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ABSTRACT

Graph invariants are functions defined on the graph structures that stay the same

under taking graph isomorphisms. Many such graph invariants, including some com-

monly used graph indices in Chemical Graph Theory, are defined on vertex degrees

and distances between vertices. We explore generalizations of such graph indices

and the corresponding extremal problems in trees. We will also briefly mention the

applications of our results.
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CHAPTER 1

INTRODUCTION

1.1 Chemical Graph Theory

Chemical graph theory has become a popular area of research in mathematics. Its

popularity began with the Wiener index in 1947. Harry Wiener made an observation

regarding the correlation of chemical properties and the spacing of a compound [26,

27]. From his observations he created the Wiener index ,W (G),

W (G) =
∑

u,v∈V (G)
d(u, v).

For instance, we may observe from Table 1.1 that there is a positive correlation

between the Wiener index values and the boiling points of the chemicals.

Chemical Wiener Index Boiling Point

Heptane 56 98.42

3-ethylpentane 48 93.50

3-methylhexane 50 91.00

2-methylhexane 52 90.00

2,3-dimethylpentane 46 89.90

3,3-dimethylpentane 44 86.00

2,2,3-triethylbutane 42 81.70

2,4-dimethylpentane 48 80.00

2,2-dimethylpentane 46 79.00

Table 1.1: The Wiener index and boiling points of isomers of heptane.

We may notice that the Wiener index is based on distances but we can also

examine indices based on vertex degrees. The most well known such index is probably
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the Randić index [14]

R(T ) =
∑

uv∈E(T )
(d(u)d(v))− 1

2 .

This concept can be naturally generalized to

wα(T ) =
∑

uv∈E(T )
(d(u)d(v))α

for α 6= 0, also known as the connectivity index (see for example [6]). When α = 1,

this is also called the weight of a tree. In fact, Randić also proposed wα(T ) for α = −1,

later rediscovered and known as the Modified Zagreb index.

In order to study these chemical properties we must introduce the molecular

graph. A molecular graph is the graphical representation of a chemical where V (G)

represents the atoms and E(G) represents the bonds while the Hydrogen atoms are

disregarded. As an example we may consider 2,2,3 - trimethylbutane and construct its

chemical graph. Figure 1.1 shows the chemical structure of 2,2,3 - trimethylbutane.

H C C C C H

H H

H C H H C H
H H

H H H
H C H

H

Figure 1.1: Chemical Structure of 2,2,3 - trimethylbutane

To obtain the molecular graph we replace all double and triple bonds with single

bonds which creates the edges of the graph, E(G) and remove all hydrogen atoms.

Lastly, replace all remaining atoms with vertices to create V (G). This process creates

a tree as shown in Figure 1.2.

This concept appeared in [3]. One of the goals of chemical graph theory is to

study graph invariants. Graph invariants are often referred to as topological indices
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Figure 1.2: Chemical Graph of 2,2,3 - trimethylbutane

since the shape of the chemical graph determines the values of the index. These

chemical indices often provide a prediction of a particular chemical property. We may

consider many types of indices including those that are degree-based and distance-

based. These indices will be the focus of our discussion.

1.2 Preliminaries

In this section we will list a few definitions that will be commonly referenced. More

definitions will be presented throughout Chapter 2 and Chapter 3.

Definition 1.1 (Graph). A graph G is a set of vertices, denoted V (G), together with

a set of edges, denoted E(G), that connect pairs of vertices from V (G).

v

u

w

y

Figure 1.3: Example of a Graph

Throughout this paper we will focus on trees, a specific type of graph, which is

defined below.

Definition 1.2 (Tree). A tree T is a graph in which no two vertices are connected

by more than one path.
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Figure 1.4: Example of a Tree

The degree sequence of a tree is simply the non-increasing sequence of the vertex

degrees.

Definition 1.3 (Degree). The degree of a vertex v in V (G) is the number of edges

incident to v in G, denoted d(v).

In Figure 1.3, d(v) = 5.

Definition 1.4 (Leaf). A leaf (in a tree) is a vertex whose degree is one.

Definition 1.5 (Distance). The distance between two vertices in a graph is the length

of the shortest path connecting them, denoted d(u, v).

In Figure 1.3, d(u,w) = 2.

Definition 1.6 (Eccentricity). The eccentricity of a vertex v in G is the maximum

distance from v to any other vertex in G, denoted εG(v).

In Figure 1.3, εG(u) = 2.

1.3 Degree-based Graph Indices

In Chapter 2 we will concentrate on the topic of degree-based graph indices.

The question of finding extremal structures with respect to various graph indices

has received much attention in recent years. Among these graph indices, many are
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defined on adjacent vertex degrees and are maximized or minimized by the same

extremal structure. We consider a function defined on adjacent vertex degrees of a

tree, T , to be f(x, y) and the connectivity function associated with f ,

Rf (T ) =
∑

uv∈E(T )
f(d(u), d(v)).

We first introduce the extremal tree structures, with a given degree sequence, that

maximize or minimize such functions under certain conditions. When a partial order-

ing, called “majorization,” is defined on the degree sequences of trees on n vertices,

we compare the extremal trees of different degree sequences π and π′. As a conse-

quence many extremal results follow as immediate corollaries. Our finding provides a

uniform way of characterizing the extremal structures with respect to a class of graph

invariants. We also briefly discuss the applications to specific indices.

1.4 A Special Case of Distance-based Graph Indices

In Chapter 3 we will concentrate on a special case of distance-based graph indices.

Among many well-known chemical indices, the connective eccentricity index of

a graph G is defined as ξce(G) = ∑
v∈V (G)

dG(v)
εG(v) where dG(v) is the degree of v in G

and εG(v) is the eccentricity of v in G. Many extremal problems related to ξce(G)

in various classes of graphs have been studied. Another interpretation of this con-

cept, ξce(G) = ∑
uv∈E(G)

(
1

ε(u) + 1
ε(v)

)
as the sum of reciprocals of the eccentricities of

vertices motivates a natural generalization, where one can replace 1
ε(v) with 1

g(ε(v)) and

consequently ξceg (G) = ∑
v∈V (G)

dG(v)
g(εG(v)) , which in turn generalizes to

ξcef,g(G) =
∑

v∈V (G)

f(dG(v))
g(εG(v))

for any functions f and g. We consider extremal problems related to ξcef,g(G) in

trees. First we show that some classic approaches can be easily adapted to prove
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some general extremal results with respect to ξcef,g(G). We then briefly discuss the

comparison between extremal trees and the applications that follow.
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CHAPTER 2

FUNCTIONS ON ADJACENT VERTEX DEGREES

2.1 Introduction

Graph invariants can be useful in many areas of applied sciences. In particular,

chemical indices have been popular and powerful tools in the research of chemical

graph theory. See for instance [4,5,8,9,14,27] for some applications. There have been

many studies on indices defined on adjacent vertex degrees. The most well known

such index is probably the Randić index [14]

R(T ) =
∑

uv∈E(T )
(d(u)d(v))− 1

2 .

This concept can be naturally generalized to

wα(T ) =
∑

uv∈E(T )
(d(u)d(v))α

for α 6= 0, also known as the connectivity index (see for example [6]). When α = 1,

this is also called the weight of a tree. In fact, Randić also proposed wα(T ) for α = −1,

later rediscovered and known as the Modified Zagreb index. The extremal trees for

trees in general [12], trees with restricted degrees [15] and trees with given degree

sequence (the non-increasing sequence of degrees of internal vertices) [6,22] have been

characterized over the years.

Natural variations ofR(T ) and wα(T ) were brought forward as the sum-connectivity

index [39]

χ(T ) =
∑

uv∈E(T )
(d(u) + d(v))− 1

2

and the general sum-connectivity index [40]

χα(T ) =
∑

uv∈E(T )
(d(u) + d(v))α.
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Many interesting mathematical properties on these two indices, including some ex-

tremal results, can be found in [39,40] and the studies that follow.

Another variant of R(T ) was proposed more recently, as the harmonic index [8]

H(T ) =
∑

uv∈E(T )

2
d(u) + d(v) ,

which takes the sum of the reciprocal of the arithmetic mean (as opposed to the

geometric mean in the case of R(T )) of adjacent vertex degrees. The extremal trees

among simple connected graphs and general trees were characterized in [38].

Other examples of such graph invariants includes the third Zagreb index [17],

defined as ∑
uv∈E(T )

(d(u) + d(v))2.

It is easy to see that this is a special case of the general sum-connectivity index with

α = 2.

A slight variant of the third Zagreb index is the reformulated Zagreb index [13],

defined as ∑
uv∈E(T )

(d(u) + d(v)− 2)2.

Last but certainly not the least, the Atom-Bond connectivity index [7], defined

as ∑
uv∈E(T )

√√√√d(u) + d(v)− 2
d(u)d(v) ,

is a rather complicated example of such graph invariants that has recently received

much attention (for example, see [36]).

A fundamental question in the study of such invariants asks for the extremal

structures under certain constraints that maximize or minimize a chemical index.

Many of such extremal structures turned out to be identical for different but similar

invariants. In particular, the greedy tree (defined below) is often extremal among trees

of a given degree sequence (the non-increasing sequence of the vertex degrees).
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Definition 2.1 (Greedy Tree). [24] With given vertex degrees, the greedy tree is

achieved through the following ”greedy algorithm”:

i Label the vertex with the largest degree as v (the root);

ii Label the neighbors of v as v1, v2, ..., assign the largest degrees available to them

such that d(v11) ≥ d(v12) ≥ . . .;

iii Label the neighbors of v1 (except v) as v11,v12,...,such that they take all the

largest degrees available and that d(v11) ≥ d(v12) ≥ . . ., then do the same for

v2, v3, ...;

iv Repeat (iii) for all the newly labeled vertices. Always start with the neighbors of

the labeled vertex with largest degree whose neighbors are not labeled yet.

Figure 2.1 shows an example of a greedy tree.

v

v1 v2 v3 v4

v11 v12 v13 v21 v22 v23 v31 v32 v41 v42

Figure 2.1: A greedy tree with degree sequence (4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, . . . , 1).

To facilitate our discussion, we call a bivariable function f(x, y), defined on N×N,

escalating if

f(a, b) + f(c, d) ≥ f(c, b) + f(a, d) for any a ≥ c and b ≥ d. (2.1)

Example 2.2. The function f(x, y) = xy is an escalating function.
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For a tree T , let the connectivity function associated with f be

Rf (T ) =
∑

uv∈E(T )
f(d(u), d(v)). (2.2)

It is worth pointing out that (2.1) is essentially a discrete version of

∂2

∂x∂y
f(x, y) ≥ 0.

It is not difficult to see, that with different f , Rf (T ) describes various graph invariants

including many of the invariants mentioned above. The followings are shown in [24].

Theorem 2.3. [24] For any escalating function f and Rf (T ) defined as in (2.2),

Rf (T ) is maximized by the greedy tree among trees with given degree sequence.

Similarly, a bivariable function f(x, y) defined on N× N is de-escalating if

f(a, b) + f(c, d) ≤ f(c, b) + f(a, d) for any a ≥ c and b ≥ d. (2.3)

Theorem 2.4. [24] For any de-escalating function f and Rf (T ) defined as in (2.2),

Rf (T ) is minimized by the greedy tree among trees with given degree sequence.

Although greedy trees are interesting in their own right because of the close

relation between vertex degrees and valences of atoms, comparing greedy trees of

different degree sequences has proven to be an effective way of studying extremal tree

structures in general. This is exactly the goal of this chapter. Majorization techniques

are a fruitful method in the study of graph topological indicators and there is a wide

literature (for example see [1, 2, 33–35] etc.) about this topic.

First we recall the following partial ordering on degree sequences of trees of given

order.

Definition 2.5 (Majorization). Given two nonincreasing degree sequences π and π′

with π = (d1, d2, ..., dn) and π′ = (d′1, d′2, ..., d′n), we say that π′ majorizes π if the

following conditions are met:
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1 ∑k
i=0 di 6

∑k
i=0 d

′
i for 1 6 k 6 n− 1, and

2 ∑n
i=0 di = ∑n

i=0 d
′
i

We denote this by π / π′.

For example: Let π = (5, 5, 4, 4, 3, 2, 2, 1, ..., 1) and π′ = (5, 5, 5, 4, 3, 3, 2, 1, ..., 1).

Then π / π′.

The concept of majorization between degree sequences led to many interesting

studies on various graph indices, see for instance, [1, 2]. The following fact will be of

crucial importance to our argument.

Proposition 2.6. [25] Let π = (d0, ..., dn−1) and π′ = (d′0, ..., d′n−1) be two noin-

creasing graphical degree sequences. If π / π′, then there exists a series of graphical

degree sequences π1, ..., πk such that π / π1 / ... / πk / π
′, where πi and πi+1 differ at

exactly two entries, say dj (d′j) and dk (d′k) of πi (πi+1), with d′j = dj + 1, d′k = dk − 1

and j < k.

In this chapter, we will first present our main result on the comparison between

greedy trees of different degree sequences with respect to the Rf (.) value. Then we will

use our main theorem to deduce many extremal results as immediate consequences.

We will also show some examples of the application of our findings to specific graph

invariants.

2.2 Main result

In this section we prove our main result, stated in Theorems 2.7 and 2.10.

Theorem 2.7. Given two degree sequences π and π′ with π/π′. Let T ∗π and T ∗π′ be the

greedy trees with degree sequences π and π′ respectively. For an escalating function f
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with
∂f

∂x
≥ 0 (2.4)

and
∂2f

(∂x)2 ≥ 0, (2.5)

we have

Rf (T ∗π ) ≤ Rf (T ∗π′).

Remark 2.8. Although f is a discrete function, we treat it as a continuous function

in order to use the above partial derivative conditions (2.4) and (2.5). This allows

for a clear presentation of our conditions.

Proof. Given the conditions (2.1), (2.4) and (2.5), we want to show

Rf (T ∗π ) ≤ Rf (T ∗π′)

for

(d0, ..., dn−1) = π / π′ = (d′0, ..., d′n−1).

By Proposition 2.6 we may assume the degree sequences π and π′ differ at only

two entries, say dj0 (d′j0) and dk0 (d′k0) with d′j0 = dj0 + 1, d′k0 = dk0 − 1 for some

j0 < k0. Let T ∗π contain the vertices u1 and u2 with degrees A := dj0 and C := dk0

respectively (note that A ≥ C). We introduce the followings:

• let the parent of u1 have degree B;

• let the children of u1 have degrees B1,B2, ...,BA−1;

• let the parent of u2 have degree D;

• let the children of u2 have degrees D1,D2, ...,DC−1.
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Note that, from the structure of greedy trees, we have D ≤ B and Di ≤ Bj for

any 1 ≤ i ≤ C − 1 and 1 ≤ j ≤ A− 1.

Now consider the tree

Tπ′ = T ∗π − {u2u3}+ {u1u3}

as in Figure 2.2. Note that Tπ′ has degree sequence π′ but is not necessarily a greedy

tree.

u2 u2

u3

u1u1

u3

T ∗π Tπ′

Figure 2.2: π = (4, 4, 3, 3, 3, 3, 2, 2, 1, . . . , 1) and π′ = (4, 4, 4, 3, 3, 2, 2, 2, 1, . . . , 1).

From T ∗π to Tπ′ , we have altered the contribution to Rf (.) associated with the

vertices u1, u2 and u3. Note that the degrees of u1 and u2 have changed to A + 1

and C − 1 respectively. Looking at the difference in the contributions to the function

value between u1 and its parent we have

f(A+ 1,B)− f(A,B).

Similarly we have

− (f(C,D)− f(C − 1,D))

for u2 and its parent. From the edge u2u3 to u1u3 we have a change in the function

value of

f(A+ 1,D1)− f(C,D1).

The change in the contributions of the function value between u1 and its children can

be represented by the sum
A−1∑
i=1

(f(A+ 1,Bi)− f(A,Bi)).
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Similarly, the change in contributions to the function value between u2 and its children

can be represented by the sum

−

C−1∑
j=2

(f(C,Dj)− f(C − 1,Dj))
 .

Now we have Rf (Tπ′)−Rf (T ∗π ) as

(f(A+ 1,D1)− f(C,D1)) (2.6)

+((f(A+ 1,B)− f(A,B))− (f(C,D)− f(C − 1,D))) (2.7)

+
A−1∑
i=1

(f(A+ 1,Bi)− f(A,Bi))−
C−1∑
j=2

(f(C,Dj)− f(C − 1,Dj))
 . (2.8)

Next we consider each of these three terms (2.6), (2.7), and (2.8).

• First note that

f(A+ 1,D1)− f(C,D1) ≥ 0

as ∂f
∂x
≥ 0 and A ≥ C.

• Next, note that

f(A+ 1,B)− f(A,B) = ∂f

∂x
(A′,B)

and

f(C + 1,B)− f(C,B) = ∂f

∂x
(C ′,B),

where A ≤ A′ ≤ A+ 1 and C ≤ C ′ ≤ C + 1.

Since A ≥ C, we have A′ ≥ C ′. Then our assumption ∂2f

(∂x)2 ≥ 0 implies that

∂f

∂x
(A′,B) ≥ ∂f

∂x
(C ′,B)

and hence

f(A+ 1,B)− f(A,B) ≥ f(C,B)− f(C − 1,B).
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Together with

(f(C,B)− f(C − 1,B)) > (f(C,D)− f(C − 1,D))

(as f is escalating and C ≥ C − 1, B ≥ D), we have

(f(A+ 1,B)− f(A,B))− (f(C,D)− f(C − 1,D)) ≥ 0.

• Similarly we have

(f(A+ 1,Bi)− f(A,Bi))− (f(C,Dj)− f(C − 1,Dj)) ≥ 0

for any i and j. Hence any term of ∑A−1
i=1 (f(A+ 1,Bi)−f(A,Bi)) is larger than

every term of ∑C−1
j=2 (f(C,Dj)−f(C−1,Dj). Also, note that ∑A−1

i=1 (f(A+1,Bi)−

f(A,Bi)) has more terms than ∑C−1
j=2 (f(C,Dj)−f(C−1,Dj) since A−1 > C−2,

and that f(A + 1,Bi) − f(A,Bi) ≥ 0, f(C,Dj) − f(C − 1,Dj) ≥ 0 for any i, j

(since ∂f
∂x
≥ 0).

Therefore
A−1∑
i=1

(f(A+ 1,Bi)− f(A,Bi))−
C−1∑
j=2

(f(C,Dj)− f(C − 1,Dj)) ≥ 0.

Thus all three terms (2.6), (2.7) and (2.8) are non-negative. Hence

Rf (Tπ′)−Rf (T ∗π ) ≥ 0.

Note that Rf (T ∗π′) ≥ Rf (Tπ′) by Theorem 2.3. Therefore

Rf (T ∗π ) ≤ Rf (Tπ′) ≤ Rf (T ∗π′).

Remark 2.9. Note that, as in condition (2.1), the discrete version of the conditions

(2.4) and (2.5) would be sufficient for our argument. We state Theorem 2.7 with ∂f

∂x

and ∂2f

(∂x)2 in order to facilitate the presentation, as well as to simplify the application

of the result.
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Although we formulated our main theorem in terms of the escalating functions,

it is not difficult to see that the next theorem follows from the similar arguments. We

omit the details.

Theorem 2.10. Given two degree sequences π and π′ with π / π′. Let T ∗π and T ∗π′

be the greedy trees with degree sequences π and π′ respectively. For a de-escalating

function f with
∂f

∂x
≤ 0 (2.9)

and
∂2f

(∂x)2 ≤ 0, (2.10)

we have

Rf (T ∗π ) ≥ Rf (T ∗π′).

2.3 General extremal structures

First we assume the function f to be escalating and satisfies conditions (2.4), (2.5),

and that Rf (.) is defined as in (2.2). We now immediately have the following conse-

quences. We include a brief proof for each of them for completeness.

Corollary 2.11. Among all trees of order n, the star maximizes Rf (.).

Proof. Among all trees of order n, it is easy to see that the degree sequence (n −

1, 1, . . . , 1) majorizes all other degree sequences. Noting that the greedy tree with

this degree sequence is the star. The conclusion then follows from Theorems 2.3 and

2.7.

Corollary 2.12. Among all trees of order n with given maximum degree ∆, the greedy

tree with degree sequence (∆,∆, . . . , ∆, q, 1, . . . , 1) (where 1 ≤ q ≤ ∆− 1) maximizes

Rf (.).
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In different literatures this extremal tree is sometimes called a “complete ∆-ary

tree”, “good ∆-ary tree”, or “Volkmann trees”.

Proof. It is easy to see that with given maximum degree, the claimed degree sequence

majorizes any other degree sequence under the same condition. The conclusion then

follows from Theorems 2.3 and 2.7.

Corollary 2.13. Among all trees of order n with s leaves, the greedy tree with degree

sequence

s, 2, . . . , 2, 1, . . . , 1︸ ︷︷ ︸
s 1’s

 maximizes Rf (.). Such a tree is often called a “star

like tree”.

Proof. Given s leaves, the degree sequence must have exactly s 1’s. It is easy to

see that

s, 2, . . . , 2, 1, . . . , 1︸ ︷︷ ︸
s 1’s

 majorizes any other degree sequence with s 1’s. The

conclusion then follows from Theorems 2.3 and 2.7.

Corollary 2.14. Among all trees of order n with independence number α and degree

sequence (α, 2, . . . , 2, 1, . . . , 1) maximizes Rf (.).

Proof. Let I be an independent set of T of exactly α vertices. For any leaf u /∈ I,

the unique neighbor v of u must be in I and I ∪ {u} − {v} is also an independent

set of T . Hence there exists an independent set of α vertices that contains all leaves.

Consequently there are at most α leaves. It is easy to see, under this condition,

the claimed degree sequence majorizes all others. The conclusion then follows from

Theorems 2.3 and 2.7.

Corollary 2.15. Among all trees of order n with matching number β and degree

sequence

n− β, 2, . . . , 2︸ ︷︷ ︸
β 2’s

, 1, . . . , 1)

 maximizes Rf (.).

Proof. Let M be a matching of T of exactly β edges, each of these edges contains at

least one vertex of degree at least 2. Hence there are at least β vertices of degree at
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least 2. Under this condition, the claimed degree sequence majorizes all others. The

conclusion then follows from Theorems 2.3 and 2.7.

Remark 2.16. Of course, it is easy to see the analogues of the above statements

for de-escalating functions satisfying conditions (2.9) and (2.10). We omit the exact

statements here. Essentially f is de-escalating and Rf (.) will be minimized.

2.4 Applications

In this section we explore the application of our results to specific graph invariants.

2.4.1 Connectivity index

When f(x, y) = xαyα, recall that

Rf (T ) =
∑

uv∈E(T )
(d(u)d(v))α

is the connectivity index, a natural generalization of the well known Randić index.

Consider the case α > 0, we have

f(a, b)+f(c, d)−f(c, b)−f(a, d) = aαbα+cαdα−cαbα−aαdα = (aα−cα)(bα−dα) ≥ 0

for any a ≥ c and b ≥ d. Thus f(x, y) is escalating and Theorem 2.3 holds.

Similarly, f(x, y) is de-escalating for α < 0. Consequently we immediately have

the following results.

Theorem 2.17 ( [15, 22]). Among trees with given degree sequence, the connectivity

index is maximized (minimized) by the greedy tree for α > 0 (α < 0).

Remark 2.18. Furthermore, if α > 1, it is easy to verify (2.4) and (2.5). Conse-

quently Theorem 2.7 holds and the corresponding corollaries in Section 2.3 hold.
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2.4.2 General Sum-connectivity index and the third Zagreb

index

When f(x, y) = (x+ y)α, recall that

Rf (T ) = χα(T ) =
∑

uv∈E(T )
(d(u) + d(v))α

is the general sum-connectivity index. It is simply the sum-connectivity index when

α = 1.

We first show that χα(T ) is escalating (de-escalating) for α ≥ 1 (0 < α < 1).

Consider α ≥ 1 and let a ≥ c and b ≥ d. To show that f(x, y) is escalating it

suffices to show that

(a+ b)α − (b+ c)α ≥ (a+ d)α − (c+ d)α,

which is equivalent to, through some calculus, the following:

∫ a+b

b+c
αtα−1dt ≥

∫ a+d

c+d
αtα−1dt.

This can be rewritten as

∫ a

c
α(t+ b)α−1dt ≥

∫ a

c
α(t+ d)α−1dt,

which holds if and only if

α(t+ b)α−1 ≥ α(t+ d)α−1.

Since α ≥ 1, the last inequality is true if and only if b ≥ d.

Similarly, if 0 < α < 1 f(x, y) is de-escalating.

Consequently we have the following as a corollary to Theorem 2.3.

Theorem 2.19. Among trees with given degree sequence, the general sum-connectivity

index is maximized (minimized) by the greedy tree for α ≥ 1 (0 < α < 1).
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Remark 2.20. Furthermore, if α ≥ 0, it is easy to verify (2.4) and (2.5) for f(x, y) =

(x + y)α. Therefore Theorem 2.7 applies (when α ≥ 1 and f(x, y) is escalating) and

the corresponding corollaries in Section 2.3 hold.

Remark 2.21. Noting that the third Zagreb index is a special case of the general sum-

connectivity index with α = 2. Both Theorems 2.3 and 2.7, and their consequences

from Section 2.3 apply. We skip the exact statements.

Of course, the same can be concluded for the sum-connectivity index itself.

2.4.3 Reformulated Zagreb index

It is not difficult to see that although the reformulated Zagreb index, defined as

∑
uv∈E(T )

(d(u) + d(v)− 2)2,

is not a special case of the general sum-connectivity index, it can be analyzed in very

similar ways.

Letting a ≥ c and b ≥ d,

(a+ b− 2)2 + (c+ d− 2)2 ≥ (b+ c− 2)2 + (a+ d− 2)2

is equivalent to

2b(a− c)− 2d(a− c) ≥ 0,

which holds by our conditions.

Thus f(x, y) is escalating and Theorem 2.3 holds.

Theorem 2.22. Among trees with given degree sequence, the reformulated Zagreb

index is maximized by the greedy tree.

Remark 2.23. Furthermore, it is easy to verify (2.4) and (2.5) for f(x, y) = (x+y−

2)2 . Therefore Theorem 2.7 applies and the corresponding corollaries in Section 2.3

hold.
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2.4.4 Atom-Bond connectivity index

When f(x, y) =
√
x+ y − 2

xy
, the Atom-Bond connectivity (ABC) index

∑
uv∈E(T )

√√√√d(u) + d(v)− 2
d(u)d(v)

is perhaps one of the most complicated graph invariants defined on adjacent vertex

degrees. In [28] it is shown that the greedy tree achieves the minimum ABC index

among trees of given degree sequence. In order to prove that f(x, y) =
√
x+ y − 2

xy

is de-escalating, we first prove the following facts.

Lemma 2.24. For all positive integers c and d,

f(c+ 1, d+ 1) + f(c, d) ≤ f(c, d+ 1) + f(c+ 1, d). (2.11)

Proof. Since (
1

c+ 1 + 1
d
− 2

(c+ 1)d

)(
1
c

+ 1
d+ 1 −

2
c(d+ 1)

)

−
(1
c

+ 1
d
− 2
cd

)( 1
c+ 1 + 1

d+ 1 −
2

(c+ 1)(d+ 1)

)

=
(1
c
− 1
c+ 1

)(1
d
− 1
d+ 1

)
> 0,

we have

(f(c, d+ 1) + f(c+ 1, d))2 − (f(c+ 1, d+ 1) + f(c, d))2

= 2

√√√√( 1
c+ 1 + 1

d
− 2

(c+ 1)d

)(
1
c

+ 1
d+ 1 −

2
c(d+ 1)

)

−2

√√√√(1
c

+ 1
d
− 2
cd

)( 1
c+ 1 + 1

d+ 1 −
2

(c+ 1)(d+ 1)

)

+ 2
cd(c+ 1)(d+ 1)

> 0.

Hence (2.11) holds.
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Lemma 2.25. For any nonnegative integer k and positive integers c, d,

f(c+ k, d+ 1) + f(c, d) ≤ f(c, d+ 1) + f(c+ k, d). (2.12)

Proof. Through repeated applications of (2.11), we have

f(c+ k, d+ 1)− f(c+ k, d) ≤ f(c+ k − 1, d+ 1)− f(c+ k − 1, d)

≤ f(c+ k − 2, d+ 1)− f(c+ k − 2, d)

≤ ......

≤ f(c, d+ 1)− f(c, d).

So (2.12) holds.

Proposition 2.26. The function f(x, y) =
√
x+ y − 2

xy
is de-escalating on N× N.

Proof. By the definition of de-escalating functions, we need only prove the following

inequality

f(a, b) + f(c, d) ≤ f(c, b) + f(a, d) for any a ≥ c and b ≥ d.

Let a = c + k and b = d + r with nonnegative integers k, r. Through repeated

applications of (2.12), we have

f(a, b)− f(c, b) = f(c+ k, d+ r)− f(c, d+ r)

≤ f(c+ k, d+ r − 1)− f(c, d+ r − 1)

≤ f(c+ k, d+ r − 2)− f(c, d+ r − 2)

≤ ......

≤ f(c+ k, d)− f(c, d)

= f(a, d)− f(c, d).

So f(x, y) =
√
x+ y − 2

xy
is de-escalating on N× N.
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By Proposition (2.26) and Theorem 2.3, we have the following statement.

Theorem 2.27. Among trees with given degree sequence, the Atom-Bond connectivity

(ABC) index is minimized by the greedy tree.

Although the greedy tree is indeed extremal, unfortunately (2.9) and (2.10) do

not both hold in order to apply Theorem 2.10.

2.5 Concluding remarks

We considered functions defined on adjacent vertex degrees and the corresponding

topological indices. With certain additional conditions we show not only the char-

acterization of extremal graphs, but also the comparison between extremal graphs

with different degree sequences. This statement, based on the majorization between

degree sequences, leads to many extremal results as immediate consequences. We also

explored the application of our main theorem on a variety of popular graph indices.
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CHAPTER 3

FUNCTIONS ON DEGREES AND ECCENTRICITIES

3.1 Introduction

In the past few decades the study of topological indices has become a very important

part of mathematical chemistry. Such indices, often called chemical indices, correlate

the structures of chemical compounds with the chemical’s properties. A relatively

new such index is called the connective eccentricity index, introduced in [11] and

defined as

ξce(G) =
∑

v∈V (G)

dG(v)
εG(v) =

∑
uv∈E(G)

(
1

ε(u) + 1
ε(v)

)

where dG(v) is the degree of v in G and εG(v) is the eccentricity of v (the maximum

distance from v to any other vertex) in G.

As a chemical index ξce(G) provides a unique aspect as it takes into consideration

both the distance and the degree, as well as the adjacency between vertices. Conse-

quently it has received much attention in recent years. In particular, the extremal

problem with respect to ξce(G) has been studied for different classes of graphs [29–31].

Note that the expression ∑
uv∈E(G)

(
1

ε(u) + 1
ε(v)

)
takes the sum of reciprocals of

eccentricities, a natural generalization would be to consider

ξceg (G) =
∑

uv∈E(G)

(
1

g(ε(u)) + 1
g(ε(v))

)
=

∑
v∈V (G)

dG(v)
g(εG(v))

where we consider a function g of the eccentricity in the formula. Similarly, replacing

dG(v) in the last expression by a function f of the degree yields

E (G) := ξcef,g(G) =
∑

v∈V (G)

f(dG(v))
g(εG(v)) .

In this chapter we will consider the topological index E (G) and related extremal

problems. We will limit our attention to trees. First we introduce some background

information in Section 3.2. Next we find the extremal trees with respect to E (G)
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among trees with a given degree sequence in Section 3.3. We then move on to com-

paring the extremal structures with different degree sequences in Section 3.4 and

present applications of this comparison in Section 3.5.

3.2 Preliminaries

Let σT (v) = f(dT (v))
g(εT (v)) , then

E (G) := ξcef,g(G) =
∑

v∈V (G)
σT (v).

In practice f is usually the identity function. We consider it in a more general setting

where f is an increasing function. We use the notation E↗(G) if g is increasing and

E↘(G) if g is decreasing.

Recall that the degree sequence of a tree is simply the non-increasing sequence of

the vertex degrees. Given the degree sequence, we first define a few special trees.

The greedy tree is known to be extremal among trees with a given degree sequence

with respect to many different indices. In particular, it is known to minimize the

distance (the sum of distances between vertices [23, 35] and the sum of eccentricities

[18]) among trees with a given degree sequence. We will show that the greedy trees

are indeed also extremal with respect to E (G). Our approach makes use of a number

of known results, including the following concepts.

Definition 3.1 (Level-Degree Sequence [18]). In a rooted tree, the list of multisets

Li of degrees of vertices at height i, starting with L0 containing the degree of the root

vertex, is called the level-degree sequence of the rooted tree.

In a rooted tree, the outdegree of the root is equal to its degree and the outdegree

of any other vertex is its degree minus one. For a given level-degree sequence the

corresponding outdegrees describe the number of vertices at each level.
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Definition 3.2 (Level-Greedy Tree (Figure 3.1) [16]). For i ∈ {0, 1, ..., H}, let mul-

tisets

{ai1, ai2, ..., aili} of nonnegative numbers be given such that l0 = 1 and

li+1 =
li∑
j=1

aij.

Assume that the elements of each multiset are sorted, i.e. ai1 ≥ ai2 ≥ ... ≥ aili.

The level-greedy tree, with height H, corresponding to this sequence of multisets is the

rooted tree whose jth vertex at level i has outdegree aij.

Likewise, if sorted multisets {ai1, ai2, ..., aili} of nonnegative numbers are given

for i ∈ {0, 1, ..., H} such that l0 = 2 and

li+1 =
li∑
j=1

aij,

then the level-greedy tree corresponding to this sequence of multisets is the edge-rooted

tree (i.e. there are two vertices at level 0, connected by an edge) whose jth vertex at

level i has outdegree aij.

Figure 3.1: A level-greedy tree with level-degree sequence.

A caterpillar is a tree whose removal of leaves results in a path (Figure 3.2). The

greedy caterpillar with a given degree sequence is defined as following.

Definition 3.3 (Greedy Caterpillar (Figure 3.3) [21]). A greedy caterpillar is a cater-

pillar where the path formed by the internal vertices can be labeled as v1v2...vk such

that

min{d1, dk} ≥ max{d2, dk−1}, min{d2, dk−1} ≥ max{d3, dk−2}, ...
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where di is the degree of vi.

Figure 3.2: A caterpillar with degree sequence {6, 5, 4, 4, 2, 1, ..., 1}.

Figure 3.3: A greedy caterpillar with degree sequence {6, 5, 4, 4, 2, 1, ..., 1}.

From these definitions it is easy see the following facts.

Proposition 3.4. Given a degree sequence, the number of internal vertices is fixed.

Furthermore:

• In a caterpillar with a given degree sequence, all internal vertices lie on the same

path, and the eccentricity of an internal vertex does not depend on the degree of

this or any other internal vertices.

• In a greedy caterpillar with a given degree sequence, the larger the eccentricity

of an internal vertex is, the larger the degree of it is.

3.3 Extremal trees with a given degree sequence

Theorem 3.5. Among trees with a given degree sequence π, the greedy caterpillar

minimizes E↗(T ) and maximizes E↘(T ).

Proof. We only consider the case of E (T ) := E↗(T ). The other case is similar.

Let T be the set of trees whose degree sequence is π. Let T ∈ T be the tree

such that E (T ) = minF∈T E (F ).
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First we show that T must be a caterpillar. If not, let PT (u, v) = uu1u2...ukv

be a longest path in T for some k ∈ Z. We then find a vertex, ut ∈ V (T ) such that

ut is the first vertex (i.e., with smallest subscript t) with a non-leaf neighbor, w, not

on PT (u, v). Note that t ∈ {2, 3, ..., k} since PT (u, v) is a longest path in T . Let W

denote the connected component containing w in T −utw. Now detaching W from w

and reattaching it to u creates a new tree, T ′ , with degree sequence π. See Figure 3.4.

u ut uk v

W

Figure 3.4: The caterpillar T and the component W .

Note that

• for any vertex s ∈ (V (T ) \ V (W ))∪ {w} we have, εT ′(s) ≥ εT (s) since PT (u, v)

is a longest path in T .

• for any vertex r ∈ V (W )− {w} we have,

εT ′(r) = dT ′(r, u) + dT (u, v) > dT (u, v) ≥ εT (r)

where dG(x, y) denotes the distance between vertices x and y in G.

• for any vertex z ∈ V (T ) \ {u,w}, dT ′(z) = dT (z). For u and w we have

dT ′(u) = dT (w) and dT ′(w) = dT (u).

Then σT ′(z) ≤ σT (z) for any z ∈ V (T ) \ {u,w}, and as dT (w) > 1 = dT (u) and

εT (u) > εT (w) we have the following
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σT ′(u) + σT ′(w)− σT (u)− σT (w)

= f(dT ′(u))
g(εT ′(u)) + f(dT ′(w))

g(εT ′(w)) −
f(dT (u))
g(εT (u)) −

f(dT (w))
g(εT (w))

= f(dT (w))
g(εT ′(u)) + f(dT (u))

g(εT ′(w)) −
f(dT (u))
g(εT (u)) −

f(dT (w))
g(εT (w))

≤ f(dT (w))
g(εT (u)) + f(dT (u))

g(εT (w)) −
f(dT (u))
g(εT (u)) −

f(dT (w))
g(εT (w))

= (f(dT (w))− f(dT (u)))
(

1
g(εT (u)) −

1
g(εT (w))

)
< 0.

Consequently E (T ′) < E (T ), a contradiction. Thus T must be a caterpillar.

Next we show that T is a greedy caterpillar. Since T is a caterpillar its internal

vertices form a path, P ′T (u1, uk) = u1u2...uk. If T is not greedy, then by Proposi-

tion 3.4 there exist vertices ui and uj with i, j ∈ {1, 2, ..., k} such that dT (ui) > dT (uj)

and εT (ui) < εT (uj).

We construct a new tree, T ′′, by taking D = d(ui) − d(uj) vertices and their

adjacent edges from ui and moving them to uj. Let these moved pendant vertices be

x1, x2, ..., xD (Figure 3.5). Note that the degree sequence of T ′′ is still π. It follows

that

• dT (ui) = dT ′′(uj) and dT (uj) = dT ′′(ui).

• εT (ui) = εT ′′(ui) and εT (uj) = εT ′′(uj) since no vertices in P ′(u1, uk) were moved

during the creation of T ′′.

• For any 1 ≤ i ≤ D, dT (xi) = 1 = dT ′′(xi) and εT (xi) < εT ′′(xi).

Now consider E (T ′′) − E (T ). Among all vertices in V (T ) = V (T ′′) the value of
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ui uj

. . . . . . . . . . . .
x1 xD x1 xD

Figure 3.5: The caterpillar T and the vertices x1, x2, ..., xD.

σ(.) changed for vertices ui, uj, and x1, x2, ..., xD. So we have

E (T ′′)− E (T )

= (σT ′′(ui)− σT (ui)) + (σT ′′(uj)− σT (uj)) +
(

D∑
i=1

σT ′′(xi)−
D∑
i=1

σT (xi)
)
.

Since dT (xi) = dT ′′(xi) and εT (xi) < εT ′′(xi), we have σT ′′(xi) − σT (xi) < 0 for

any 1 ≤ i ≤ D. As a result
D∑
i=1

σT ′′(xi)−
D∑
i=1

σT (xi) < 0. Consequently

E (T ′′)− E (T ) < (σT ′′(ui)− σT (ui)) + (σT ′′(uj)− σT (uj))

= f(dT ′′(ui))
g(εT ′′(ui))

− f(dT (ui))
g(εT (ui))

+ f(dT ′′(uj))
g(εT ′′(uj))

− f(dT (uj))
g(εT (uj))

= f(dT ′′(ui))
g(εT ′′(ui))

+ f(dT ′′(uj))
g(εT ′′(uj))

− f(dT (ui))
g(εT (ui))

− f(dT (uj))
g(εT (uj))

= f(dT (uj))
g(εT (ui))

+ f(dT (ui))
g(εT (uj))

− f(dT (ui))
g(εT (ui))

− f(dT (uj))
g(εT (uj))

=
(
f(dT (uj))− f(dT (ui))

)( 1
g(εT (ui))

− 1
g(εT (uj))

)
< 0.

This is a contradiction. Hence T must be a greedy caterpillar.

In order to show that the greedy tree is extremal among trees with a given degree

sequence, we first consider trees with a given level-degree sequence.

Theorem 3.6. Among trees with a given level-degree sequence, the level-greedy tree

maximizes E↗(T ) and minimizes E↘(T ).
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Proof. We only consider the rooted case for E (T ) := E↗(T ). The edge-rooted case

and the E↘(T ) cases are similar.

Let T be an optimal tree with root v and the given level-degree sequence that

maximizes E (T ). Let T1 be the subtree of T that is rooted at v1, a child of v, that

contains some leaves of height h = h(T ). and let h′ = h(T − T1). For any vertex

u ∈ V (T − T1) and any vertex w ∈ V (T1) such that hT (u) = hT (w) = j, we claim

that

dT (w) ≥ dT (u). (3.1)

To see (3.1), first note that

εT (w) = max{j + h′, εT1(w)} ≤ j + h = εT (u). (3.2)

Suppose for a contradiction that dT (u) > dT (w). Let D = dT (u) − dT (w) and

create a new tree, T ′, by removingD of the children u1, . . . , uD (and their descendants)

of u, and attaching them to w. By doing this we maintain the level-degree sequence

while switching the degrees of u and w (Figure 3.6). In other words,

T ′ = T − uu1 − uu2 − . . .− uuD + wu1 + wu2 + . . .+ wuD.

. . .

w u

v1

v

T1

Figure 3.6: The tree T , vertices u ∈ V (T − T1) and w ∈ V (T1).

Now from T to T ′, we have

• εT ′(u) = εT (u);
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• εT (x) ≥ εT ′(x) for all x ∈ V (T ), hence

σT ′(x) = f(dT ′(x))
g(εT ′(x)) ≥

f(dT (x))
g(εT (x)) = σT (x)

for any x ∈ V (T )− {u,w};

• εT ′(w) ≤ εT (w).

Consequently we have

E (T ′)− E (T ) = σT ′(u) + σT ′(w)− σT (u)− σT (w) +
∑

x∈V (T )−{u,w}
(σT ′(x)− σT (x)) .

Since σT ′(x)− σT (x) ≥ 0 for any x ∈ V (T )− {u,w}, we now have

E (T ′)− E (T ) ≥ f(dT ′(u))
g(εT ′(u)) + f(dT ′(w))

g(εT ′(w)) −
f(dT (u))
g(εT (u)) −

f(dT (w))
g(εT (w))

≥ f(dT (w))
g(εT (u)) + f(dT (u))

g(εT (w)) −
f(dT (u))
g(εT (u)) −

f(dT (w))
g(εT (w))

=
(
f(dT (w))− f(dT (u))

)( 1
g(εT (u)) −

1
g(εT (w))

)
≥ 0.

We have a contradiction if strict inequality holds. Otherwise, T and T ′ would both

be optimal and we can replace T with T ′. We may repeat this process (starting from

vertices of smaller height) until we have an optimal tree where (3.1) holds for any

w ∈ V (T1) and u ∈ V (T − T1) of the same height.

What (3.1) states, is that at the same level, the vertices on the left (in T1) are

of larger degrees than the vertices on the right (not in T1). Next we show that the

vertices at the same level, from left to right, are indeed from the largest to smallest.

In other words, we will show that each of T1 and T − T1 is level greedy.

• For the tree T − T1, let u′, w′ ∈ V (T − T1) such that w′ and u′ are at the same

level and w′ is to the left of u′. It is easy to see that

εT (w′) = h+ h(w′) = h+ h(u′) = εT (u′). (3.3)
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If dT−T1(w′) ≥ dT−T1(u′) then we are done. Otherwise, if dT−T1(w′) < dT−T1(u′),

let D′ = dT−T1(u′) − dT−T1(w′) and create T ′′ by removing D′ of the children

u′1, . . . , u
′
D′ (and their descendants) of u′, and attaching them to w′. That is,

T ′′ = T − u′u′1 − u′u′2 − . . .− u′u′D + w′u′1 + w′u′2 + . . .+ w′u′D.

Now the degrees of u′ and w′ are switched in T ′′. Since their eccentricities stay

the same (so do any other pair of vertices at the same level in T − T1, for the

same reason as (3.3)), E (T ′′) = E (T ). Similar to before, repeating this process

(starting from vertices of smaller height) leads to an optimal tree in which T−T1

is level greedy.

• Now consider the tree T1. For two vertices r and s at the same level, note that

by (3.2) we see that

εT1(r) ≥ εT1(s) if and only if εT (r) ≥ εT (s).

This allows us to apply the exact same argument as above to T1 and finish the

proof in an inductive manner.

To reach our conclusion on greedy trees, we need to recall some previously es-

tablished concepts and results. The semi-regular property was first introduced in [19],

where a number of variations were presented. Below is one of them.

Definition 3.7 (Semi-regular Property [19]). We say that a tree satisfies the semi-

regular property if, given any path with non-leaf end vertices u, v ∈ V (T ), the set of

subtrees {T 1
u , ..., T

a
u} attached to u and the set of subtrees {T 1

v , ..., T
b
v} attached to v

(such that v /∈ T iu and u /∈ T jv holds for each i and j) satisfy either

a ≥ b and min{|V (T 1
u )|, ..., |V (T au )|} ≥ max{|V (T 1

v )|, ..., |V (T bv )|}
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or

b ≥ a and max{|V (T 1
u )|, ..., |V (T au )|} ≤ min{|V (T 1

v )|, ..., |V (T bv )|}.

It was also shown in [19], that a tree with a given degree sequence that satisfies

the semi-regular property must be a greedy tree.

Theorem 3.8 ( [19]). A tree with a given degree sequence with the semi-regular

property is a greedy tree.

On the other hand, it was shown, in [16], that if the optimal tree, with any

given level-degree sequence, is level-greedy, then the optimal tree must satisfy the

semi-regular property.

Theorem 3.9 ( [16]). If the optimal tree is level-greedy (when given the level-degree

sequence), then the optimal tree (when given the degree sequence) must satisfy the

semi-regular property.

Hence Theorems 3.9 and 3.8, along with Theorem 3.6, imply the following:

Theorem 3.10. Among trees with a given degree sequence, the greedy tree maximizes

E↗(T ) and minimizes E↘(T ).

3.4 Comparison between extremal trees of different degree sequences

In this section we compare the greedy trees of different degree sequences with respect

to E↗(T ) and E↘(T ). To do this we first define a partial ordering on the set of degree

sequences of trees on a given number of vertices.

Definition 3.11 (Majorization). Given two nonincreasing degree sequences π and

π′ with π = (d1, d2, ..., dn) and π′ = (d′1, d′2, ..., d′n), we say that π′ majors π if the

following conditions are met:
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• ∑k
i=0 di ≤

∑k
i=0 d

′
i for 1 ≤ k ≤ n− 1

• ∑n
i=0 di = ∑n

i=0 d
′
i

We denote this by π / π′.

For example, for π = (5, 5, 4, 4, 3, 3, 2, 1, ..., 1) and π′ = (5, 5, 5, 4, 3, 3, 2, 1, ..., 1)

we have π /π′. The following observation allows us to only compare “adjacent degree

sequences”.

Proposition 3.12 ( [25]). Let π = (d0, ..., dn−1) and π′ = (d′0, ..., d′n−1) be two noin-

creasing graphical degree sequences. If π / π′, then there exists a series of graphical

degree sequences π1, ..., πk such that π / π1 / ... / πk / π
′, where πi and πi+1 differ at

exactly two entries, say dj (d′j) and dk(d′k) of πi(πi+1), with d′j = dj + 1, d′k = dk − 1

and j < k.

We are now ready to present our main theorem of the section, which belongs to

a class of “majorization results” that have shown to be very useful in the study of

extremal problems.

Theorem 3.13. Given two degree sequences (for trees) π and π′ such that π / π′. If

f(x+ 1)− f(x) > f(y)− f(y − 1)

when x ≥ y, we have

E↗(T ∗π ) ≤ E↗(T ∗π′)

and

E↘(T ∗π ) ≥ E↘(T ∗π′)

where T ∗α denotes the greedy tree with the degree sequence α.
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Proof. Again we only consider the case of E (T ) := E↗(T ).

We want to show that E (T ∗π ) ≤ E (T ∗π′) where π = (d0, ..., dn−1) and π′ =

(d′0, ..., d′n−1) such that π / π′. By Proposition 3.12 we may assume that π and π′

differ at only two entries, say dj (d′j) and dk (d′k) with d′j = dj + 1, d′k = dk − 1 for

some j < k.

Let u and v be vertices of T ∗π such that the degrees of u and v are dj and dk

respectively. Also let w be a child of v. We construct a new tree, Tπ′ , by moving w

(and all its descendants) from its parent, v, to u (see Figure 3.7). In other words

Tπ′ = T ∗π − vw + uw.

v

w

u

w

T ∗π Tπ′

Figure 3.7: π = (4, 4, 3, 3, 3, 3, 2, 2, 1, . . . , 1) and π′ = (4, 4, 4, 3, 3, 2, 2, 2, 1, . . . , 1).

By Theorem 3.10, E (T ∗π′) ≥ E (Tπ′). To prove E↗(T ∗π ) ≤ E↗(T ∗π′) it suffices to

show E↗(T ∗π ) ≤ E↗(Tπ′). First note that

εTπ′ (x) ≤ εT ∗π (x) for all x ∈ V (T ∗π ).

Since dTπ′ (x) = dT ∗π (x) for any x ∈ V (T ∗π )− {u, v}, we have

σTπ′ (x) ≥ σT ∗π (x) for any x ∈ V (T ∗π )− {u, v}.
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Now we have

E (Tπ′)− E (T ∗π ) = (σTπ′ (v)− σT ∗π (v)) + (σTπ′ (u)− σT ∗π (u))

+
 ∑
x∈V (T ∗π )−{u,v}

σTπ′ (x)−
∑

x∈V (T ∗π )−{u,v}
σT ∗π (x)



≥ (σTπ′ (v)− σT ∗π (v)) + (σTπ′ (u)− σT ∗π (u))

Noting that dTπ′ (v) = dT ∗π (v)− 1 and dTπ′ (u) = dT ∗π (u) + 1, we have

E (Tπ′)− E (T ∗π ) ≥ (σTπ′ (v)− σT ∗π (v)) + (σTπ′ (u)− σT ∗π (u))

=
f(dTπ′ (v))
g(εTπ′ (v)) −

f(dT ∗π (v))
g(εT ∗π (v)) +

f(dTπ′ (u))
g(εTπ′ (u)) −

f(dT ∗π (u))
g(εT ∗π (u))

= f(dT ∗π (v)− 1)
g(εT ∗π (v)) −

f(dT ∗π (v))
g(εT ∗π (v)) + f(dT ∗π (u) + 1)

g(εT ∗π (u)) −
f(dT ∗π (u))
g(εT ∗π (u))

= f(dT ∗π (u) + 1)− f(dT ∗π (u))
g(εT ∗π (u)) −

f(dT ∗π (v))− f(dT ∗π (v)− 1)
g(εT ∗π (v))

≥ 0.

3.5 Applications

In this section we briefly comment on potential applications of our results. Letting

f(x) = 1 and g(x) = 1
x
, we have

E↘(T ) =
∑

v∈V (T )
εT (v)

being minimized by the greedy tree and maximized by the greedy caterpillar among

all trees of a given degree sequence. This is consistent with the findings in [18].

Similarly, if f(x) = 1 and g(x) = 1
x2 ,

E↘(T ) =
∑

v∈V (T )
ε2
T (v)
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is known as the first Zagreb eccentricity index [10,20].

And of course, when f(x) = g(x) = x we have the original connective eccentricity

index

E↗(T ) =
∑

v∈V (T )

dT (v)
εT (v) .

The importance of Theorem 3.10 and Theorem 3.13 lies in the fact that many

extremal results on different classes of trees follow as immediate corollaries. These

corollaries are the same as the ones found in Section 2.3. One may see [37] for an

example of such applications.
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graph spectra, Annals of Discrete Mathematics Series (1988).
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