoc-api/index.html.

Ahmad, Amir, and Lipika Dey. "A K-mean Clustering Algorithm for Mixed Numeric and
Categorical Data." Data & Knowledge Engineering63, no. 2 (2007): 503-27.
doi:10.1016/j.datak.2007.03.016.

Ahmad, Amir, and Lipika Dey. "A K-mean Clustering Algorithm for Mixed Numeric and
Categorical Data." Data & Knowledge Engineering63, no. 2 (2007): 503-27.
doi:10.1016/j.datak.2007.03.016.

Barrett, Paul. "Euclidean Distance Raw, Normalized, and Double‐scaled Coefficients." The
Technical Whitepaper Series. September 2005. Accessed April 15, 2019.
https://www.pbarrett.net/techpapers/euclid.pdf.

Bholowalia, Purnima, and Arvind Kumar. "EBK-Means: A Clustering Technique Based on
Elbow Method and K-Means in WSN." International Journal of Computer Applications105, no.
9 (November 2014): 17-24.
https://pdfs.semanticscholar.org/5771/aa21b2e151f3d93ba0a5f12d023a0bfcf28b.pdf.

Cherkassky, Vladimir S., and Filip Mulier. Learning from Data: Concepts, Theory, and
Methods. 2nd ed. Hoboken, NJ: IEEE Press/Wiley-Interscience, 2007.

Coenen, Frans. "Data Mining: Past, Present and Future." The Knowledge Engineering Review26,
no. 1 (2011): 25-29. doi:10.1017/s0269888910000378.

Frey, B. J., and D. Dueck. "Clustering by Passing Messages Between Data Points." Science315,
no. 5814 (2007): 972-76. doi:10.1126/science.1136800.

Garcia, Edel. "Cosine Similarity Tutorial." Minerazzi. April 10, 2005. Accessed April 15, 2019.
http://www.minerazzi.com/tutorials/cosine-similarity-tutorial.pdf.

Jain, A. K., M. N. Murty, and P. J. Flynn. "Data Clustering: A Review." ACM Computing
Surveys31, no. 3 (1999): 264-323. doi:10.1145/331499.331504.

40

Kalechofsky, Hal. "HomeA Simple Framework for Building Predictive Models." M Squared
Consulting. September 2016. Accessed April 15, 2019. http://www.msquared.com/.

Kumar, Vipin, Pan-Ning Tan, Michael Steinbach, and Anuj Karpatne. "Cluster Analysis: Basic
Concepts and Methods." In Introduction to Data Mining, 525-612. 2nd ed. New York, NY:
Pearson Education, 2005.

Lawson, Daniel, and Daniel Falush. "Similarity Matrices and Clustering Algorithms for
Population Identification Using Genetic Data." FineSTRUCTURE. March 1, 2012. Accessed
April 15, 2019. https://people.maths.bris.ac.uk/~madjl/finestructure/.

Refianti, R., A.B. Mutiara, and S. Gunawan. "Time Complexity Comparison Between Affinity
Propagation Algorithms." Journal of Theoretical and Applied Information Technology95, no. 7
(April 15, 2007): 1497-505.

Schlimmer, Jeff. "Mushroom Data Set." UCI Machine Learning Repository. April 27, 1987.
Accessed April 15, 2019. https://archive.ics.uci.edu/ml/datasets/Mushroom.

Soklic, Milan, and Matjaz Zwitter. "Breast Cancer Data Set." UCI Machine Learning Repository.
July 11, 1988. Accessed April 15, 2019. https://archive.ics.uci.edu/ml/datasets/Breast Cancer.

Trono, John, Dave Kronenberg, and Patrick Redmond. "Affinity Propagation, and Other Data
Clustering Techniques." Affinity Propagation, and Other Data Clustering Techniques. Accessed
April 15, 2019. http://academics.smcvt.edu/.

Wolberg, William H. "Breast Cancer Wisconsin (Original) Data Set." UCI Machine Learning
Repository. July 15, 1992. Accessed April 15, 2019.
https://archive.ics.uci.edu/ml/datasets/Breast Cancer Wisconsin (Original).

41

APPENDIX

PYTHON CODE FROM PROJECT

from sklearn.cluster import AffinityPropagation
import numpy as np
import pandas as pd
import time
import math
import random
import matplotlib
matplotlib.use('TkAgg') #For OSX
from tkinter import *

class AttributeInformation:
 "This object contains attribute information including all attribute distance pairs and the
significance of the attribute"
 significance = 0.0
 distancePairs = {} #using dict syntax [("value1:value2", value), ("value1|value2", value)]
 attributeName = ""
 attributeType = ""
 WithRespectToAttributej = ""

 def setDistancePair(self, Valuex, Valuey, Value):
 stringValue = Valuex + ":"+ Valuey
 self.distancePairs[stringValue] = Value

 def getDistancePair(self, Valuex, Valuey):
 stringValue = Valuex + ":"+ Valuey
 return self.distancePairs[stringValue]

 def setSignificance(self, S):
 sum = 0
 lenS = len(S)

 for key in self.distancePairs:
 sum = sum + float(self.distancePairs[key])

 if len(S) > 1:
 self.significance = sum / ((lenS * (lenS - 1)) / 2)
 else:
 self.significance = 0

 def getSignificance(self):
 return self.significance

This allows me to create an attribute object, and return the object
def New_AttributeInformation(distances, S, attributeName, attributeType):
 ob = AttributeInformation();
 ob.distancePairs = distances
 ob.setSignificance(S)
 ob.attributeName = attributeName
 ob.attributeType = attributeType

 return ob

Reads my similarity matrix from SimilarityMatrixFileName using
SimilarityMatrixDelimiter as the delimiter.
def ReadSimilarityMatrix(SimilarityMatrixFileName, SimilarityMatrixDelimiter):
 return np.loadtxt(SimilarityMatrixFileName, delimiter=SimilarityMatrixDelimiter);

Compute Affinity Propagation using the similarity Matrix simData and
the preference preferenceValue
def ComputeAffinityPropagation(preferenceValue, simData):

42

 af = AffinityPropagation(preference=preferenceValue,
 affinity='precomputed',
 verbose=False,
 max_iter=300,
 damping=.9)
 af.fit(simData)

 return af

This function was created specifically to place all commands that will
run this program in AP in one place.
def RunAffinityPropagationCommands(Matrix, SimFile, preference, ResultsFilename):

 print("Reading Similarity Matrix from File")
 Matrix = ReadSimilarityMatrix(SimFile, ",")

 print("Running Affinity Propagation")
 start = time.time()
 af = ComputeAffinityPropagation(preference, Matrix)
 end = time.time()

 cluster_centers_indices = af.cluster_centers_indices_
 labels = af.labels_
 n_clusters_ = len(cluster_centers_indices)
 print('Estimated number of clusters: %d' % n_clusters_)

 WriteResultsToFile(ResultsFilename, labels, cluster_centers_indices)

#Calcuates the accuracy of the cluster by adding together all the
#similarity values from the assignment to the centroid.
def GetTotalAccuracyOfClusters(FullDBInClusterFormAffinity):
 FullTotalAccuracy = 0.0

 #For each Cluster
 for i in range(len(FullDBInClusterFormAffinity)):

 Attributes = FullDBInClusterFormAffinity[i][0]
 a = np.array(FullDBInClusterFormAffinity[i])
 TotalAccuracy = 0.0
 count = 0

 #For each attribute of assignment in cluster
 for k in range(len(FullDBInClusterFormAffinity[i][1])):

 #Get all values in column of attribute
 col = a[:,k]

 #get the value our centroid contains
 value = FullDBInClusterFormAffinity[i][1][k]

 #Because we can have mixed values, this only works for categories in
 #attributes, therefore we wouldn't do this with a numeric attribute.
 if(Attributes[k] in AttributesStrings):

 count = count + 1

 #accuracy is the number of times the value appears in the column
 #over the length of column.
 PercentageAccuracy = len(np.where(col == value)[0]) / len(col)

 #StrPercentageAccuracy = "{0:.5f}".format(PercentageAccuracy)

 #Add this to our total accuracy of the cluster. We will do this for
 #all attributes to get the total accuracy of the cluster.
 TotalAccuracy = TotalAccuracy + PercentageAccuracy

43

 #Get the average total accuracy of the cluster and add that to the
 #total accuracy for all clusters.
 FullTotalAccuracy = FullTotalAccuracy + (TotalAccuracy / count)

 #Return the average of all cluster errors.
 return FullTotalAccuracy / len(FullDBInClusterFormAffinity)

This creates an html file which contains as much statistical information
about the clusters, what assignments are included, the actual information
from the database, the exemplars, the cluster error, the percentage of each
centroid in the cluster, etc.
def CreateHTMLFileWithClusters(FullDBInClusterFormAffinity, FileName, TrainingDB):

 f = open(FileName, "w")

 f.write("<html>")
 f.write("<head>")
 f.write("<style>")
 f.write("table{border-collapse:collapse;border:2px solid black;}")
 f.write("th, td{padding: 5px;border-collapse:collapse;border:1px solid #999;}")
 f.write(".header{background-color:#CCC;}")
 f.write(".headerg{background-color:#lightgreen;}")
 f.write(".exemplar{background-color:#999;}")
 f.write(".exemplarg{background-color:#lightgreen;}")
 f.write(".regularg{background-color:#lightgreen;}")
 f.write("</style>")
 f.write("<body>")

 f.write("<h1>Show Cluster Statistics</h1>")

 FullTotalAccuracy = 0.0

 FullDisplay = []

 for i in range(len(FullDBInClusterFormAffinity)):
 f.write("<h2>Cluster "+str((i+1))+"</h2>")

 NumberOfAssignments = len(FullDBInClusterFormAffinity[i])
 PercentOfTotal = NumberOfAssignments / len(TrainingDB)

 f.write("<div>Number of Assignments: " + str(NumberOfAssignments)+"</div>")
 f.write("<div>Percent of Total: " + str(PercentOfTotal)+"</div>")
 a = np.array(FullDBInClusterFormAffinity[i])
 Attributes = FullDBInClusterFormAffinity[i][0]
 TotalAccuracy = 0.0
 count = 0
 dictionary = {}
 for k in range(len(FullDBInClusterFormAffinity[i][1])):

 col = a[:,k]
 value = FullDBInClusterFormAffinity[i][1][k]
 column = FullDBInClusterFormAffinity[i][0][k]

 dictionary[str(column)+"exemplar"] = {}
 count = count + 1
 b = np.where(col == value)
 NumberOfExemplarValue = len(b[0])
 PercentageAccuracy = NumberOfExemplarValue / (len(col)-1)
 StrPercentageAccuracy = "{0:.5f}".format(PercentageAccuracy)
 TotalAccuracy = TotalAccuracy + PercentageAccuracy
 f.write("<div>("+str(column)+":"+str(value)+") Accuracy: " +
str(StrPercentageAccuracy)+"</div>")
 col = np.delete(col, 0)
 columnValues = np.unique(col)
 dictionary[str(column)+"exemplar"][value] = PercentageAccuracy

 for j in range(len(columnValues)):
 if(columnValues[j] is not value):
 dictionary[str(column)] = {}

44

 b = np.where(columnValues[j] == col)
 NumberOfExemplarValue = len(b[0])
 PercentageAccuracy = NumberOfExemplarValue / (len(col)-1)
 dictionary[str(column)][str(columnValues[j])] = PercentageAccuracy

 FullDisplay.append(dictionary)

 FullTotalAccuracy = FullTotalAccuracy + (TotalAccuracy / count)
 TotalAccuracy = "{0:.5f}".format(TotalAccuracy / count)
 f.write("<div>Total Accuracy: " + str(TotalAccuracy)+"</div>")

 f.write("<h2>Full Total Accuracy: " + str(FullTotalAccuracy / len(FullDBInClusterFormAffinity))
+"</h2>")

 f.write("<h1> Table of Results </h1>")

 strValue = "<table>"
 for i in range(len(FullDisplay)):
 x = FullDisplay[i]
 strValue += "<tr>"
 max = 0.0
 alternateKey = ""
 alternateKeyValue = ""
 for key in x:
 if("exemplar" in key):
 max = 0.0
 exemplarInfo = x[key]
 val = ""
 for key2 in exemplarInfo:
 ExemplarAccuracy = exemplarInfo[key2]
 max = ExemplarAccuracy
 val = key2

 w = "{0:.3f}".format(ExemplarAccuracy)

 key = str(key)[:-8]
 strValue += "<td>"+str(key)+"("+str(val)+"):"+w+""
 else:
 info = x[key]
 for key2 in info:
 y = info[key2]
 if y > max:
 max = y
 alternateKey = key2
 alternateKeyValue = y

 if(alternateKey != ""):
 w = "{0:.3f}".format(max)
 strValue += "
"+str(key2)+":"+w+"</td>"
 else:
 strValue += "</td>"

 strValue += "</tr>"

 strValue += "</table>"

 f.write(strValue)

 f.write("<h1>Full Detail on Clusters</h1>")

 for i in range(len(FullDBInClusterFormAffinity)):
 strValue = "<h2>Cluster " + str(i+1) + "</h2>"
 strValue += "<table>"
 a = np.array(FullDBInClusterFormAffinity[i])

 for j in range(len(FullDBInClusterFormAffinity[i])):
 strValue += "<tr>"
 for k in range(len(FullDBInClusterFormAffinity[i][j])):
 column = FullDBInClusterFormAffinity[i][0][k]

45

 TotalAccuracy = "N/A"

 col = a[:,k]
 value = FullDBInClusterFormAffinity[i][j][k]

 b = np.where(col == value)
 accuracy = len(b[0]) / len(col)
 TotalAccuracy = "{0:.2f}".format(accuracy*100)

 if j == 0:
 strValue += "<th class=\"header\">" +
str(FullDBInClusterFormAffinity[i][j][k]) + "+("+TotalAccuracy+") </th>"

 elif j == 1:
 strValue += "<td class=\"exemplar\">"+
str(FullDBInClusterFormAffinity[i][j][k]) + "+("+TotalAccuracy+") </td>"

 else:
 strValue += "<td class=\"regular\">"+
str(FullDBInClusterFormAffinity[i][j][k]) + "+("+TotalAccuracy+") </td>"

 strValue += "</tr>"

 strValue += "</table>"

 f.write(strValue)

 f.write("</body>")
 f.write("</html>")
 f.close()
 print("HTML File of results created!")

 return FullDisplay

Writes the results of the clustering to a file.
def WriteResultsToFile(Filename, labels, clusterCenters):

 f = open(Filename, "w")

 f.write("\n")
 for i in range(len(labels)):
 if i == 0: f.write(str(labels[i]))
 else: f.write(","+str(labels[i]))

 f.write("\n")
 for i in range(len(clusterCenters)):
 if i == 0: f.write(str(clusterCenters[i]))
 else: f.write(","+str(clusterCenters[i]))

 f.close()
 print("Results Written to File")
 return

Read results of a cluster from a file.
def ReadResultsFromFile(Filename):

 ResultsFile = pd.read_csv(Filename, sep=",")
 labels = ResultsFile.columns
 ClustersWhole = ResultsFile.iloc[0]
 Clusters = []

 labels = labels.tolist()
 ClustersWhole = ClustersWhole.tolist()

 for i in range(len(ClustersWhole)):
 if(math.isnan(ClustersWhole[i]) == False):

46

 Clusters.append(ClustersWhole[i])

 ListOfClusters = []
 for i in range(len(Clusters)):
 ClusterInfo = []
 for j in range(len(labels)):
 if(int(math.floor(float(labels[j]))) == i):
 ClusterInfo.append(j)

 ListOfClusters.append(ClusterInfo)

 return np.array(ListOfClusters)

Read Database
def ReadDatabase(FileName):
 return pd.read_csv(FileName, sep=",")

Get all unique category values from each column of the database.
def getCategoricalValuesForEachAttribute(dbSubsetData):

 if len(dbSubsetData) > 0:
 categoriesForAttribute = []
 for column in dbSubsetData:

 categoriesForAttribute.append(dbSubsetData[column].unique())

 return categoriesForAttribute
 else:
 return null

Performs algorithm for computing distance with respect to number of data points.
def ALGODistance(dbSubsetData, Columns):

 categories = getCategoricalValuesForEachAttribute(dbSubsetData)

 distancePairsDict = {}

 for i in range(dbSubsetData.shape[1]):

 start = time.time()
 distancePairs = {}

 for j in range(len(categories[i])):
 for k in range(len(categories[i])):
 if j != k:
 count = 0
 distance = 0
 sum = 0
 Valuex = str(categories[i][j])
 Valuey = str(categories[i][k])

 strValue1 = Valuex+":"+Valuey
 strValue2 = Valuey+":"+Valuex

 if strValue1 not in distancePairs and strValue2 not in distancePairs:

 for m in range(dbSubsetData.shape[1]):

 if i != m:
 distanceim = findMax(Valuex, Valuey, categories[m], dbSubsetData,
m, i)

 sum = sum + distanceim
 count = count + 1

47

 if(count > 0):
 distance = sum / (count - 1)

 distancePairs[strValue1] = distance
 distancePairs[strValue2] = distance

 end = time.time()
 print("This took",(end-start),"(s)")
 distancePairsDict[Columns[i]] = distancePairs

 return distancePairsDict

finds the maximum value of Pi(w/x) + Pi(w/y), without actually considering
all the element of the power set
def findMax(Ax, Ay, CategoriesForAj, df, m, n):

 distance = 0
 W = []
 complementW = []
 Vj = len(CategoriesForAj)
 dfnp = df.values

 for i in range(Vj):

 #Conditional probability of CategoriesForAj[i] given Ax and
 #CategoriesForAj[i] given Ay

 Px = 0
 Py = 0

 a = np.where((dfnp[:,m] == CategoriesForAj[i]) & (dfnp[:,n] == Ax))[0]
 b = np.where(dfnp[:,n] == Ax)[0]
 if(len(b) > 0): Px = len(a) / len(b)

 a = np.where((dfnp[:,m] == CategoriesForAj[i]) & (dfnp[:,n] == Ay))[0]
 b = np.where(dfnp[:,n] == Ay)[0]
 if(len(b) > 0): Py = len(a) / len(b)

 if Px > Py:
 W.append(CategoriesForAj[i]) # add u[t] to w'
 distance = distance + Px
 else:
 complementW.append(CategoriesForAj[i]) # add u[t] to ~w'
 distance = distance + Py

 distance = distance - 1

 return distance

Creates our similarity matrix using our new distanceObjectList and the
dbsubsetdata frame

def CreateSimilarityMatrix(DB, distancePairsDict, SimDataFile):

 columns = DB.columns.values
 nparray = DB.values
 outcome = nparray[:,len(columns) - 1]
 classes = np.unique(outcome)
 FileNameArray = []
 classArray = []
 SubSets = []

 for cls in classes:
 cls = str(cls)
 row_indices = np.where(outcome == str(cls))[0]
 subset = nparray[row_indices, :]
 SubSets.append(subset)

48

 Matrix = np.full((subset.shape[0], subset.shape[0]), 0.0)

 print("Creating Similarity Matrix")

 for i in range(len(subset)): #record1

 start = time.time()
 Record1 = subset[i]

 for j in range(i+1, len(subset)): #record2
 Record2 = subset[j]
 Similarity = GetDistanceBetweenTwoRecords(Record1, Record2, columns,
distancePairsDict)

 #The similarities are all very small numbers which might be why the preference
value needs to be so precise.
 #Let's multiply the value by a scalar 10 to give the values more range.
 Matrix[i][j] = Similarity * 10.0
 Matrix[j][i] = Similarity * 10.0
 end = time.time()
 print("Iteration",i,"took",end-start,"(s)")

 print("Writing Similarity Matrix to File")
 SimFile = SimDataFile + "_" + cls + ".csv"
 FileNameArray.append(SimFile)
 classArray.append(cls)
 FileWritten = WriteSimilarityMatrixToFile(Matrix, SimFile)

 if FileWritten is True:
 print("Similarity File is Written")

 return FileNameArray, classArray, SubSets

def GetDistanceBetweenTwoRecords(Record1, Record2, columns, distancePairsDict):

 distance = 0.0

 for i in range(len(Record1)):
 columnName = columns[i]
 Record1Value = Record1[i]
 Record2Value = Record2[i]
 if(Record1Value != Record2Value):

 strValue = str(str(Record1Value)+":"+str(Record2Value))
 strValue2 = str(str(Record2Value)+":"+str(Record1Value))
 val = 0.0

 if(strValue in distancePairsDict[columnName]):
 val = float(distancePairsDict[columnName][strValue])
 if(strValue2 in distancePairsDict[columnName]):
 val = float(distancePairsDict[columnName][strValue2])

 distance = distance + ((val**2) * -1);

 return distance

def WriteSimilarityMatrixToFile(Matrix, FileName):

 f = open(FileName, "w")

 for i in range(len(Matrix)):
 for j in range(len(Matrix[0])):
 if j == 0:
 f.write(str(Matrix[i][j]))
 else:
 val = "," + str(Matrix[i][j])
 f.write(val)
 f.write("\n")

 f.close()

49

 return True

def RunSeriesOfPreferences(lowValue, highValue, SimFile, increment):

 print("Reading Similarity Matrix from File")
 Matrix = ReadSimilarityMatrix(SimFile, ",")

 Errors = []
 Clusters = []
 Preference = []

 while lowValue < highValue:

 af = ComputeAffinityPropagation(lowValue, Matrix)
 cluster_centers_indices = af.cluster_centers_indices_
 labels = af.labels_
 n_clusters_ = len(cluster_centers_indices)
 if n_clusters_ not in Clusters:

 Error = GetErrorForClusters(cluster_centers_indices, labels, Matrix)
 if(len(Errors) and Error > Errors[len(Errors)-1]):
 i = 0
 else:
 Clusters.append(n_clusters_)
 Errors.append(Error)
 Preference.append(lowValue)
 #print("Number of Clusters: ",n_clusters_,"\tPreference Value",lowValue,"\tTotal
Error:",Error)

 lowValue = lowValue + increment

 atIndex, min, optimalNumber = LocateElbowPoint(Errors, Clusters)

 while(atIndex>=0):
 if((Clusters[atIndex] / n_clusters_) > .40):
 atIndex = atIndex - 1
 else:
 break

 #print("Errors:", Errors)
 #print("Clusters:", Clusters)
 #print("Preferences:", Preference)
 #print("Elbow Found at index", atIndex,"value of ", Errors[atIndex], "thus Optimal number of
clusters is", Clusters[atIndex])

 return Preference[atIndex], Clusters[atIndex]

def GetErrorForClusters(Centroids, Labels, Matrix):

 TotalError = 0
 for i in range(len(Centroids)):

 count = 0
 Sum = 0
 for j in range(len(Labels)):

 if(i == Labels[j]):
 Sum = Sum + (Matrix[i][j] * -1)
 count = count + 1

 ErrorForCluster = Sum / count
 TotalError = TotalError + ErrorForCluster

 NumberOfClusters = len(Centroids)
 Mean = (NumberOfClusters * (NumberOfClusters - 1)) / 2
 TotalError = TotalError / Mean
 return TotalError * 100 #This is just to zoom out to get a better range of values.

50

What I am simply doing here is getting the inverse cosine of the angle of a
vertex point. This angle tells me the variance of change at this point. What
I am looking for is the lowest value, representing a small angle, representing
a large variance of change.
fall backs. Normally elbow points are easy to find and are usually located
nearer to the y-axis. This approach doesn't eyeball the data so the computer
is simulating what I would consider the elbow point without me actually
verifying it.

def LocateElbowPoint(Errors, Clusters):

 min = 180
 atIndex = -1
 for i in range(1, len(Clusters)-1):
 A = i
 B = i-1
 C = i+1

 distanceP12 = ((Errors[A] - Errors[B])**2 + (Clusters[A] - Clusters[B])**2)**.5
 distanceP13 = ((Errors[A] - Errors[C])**2 + (Clusters[A] - Clusters[C])**2)**.5
 distanceP23 = ((Errors[B] - Errors[C])**2 + (Clusters[B] - Clusters[C])**2)**.5

 value = (distanceP12**2 + distanceP13**2 - distanceP23**2) / (2 * distanceP12 * distanceP13)
 angle = math.acos(value)
 angle = np.degrees(angle)
 if(angle < min):
 min = angle
 atIndex = i

 return atIndex, min, Clusters[atIndex]

def GenerateFullDataObjectInClusterForm(ListOfClusters, TrainingDB, FileName):

 DB = pd.read_csv(FileName, sep=",")

 DataFrame = []

 for i in range(len(ListOfClusters)):
 Row = []
 Row.append(DB.columns.values)
 Col = []
 for j in range(len(ListOfClusters[i])):
 Row.append(TrainingDB[int(ListOfClusters[i][j])])

 DataFrame.append(Row)

 return np.array(DataFrame)

def CompareArrays(array1, array2):

 numberCorrect = 0
 for i in range(len(array1)-1):
 if(array1[i] == array2[i]):
 numberCorrect = numberCorrect + 1

 prob = (numberCorrect / len(array2))
 return prob

def ClassificationOfData(FullDataBase = "", Yes="", No="", dataTesting=""):

 #start with database values
 FalsePositive = 0
 Positive = 0
 Negative = 0
 TrueNegative = 0

 DB = ReadDatabase(FullDataBase)

51

 if(dataTesting == "StudentEnrollment"):
 import ClusteringInfo as cl
 elif(dataTesting == "BreastCancer1"):
 import BreastCancerClassifier as cl
 elif(dataTesting == "BreastCancer2"):
 import BreastCancerClassifier as cl
 elif(dataTesting == "Mushrooms"):
 import mushroominfo as cl

 for i in range(len(DB)):

 a = DB.iloc[i].values
 classifier = a[len(a)-1]
 MaxProbNo = 0.0
 MaxProbYes = 0.0
 ProbNo = 0.0
 ProbYes = 0.0

 #if(classifier == No):
 for k in range(len(cl.NoArray)):
 ProbNo = ProbNo + CompareArrays(a, cl.NoArray[k])
 #if(MaxProbNo < ProbNo):
 # MaxProbNo = ProbNo
 ProbNo = ProbNo / len(cl.NoArray)

 #elif(classifier == Yes):
 for k in range(len(cl.YesArray)):
 ProbYes = ProbYes + CompareArrays(a, cl.YesArray[k])
 #if(MaxProbYes < ProbYes):
 # MaxProbYes = ProbYes

 ProbYes = ProbYes / len(cl.YesArray)

 print("Prediction details", ProbNo, ProbYes, classifier)

 if(ProbYes > ProbNo):
 if(classifier == Yes):
 Positive = Positive + 1
 else:
 TrueNegative = TrueNegative + 1
 elif(ProbYes < ProbNo):
 if(classifier == No):
 Negative = Negative + 1
 else:
 FalsePositive = FalsePositive + 1
 else:
 if(classifier == Yes):
 Positive = Positive + 1
 else:
 Negative = Negative + 1

 print("Scores for Full Database Prediction")
 print("Positive",Positive)
 print("Negative",Negative)
 print("False Positive", FalsePositive)
 print("True Negative", TrueNegative)

 Precision = Positive / (Positive + TrueNegative)
 Recall = Positive / (Positive + FalsePositive)
 Accuracy = (Positive + Negative) / (Positive + Negative + FalsePositive + TrueNegative)
 FScore = (2*(Precision * Recall) / (Precision + Recall))
 print("Precision", Precision)
 print("Recall", Recall)
 print("Accuracy", Accuracy)
 print("FScore", FScore)

 return Precision, Recall, Accuracy, FScore

52

def DefineDistancePairs(DB, Columns):

 #Collect all distance pairs for my subset.
 distancePairsDict = {}

 print("Getting ALGO Distances")
 distancePairsDict = ALGODistance(DB, Columns)

 return distancePairsDict

def DataSplit(FullDB, frac, classAttribute):
 msk = np.random.rand(len(FullDB)) <= frac
 TrainingDB = FullDB[msk].values
 TestDB = FullDB[~msk].values

 if(classAttribute == "END"):
 classIndex = len(FullDB.columns)-1
 else:
 classIndex = 0

 classColumn = TrainingDB[:,classIndex]
 classes = np.unique(classColumn)
 rows, cols = np.shape(TrainingDB)

 for cls in classes:
 row_indices = np.where(classColumn == cls)[0]
 while((len(row_indices) / rows)>.70):
 index = random.randint(0,len(row_indices)-1)
 TrainingDB = np.delete(TrainingDB, index, axis=0)
 classColumn = np.delete(classColumn, index, axis=0)
 row_indices = np.where(classColumn == cls)[0]

 classColumn = TestDB[:,classIndex]
 classes = np.unique(classColumn)
 rows, cols = np.shape(TestDB)

 for cls in classes:
 row_indices = np.where(classColumn == cls)[0]
 while((len(row_indices) / rows)>.70):
 index = random.randint(0,len(row_indices)-1)
 TestDB = np.delete(TestDB, index, axis=0)
 classColumn = np.delete(classColumn, index, axis=0)
 row_indices = np.where(classColumn == cls)[0]

 return TrainingDB, TestDB, FullDB.columns

def WriteDBToFile(TrainingDB, TestDB, Columns, FileName, path):

 FileName = FileName.replace(" ", "")
 FullName = path+"/Training_"+FileName+".csv"

 f = open(FullName, "w")
 for i in range(len(Columns)):
 if(i==0):
 f.write(Columns[i])
 else:
 f.write(","+Columns[i])

 f.write("\n")
 for i in range(len(TrainingDB)):
 for j in range(len(TrainingDB[i])):
 if(j==0):
 f.write(str(TrainingDB[i][j]))
 else:
 f.write(","+str(TrainingDB[i][j]))

 if(i != len(TrainingDB)-1):

53

 f.write("\n")
 f.close()

 FileName = FileName.replace(" ", "")
 FullName = path+"/Test_"+FileName+".csv"

 f = open(FullName, "w")
 for i in range(len(Columns)):
 if(i==0):
 f.write(Columns[i])
 else:
 f.write(","+Columns[i])

 f.write("\n")
 for i in range(len(TestDB)):
 for j in range(len(TestDB[i])):
 if(j==0):
 f.write(str(TestDB[i][j]))
 else:
 f.write(","+str(TestDB[i][j]))

 if(i != len(TestDB)-1):
 f.write("\n")

 f.close()

def WriteInformationFile(WriteFile, FullDisplayArray):

 f = open(WriteFile, 'w')
 count = 0
 for FullDisplay in FullDisplayArray:

 if(count == 0):
 f.write("YesArray = [")
 else:
 f.write("NoArray = [")

 for i in range(len(FullDisplay)):
 x = FullDisplay[i]
 strValue = "["
 count = 0
 for key in x:
 if("exemplar" in key):
 exemplarInfo = x[key]
 for key2 in exemplarInfo:
 if(count == 0):
 strValue += "\""+str(key2)+"\""
 else:
 strValue += ","+"\""+str(key2)+"\""

 count = count + 1

 strValue += "],"
 f.write(strValue)
 f.write("\n")

 f.write("]")
 f.write("\n")
 f.close()
import matplotlib
matplotlib.use('TkAgg') #For OSX
from tkinter import *
from tkinter import ttk
import klecker_thesis as kt
import numpy as np
import pandas as pd
import time, threading

def SetStudentEnrollmentDataset():
 kt.FullDataBase = "StudentEnrollment/2017/studentenrollment_2017.csv"
 return "StudentEnrollment"

54

def SetBreastCancerDataset():
 kt.FullDataBase = "BreastCancer/breastcancerfull.csv"
 return "BreastCancer"

def SetBreastCancerDataset2():
 kt.FullDataBase = "BreastCancer/breastcancer.csv"
 return "BreastCancer"

def SetMushroom():
 kt.FullDataBase = "mushroom/mushrooms.csv"
 return "mushroom"

def Main(GetSimilarityMatrix,RunAffinityPropagation,ShowAPResultsToHTML,
 RunASeriesOfPreferences,PerformClassification,dataTesting, TrainingSize):

 #this is used for naming file purposes.
 Matrix = [] #similarity matrix
 Yes = ""
 No = ""
 Path = ""
 Columns = []
 writeFile = ""

 if(dataTesting == "Student Enrollment"):
 Yes = "Applied"
 No = "No-Decision"
 Path = SetStudentEnrollmentDataset()
 writeFile = "ClusteringInfo.py"

 elif(dataTesting == "Breast Cancer 1"):
 Yes = "recurrence-events"
 No = "no-recurrence-events"
 Path = SetBreastCancerDataset()
 writeFile = "BreastCancerClassifier.py"

 elif(dataTesting == "Breast Cancer 2"):
 Yes = "J2"
 No = "J4"
 Path = SetBreastCancerDataset2()
 writeFile = "BreastCancerClassifier.py"

 elif(dataTesting == "Mushrooms"):
 Yes = "e"
 No = "p"
 Path = SetMushroom()
 writeFile = "mushroominfo.py"

 ##
 # main reads the database, and calculates the similarity matrix
 dataTesting = dataTesting.replace(" ", "")

 Precision = 0.0
 Recall = 0.0
 Accuracy = 0.0
 FScore = 0.0
 RangeValue = 1

 for i in range(0, RangeValue):
 FileNameArray = []
 classes = []
 SubSets = []
 FileName = ""

 if(GetSimilarityMatrix == 1):
 FileName = Path + "/Training_"+dataTesting+".csv"
 kt.SimilarityMatrixFileName = Path + "/Training_SimMatrix_"+dataTesting

 FullDBCSV = kt.ReadDatabase(kt.FullDataBase)
 print(TrainingSize)

55

 TrainingDB, TestDB, Columns = kt.DataSplit(FullDBCSV, (int(TrainingSize)/100), "END")
 kt.WriteDBToFile(TrainingDB, TestDB, Columns, dataTesting, Path)
 TrainingDB = kt.ReadDatabase(FileName)
 distanceDict = kt.DefineDistancePairs(TrainingDB, Columns)
 FileNameArray, classes, SubSets = kt.CreateSimilarityMatrix(TrainingDB, distanceDict,
kt.SimilarityMatrixFileName)

 ##
 # Runs affinity propagation in a series using different preference values
 preferencesArray = []
 ClustersArray = []

 if(RunASeriesOfPreferences == 1):
 for i in range(len(FileNameArray)):
 PreferenceVal, Clusters = kt.RunSeriesOfPreferences(-8, 2, FileNameArray[i], 1)
 preferencesArray.append(PreferenceVal)
 ClustersArray.append(Clusters)

 ##
 # Reads from the similarity file and runs affinity propagation
 ResultsFiles = []
 if(RunAffinityPropagation):
 for i in range(len(FileNameArray)):

 kt.ResultsFileName = Path +
"/Training_Results_"+classes[i]+"_AP_"+dataTesting+".csv"
 ResultsFiles.append(kt.ResultsFileName)
 kt.RunAffinityPropagationCommands(Matrix, FileNameArray[i], preferencesArray[i],
kt.ResultsFileName)

 ##
 #Print Results to HTML
 FullDisplayArray = []
 if(ShowAPResultsToHTML == 1):
 for i in range(len(ResultsFiles)):
 kt.HTMLFileName = Path +
"/Training_HTML_"+classes[i]+"_AP_"+dataTesting+".html"
 ListOfClusters = kt.ReadResultsFromFile(ResultsFiles[i])
 FullDBInClusterFormAffinity =
kt.GenerateFullDataObjectInClusterForm(ListOfClusters, SubSets[i], FileName)
 FullDisplay =
kt.CreateHTMLFileWithClusters(FullDBInClusterFormAffinity, kt.HTMLFileName, SubSets[i])
 FullDisplayArray.append(FullDisplay)

 kt.WriteInformationFile(writeFile, FullDisplayArray)

 ##
 # Perform a classification with training data on test data.
 if(PerformClassification):
 #FileName = Path + "/Test_"+dataTesting+".csv"
 FileName = Path + "/2018/studentenrollment_2018.csv"
 p, r, a, f = kt.ClassificationOfData(
 FullDataBase=FileName,
 Yes=Yes,
 No=No,
 dataTesting=dataTesting)

 Precision = Precision + p
 Recall = Recall + r
 Accuracy = Accuracy + a
 FScore = FScore + f

 return Precision, Recall, Accuracy, FScore, RangeValue

class MyApp(Tk):

 def __init__(self):
 Tk.__init__(self)

56

 self.running = False
 fr = Frame(self)
 fr.pack()

 self.GetSimilarityMatrixCheck = IntVar(value=1)
 self.RunAffinityPropagationCheck = IntVar(value=1)
 self.ShowAPResultsToHTMLCheck = IntVar(value=1)
 self.RunASeriesOfPreferencesCheck = IntVar(value=1)
 self.PredictionModelCheck = IntVar(value=1)

 self.LeftFrame = Frame(fr)

 self.labelframe2 = LabelFrame(self.LeftFrame, text="How Will we run the application?")
 self.labelframe2.grid(row=0, column=1, padx=(10, 10), pady=(10, 10))

 self.C1 = Checkbutton(self.labelframe2, text = "Get Similarity Matrix", variable =
self.GetSimilarityMatrixCheck, onvalue = 1, offvalue = 0, height=1, width = 20)
 self.C2 = Checkbutton(self.labelframe2, text = "Run Affinity Propagation", variable =
self.RunAffinityPropagationCheck, onvalue = 1, offvalue = 0, height=1, width = 20)
 self.C3 = Checkbutton(self.labelframe2, text = "Show AP Results to HTML", variable =
self.ShowAPResultsToHTMLCheck, onvalue = 1, offvalue = 0, height=1, width = 20)
 self.C4 = Checkbutton(self.labelframe2, text = "Run a Series of Preferences", variable =
self.RunASeriesOfPreferencesCheck, onvalue = 1, offvalue = 0, height=1, width = 20)
 self.C5 = Checkbutton(self.labelframe2, text = "Prediction Model", variable =
self.PredictionModelCheck, onvalue = 1, offvalue = 0, height=1, width = 20)

 self.C1.grid(row=0, columnspan=1)
 self.C2.grid(row=1, columnspan=1)
 self.C3.grid(row=2, columnspan=1)
 self.C4.grid(row=3, columnspan=1)
 self.C5.grid(row=4, columnspan=1)

 self.datasetFrame = Frame(self.LeftFrame)
 self.labelTop = Label(self.datasetFrame, text = "What Dataset are we testing?")
 self.labelTop.grid(row=0, column=1)

 self.comboExample = ttk.Combobox(self.datasetFrame,values=["Student Enrollment",
 "Breast Cancer 1",
 "Breast Cancer 2",
 "Mushrooms"])
 self.comboExample.grid(row=1, column=1)
 self.labelTraining = Label(self.datasetFrame, text = "Size of Training set (in percent)?")
 #self.labelTraining.grid(row=2, column=1)
 self.TrainingSize = Text(self.datasetFrame, wrap='word', width=5, height=1)
 #self.TrainingSize.grid(row=3, column=1)
 self.datasetFrame.grid(row=1, column=1,padx=(10, 10), pady=(10, 10))
 self.TrainingSize.insert(END, "70")

 self.buttonRun = Button(self.LeftFrame, text ="Run", command = self.runCallBack)
 self.buttonRun.grid(row=2, column=1)
 self.buttonClear = Button(self.LeftFrame, text ="Clear", command = self.Clear)
 self.buttonClear.grid(row=3, column=1)
 self.LeftFrame.grid(row=0, column=1, rowspan=2, sticky='N',)

 self.chatBox = Scrollbar(fr)
 self.chat = Text(fr, wrap='word', width=50,
 yscrollcommand=self.chatBox.set)
 self.chatBox.configure(command=self.chat.yview)

 self.chat.grid(row=0, column=2, columnspan=2, sticky='ens', pady=(10, 10))
 self.chatBox.grid(row=0, column=4, sticky='ns', pady=(10, 10))

 def Clear(self):
 self.chat.delete(1.0,END)

 def runCallBack(self):

 self.running = True
 self.chat.insert(END, "Running\n")
 self.updateText()

57

 Precision, Recall, Accuracy, FScore, RangeValue =
Main(self.GetSimilarityMatrixCheck.get(), #Run Similarity Matrix From database selected above
 self.RunAffinityPropagationCheck.get(), #Run Affinity
Propagation on Similarity Matrix
 self.ShowAPResultsToHTMLCheck.get(), #Write Results of AP to
HTML
 self.RunASeriesOfPreferencesCheck.get(), #This is used to collect
an Elbow Method series of values
 self.PredictionModelCheck.get(), #Perform a classification
on exemplar data
 self.comboExample.get(),
 self.TrainingSize.get("1.0", END))

 self.chat.insert(END, "Precision "+str(Precision / RangeValue)+"\n")
 self.chat.insert(END, "Recall "+str(Recall / RangeValue)+"\n")
 self.chat.insert(END, "Accuracy "+str(Accuracy / RangeValue)+"\n")
 self.chat.insert(END, "FScore "+str(FScore / RangeValue)+"\n")

 self.running = False

 def updateText(self):
 if(self.running):
 self.update()
 self.after(10, self.updateText)

if __name__ == "__main__":
 top = MyApp()
 top.mainloop()
 #DrawWindow()

Pandas and numpy preferences settings
pd.set_option('display.max_columns', None)
np.set_printoptions(threshold=np.inf)
pd.options.mode.chained_assignment = None # default='warn'

	Building A Classification Model Using Affinity Propagation
	Recommended Citation

	BUILDING A CLASSIFICATION MODEL USING AFFINITY PROPAGATION
	BUILDING A CLASSIFICATION MODEL USING AFFINITY PROPAGATION
	BUILDING A CLASSIFICATION MODEL USING AFFINITY PROPAGATION
	ACKNOWLEDGMENTS
	A PYTHON CODE FROM PROJECT………………………………………………………….41
	List of Figures
	Page
	List of Tables
	CHAPTER 1
	INTRODUCTION
	Data Mining and Clustering
	The Purpose of This Study

	CHAPTER 2
	CLUSTERING WITH AFFINITY PROPAGATION
	What is Affinity Propagation?
	Why Use Affinity Propagation?
	Algorithm for Affinity Propagation
	A Similarity Matrix for Categorical Data
	Preference Value
	Evaluating a preference value using the Elbow Method
	Summary of Technique
	CHAPTER 3

	CLASSIFICATION MODEL AND PREDICTION FUNCTION
	Classification Using Affinity Propagation Exemplars
	Algorithm of Technique

	CHAPTER 4
	ILLUSTRATING OUR PREDICTION MODEL ON VARIOUS DATASETS
	Breast Cancer
	Breast Cancer Dataset #2
	Mushroom Dataset
	From this analysis we see that our AP classifier, which is using only 5% of the original training set, is now out performing Cosine Similarity which uses the whole training dataset. Let’s do one more test with student enrollment data.
	Student Enrollment Data

	Chapter 5
	Conclusions and Future Work
	Conclusions
	Future Work

	Appendix
	Python Code From Project

