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BUILDING A CLASSIFICATION MODEL USING AFFINITY PROPAGATION 

by 

CHRISTOPHER KLECKER 

(Under the Direction of Ashraf Saad) 

ABSTRACT 

Regular classification of data includes a training set and test set. For example for Naïve Bayes, Artificial 

Neural Networks, and Support Vector Machines, each classifier employs the whole training set to train 

itself. This thesis will explore the possibility of using a condensed form of the training set in order to get a 

comparable classification accuracy. The technique explored in this thesis will use a clustering algorithm to 

explore which data records can be labeled as exemplar, or a quality of multiple records. For example, is it 

possible to compress say 50 records into one single record? Can a single record represent all 50 records and 

train a classifier similarly? This thesis aims to explore the idea of what can label a data record as exemplar, 

what are the concepts that extract the qualities of a dataset, and how to check the information gain of one 

set of compressed data over another set of compressed data. This thesis will explore using affinity 

propagation, categorical data, exploring entropy within cluster sets, and testing the compressed data using 

Cosine Similarity as a classifier.  

 

INDEX WORDS: Classification, Clustering, Clustering analysis, Condensed dataset, Prediction model, 

Affinity propagation, Damping factor, Preference value, Categorical data, Elbow method 
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CHAPTER 1 

INTRODUCTION 

Data Mining and Clustering 

Data Mining is the use of methodologies to discover patterns in a data set. Many of these 

methodologies are an amalgamation of approaches to machine learning and statistics1. Clustering is one 

such methodology which groups data into meaningful categories often times employing statistical models 

such as conditional probability or measuring the distance of actual data points to discover groups in physical 

space. Each cluster describes a similarity between the data points existing in the cluster. This can be 

desirable in the context of customer data to find similarities in customers’ attributes. It can be used to 

discover basic qualities of customer groups and target those qualities. Clustering is an exploratory 

technique2, which aims to discover an optimal grouping of data points. Clustering seeks what features of 

the dataset will drive the shape and number of the resulting clusters which can either be predetermined or 

discovered naturally. The overall goal is to optimize the groups of data points so that meaningful patterns 

emerge. For example, a particular pattern might be what are the majority values for each attribute in each 

cluster? 

Most clustering algorithms work from a similarity matrix which defines a “distance” or relationship 

of records from each other using the features of the records. The features of the record correspond to the 

attribute values of each record. By analyzing two records in our dataset and performing a similarity function, 

a similarity value is returned. A higher similarity value indicates the two records are highly similar, whereas 

a lower similarity value indicates the two records are highly dissimilar. Each record is compared to all other 

records, except itself, and a similarity is calculated and stored resulting in a similarity matrix3. Features of 

                                                      
1 Frans Coenen, "Data Mining: Past, Present and Future," The Knowledge Engineering Review 26, 

no. 1 (2011): 25-29, doi:10.1017/s0269888910000378. 
2 Vipin Kumar et al., "Cluster Analysis: Basic Concepts and Methods," in Introduction to Data 

Mining, 2nd ed. (New York, NY: Pearson Education, 2005). 
3 Daniel Lawson and Daniel Falush, "Similarity Matrices and Clustering Algorithms for Population 

Identification Using Genetic Data," FineSTRUCTURE, March 1, 2012, , accessed April 15, 2019, 
https://people.maths.bris.ac.uk/~madjl/finestructure/. 
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records can be categorical, numerical, or both. In the case of numeric data similarities between records 

calculates their distance from each other using a distance equation such as Euclidian Squared Distance, for 

example. Furthermore the centroids of numerical data describe the overall location and shape of the data 

on a plane. Datasets containing categorical features must use alternate methods to calculate a distance as 

categorical features do not physically map to any dimension of a plane.  

Clustering algorithms output a cluster set which contain the data points mapped to a particular 

cluster. Each cluster contains a centroid, a center of the cluster if the features of the data are numerical. For 

categorical features, referring to the centroid as the “center,” is not applicable. The centroid of a cluster 

with categorical features is described by the features which represent the majority of features found in the 

cluster from the data assignments. Because this thesis works with categorical data and explores clustering 

and classification of categorical data, this thesis will concentrate on clustering algorithms that can handle 

categorical features and return clusters and centroids that describe the features of the cluster through the 

features of the centroid. These centroids may prove useful in summarizing a dataset, therefore acting as 

training data for a classification model.  

Classification is the task of assigning objects to a predefined category or class4. Classification 

models require input data, or a collection of records that are sent to an indicator decision function which 

chooses the “best” decision based on some optimization method known as a prediction model5. Prediction 

models can range from numeric input to train an Artificial Neural Network, or from determining a potential 

feature of an attribute that is unknown. These are called predictive models. Predictive Models are used in 

data mining to analyze historical and current data in order to generate a model for predicting future 

outcomes6.  

                                                      
 
4 Vladimir S. Cherkassky and Filip Mulier, Learning from Data: Concepts, Theory, and Methods, 2nd 

ed. (Hoboken, NJ: IEEE Press/Wiley-Interscience, 2007). 
5 Ibid. 
6 Hal Kalechofsky, "HomeA Simple Framework for Building Predictive Models," M Squared 

Consulting, September 2016, , accessed April 15, 2019, http://www.msquared.com/. 
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The Purpose of This Study 

The purpose of this study is to illustrate a new technique of taking a whole dataset, applying a 

clustering algorithm with respect to its class attribute to condense the data and apply a classification on this 

condensed data form. The algorithm will split the original dataset into two datasets with respect to the class 

features of the dataset. Each dataset is applied to a clustering algorithm which will output centroids and the 

labels for each centroid, that is, matching records to specific clusters. The centroids outputted from the 

clustering algorithm will be used as a classification model which describes the features of each class through 

these centroids. The features represent the most relevant records therefore creating a condensed dataset of 

just the relevant records. The prediction function then takes test records, records not included in the initial 

clustering algorithm, and are applied to each compressed dataset representing each class whereas the 

classifier will return a class using Cosine Similarity. This classification model takes a summary of the 

dataset and is still able to function as a classifier, in some cases, only 1% of the actual data is used. Figure 

1 shows an illustration of the technique proposed for this thesis.  

This thesis will explain the clustering algorithm used, affinity propagation, and will explain the 

technique used to construct and compute the similarity matrix for categorical features. It will discuss 

methods of calculating a preference value and damping factor to be used with affinity propagation, which 

will determine the number of clusters and the integrity of the clustered result. This thesis will discuss 

datasets that can work with this technique and datasets that are not applicable. It will discuss the prediction 

model, how it will predict new records and the classification feature of the new record. It is the goal of this 

 
Figure 1: Graphical Representation of the Affinity Propagation Prediction Model 
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thesis to have an accuracy of 90% or higher, especially for a classifier that is binary, or contains only two 

classes. A classifier which predicts around 50% for a binary classifier, or two classes, is no better than 

chance.   

A few purposes of the creation of this classifier are to create a classifier that works with categorical 

data without having to perform a “One Hot Conversion”. One Hot is a technique to convert categorical data 

into a vector representation which is then used instead of the categorical name. The problem with this 

conversion is in retrieving the categorical values back. Also all records are converted to be a long vector 

string which is difficult for a human to understand the features of the record. This technique doesn’t alter 

the categorical values in any way. The centroids returned are actually the categorical strings themselves. 

Because of this feature, this technique provides a fully transparent classifier, and a fully transparent cluster 

set. The centroids which describe the features of the cluster set can be understood easily. This technique 

could also be used as a means to fill in missing attribute data. Currently this technique is written to classify 

only binary classifiers, however it can easily be augmented to have N classes. The centroids created for the 

classifier can also be saved and used later. It will also show how centroids created as a training set can exist 

for records that cover a whole year. That is, running this classifier against 2017 data, and outputting a 

training set, the very same training set can be used for 2018 with high accuracy results. 
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CHAPTER 2 

CLUSTERING WITH AFFINITY PROPAGATION 

What is Affinity Propagation? 

Affinity propagation is a modern unsupervised clustering algorithm that “takes as input a collection 

of real-valued similarities between data points, where the similarity 𝑠𝑠(𝑖𝑖,𝑘𝑘) indicates how well the data point 

k is suited to be the exemplar for data point i 7. Affinity propagation can also be called “Exemplar Based 

Clustering” as it returns actual data points as exemplars over arbitrary averaged data values within the 

cluster itself. The output of affinity propagation therefore becomes a compressed version of the overall data 

where the exemplars represent data points that define the properties found in the assignments. This is shown 

in Figure 2.  

 
Figure 2: Cluster Example From affinity propagation 

 

The exemplar is shown as the first record after the header. Notice how the features of the exemplar 

contain a majority of features in the respective attribute. Not all features in the attribute of the cluster are 

the same. For example, the attribute for “Breast-Quad” contains 3 different features. The value “left-low” 

appears in the attribute the most, therefore this value should be the feature value represented in the 

exemplar. The goal of affinity propagation is to discover these data points, or exemplars, which represent 

the whole of the dataset. It does this through finding the maximal value of the responsibility and availability 

of each data point by passing messages between each data point until a maximum availability and 

                                                      
7 B. J. Frey and D. Dueck, "Clustering by Passing Messages Between Data Points," Science 315, no. 

5814 (2007): , doi:10.1126/science.1136800. 
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responsibility is achieved. The responsibility of a data point is defined by a measure of how the data point 

is suited to be assigned to an exemplar, and the availability of a data point is the measurement of how the 

point is suited to be an exemplar8. This procedure is illustrated in Figure 3.  

Affinity propagation runs iteratively through each data point passing messages and singling out 

exemplars until a convergence is achieved. This is when the availabilities and responsibilities for each data 

point no longer update. At each iteration exemplars will emerge, and clusters will form. When convergence 

is reached a set of exemplars is selected and the clusters take their final shape. Convergence of affinity 

propagation is shown in Figure 4 9.  

In affinity propagation clustering happens naturally. The algorithm does not take an initialization 

of K and outputs exactly K clusters for the dataset. The number of clusters is determined through a series 

of equations that update the responsibility and availability of each data point in reference to all other data 

points. There is a possibility that convergence will not happen. If this is the case, the number of clusters 

and data assignments are determined by when the algorithm terminates, not on any convergence. It is not 

necessarily true that the resultant clusters are incorrect, however because clustering did not happen 

                                                      
8 B. J. Frey and D. Dueck, "Clustering by Passing Messages Between Data Points," Science 315, no. 

5814 (2007): , doi:10.1126/science.1136800. 
9 ibid 

 
Figure 3: Message Passing in Affinity Propagation. 
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naturally, the result will not be the same if affinity propagation is run again as the termination of the 

algorithm happens in the middle of data points switching between assignments and being or not being an 

exemplar to a cluster. Therefore, convergence is an important aspect to this technique and convergence will 

be sought when determining exemplars.  

There are a couple of methods which can help with affinity propagation reach convergence: raise 

the damping factor or raise the number of iterations. The damping factor decreases the oscillations resulting 

from the message passing between data nodes. The damping factor smooths and normalizes the new values 

for each data point making convergence easier to achieve. Increasing the number iterations can also help if 

convergence does not happen even with a high damping factor, however increasing the iteration for a 

clustering result which did converge will not change the clustering result in any way. affinity propagation 

clusters naturally and will stop when convergence is reached. By increasing the number of iterations it only 

makes it more possible for convergence to be reached if the number of iterations necessary is high. If 

convergence is reached in 150 iterations and the max iterations is 200, raising the number of iterations will 

not matter in the clustering result as convergence happened at 150 iterations. However if the iterations were 

lowered below 150, this will cause the algorithm to not converge which will result in a premature clustering 

 

Figure 4: Convergence in Affinity Propagation.  
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result. Therefore, although raising the number of iterations for affinity propagation will not affect a 

clustering result if it converges at a lower iteration point, lowering the number of iterations can prevent 

convergence from happening.  

Why Use Affinity Propagation? 

The classification function of this project contains exemplars from the cluster set for each class. It 

is important for this technique to have a set of centroids that are constant, that is, each time we run the 

clustering algorithm the same output is returned. If exemplar features are not constant it is difficult to be 

assured the exemplars used are a good representation of the dataset. In contrast, clustering algorithms like 

K-Means and BIRCH will select random data points which are initialized as centroid points, however each 

iteration will shift the centroid from its current position to its new position to represent it as being centroid 

to its data assignments. This results in a different clustering set each time such clustering algorithms are 

run10. Additionally, because centroids of clusters created by these algorithms like K-Means and BIRCH are 

most likely not actual records in our dataset, therefore additional work must be done to get the features of 

the centroids from surrounding data points in the cluster.  Affinity propagation eliminates this step, 

returning exemplars, centroids which are actual data points, therefore no additional work is needed to 

extract the features of the centroid.  

Accuracy is also very important in the clustering algorithm due to the centroids needing to represent 

as best as possible the data assignments of the cluster. Therefore choosing an algorithm that results in low 

error is preferable and affinity propagation will return errors that are lower compared with other clustering 

algorithms11.  For these reasons, this thesis will focus on affinity propagation to create the clusters from the 

datasets generated and use its exemplars for our prediction model function.  

                                                      
10 A. K. Jain, M. N. Murty, and P. J. Flynn, "Data Clustering: A Review," ACM Computing 

Surveys 31, no. 3 (1999): , doi:10.1145/331499.331504. 
11 John Trono, Dave Kronenberg, and Patrick Redmond, "Affinity Propagation, and Other Data 

Clustering Techniques," Affinity Propagation, and Other Data Clustering Techniques, , accessed April 15, 
2019, http://academics.smcvt.edu/.  

http://academics.smcvt.edu/
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Algorithm for Affinity Propagation 

Like most clustering algorithms, affinity propagation computes the clusters by using a similarity 

matrix the user constructs beforehand. The similarity matrix is symmetrical, an N x N matrix, where N is 

the number of records being clustered. Each value in the similarity matrix, (Np, Nq), where p is record p 

and q is record q, is calculated by finding the distance between record p and record q. The construction of 

this similarity matrix will be discussed in the next section. 

Affinity propagation generates two additional matrices during initialization called R for 

responsibilities, and A for availabilities. Each matrix is also symmetrical like the Similarity Matrix, and 

exactly the same size. Each index pair in each matrix is associated to each other. R[i, j] is associated with 

A[i, j] and S[i, j]. The diagonal represents self-availability for the availability matrix, and self-responsibility 

for the responsibility matrix, and the preference value for the dataset is stored in the diagonal of the 

similarity matrix.  

 Affinity propagation calculates responsibilities for each data point i and stores this in matrix R 

using the formula shown in Figure 5 12. This finds the maximum value of all data points from the  

availability matrix A at 𝐴𝐴(𝑖𝑖,𝑘𝑘′) where k’ is not data point k, added to all 𝑠𝑠(𝑖𝑖,𝑘𝑘′) where k’ is not data point 

k.  

Accessing the similarity matrix value at matrix location (i, k), all other data points k’ where k’ is 

not k are accessed from the availability matrix and similarity matrix and added together. Messages do not 

get passed to themselves. We are looking for the maximum value returned for this summation with each 

message passed. This maximum value found is subtracted from the similarity matrix value 𝑆𝑆(𝑖𝑖,𝑘𝑘).  This 

                                                      
12 B. J. Frey and D. Dueck, "Clustering by Passing Messages Between Data Points," Science 315, no. 

5814 (2007): , doi:10.1126/science.1136800 

𝑟𝑟(𝑖𝑖,𝑘𝑘) ← 𝑠𝑠(𝑖𝑖,𝑘𝑘)−  max
𝑘𝑘′𝑠𝑠.𝑡𝑡.𝑘𝑘′≠𝑘𝑘

{𝑎𝑎(𝑖𝑖,𝑘𝑘′) + 𝑠𝑠(𝑖𝑖,𝑘𝑘′)} 

Figure 5: Equation to calculate Responsibilities. 
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value is then stored as the responsibility value at 𝑅𝑅(𝑖𝑖,𝑘𝑘). We increment i to the next data point and the 

process is repeated until all data points have been calculated. The algorithm to calculate all responsibilities 

for each data point i with respect to data point k is shown in Figure 6 13. 

Algorithm 1 shows the usage of the damping factor variable which exists to limit oscillations during 

this process of updating Responsibilities which can help the algorithm converge more efficiently. The 

authors of affinity propagation recommend a damping factor of .5. For situations where convergence does 

not occur with a damping factor of .5, raise the damping factor until convergence occurs. The highest 

damping factor can be .9. 

Once all responsibilities are calculated for matrix R, availabilities for matrix A are calculated for 

each data point. The availability equations for affinity propagation are shown in Figure 7 and 8 14. 

𝑎𝑎(𝑖𝑖,𝑘𝑘) ⟵  𝑚𝑚𝑖𝑖𝑚𝑚{0, 𝑟𝑟(𝑘𝑘,𝑘𝑘) +  � max{0, 𝑟𝑟(𝑖𝑖′,𝑘𝑘)} 
𝑖𝑖′𝑠𝑠.𝑡𝑡.𝑖𝑖′∉{𝑖𝑖,𝑘𝑘}

} 

Figure 7: Equation for calculating availability of data record i. 

 

                                                      
13 "Affinity Propagation - Java," Cognitive Foundry, , accessed April 15, 2019, 

https://foundry.sandia.gov/releases/latest/javadoc-api/index.html. 
14 B. J. Frey and D. Dueck, "Clustering by Passing Messages Between Data Points," Science 315, no. 

5814 (2007): , doi:10.1126/science.1136800 
 

 

 

Figure 6: Algorithm to Update Responsibility Matrix 
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𝑎𝑎(𝑘𝑘,𝑘𝑘) ⟵  � max{0, 𝑟𝑟(𝑖𝑖′,𝑘𝑘)}
𝑖𝑖′𝑠𝑠.𝑡𝑡.  𝑖𝑖′≠𝑘𝑘

 

Figure 8: Equation for self-availability of data record k. 
The summation of all maximum positive values for all responsibilities of 𝑟𝑟(𝑖𝑖′,𝑘𝑘) where i’ are all 

data points not i (or 0, whichever value is greatest) is assigned to the self-availability, the diagonal of the 

availability matrix. This value is also added to the self-responsibility, the diagonal of the responsibility 

matrix. The availably of point i with respect to point k is assigned the minimum value of the summation or 

0, whichever is smaller. All points i are iterated through until all availabilities and self-availabilities are 

calculated. The algorithm for finding availabilities for all data points i with respect to data point k  is shown 

in Figure 9 15. 

 
Figure 9: Algorithm for Updating Availability Matrix 

 

The total likelihood that data point i is assigned then to data point k is the sum of the self-availability 

and self-responsibility values. If the value is not zero, data point k can be assigned to data point i. At each 

iteration several exemplars start to emerge. affinity propagation continues to iterate and update 

responsibilities and availabilities until convergence occurs which results in a final set of exemplars. 

Assignments are made by checking each matching matrix field in availability and responsibility. The sum 

                                                      
15 "Affinity Propagation - Java," Cognitive Foundry, , accessed April 15, 2019, 

https://foundry.sandia.gov/releases/latest/javadoc-api/index.html. 
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of the availability and responsibility therefore determine if record i is assigned to exemplar record j. The 

algorithm for updating data point i to cluster k  is shown in Figure 10 16. 

 

Figure 10: Algorithm for Updating Assignment Record j to Cluster record i 

 
The time complexity for affinity propagation requires O(k*n2 )17 where k is the number of iterations 

and n is the number of data points. This time complexity is important as data which contains a large number 

of records can take a substantial amount of time to converge. Furthermore, construction of a similarity 

matrix for large dataset will process slowly.  

A Similarity Matrix for Categorical Data 

The similarity matrix holds a measurement of similarity or dissimilarity between records in an N x 

N matrix where N is the number of records in the dataset. Datasets with numeric features are quite simple 

to calculate similarity as such records can be plotted in N-Dimensional space and the physical distance 

between records can be the measurement of their similarity.  This distance can be measured using such 

equations like Euclidian Squared Distance or Manhattan Distance18  to name a few. Categorical data, data 

                                                      
16 16 "Affinity Propagation - Java," Cognitive Foundry, , accessed April 15, 2019, 

https://foundry.sandia.gov/releases/latest/javadoc-api/index.html. 
17 R. Refianti, A.B. Mutiara, and S. Gunawan, "Time Complexity Comparison Between Affinity 

Propagation Algorithms," Journal of Theoretical and Applied Information Technology 95, no. 7 (April 15, 
2007): 

18 Paul Barrett, "Euclidean Distance Raw, Normalized, and Double‐scaled Coefficients," The 
Technical Whitepaper Series, September 2005, , accessed April 15, 2019, 
https://www.pbarrett.net/techpapers/euclid.pdf. 
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whose features are categories or strings, presents a challenge in that categorical values cannot be represented 

as existing in some physical space like numeric data. For example, expressing the distance between Male 

and Female cannot be achieved by plotting Male and Female onto a plane. However, if we recognize that 

categorical data is dataset dependent, that is the dataset used will contain only the categories included in 

each attribute, it may be possible to think of a distance between two categorical values with respect to all 

categories in the dataset.  

This approach, written by Amir Ahmad and Lipika Dey titled, “A K-Mean Clustering Algorithm 

for Mixed Numeric and Categorical Data”19, uses a conditional probability approach to find a similarity 

measurement between two categorical values x and y in Attribute i. The algorithm calculates the co-

occurrence of values x and y in Ai with all other categorical values in Attributes j. where j does not equal 

i. For example, I have three attributes where Attribute A has the following categories: Male, Female, and 

Undeclared, Attribute B has the following categories, Yes, and No, and Attribute C has the following 

categories, House, Apartment, and Condo. To find the distance between Male and Female, I find the 

conditional probability of Yes, given Male, and Yes given Female. Then I find the conditional probability 

of No, given Male, and No given Female, and continue this process until all conditional probabilities are 

computed for all attribute features. This measurement of co-occurrence is calculated by finding the 

maximum of the conditional probability of X given Aj(Category) and Y given Aj(Category). We first define 

the distance between values x and y of attribute I with respect to Attribute j shown in Figure 11 20.  

where w is a subset of values and ~w is the complement of w, of Aj which maximizes the value of 

𝑃𝑃𝑖𝑖(𝜔𝜔 | 𝑥𝑥) +  𝑃𝑃𝑖𝑖(~𝜔𝜔 | 𝑦𝑦). For example, for x = Male, and y = Female, the distance between Male and Female 

                                                      
19 Amir Ahmad and Lipika Dey, "A K-mean Clustering Algorithm for Mixed Numeric and 

Categorical Data," Data & Knowledge Engineering 63, no. 2 (2007): , doi:10.1016/j.datak.2007.03.016. 
20 ibid 

Definition 1: 𝛿𝛿𝑖𝑖𝑖𝑖(𝑥𝑥,𝑦𝑦) =  𝑃𝑃𝑖𝑖(𝜔𝜔 | 𝑥𝑥) +  𝑃𝑃𝑖𝑖(~𝜔𝜔 | 𝑦𝑦)  
Figure 11: Distance Between Attribute values x and y for Ai with respect to Attribute Aj. 
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requires the conditional probability of all categories in Attributes j ≠ i. If the categories in Attribute j are 

Yes, and No, then, 𝛿𝛿𝑖𝑖𝑖𝑖(𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀,𝐹𝐹𝑀𝑀𝑚𝑚𝑎𝑎𝑀𝑀𝑀𝑀) = 𝑚𝑚𝑎𝑎𝑥𝑥(𝑃𝑃1(𝑌𝑌𝑀𝑀𝑠𝑠|𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀),𝑃𝑃1(𝑌𝑌𝑀𝑀𝑠𝑠|𝐹𝐹𝑀𝑀𝑚𝑚𝑎𝑎𝑀𝑀𝑀𝑀)) + 𝑚𝑚𝑎𝑎𝑥𝑥(𝑃𝑃1(𝑁𝑁𝑁𝑁|𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀 ),

𝑃𝑃1(𝑁𝑁𝑁𝑁|𝐹𝐹𝑀𝑀𝑚𝑚𝑎𝑎𝑀𝑀𝑀𝑀)).  

Definition 2 21, shown in Figure 12, expands the equation of finding the maximum of the 

conditional probabilities of our first definition to find the maximum of the conditional probabilities for all 

attribute features. The total of all maximum conditional probability values is then divided by the number of 

attributes – 1. This is the “distance” for this categorical pair. For example, if we expanded our first example 

to find the maximum probability of all attribute features and the number of attributes is 10, then 

𝛿𝛿(𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀,𝐹𝐹𝑀𝑀𝑚𝑚𝑎𝑎𝑀𝑀𝑀𝑀) = � 1
10−1

�∑ 𝛿𝛿𝑖𝑖𝑖𝑖(𝑀𝑀𝑎𝑎𝑀𝑀𝑀𝑀,𝐹𝐹𝑀𝑀𝑚𝑚𝑎𝑎𝑀𝑀𝑀𝑀)𝑖𝑖=1…10,𝑖𝑖≠𝑖𝑖 , where j represents the attribute other than 

Attribute I.  

Because this technique will not use numeric attributes, definition 3 of Ahmad and Lipika’s paper 

is altered to not include numeric attributes. Therefore, definition 3 22 is rewritten as the sum of all distance 

pairs between two categories as the similarity of two records: D1, and D2.  This equation is shown in Figure 

13. 

where m represents all categorical attributes. If data contains numeric values for attributes, this thesis will 

convert the attribute into bins, where the bin name will represent the categorical value for the binned data 

itself. How binning will be performed on the attribute is task dependent and must be done as to not over 

simplify the distribution of the values in the attribute. The reason for eliminating the process of converting 

                                                      
21 Amir Ahmad and Lipika Dey, "A K-mean Clustering Algorithm for Mixed Numeric and Categorical 

Data," Data & Knowledge Engineering 63, no. 2 (2007): , doi:10.1016/j.datak.2007.03.016 
22 ibid 

Definition 2: 𝛿𝛿(𝑥𝑥,𝑦𝑦) = � 1
𝑚𝑚−1

�∑ 𝛿𝛿𝑖𝑖𝑖𝑖(𝑥𝑥,𝑦𝑦)𝑖𝑖=1…𝑚𝑚,𝑖𝑖≠𝑖𝑖  

Figure 12: Equation for distance between values x and y in any given attribute Ai. 

Definition 3: 𝐷𝐷𝑖𝑖𝑠𝑠𝐷𝐷(𝐷𝐷1,𝐷𝐷2) =  ∑ (𝛿𝛿(𝑋𝑋𝑡𝑡 ,𝑌𝑌𝑡𝑡))2𝑚𝑚
𝑡𝑡=1  

Figure 13: Equation for the distance between record D1 and D2 
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numeric values using Ahmad and Dey’s approach is that the technique did not perform well with any 

clustering algorithm, especially affinity propagation. It created clusters with large errors. In order to simply 

the process, this thesis eliminates numeric attributes by binning them manually.  

Preference Value 

The preference value is the priori suitability of a point i to serve as an exemplar23. The Preference 

value is set to the diagonal of the similarity matrix. Data points that maximize the sum of the availability 

and responsibility and exceed this preference value are defined as an exemplar. Preference values that are 

too low will produce many clusters, as most if not all data points are going to exceed a low preference 

value. Preferences that are high in value produce low number of clusters. Because of this the authors of 

affinity propagation suggest the preference value be set around the median value found in the similarity 

matrix24. In reference to the classification technique affinity propagation raises the question of how accurate 

are the clusters returned, and will the resultant exemplars serve the purpose of producing a high enough 

accuracy with as few clusters as possible? 

This is the challenge to affinity propagation raising the importance of finding an ideal preference 

value. If there are too many centroids then the compression of the dataset is minimal. If there are too few 

centroids then the compression of the dataset is too extreme. Therefore it is necessary to isolate the 

preference value and find an ideal setting.  

Isolating this preference value can be achieved in a few ways. One way is to analyze the data to see 

if the clusters contain good patterns and meaning. If not, the preference is changed, forming a new cluster 

set until meaning is achieved. For small data this could be plausible, yet for large data, analysis in this 

fashion is not practical. Another method automates this process by calculating information gain in the 

                                                      
23 B. J. Frey and D. Dueck, "Clustering by Passing Messages Between Data Points," Science 315, no. 

5814 (2007): , doi:10.1126/science.1136800 
24 ibid 
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resultant cluster set with respect to another resultant cluster set from a different preference value. This 

method is called The Elbow Method. 

 Evaluating a preference value using the Elbow Method 

The Elbow Method calculates the variance of change. The challenge is to find something within 

affinity propagation which can represent change between different cluster results. One element of change 

can be explained as a function of the number of clusters with respect to the error of the clusters.  The elbow 

method can then use entropy to ascertain a method of information gain to choose a number of clusters so 

that adding more clusters does not give a better model of the data25. Entropy characterizes the amount of 

information found within our cluster result, whereas information gain is the amount of information gained 

in the addition of another process. One way to perceive information gain from a clustered result is to analyze 

the average error in the clustered dataset. When any clustering algorithm creates a set of resultant clusters, 

there is always error in the clusters, represented by the distance of the data point in the cluster from its 

centroid. In the case of categorical values this will be the value of the similarity matrix M(i, k) where i is 

the data point and k is the exemplar. The entropy from one clustered result to another is the difference of 

the average error between each cluster result. If the error delta is small, the entropy is small and thus the 

information gain is small. We want to maximize the information gain by finding where the error has a 

significant delta. This might not be the largest delta if a specific run of affinity propagation did not result 

in convergence. Clustering a dataset without convergence can lead to distortion in the cluster set and thus 

effect the error. For example, if affinity propagation does not converge for preference value -2, but does for 

preference value 1, a cluster set result may have an error much higher or lower than 1. It can result in a 

spike or valley in the resultant line graph that will distort our measurements. If this happens, this method 

will ignore that preference value as convergence is desirable in affinity propagation. The Elbow method 

will show the entropy of each clustered result to discover the cluster set which will have the greatest 

                                                      
25 Purnima Bholowalia and Arvind Kumar, "EBK-Means: A Clustering Technique Based on Elbow 

Method and K-Means in WSN," International Journal of Computer Applications 105, no. 9 (November 
2014): , https://pdfs.semanticscholar.org/5771/aa21b2e151f3d93ba0a5f12d023a0bfcf28b.pdf. 
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information gain. From this clustered result a preference value should be related. It is the ideal preference 

value.  

An example can give some insight to this method. Let us say we have a similarity matrix defined 

from categorical data using the technique of categorical difference pairs above and now we desire to cluster 

this dataset. Taking the median of the similarity matrix and expanding the value for a range of about 10 to 

15 preference values, we can run affinity propagation for each preference value of the dataset. For each run 

of affinity propagation, we calculate the average error of the total clustered dataset as well as store the 

number of clusters and the preference value which produced this number of clusters.  

An example illustration is shown in Figure 14. In this example the x-axis represents the number of 

clusters which represents a preference value range of -8 to 5 and y-axis represents the error the cluster result 

set produced. Each value of the x-axis represents affinity propagation run with a specified preference value 

which returns the number of clusters on the x-axis. The line chart shows, starting with the lowest number 

of clusters, the error is large and eventually as the cluster number increases the delta in the error decreases. 

From cluster number 74 to cluster number 241 we see very little change in error, thus a low entropy from 

adding more clusters starting with a result of 74 clusters. From the line graph we can show a “Goldilocks 

Zone” where the entropy of error is the highest compared to all clustering results. This zone represents 

affinity propagation converging at 17, 22, and 74 clusters. It would be up to the individual to decide which 

clustering amount is preferable to the problem at hand. That is, a user might feel 74 clusters is too many, 

therefore selecting 22 or 17 as preferable. The decision of what preference value to use is task dependent. 

If our clustered result is to be used for a prediction model, using 74 exemplars might be acceptable. In the 

case of a predictive model, it might be beneficial to try all three convergence results in our graph and 

calculate accuracy.  
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Running affinity propagation 10 to 15 times for any given dataset is tedious, thus it would be 

beneficial if there was some way to automate it. By using the Law of Cosines, we can design an algorithm 

that runs AP between a range of preference values and measures the change of error by measuring the angle 

at a point in the line. The equation of  the law of Cosines and its application to our graph is shown in Figure 

15.  

Whichever point produces an angle that is small we save for consideration as smaller angles represent high 

entropy. We can then analyze each point where the elbow measurement was significant, and we can get a 

preference value that will produce for us the number of clusters at that elbow point. This technique will be 

used to get the preference value when running affinity propagation on any dataset.  

 

Figure 15: Elbow Method analysis of 3400 records of Data 

 

 

𝑎𝑎2 =  𝑏𝑏2 +  𝑐𝑐2 − 2𝑏𝑏𝑐𝑐 cos𝐴𝐴 

 
Figure 14: Application of Law of Cosines to measure entropy between cluster sets 

 

c 

b 

a 



24 
 

Summary of Technique 

The entire technique described in this chapter can be summarized as our training function for our 

classifier. That is, the process of training our classifier uses affinity propagation to get exemplar data from 

datasets. The entire process is shown in the algorithm in Figure 16.  

 
Figure 16: Algorithm: Training for classification using affinity propagation (binary classifier) 

 

The algorithm trains the data by loading the dataset which is in CSV format, comma delimited, 

then splits the data into two sets: a training set and test set. It sets the test set aside and splits the training 

data set again into two datasets (or more datasets) which reflect the classes we are matching against. It takes 

each class dataset and constructs a similarity matrix for each. Each similarity matrix is sent to a method to 

calculate the ideal preference value using the elbow method and returns that preference value for that 

similarity matrix. affinity propagation is then run against each similarity matrix with the preference paired 

to that similarity matrix. affinity propagation returns the exemplars we are after. We save the exemplars 

from each class to a file which we will use for our testing. This file serves as the memory for our classifier 

as this thesis will show exemplars from earlier training sets work on datasets in the future. These files could 

be expanded as well with new exemplars added and others removed based on newer models constructed. 
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CHAPTER 3 

CLASSIFICATION MODEL AND PREDICTION FUNCTION 

Classification Using Affinity Propagation Exemplars 

The classification process is quite simple as the training process has already been completed. The 

training data represents exemplar data for each class. This exemplar data describes potential clusters which 

exist for that class. The classifier will take each record and determine the probability of match for each 

class. Whatever class returns the highest probability of match, becomes the class. This is novel compared 

to Naïve Bayes, and Decision Trees which use the whole dataset to calculate conditional probabilities for 

records belonging to a particular class then uses the same process to calculate the test data. A great feature 

contained in Naïve Bayes and Decision Tree classifiers is the total transparency of the classification 

function. For businesses it is important to not only know to what class a customer may belong, but the 

features of the customer that placed it into the class. Classifiers like Artificial Neural Networks, and Support 

Vector Machines have high accuracy, but very little transparency when it comes to how the classes are 

determined. In the case of ANNs and SVMs the transparency is analogous to a black box, there is no way 

to determine practically how the classification was made, other than to trust the computations that 

performed the classification. Full transparency is sought in this thesis as it provides practical knowledge of 

what constitutes the qualities of being defined in a particular class, and the output of the clustering result 

set provides full transparency of the qualities which make up each feature set.  

The basic idea behind the classifier is to calculate a probability of match for each class and classify 

the record based on which class returns the highest probability of match. The classification process uses an 

algorithm known as Cosine Similarity. The equation for Cosine Similarity is shown in Figure 17 26.  

𝑠𝑠𝑖𝑖𝑚𝑚𝑖𝑖𝑀𝑀𝑎𝑎𝑟𝑟𝑖𝑖𝐷𝐷𝑦𝑦 = cos(𝜃𝜃) =
𝐴𝐴 ∙ 𝐵𝐵

‖𝐴𝐴‖‖𝐵𝐵‖
=  

∑ 𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖𝑛𝑛
𝑖𝑖=1

�∑ 𝐴𝐴𝑖𝑖2𝑛𝑛
𝑖𝑖=1 �∑ 𝐵𝐵𝑖𝑖2𝑛𝑛

𝑖𝑖=1

 

Figure 17: Cosine Similarity Equation 

                                                      
26 Edel Garcia, "Cosine Similarity Tutorial," Minerazzi, April 10, 2005, , accessed April 15, 2019, 

http://www.minerazzi.com/tutorials/cosine-similarity-tutorial.pdf. 
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Cosine Similarity uses vector dot products which would mean having to convert each record into a 

vector representation, however because of how we can represent the categorical data, the following process 

produces the exact same result as Cosine Similarity every time. The process is as follows.  

Figures 18 shows one class set for “Applied”. Another class set exists for all records “No Decision”. 

Figure 19 shows a test record we want to test against each class set.  

 

Figure 18: Example of exemplars from affinity propagation Clustering 
 

F Non Hispanic/Latino WH PAID FF Catholic Y Boyer Transcript Mailed College Recr 

Figure 19: Record to test classifier 
 

If we check each attribute of the test record against each attribute of the first record we see that 6 

of the 9 attributes match, giving us 9/9 for the probability of match. The second record returns 6/9 for 

probability of match, and so on. If we were to use Cosine Similarity we would have to convert the test 

record to a vector. One method of conversion is called “One Hot Conversion”. This converts features of an 

attribute to a binary vector representation where one of the binary values is toggled as 1. For example, the 

first attribute contains 2 features, therefore the binary representation contains two bits: male = 01, and 

female = 10. One of the bits is toggled to 1. Attribute 3 contains 6 features, therefore the binary 

representation contains 6 bits: white = 100000, black = 010000, Asian = 001000, and so on. If this 

conversion extends the length of the record for each attribute, a vector representation will emerge containing 

only 1s and 0s. The number of 1s in the vector will always be the number of attributes in the record 

according to One Hot Conversion.  

 Taking the equation in Figure 17, the numerator is a dot product of the test record vector and the 

record in the training set we are matching against. If the vector representation of the test record is  
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(A) 00100000   100   01000   10000   01   001   010   0010   01 

The spacing clearly represents the delineation between the attribute features. Normally this vector is all one 

single binary value. The first training record is represented as 

(B) 00100000   100   01000   10000   01   001   010   0010   01 

The dot product is 𝐴𝐴 ∙ 𝐵𝐵 which takes each 𝐴𝐴𝑖𝑖  and 𝐵𝐵𝑖𝑖 and multiplies them together. If either vector value is 

zero the result is zero, therefore only the vector values where both are 1 remain. In this example we will 

have the following result from the dot product of A and B.  

00100000100010001000001001010001001 

The denominator is the magnitude of the vector A multiplied by the magnitude of the vector B. The 

magnitude is measured by summing the number of 1s in our vector. For A and B they will always be the 

same because each vector is a representation of each attribute feature. Each record contains the same 

number of attribute features; thus the magnitude of A and B are always the same. Thus plugging our values 

into the equation for Figure 17 we have the following,  

9
√9√9

=
9

3 ∗ 3
=

9
9

= 1 

This is the same value we got from our initial matching algorithm. Applying this method to the second 

training record we get the following,  

6
√9√9

=
6
9

=  .6667 

This application of Cosine Similarity can be done for each training record. A mean must be taken so as to 

normalize the value in case either class set is not equal or contains more records than the other. The class 

set which returns a higher probability of match will be the class the record will be classified as.  

 

Algorithm of Technique 

The technique proposed in this thesis can be represented through the following algorithm shown in 

Figure 19: The testing function takes each record and looks for a class of exemplars that returns the highest 
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probability of match. This exemplar class becomes the prediction class and this is compared to the actual 

class the record belongs. It is important to realize the testing data was not a part of the training set and was 

therefore not a part of the clustering algorithm. It is also worth noting that the exemplars saved during the 

process of creation, the exemplars which are compared with the test records according to the algorithm 

above, are saved to a file. This file can be edited by removing exemplars that are not “important” and adding 

new exemplars if a new dataset is received. For example if you clustered a dataset for 2017 then received a 

new dataset for 2018, it is possible to combine the datasets together. Once a training set is computed, it is 

not required to run a clustering of the dataset again. All new records can be compared to a new dataset. This 

thesis will show how testing a new dataset on a previous year’s dataset has highly favorable results.  

 

Figure 20: Algorithm for Classification Model (for binary classifiers only) 
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CHAPTER 4 

ILLUSTRATING OUR PREDICTION MODEL ON VARIOUS DATASETS 

Breast Cancer 

To help illustrate this algorithm and technique this thesis will use four datasets: three from UCI 

data repository and a real world dataset containing student enrollment data from a university of 4000 

students. The first dataset this thesis will explore is a dataset for Breast Cancer. Taken from the UCI 

Repository, the dataset contains 286 records, 9 attributes and all data records are categorical27.  

The results using this technique, shown in table 1, were not favorable. 

BREAST CANCER DATASET #1 

 AP Classification 
Model 

PRECISION 28% 
RECALL 19% 
ACCURACY 61% 
FSCORE 23% 

Table 1: Breast Cancer Dataset #1 Results classified with AP Classification 

 

A reason for the unfavorable results is most likely due to the lack of data and therefore the lack of 

exemplars to represent the data. Clustering algorithms need a good representation of data to develop the 

clusters that help explain the data. If there isn’t enough information, the clusters become sparse and the 

error will be significantly higher. The overall accuracy of the clusters for this training set averaged around 

70% which is not very good, but okay. 

To compare these results with another classifier I have chosen Naïve Bayes due to its similarities 

and its ease of use with categorical data. I also compared the results to using Cosine Similarity on the entire 

set, which therefore compares the use of the same classifier with two different training sets: a whole training 

                                                      
27 Milan Soklic and Matjaz Zwitter, "Breast Cancer Data Set," UCI Machine Learning Repository, 

July 11, 1988, , accessed April 15, 2019, https://archive.ics.uci.edu/ml/datasets/Breast Cancer. 
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set and a compressed training set. Naïve Bayes did fare better at 61%, shown in Table 2, thus Naïve Bayes 

appears stronger with fewer records on a potentially rich dataset. Cosine Similarity also returned very good 

results from using the whole dataset. The lesson from this dataset shows that the prediction function fails 

when the training data is too small. When we have a richer feature set and more records our prediction 

function improves dramatically..  

BREAST CANCER DATASET #1 

 Naïve Bayes Cosine Similarity 

PRECISION 28% 42% 
RECALL 19% 55% 
ACCURACY 61% 72% 
FSCORE 23% 48% 

Table 2: Breast Cancer Dataset Results Classified with Naive Bayes and Cosine Similarity 

 

Breast Cancer Dataset #2 

A second dataset for breast cancer exists based on a Wisconsin study. The dataset contains 699 

records, 10 attributes, and a binary classifier for benign or malignant. Created by Dr. William H. Wolberg 

from the university of Wisconsin, Madison in 199228, the results of the technique, shown in table 3, on this 

dataset are far more favorable.  

BREAST CANCER DATASET #2 

 AP Classification 
Model 

PRECISION 86% 
RECALL 98% 
ACCURACY 88% 
FSCORE 92% 

Table 3: Breast Cancer Dataset #2 Results with AP Classification 

                                                      
28 William H. Wolberg, "Breast Cancer Wisconsin (Original) Data Set," UCI Machine Learning 

Repository, July 15, 1992, , accessed April 15, 2019, https://archive.ics.uci.edu/ml/datasets/Breast Cancer 
Wisconsin (Original). 
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This dataset shows with enough records and features, it will improve the accuracy of the classifier. 

This goes without saying as any dataset will need enough data for any classifier to have a higher accuracy. 

Also a dataset where the features are well represented helps to increase not only accuracy, but a well-defined 

cluster set. Running the same dataset on Naïve Bayes produced results shown in Table 4. Naïve Bayes fared 

well with its prediction model, however our classification model uses less data and results in a higher 

accuracy.  

What is more interesting are the results for cosine similarity. Comparing these results to our 

classifier the measurements are comparable. The difference between the two classifications is that the AP 

Classification training set used 37% of the original dataset used by this run of Cosine Similarity. Although 

my accuracy for AP Classification is 3% lower, the fact the numbers are so close shows potential.  

BREAST CANCER DATASET #2 

 Naïve Bayes Cosine Similarity 

PRECISION 83% 88% 
RECALL 94% 99% 
ACCURACY 84% 91% 
FSCORE 88% 93% 

Table 4: Breast Cancer Dataset #2 Results with Naive Bayes Classification 

 
 

Mushroom Dataset 

The next dataset contains information about various mushrooms also from the UCI Machine 

Learning Repository. It is a dataset which contains 8124 records, 22 attributes, with all data stored as 

categorical values. The records themselves are drawn from the Audubon Society Field Guide to North 
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American Mushrooms29. The classification is binary: poisonous or edible. The classification technique 

presented in this thesis provided the following results shown in Table  5.  

MUSHROOM DATASET 

 AP Classification 
Model 

PRECISION 85% 
RECALL 97% 
ACCURACY 90% 
FSCORE 91% 

Table 5: Mushroom Dataset Results using AP Classifier 

 

An accuracy of 90% is excellent indeed, more so recall of 97% demonstrates low False Positive 

results from this analysis which are less desirable than True Negatives. Also analysis of the data shows a 

perfect 50% split in the classification data. Further analysis into the output of the algorithm itself showed 

the number of exemplars produced for each classification was around 140. The training set is roughly 5686 

records with roughly 50% of the records in each classification. This means the exemplars themselves 

represent about 5% of the original data, with the test set represent 2500 records. As the classification shows, 

having a complete training set where the exemplars indeed represent the data assignments well, we can 

build a prediction model that uses a fraction of the data, and still classify the data well, and in some cases 

perfectly.  

 

 

 

 

                                                      
29 Jeff Schlimmer, "Mushroom Data Set," UCI Machine Learning Repository, April 27, 1987, , 

accessed April 15, 2019, https://archive.ics.uci.edu/ml/datasets/Mushroom. 
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Applying the same data to Naïve Bayes and Cosine Similarity, the results are shown in table 6.  

MUSHROOM SET 

 Naïve Bayes Cosine Similarity 

PRECISION 56% 83% 
RECALL 93% 96% 
ACCURACY 59% 88% 
FSCORE 70% 89% 

Table 6: Mushroom Dataset Results Using Naive Bayes Classification 

 

From this analysis we see that our AP classifier, which is using only 5% of the original training set, is now 

out performing Cosine Similarity which uses the whole training dataset. Let’s do one more test with student 

enrollment data.  

Student Enrollment Data 

A final dataset comes from a private institution, Saint Vincent College in Latrobe Pennsylvania. 

The records consist of around 19000 enrollment records with 15 attributes. The data was truncated to 8000 

records as 17000 out of the 19000 records are related to a single class feature. This would have biased the 

data greatly. Therefore the data was truncated so the class distribution is 25% for “Applied” and 75% for 

“No Decision”. Removing more records with the Attribute feature “No Decision” in my mind might corrupt 

the data. The idea of this prediction is to decide if a student who fills out an inquiry form will formally 

apply to the school. The results of this test are shown in table 7. 

STUDENT ENROLLMENT DATASET 

 AP Classification Model 

PRECISION 98% 
RECALL 77% 
ACCURACY 94% 
FSCORE 86% 

Table 7: Student Enrollment Dataset Results using affinity propagation Classification 
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The results in testing this same dataset using Naïve Bayes and Cosine Similarity on the whole training set 

are shown in table 8. 

STUDENT ENROLLMENT DATASET 

 Naïve Bayes Cosine Similarity 

PRECISION  97% 
RECALL  65% 
ACCURACY 77% 90% 
FSCORE  78% 

Table 8: Student Enrollment Dataset Results Using Naive Bayes classification 

 

The AP Classifier is using only 1% of the training set used by Cosine Similarity in the results shown 

in Table 8. The AP classifier is again out performing a classification of the whole dataset.  

One additional test is to use the training set saved from the student enrollment cluster set from 2017 

and apply a dataset from 2018 to see how accurate future records can be classified using older exemplars.  

The one unique feature of this technique is that it saves the training data in a file. This file can be edited in 

order to improve the quality of the training set. The training file is initialized with a single data set at first, 

however it is possible to run another dataset through affinity propagation to compile another set of 

exemplars and include these exemplars into the training set. The following test run does not add or alter the 

training set from 2017 in any way and is run against the entirety of 2018 dataset containing the same 

attributes, features, and about 19000 records. The results of this run are shown in table 9.  
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STUDENT ENROLLMENT DATASET 

 AP Classification Model 

PRECISION 97% 
RECALL 74% 
ACCURACY 93% 
FSCORE 84% 

Table 9: Student Enrollment Dataset from 2018 applied as Test data against 2017 Training set 

 

 

 

Figure 21: Comparison of accuracy between 3 classification models 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

Conclusions 

This thesis illustrates a novel way to build a training set for classification purposes by using a 

reduced dataset represented as exemplars from the output of affinity propagation as a training set. It shows 

that even a subset of the dataset, as long as this subset contains the most important records, measured by 

their return as exemplars from a clustered output, will serve as training data for a classifier and will classify 

as well as Naïve Bayes and Cosine Similarity on the whole training set. This thesis also shows that the 

exemplars chosen from a dataset at one point, will still represent new data records for the same dataset for 

at least one year into the future with an accuracy of over 90%. This illustrates that the exemplars from a 

given year of data can still act as exemplars for another given year of data. However, as data can fluctuate 

over time, the accuracy of the training data for a given year will start to produce lower accuracies over time. 

This can be addressed by creating new exemplars for additional data.  

Another key feature to this technique is the training data itself. The training data is saved to a file 

which is sent to a classification model. This file can be edited. It can be added to, and even exemplars 

removed. Additional logic could be added to the file to show which exemplars are getting the most hits 

from new records. The exemplars that are getting fewer hits, could be exemplars worth removing. 

Clustering new data with new exemplars outputted can be added to the training file as well. If this is done, 

procedures to make sure that no duplicates exist and that there is a clear delineation between the exemplars 

of all classes would need to be done. A process was performed for the binary exemplar data to ensure that 

no exemplar matches another exemplar in the other class.  

This technique is also transparent. That is, how it classifies records is intuitive to the user by reading 

the training file which contains all exemplars containing the feature information from the dataset unaltered. 

Each exemplar array describes the qualities which make up the class.  This information can be used easily 
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to explain features in the data using real words and not numeric values such as the output returned from 

other classifiers as Artificial Neural Networks and Support Vector Machines.  

Some of the negative features of the technique are shown with the breast cancer data where small 

datasets do not give a good accuracy result. The overhead in creating the exemplars is extensive, however 

once the training set is created it does not have to be recreated. As shown with the student data for 2018 

which was tested with exemplars created using 2017, the accuracy for prediction was still very strong. Also 

classification is biased towards the clustering of the data itself. This occurs in other classifiers as well where 

the distribution of records for the classifications are not even or close to even. For example, if the number 

of records which contains class = A is 10% of the whole dataset, the dataset needs to be truncated. This is 

the same for other classifiers where the number of records which contain information for each class needs 

to be evenly distributed.  Finally, this technique is not tested for numeric data. However given the classifier 

is built for discrete values, and small features sets for attributes, datasets containing numeric attributes like 

age or distance will not cluster well unless these numerical attributes are “binned”, that is specific ranges 

are translated into a category or bin. All datasets for this technique are tested using only datasets containing 

full categorical values. If any attributes were numeric, they were converted to categories before running 

affinity propagation. 

Future Work 

Expanding this technique to be able to include numeric attributes would lend itself well to many 

more datasets. The categorical algorithm used to calculate a categorical pair’s distance can be expanded to 

include numerical values and can be found in Ahmad and Dey’s paper30. Other techniques not explored are 

adding to the exemplar records based on clustering of another dataset. Benchmarking this technique against 

                                                      
30 Amir Ahmad and Lipika Dey, "A K-mean Clustering Algorithm for Mixed Numeric and 

Categorical Data," Data & Knowledge Engineering 63, no. 2 (2007): , doi:10.1016/j.datak.2007.03.016. 
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other classifiers such as Artificial Neural Networks, and Decision Trees to calculate where it stands with 

accuracy.  

Related to the affinity propagation, other ways to zero in on an ideal preference value, and an ideal 

damping factor could help increase accuracy. Either value is highly volatile to the creation of clusters so 

that a value that is not ideal can result in distorted cluster sets or not enough clusters or too many clusters 

to describe the dataset. This extension of the algorithm lends itself well to the idea of adaptive techniques 

especially related to affinity propagation. Because of affinity propagation strong connection to the values 

of the preference and damping factor, it is possible to get entirely different cluster returns, and in some 

cases no cluster returns at all. By applying adaptive techniques which can gauge the damping factor’s effect 

on convergence, and the preference value’s effect on the quality of the returned clusters, it is possible to 

increase the accuracy of the exemplars chosen and thus increase the performance and accuracy of the 

classifier.  

What if other clustering algorithms were used? KMeans was not used as it does not provide clear 

cut features when it returns its centroids. The centroids for KMeans are not actual data points. However a 

data point could be extracted using a few methods. For example, it may be possible to get a data record that 

is an exemplar to the cluster by finding the closest record to the centroid. However what if the cluster is 

sparse? Then it may be necessary to “build” an exemplar from the majority of values found in all data 

assignments. Either way, this process will take more time in constructing the training dataset. KMeans out 

performs affinity propagation in relation to the execution time. That is affinity propagation can be slow in 

reaching convergence, however KMeans reaches convergence quickly, therefore for very large dataset, it 

may be more practical to use an adapted technique of using KMeans over affinity propagation to get the 

exemplars of clusters from a dataset. affinity propagation starts to get impractical if you have around 10,000 

records, therefore depending on the speed of the computer, this could mean a matter of minutes to get 

exemplars over a matter of days.  
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APPENDIX 

PYTHON CODE FROM PROJECT 

from sklearn.cluster import AffinityPropagation 
import numpy as np 
import pandas as pd 
import time 
import math 
import random 
import matplotlib 
matplotlib.use('TkAgg') #For OSX 
from tkinter import * 
 
class AttributeInformation: 
    "This object contains attribute information including all attribute distance pairs and the 
significance of the attribute" 
    significance = 0.0 
    distancePairs = {} #using dict syntax [("value1:value2", value), ("value1|value2", value)] 
    attributeName = "" 
    attributeType = "" 
    WithRespectToAttributej = "" 
     
    def setDistancePair(self, Valuex, Valuey, Value): 
        stringValue = Valuex + ":"+ Valuey 
        self.distancePairs[stringValue] = Value 
         
    def getDistancePair(self, Valuex, Valuey): 
        stringValue = Valuex + ":"+ Valuey 
        return self.distancePairs[stringValue] 
     
    def setSignificance(self, S): 
        sum = 0 
        lenS = len(S) 
         
        for key in self.distancePairs: 
            sum = sum + float(self.distancePairs[key]) 
         
        if len(S) > 1: 
            self.significance = sum / ((lenS * (lenS - 1)) / 2)        
        else: 
            self.significance = 0 
             
    def getSignificance(self): 
        return self.significance 
         
   
######################################################################### 
# This allows me to create an attribute object, and return the object 
def New_AttributeInformation(distances, S, attributeName, attributeType): 
    ob = AttributeInformation(); 
    ob.distancePairs = distances 
    ob.setSignificance(S) 
    ob.attributeName = attributeName 
    ob.attributeType = attributeType 
     
    return ob 
 
######################################################################### 
# Reads my similarity matrix from SimilarityMatrixFileName using 
# SimilarityMatrixDelimiter as the delimiter.  
def ReadSimilarityMatrix(SimilarityMatrixFileName, SimilarityMatrixDelimiter): 
    return np.loadtxt(SimilarityMatrixFileName, delimiter=SimilarityMatrixDelimiter); 
    
       
######################################################################### 
# Compute Affinity Propagation using the similarity Matrix simData and 
# the preference preferenceValue 
def ComputeAffinityPropagation(preferenceValue, simData): 
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    af = AffinityPropagation(preference=preferenceValue,  
                            affinity='precomputed',  
                            verbose=False,  
                            max_iter=300,  
                            damping=.9) 
    af.fit(simData) 
     
    return af 
 
     
######################################################################### 
# This function was created specifically to place all commands that will  
# run this program in AP in one place.  
def RunAffinityPropagationCommands(Matrix, SimFile, preference, ResultsFilename): 
     
    print("Reading Similarity Matrix from File") 
    Matrix = ReadSimilarityMatrix(SimFile, ",") 
     
    print("Running Affinity Propagation") 
    start = time.time() 
    af = ComputeAffinityPropagation(preference, Matrix) 
    end = time.time() 
              
    cluster_centers_indices = af.cluster_centers_indices_     
    labels                  = af.labels_ 
    n_clusters_             = len(cluster_centers_indices) 
    print('Estimated number of clusters: %d' % n_clusters_) 
 
    WriteResultsToFile(ResultsFilename, labels, cluster_centers_indices) 
 
 
 
######################################################################### 
#Calcuates the accuracy of the cluster by adding together all the  
#similarity values from the assignment to the centroid.  
def GetTotalAccuracyOfClusters(FullDBInClusterFormAffinity): 
    FullTotalAccuracy = 0.0 
     
    #For each Cluster 
    for i in range(len(FullDBInClusterFormAffinity)): 
         
        Attributes          = FullDBInClusterFormAffinity[i][0] 
        a                   = np.array(FullDBInClusterFormAffinity[i]) 
        TotalAccuracy       = 0.0 
        count               = 0 
         
        #For each attribute of assignment in cluster 
        for k in range(len(FullDBInClusterFormAffinity[i][1])): 
                
            #Get all values in column of attribute 
            col = a[:,k] 
 
            #get the value our centroid contains 
            value = FullDBInClusterFormAffinity[i][1][k] 
 
            #Because we can have mixed values, this only works for categories in  
            #attributes, therefore we wouldn't do this with a numeric attribute.  
            if(Attributes[k] in AttributesStrings): 
 
                count = count + 1 
 
                #accuracy is the number of times the value appears in the column 
                #over the length of column.  
                PercentageAccuracy      = len(np.where(col == value)[0]) / len(col) 
 
                #StrPercentageAccuracy   = "{0:.5f}".format(PercentageAccuracy  ) 
 
                #Add this to our total accuracy of the cluster. We will do this for  
                #all attributes to get the total accuracy of the cluster.  
                TotalAccuracy           = TotalAccuracy + PercentageAccuracy 
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        #Get the average total accuracy of the cluster and add that to the  
        #total accuracy for all clusters.  
        FullTotalAccuracy = FullTotalAccuracy + (TotalAccuracy / count) 
 
    #Return the average of all cluster errors.  
    return FullTotalAccuracy / len(FullDBInClusterFormAffinity) 
         
######################################################################### 
# This creates an html file which contains as much statistical information  
# about the clusters, what assignments are included, the actual information 
# from the database, the exemplars, the cluster error, the percentage of each 
# centroid in the cluster, etc.  
def CreateHTMLFileWithClusters(FullDBInClusterFormAffinity, FileName, TrainingDB): 
        
    f = open(FileName, "w") 
     
    f.write("<html>") 
    f.write("<head>") 
    f.write("<style>") 
    f.write("table{border-collapse:collapse;border:2px solid black;}") 
    f.write("th, td{padding: 5px;border-collapse:collapse;border:1px solid #999;}") 
    f.write(".header{background-color:#CCC;}") 
    f.write(".headerg{background-color:#lightgreen;}") 
    f.write(".exemplar{background-color:#999;}") 
    f.write(".exemplarg{background-color:#lightgreen;}") 
    f.write(".regularg{background-color:#lightgreen;}") 
    f.write("</style>") 
    f.write("<body>") 
 
    f.write("<h1>Show Cluster Statistics</h1>") 
     
    FullTotalAccuracy = 0.0 
 
    FullDisplay = [] 
     
    for i in range(len(FullDBInClusterFormAffinity)): 
        f.write("<h2>Cluster "+str((i+1))+"</h2>") 
         
        NumberOfAssignments = len(FullDBInClusterFormAffinity[i]) 
        PercentOfTotal      = NumberOfAssignments / len(TrainingDB) 
         
        f.write("<div>Number of Assignments: " + str(NumberOfAssignments)+"</div>") 
        f.write("<div>Percent of Total: " + str(PercentOfTotal)+"</div>") 
        a               = np.array(FullDBInClusterFormAffinity[i]) 
        Attributes      = FullDBInClusterFormAffinity[i][0] 
        TotalAccuracy   = 0.0 
        count           = 0 
        dictionary      = {} 
        for k in range(len(FullDBInClusterFormAffinity[i][1])): 
 
            col = a[:,k] 
            value = FullDBInClusterFormAffinity[i][1][k] 
            column = FullDBInClusterFormAffinity[i][0][k] 
 
            dictionary[str(column)+"exemplar"] = {} 
            count = count + 1 
            b                       = np.where(col == value) 
            NumberOfExemplarValue   = len(b[0]) 
            PercentageAccuracy      = NumberOfExemplarValue / (len(col)-1) 
            StrPercentageAccuracy   = "{0:.5f}".format(PercentageAccuracy  ) 
            TotalAccuracy           = TotalAccuracy + PercentageAccuracy 
            f.write("<div><b>("+str(column)+":"+str(value)+") Accuracy: " + 
str(StrPercentageAccuracy)+"</b></div>") 
            col = np.delete(col, 0) 
            columnValues = np.unique(col) 
            dictionary[str(column)+"exemplar"][value] = PercentageAccuracy 
 
            for j in range(len(columnValues)): 
                if(columnValues[j] is not value): 
                    dictionary[str(column)] = {} 
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                    b = np.where(columnValues[j] == col) 
                    NumberOfExemplarValue = len(b[0]) 
                    PercentageAccuracy = NumberOfExemplarValue / (len(col)-1) 
                    dictionary[str(column)][str(columnValues[j])] = PercentageAccuracy 
                                     
        FullDisplay.append(dictionary) 
         
        FullTotalAccuracy = FullTotalAccuracy + (TotalAccuracy / count) 
        TotalAccuracy = "{0:.5f}".format(TotalAccuracy / count) 
        f.write("<div>Total Accuracy: " + str(TotalAccuracy)+"</div>") 
     
    f.write("<h2>Full Total Accuracy: " + str(FullTotalAccuracy / len(FullDBInClusterFormAffinity)) 
+"</h2>") 
     
    f.write("<h1> Table of Results </h1>") 
     
    strValue = "<table>" 
    for i in range(len(FullDisplay)): 
        x = FullDisplay[i] 
        strValue += "<tr>" 
        max = 0.0 
        alternateKey = "" 
        alternateKeyValue = "" 
        for key in x: 
            if("exemplar" in key): 
                max = 0.0 
                exemplarInfo = x[key] 
                val = "" 
                for key2 in exemplarInfo: 
                    ExemplarAccuracy = exemplarInfo[key2] 
                    max = ExemplarAccuracy 
                    val = key2 
 
                w = "{0:.3f}".format(ExemplarAccuracy) 
 
                key = str(key)[:-8] 
                strValue += "<td><b>"+str(key)+"("+str(val)+"):"+w+"</b>" 
            else: 
                info = x[key] 
                for key2 in info: 
                    y = info[key2] 
                    if y > max: 
                        max = y 
                        alternateKey = key2 
                        alternateKeyValue = y 
             
                if(alternateKey != ""): 
                    w = "{0:.3f}".format(max) 
                    strValue += "<br>"+str(key2)+":"+w+"</td>" 
                else: 
                    strValue += "</td>" 
                 
        strValue += "</tr>" 
         
    strValue += "</table>" 
     
    f.write(strValue) 
         
    f.write("<h1>Full Detail on Clusters</h1>") 
     
    for i in range(len(FullDBInClusterFormAffinity)): 
        strValue = "<h2>Cluster " + str(i+1) + "</h2>" 
        strValue += "<table>" 
        a = np.array(FullDBInClusterFormAffinity[i]) 
         
         
        for j in range(len(FullDBInClusterFormAffinity[i])): 
            strValue += "<tr>"   
            for k in range(len(FullDBInClusterFormAffinity[i][j])): 
                column = FullDBInClusterFormAffinity[i][0][k]                   
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                TotalAccuracy = "N/A" 
 
                col = a[:,k] 
                value = FullDBInClusterFormAffinity[i][j][k] 
 
                b = np.where(col == value) 
                accuracy = len(b[0]) / len(col) 
                TotalAccuracy = "{0:.2f}".format(accuracy*100) 
                     
                if j == 0: 
                    strValue += "<th class=\"header\">" + 
str(FullDBInClusterFormAffinity[i][j][k]) + "+("+TotalAccuracy+") </th>" 
 
                elif j == 1: 
                    strValue += "<td class=\"exemplar\">"+ 
str(FullDBInClusterFormAffinity[i][j][k]) + "+("+TotalAccuracy+") </td>" 
                         
                else: 
                    strValue += "<td class=\"regular\">"+ 
str(FullDBInClusterFormAffinity[i][j][k]) + "+("+TotalAccuracy+") </td>" 
                     
             
            strValue += "</tr>" 
         
         
        strValue += "</table>" 
                 
        f.write(strValue) 
        
    f.write("</body>") 
    f.write("</html>") 
    f.close() 
    print("HTML File of results created!") 
     
     
    return FullDisplay 
 
############################################################################# 
# Writes the results of the clustering to a file.  
def WriteResultsToFile(Filename, labels, clusterCenters): 
     
    f = open(Filename, "w") 
            
    f.write("\n") 
    for i in range(len(labels)): 
        if i == 0:  f.write(str(labels[i])) 
        else:       f.write(","+str(labels[i])) 
 
    f.write("\n") 
    for i in range(len(clusterCenters)): 
        if i == 0:  f.write(str(clusterCenters[i])) 
        else:       f.write(","+str(clusterCenters[i])) 
             
    f.close() 
    print("Results Written to File") 
    return 
 
############################################################################# 
# Read results of a cluster from a file.  
def ReadResultsFromFile(Filename): 
     
    ResultsFile     = pd.read_csv(Filename, sep=",") 
    labels          = ResultsFile.columns 
    ClustersWhole   = ResultsFile.iloc[0] 
    Clusters        = [] 
     
    labels          = labels.tolist() 
    ClustersWhole   = ClustersWhole.tolist() 
     
    for i in range(len(ClustersWhole)): 
        if(math.isnan(ClustersWhole[i]) == False): 
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            Clusters.append(ClustersWhole[i]) 
 
    ListOfClusters = [] 
    for i in range(len(Clusters)): 
        ClusterInfo = [] 
        for j in range(len(labels)): 
            if(int(math.floor(float(labels[j]))) == i): 
                ClusterInfo.append(j) 
     
        ListOfClusters.append(ClusterInfo) 
 
    return np.array(ListOfClusters) 
   
     
############################################################################## 
# Read Database 
def ReadDatabase(FileName):     
    return pd.read_csv(FileName, sep=",") 
  
 
############################################################################## 
# Get all unique category values from each column of the database.  
def getCategoricalValuesForEachAttribute(dbSubsetData): 
     
    if len(dbSubsetData) > 0: 
        categoriesForAttribute = [] 
        for column in dbSubsetData: 
 
            categoriesForAttribute.append(dbSubsetData[column].unique()) 
 
        return categoriesForAttribute 
    else: 
        return null 
 
 
############################################################################## 
# Performs algorithm for computing distance with respect to number of data points.  
def ALGODistance(dbSubsetData, Columns): 
              
    categories = getCategoricalValuesForEachAttribute(dbSubsetData) 
     
    distancePairsDict = {} 
     
    for i in range(dbSubsetData.shape[1]): 
 
        start           = time.time()         
        distancePairs   = {} 
         
        for j in range(len(categories[i])): 
            for k in range(len(categories[i])): 
                if j != k: 
                    count           = 0 
                    distance        = 0 
                    sum             = 0 
                    Valuex          = str(categories[i][j]) 
                    Valuey          = str(categories[i][k]) 
 
                    strValue1       = Valuex+":"+Valuey 
                    strValue2       = Valuey+":"+Valuex 
                     
                    if strValue1 not in distancePairs and strValue2 not in distancePairs: 
 
                        for m in range(dbSubsetData.shape[1]): 
                         
                            if i != m: 
                                distanceim = findMax(Valuex, Valuey, categories[m], dbSubsetData, 
m, i) 
                                 
                                sum = sum + distanceim 
                                count = count + 1 
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                        if(count > 0): 
                            distance = sum / (count - 1)  
         
                        distancePairs[strValue1] = distance 
                        distancePairs[strValue2] = distance 
                         
 
        end = time.time()                         
        print("This took",(end-start),"(s)") 
        distancePairsDict[Columns[i]] = distancePairs 
         
    return distancePairsDict 
 
     
############################################################################## 
# finds the maximum value of Pi(w/x) + Pi(w/y), without actually considering  
# all the element of the power set 
def findMax(Ax, Ay, CategoriesForAj, df, m, n): 
     
    distance = 0 
    W = []  
    complementW = [] 
    Vj = len(CategoriesForAj) 
    dfnp = df.values 
         
    for i in range(Vj): 
 
        #Conditional probability of CategoriesForAj[i] given Ax and 
        #CategoriesForAj[i] given Ay 
 
        Px = 0 
        Py = 0 
 
        a = np.where((dfnp[:,m] == CategoriesForAj[i]) & (dfnp[:,n] == Ax))[0] 
        b = np.where(dfnp[:,n] == Ax)[0] 
        if(len(b) > 0): Px = len(a) / len(b) 
 
        a = np.where((dfnp[:,m] == CategoriesForAj[i]) & (dfnp[:,n] == Ay))[0] 
        b = np.where(dfnp[:,n] == Ay)[0] 
        if(len(b) > 0): Py = len(a) / len(b) 
                 
        if Px > Py: 
            W.append(CategoriesForAj[i]) #   add u[t] to w' 
            distance = distance + Px 
        else: 
           complementW.append(CategoriesForAj[i]) #   add u[t] to ~w' 
           distance = distance + Py 
                        
    distance = distance - 1 
            
    return distance 
 
############################################################################## 
# Creates our similarity matrix using our new distanceObjectList and the 
# dbsubsetdata frame 
 
def CreateSimilarityMatrix(DB, distancePairsDict, SimDataFile): 
     
    columns         = DB.columns.values 
    nparray         = DB.values 
    outcome         = nparray[:,len(columns) - 1] 
    classes         = np.unique(outcome) 
    FileNameArray   = [] 
    classArray = [] 
    SubSets = [] 
     
    for cls in classes: 
        cls = str(cls) 
        row_indices = np.where(outcome == str(cls))[0] 
        subset      = nparray[row_indices, :] 
        SubSets.append(subset) 
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        Matrix      = np.full((subset.shape[0], subset.shape[0]), 0.0) 
     
        print("Creating Similarity Matrix") 
 
        for i in range(len(subset)): #record1 
 
            start = time.time() 
            Record1 = subset[i] 
 
            for j in range(i+1, len(subset)): #record2 
                Record2 = subset[j] 
                Similarity = GetDistanceBetweenTwoRecords(Record1, Record2, columns, 
distancePairsDict) 
 
                #The similarities are all very small numbers which might be why the preference 
value needs to be so precise.  
                #Let's multiply the value by a scalar 10 to give the values more range.  
                Matrix[i][j] = Similarity * 10.0 
                Matrix[j][i] = Similarity * 10.0 
            end = time.time() 
            print("Iteration",i,"took",end-start,"(s)") 
 
 
        print("Writing Similarity Matrix to File") 
        SimFile = SimDataFile + "_" + cls + ".csv" 
        FileNameArray.append(SimFile) 
        classArray.append(cls) 
        FileWritten = WriteSimilarityMatrixToFile(Matrix, SimFile) 
 
        if FileWritten is True: 
            print("Similarity File is Written") 
             
    return FileNameArray, classArray, SubSets 
 
def GetDistanceBetweenTwoRecords(Record1, Record2, columns, distancePairsDict): 
             
    distance = 0.0 
     
    for i in range(len(Record1)): 
        columnName = columns[i] 
        Record1Value = Record1[i] 
        Record2Value = Record2[i] 
        if(Record1Value != Record2Value): 
 
            strValue    = str(str(Record1Value)+":"+str(Record2Value)) 
            strValue2   = str(str(Record2Value)+":"+str(Record1Value)) 
            val         = 0.0 
 
            if(strValue in distancePairsDict[columnName]): 
                val = float(distancePairsDict[columnName][strValue]) 
            if(strValue2 in distancePairsDict[columnName]): 
                val = float(distancePairsDict[columnName][strValue2]) 
 
                distance = distance + ((val**2) * -1); 
                                                         
    return distance 
 
def WriteSimilarityMatrixToFile(Matrix, FileName): 
     
    f = open(FileName, "w") 
            
    for i in range(len(Matrix)): 
        for j in range(len(Matrix[0])): 
            if j == 0: 
                f.write(str(Matrix[i][j])) 
            else: 
                val = "," + str(Matrix[i][j]) 
                f.write(val) 
        f.write("\n") 
         
    f.close() 
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    return True 
 
 
def RunSeriesOfPreferences(lowValue, highValue, SimFile, increment): 
 
    print("Reading Similarity Matrix from File") 
    Matrix = ReadSimilarityMatrix(SimFile, ",") 
 
    Errors = [] 
    Clusters = [] 
    Preference = [] 
     
    while lowValue < highValue: 
         
        af = ComputeAffinityPropagation(lowValue, Matrix) 
        cluster_centers_indices = af.cluster_centers_indices_ 
        labels = af.labels_ 
        n_clusters_ = len(cluster_centers_indices) 
        if n_clusters_ not in Clusters: 
             
            Error = GetErrorForClusters(cluster_centers_indices, labels, Matrix) 
            if(len(Errors) and Error > Errors[len(Errors)-1]): 
                i = 0 
            else: 
                Clusters.append(n_clusters_) 
                Errors.append(Error) 
                Preference.append(lowValue) 
                #print("Number of Clusters: ",n_clusters_,"\tPreference Value",lowValue,"\tTotal 
Error:",Error) 
         
        lowValue = lowValue + increment 
                 
     
    atIndex, min, optimalNumber = LocateElbowPoint(Errors, Clusters) 
     
    while(atIndex>=0): 
        if((Clusters[atIndex] / n_clusters_) > .40): 
            atIndex = atIndex - 1  
        else: 
            break 
             
    #print("Errors:", Errors) 
    #print("Clusters:", Clusters) 
    #print("Preferences:", Preference) 
    #print("Elbow Found at index", atIndex,"value of ", Errors[atIndex], "thus Optimal number of 
clusters is", Clusters[atIndex]) 
     
    return Preference[atIndex], Clusters[atIndex] 
 
def GetErrorForClusters(Centroids, Labels, Matrix): 
 
    TotalError = 0 
    for i in range(len(Centroids)): 
         
        count = 0 
        Sum = 0 
        for j in range(len(Labels)): 
             
            if(i == Labels[j]): 
                Sum = Sum + (Matrix[i][j] * -1) 
                count = count + 1 
                 
        ErrorForCluster = Sum / count                 
        TotalError = TotalError + ErrorForCluster 
     
         
    NumberOfClusters = len(Centroids) 
    Mean = (NumberOfClusters * (NumberOfClusters - 1)) / 2 
    TotalError = TotalError / Mean 
    return TotalError * 100 #This is just to zoom out to get a better range of values.  
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############################################################################## 
# What I am simply doing here is getting the inverse cosine of the angle of a  
# vertex point. This angle tells me the variance of change at this point. What 
# I am looking for is the lowest value, representing a small angle, representing 
# a large variance of change.  
# fall backs. Normally elbow points are easy to find and are usually located 
# nearer to the y-axis. This approach doesn't eyeball the data so the computer 
# is simulating what I would consider the elbow point without me actually  
# verifying it.  
 
def LocateElbowPoint(Errors, Clusters): 
 
    min = 180 
    atIndex = -1 
    for i in range(1, len(Clusters)-1): 
        A = i 
        B = i-1 
        C = i+1 
                 
        distanceP12 = ((Errors[A] - Errors[B])**2 + (Clusters[A] - Clusters[B])**2)**.5 
        distanceP13 = ((Errors[A] - Errors[C])**2 + (Clusters[A] - Clusters[C])**2)**.5 
        distanceP23 = ((Errors[B] - Errors[C])**2 + (Clusters[B] - Clusters[C])**2)**.5 
        
        value = (distanceP12**2 + distanceP13**2 - distanceP23**2) / (2 * distanceP12 * distanceP13) 
        angle = math.acos(value) 
        angle = np.degrees(angle) 
        if(angle < min): 
            min = angle 
            atIndex = i 
     
    return atIndex, min, Clusters[atIndex] 
   
def GenerateFullDataObjectInClusterForm(ListOfClusters, TrainingDB, FileName): 
 
    DB = pd.read_csv(FileName, sep=",") 
     
    DataFrame   = [] 
             
    for i in range(len(ListOfClusters)): 
        Row = [] 
        Row.append(DB.columns.values) 
        Col = [] 
        for j in range(len(ListOfClusters[i])): 
            Row.append(TrainingDB[int(ListOfClusters[i][j])]) 
 
        DataFrame.append(Row) 
                     
    return np.array(DataFrame) 
 
     
def CompareArrays(array1, array2): 
 
    numberCorrect = 0 
    for i in range(len(array1)-1): 
        if(array1[i] == array2[i]): 
            numberCorrect = numberCorrect + 1 
             
    prob = (numberCorrect / len(array2)) 
    return prob     
       
 
def ClassificationOfData(FullDataBase = "", Yes="", No="", dataTesting=""): 
             
    #start with database values 
    FalsePositive   = 0 
    Positive        = 0 
    Negative        = 0 
    TrueNegative    = 0 
     
    DB = ReadDatabase(FullDataBase) 
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    if(dataTesting == "StudentEnrollment"): 
        import ClusteringInfo as cl 
    elif(dataTesting == "BreastCancer1"): 
        import BreastCancerClassifier as cl 
    elif(dataTesting == "BreastCancer2"): 
        import BreastCancerClassifier as cl 
    elif(dataTesting == "Mushrooms"): 
        import mushroominfo as cl 
         
             
    for i in range(len(DB)): 
 
        a = DB.iloc[i].values 
        classifier = a[len(a)-1] 
        MaxProbNo = 0.0 
        MaxProbYes = 0.0 
        ProbNo = 0.0 
        ProbYes = 0.0 
         
        #if(classifier == No): 
        for k in range(len(cl.NoArray)): 
            ProbNo = ProbNo + CompareArrays(a, cl.NoArray[k]) 
            #if(MaxProbNo < ProbNo): 
            #    MaxProbNo = ProbNo 
        ProbNo = ProbNo / len(cl.NoArray) 
     
        #elif(classifier == Yes): 
        for k in range(len(cl.YesArray)): 
            ProbYes = ProbYes + CompareArrays(a, cl.YesArray[k]) 
            #if(MaxProbYes < ProbYes): 
            #    MaxProbYes = ProbYes 
 
        ProbYes = ProbYes / len(cl.YesArray) 
 
        print("Prediction details", ProbNo, ProbYes, classifier) 
         
        if(ProbYes > ProbNo): 
            if(classifier == Yes): 
                Positive = Positive + 1 
            else: 
                TrueNegative = TrueNegative + 1 
        elif(ProbYes < ProbNo): 
            if(classifier == No): 
                Negative = Negative + 1 
            else: 
                FalsePositive = FalsePositive + 1 
        else: 
            if(classifier == Yes): 
                Positive = Positive + 1 
            else: 
                Negative = Negative + 1 
                 
                 
                               
    print("Scores for Full Database Prediction") 
    print("Positive",Positive) 
    print("Negative",Negative) 
    print("False Positive", FalsePositive) 
    print("True Negative", TrueNegative) 
 
    Precision = Positive / (Positive + TrueNegative) 
    Recall = Positive / (Positive + FalsePositive) 
    Accuracy = (Positive + Negative) / (Positive + Negative + FalsePositive + TrueNegative) 
    FScore = (2*(Precision * Recall) / (Precision + Recall)) 
    print("Precision", Precision) 
    print("Recall", Recall) 
    print("Accuracy", Accuracy) 
    print("FScore", FScore)  
     
    return Precision, Recall, Accuracy, FScore 
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def DefineDistancePairs(DB, Columns): 
                     
    #Collect all distance pairs for my subset.  
    distancePairsDict = {} 
     
    print("Getting ALGO Distances") 
    distancePairsDict = ALGODistance(DB, Columns) 
         
    return distancePairsDict 
 
 
def DataSplit(FullDB, frac, classAttribute): 
    msk         = np.random.rand(len(FullDB)) <= frac 
    TrainingDB  = FullDB[msk].values 
    TestDB      = FullDB[~msk].values 
     
    if(classAttribute == "END"): 
        classIndex = len(FullDB.columns)-1 
    else: 
        classIndex = 0 
         
    classColumn = TrainingDB[:,classIndex] 
    classes     = np.unique(classColumn) 
    rows, cols  = np.shape(TrainingDB) 
     
    for cls in classes: 
        row_indices = np.where(classColumn == cls)[0] 
        while((len(row_indices) / rows)>.70): 
            index       = random.randint(0,len(row_indices)-1) 
            TrainingDB  = np.delete(TrainingDB, index, axis=0) 
            classColumn = np.delete(classColumn, index, axis=0) 
            row_indices = np.where(classColumn == cls)[0] 
             
    classColumn = TestDB[:,classIndex] 
    classes     = np.unique(classColumn) 
    rows, cols  = np.shape(TestDB) 
     
    for cls in classes: 
        row_indices = np.where(classColumn == cls)[0] 
        while((len(row_indices) / rows)>.70): 
            index       = random.randint(0,len(row_indices)-1) 
            TestDB      = np.delete(TestDB, index, axis=0) 
            classColumn = np.delete(classColumn, index, axis=0) 
            row_indices = np.where(classColumn == cls)[0] 
     
     
    return TrainingDB, TestDB, FullDB.columns 
     
def WriteDBToFile(TrainingDB, TestDB, Columns, FileName, path): 
     
    FileName = FileName.replace(" ", "") 
    FullName = path+"/Training_"+FileName+".csv" 
     
    f = open(FullName, "w") 
    for i in range(len(Columns)): 
        if(i==0): 
            f.write(Columns[i]) 
        else: 
            f.write(","+Columns[i]) 
     
    f.write("\n") 
    for i in range(len(TrainingDB)): 
        for j in range(len(TrainingDB[i])): 
            if(j==0): 
                f.write(str(TrainingDB[i][j])) 
            else: 
                f.write(","+str(TrainingDB[i][j])) 
     
        if(i != len(TrainingDB)-1): 
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            f.write("\n") 
    f.close() 
 
    FileName = FileName.replace(" ", "") 
    FullName = path+"/Test_"+FileName+".csv" 
 
    f = open(FullName, "w") 
    for i in range(len(Columns)): 
        if(i==0): 
            f.write(Columns[i]) 
        else: 
            f.write(","+Columns[i]) 
     
    f.write("\n") 
    for i in range(len(TestDB)): 
        for j in range(len(TestDB[i])): 
            if(j==0): 
                f.write(str(TestDB[i][j])) 
            else: 
                f.write(","+str(TestDB[i][j])) 
     
        if(i != len(TestDB)-1): 
            f.write("\n") 
     
    f.close()    
     
def WriteInformationFile(WriteFile, FullDisplayArray): 
     
    f = open(WriteFile, 'w') 
    count = 0 
    for FullDisplay in FullDisplayArray: 
         
        if(count == 0): 
            f.write("YesArray = [") 
        else: 
            f.write("NoArray = [") 
             
        for i in range(len(FullDisplay)): 
            x = FullDisplay[i] 
            strValue = "[" 
            count = 0 
            for key in x: 
                if("exemplar" in key): 
                    exemplarInfo = x[key] 
                    for key2 in exemplarInfo: 
                        if(count == 0): 
                            strValue += "\""+str(key2)+"\"" 
                        else: 
                            strValue += ","+"\""+str(key2)+"\"" 
 
                        count = count + 1 
 
            strValue += "]," 
            f.write(strValue) 
            f.write("\n") 
     
        f.write("]") 
        f.write("\n") 
    f.close() 
import matplotlib 
matplotlib.use('TkAgg') #For OSX 
from tkinter import * 
from tkinter import ttk 
import klecker_thesis as kt 
import numpy as np 
import pandas as pd 
import time, threading 
 
def SetStudentEnrollmentDataset(): 
    kt.FullDataBase = "StudentEnrollment/2017/studentenrollment_2017.csv" 
    return "StudentEnrollment" 
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def SetBreastCancerDataset(): 
    kt.FullDataBase = "BreastCancer/breastcancerfull.csv" 
    return "BreastCancer" 
 
def SetBreastCancerDataset2(): 
    kt.FullDataBase = "BreastCancer/breastcancer.csv" 
    return "BreastCancer" 
 
def SetMushroom(): 
    kt.FullDataBase = "mushroom/mushrooms.csv" 
    return "mushroom" 
 
 
def Main(GetSimilarityMatrix,RunAffinityPropagation,ShowAPResultsToHTML, 
        RunASeriesOfPreferences,PerformClassification,dataTesting, TrainingSize): 
 
    #this is used for naming file purposes.  
    Matrix                  = []    #similarity matrix 
    Yes                     = "" 
    No                      = "" 
    Path                    = "" 
    Columns                 = [] 
    writeFile               = "" 
     
    if(dataTesting == "Student Enrollment"): 
        Yes         = "Applied" 
        No          = "No-Decision" 
        Path        = SetStudentEnrollmentDataset() 
        writeFile   = "ClusteringInfo.py" 
     
    elif(dataTesting == "Breast Cancer 1"): 
        Yes         = "recurrence-events" 
        No          = "no-recurrence-events" 
        Path        = SetBreastCancerDataset() 
        writeFile   = "BreastCancerClassifier.py" 
 
    elif(dataTesting == "Breast Cancer 2"): 
        Yes         = "J2" 
        No          = "J4" 
        Path        = SetBreastCancerDataset2() 
        writeFile   = "BreastCancerClassifier.py" 
     
    elif(dataTesting == "Mushrooms"): 
        Yes         = "e" 
        No          = "p" 
        Path        = SetMushroom() 
        writeFile   = "mushroominfo.py" 
         
    ############################################################################## 
    # main reads the database, and calculates the similarity matrix 
    dataTesting     = dataTesting.replace(" ", "") 
     
    Precision   = 0.0 
    Recall      = 0.0 
    Accuracy    = 0.0 
    FScore      = 0.0 
    RangeValue  = 1 
     
    for i in range(0, RangeValue): 
        FileNameArray   = [] 
        classes         = [] 
        SubSets         = [] 
        FileName        = "" 
 
        if(GetSimilarityMatrix == 1): 
            FileName                    = Path + "/Training_"+dataTesting+".csv" 
            kt.SimilarityMatrixFileName = Path + "/Training_SimMatrix_"+dataTesting 
 
            FullDBCSV                   = kt.ReadDatabase(kt.FullDataBase) 
            print(TrainingSize) 
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            TrainingDB, TestDB, Columns = kt.DataSplit(FullDBCSV, (int(TrainingSize)/100), "END") 
            kt.WriteDBToFile(TrainingDB, TestDB, Columns, dataTesting, Path) 
            TrainingDB                  = kt.ReadDatabase(FileName) 
            distanceDict                = kt.DefineDistancePairs(TrainingDB, Columns) 
            FileNameArray, classes, SubSets = kt.CreateSimilarityMatrix(TrainingDB, distanceDict, 
kt.SimilarityMatrixFileName) 
 
        ############################################################################## 
        # Runs affinity propagation in a series using different preference values 
        preferencesArray = [] 
        ClustersArray = [] 
         
        if(RunASeriesOfPreferences == 1): 
            for i in range(len(FileNameArray)): 
                PreferenceVal, Clusters = kt.RunSeriesOfPreferences(-8, 2, FileNameArray[i], 1) 
                preferencesArray.append(PreferenceVal) 
                ClustersArray.append(Clusters) 
 
        ############################################################################## 
        # Reads from the similarity file and runs affinity propagation 
        ResultsFiles = [] 
        if(RunAffinityPropagation): 
            for i in range(len(FileNameArray)): 
 
                kt.ResultsFileName          = Path + 
"/Training_Results_"+classes[i]+"_AP_"+dataTesting+".csv" 
                ResultsFiles.append(kt.ResultsFileName) 
                kt.RunAffinityPropagationCommands(Matrix, FileNameArray[i], preferencesArray[i], 
kt.ResultsFileName) 
 
 
        ############################################################################## 
        #Print Results to HTML 
        FullDisplayArray = [] 
        if(ShowAPResultsToHTML == 1): 
            for i in range(len(ResultsFiles)): 
                kt.HTMLFileName             = Path + 
"/Training_HTML_"+classes[i]+"_AP_"+dataTesting+".html" 
                ListOfClusters              = kt.ReadResultsFromFile(ResultsFiles[i]) 
                FullDBInClusterFormAffinity = 
kt.GenerateFullDataObjectInClusterForm(ListOfClusters, SubSets[i], FileName) 
                FullDisplay                 = 
kt.CreateHTMLFileWithClusters(FullDBInClusterFormAffinity, kt.HTMLFileName, SubSets[i]) 
                FullDisplayArray.append(FullDisplay) 
 
            kt.WriteInformationFile(writeFile, FullDisplayArray) 
 
 
        ############################################################################## 
        # Perform a classification with training data on test data. 
        if(PerformClassification):             
            #FileName = Path + "/Test_"+dataTesting+".csv" 
            FileName = Path + "/2018/studentenrollment_2018.csv" 
            p, r, a, f = kt.ClassificationOfData( 
                                                FullDataBase=FileName,  
                                                Yes=Yes,  
                                                No=No,  
                                                dataTesting=dataTesting) 
 
            Precision = Precision + p 
            Recall = Recall + r 
            Accuracy = Accuracy + a 
            FScore = FScore + f 
 
    return Precision, Recall, Accuracy, FScore, RangeValue 
                 
           
class MyApp(Tk): 
     
    def __init__(self): 
        Tk.__init__(self) 
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        self.running = False 
        fr = Frame(self) 
        fr.pack() 
         
        self.GetSimilarityMatrixCheck        = IntVar(value=1) 
        self.RunAffinityPropagationCheck     = IntVar(value=1) 
        self.ShowAPResultsToHTMLCheck        = IntVar(value=1) 
        self.RunASeriesOfPreferencesCheck    = IntVar(value=1) 
        self.PredictionModelCheck            = IntVar(value=1) 
 
        self.LeftFrame = Frame(fr) 
 
        self.labelframe2 = LabelFrame(self.LeftFrame, text="How Will we run the application?") 
        self.labelframe2.grid(row=0, column=1, padx=(10, 10), pady=(10, 10)) 
 
        self.C1 = Checkbutton(self.labelframe2, text = "Get Similarity Matrix", variable = 
self.GetSimilarityMatrixCheck, onvalue = 1, offvalue = 0, height=1, width = 20) 
        self.C2 = Checkbutton(self.labelframe2, text = "Run Affinity Propagation", variable = 
self.RunAffinityPropagationCheck, onvalue = 1, offvalue = 0, height=1, width = 20) 
        self.C3 = Checkbutton(self.labelframe2, text = "Show AP Results to HTML", variable = 
self.ShowAPResultsToHTMLCheck, onvalue = 1, offvalue = 0, height=1, width = 20) 
        self.C4 = Checkbutton(self.labelframe2, text = "Run a Series of Preferences", variable = 
self.RunASeriesOfPreferencesCheck, onvalue = 1, offvalue = 0, height=1, width = 20) 
        self.C5 = Checkbutton(self.labelframe2, text = "Prediction Model", variable = 
self.PredictionModelCheck, onvalue = 1, offvalue = 0, height=1, width = 20) 
 
        self.C1.grid(row=0, columnspan=1) 
        self.C2.grid(row=1, columnspan=1) 
        self.C3.grid(row=2, columnspan=1) 
        self.C4.grid(row=3, columnspan=1) 
        self.C5.grid(row=4, columnspan=1) 
 
        self.datasetFrame = Frame(self.LeftFrame) 
        self.labelTop = Label(self.datasetFrame, text = "What Dataset are we testing?") 
        self.labelTop.grid(row=0, column=1) 
 
        self.comboExample = ttk.Combobox(self.datasetFrame,values=["Student Enrollment",  
                                                        "Breast Cancer 1", 
                                                        "Breast Cancer 2", 
                                                        "Mushrooms"]) 
        self.comboExample.grid(row=1, column=1) 
        self.labelTraining = Label(self.datasetFrame, text = "Size of Training set (in percent)?") 
        #self.labelTraining.grid(row=2, column=1) 
        self.TrainingSize = Text(self.datasetFrame, wrap='word', width=5, height=1) 
        #self.TrainingSize.grid(row=3, column=1) 
        self.datasetFrame.grid(row=1, column=1,padx=(10, 10), pady=(10, 10)) 
        self.TrainingSize.insert(END, "70") 
 
        self.buttonRun = Button(self.LeftFrame, text ="Run", command = self.runCallBack) 
        self.buttonRun.grid(row=2, column=1) 
        self.buttonClear = Button(self.LeftFrame, text ="Clear", command = self.Clear) 
        self.buttonClear.grid(row=3, column=1) 
        self.LeftFrame.grid(row=0, column=1, rowspan=2, sticky='N',) 
 
        self.chatBox = Scrollbar(fr) 
        self.chat = Text(fr, wrap='word', width=50, 
                    yscrollcommand=self.chatBox.set) 
        self.chatBox.configure(command=self.chat.yview) 
 
        self.chat.grid(row=0, column=2, columnspan=2, sticky='ens', pady=(10, 10)) 
        self.chatBox.grid(row=0, column=4, sticky='ns', pady=(10, 10)) 
 
    def Clear(self): 
        self.chat.delete(1.0,END) 
         
    def runCallBack(self): 
 
        self.running = True 
        self.chat.insert(END, "Running\n") 
        self.updateText() 
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        Precision, Recall, Accuracy, FScore, RangeValue = 
Main(self.GetSimilarityMatrixCheck.get(),      #Run Similarity Matrix From database selected above 
                                self.RunAffinityPropagationCheck.get(),    #Run Affinity 
Propagation on Similarity Matrix 
                                self.ShowAPResultsToHTMLCheck.get(),       #Write Results of AP to 
HTML 
                                self.RunASeriesOfPreferencesCheck.get(),   #This is used to collect 
an Elbow Method series of values 
                                self.PredictionModelCheck.get(),           #Perform a classification 
on exemplar data 
                                self.comboExample.get(), 
                                self.TrainingSize.get("1.0", END))  
 
        self.chat.insert(END, "Precision "+str(Precision / RangeValue)+"\n") 
        self.chat.insert(END, "Recall "+str(Recall / RangeValue)+"\n") 
        self.chat.insert(END, "Accuracy "+str(Accuracy / RangeValue)+"\n") 
        self.chat.insert(END, "FScore "+str(FScore / RangeValue)+"\n") 
 
        self.running = False 
 
 
    def updateText(self): 
        if(self.running): 
            self.update() 
            self.after(10, self.updateText) 
             
             
if __name__ == "__main__": 
    top = MyApp() 
    top.mainloop() 
    #DrawWindow() 
 
 
############################################################################## 
# Pandas and numpy preferences settings 
pd.set_option('display.max_columns', None) 
np.set_printoptions(threshold=np.inf) 
pd.options.mode.chained_assignment = None  # default='warn' 

 

 

 


	Building A Classification Model Using Affinity Propagation
	Recommended Citation

	BUILDING A CLASSIFICATION MODEL USING AFFINITY PROPAGATION
	BUILDING A CLASSIFICATION MODEL USING AFFINITY PROPAGATION
	BUILDING A CLASSIFICATION MODEL USING AFFINITY PROPAGATION
	ACKNOWLEDGMENTS
	A   PYTHON CODE FROM PROJECT………………………………………………………….41
	List of Figures
	Page
	List of Tables
	CHAPTER 1
	INTRODUCTION
	Data Mining and Clustering
	The Purpose of This Study


	CHAPTER 2
	CLUSTERING WITH AFFINITY PROPAGATION
	What is Affinity Propagation?
	Why Use Affinity Propagation?
	Algorithm for Affinity Propagation
	A Similarity Matrix for Categorical Data
	Preference Value
	Evaluating a preference value using the Elbow Method
	Summary of Technique
	CHAPTER 3

	CLASSIFICATION MODEL AND PREDICTION FUNCTION
	Classification Using Affinity Propagation Exemplars
	Algorithm of Technique


	CHAPTER 4
	ILLUSTRATING OUR PREDICTION MODEL ON VARIOUS DATASETS
	Breast Cancer
	Breast Cancer Dataset #2
	Mushroom Dataset
	From this analysis we see that our AP classifier, which is using only 5% of the original training set, is now out performing Cosine Similarity which uses the whole training dataset. Let’s do one more test with student enrollment data.
	Student Enrollment Data


	Chapter 5
	Conclusions and Future Work
	Conclusions
	Future Work


	Appendix
	Python Code From Project


