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Abstract: A difference equation analogue of the generalized hypergeometric differential equation is defined,
its contiguous relations are developed, and its relation to numerous well-known classical special functions
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1 Introduction
The Pochhammer symbol (a)k is defined for k ∈ N by (a)k = a(a + 1) . . . (a + k − 1) and for k = 0 by (a)0 = 1.
We define the product notation

m∏︁
s=1,(k)

As =
(︃k−1∏︁
s=1

As

)︃(︃ m∏︁
s=k+1

As

)︃
.

We use the forward difference operator ∆ defined by ∆f (t) = f (t + 1) − f (t). From the definition of ∆ it is easy
to see that ∆[(−1)n(−t)n] = n(−1)n−1(−t)n−1 is the discrete analogue of the power rule of differentiation. The
generalized hypergeometric series pFq is defined by

pFq(a1, . . . , ap; b1, . . . , bq; t) =
∞∑︁
k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

tk
k! . (1)

The derivative of (1) is known [1, 5.2.2. (1)]:

dn
dtn pFq(a1, . . . , ap; bq , . . . , bq; t) =

(a1)n . . . (ap)n
(b1)n . . . (bq)n

pFq(a1, . . . , ap; b1, . . . , bq; t). (2)

Let θ denote the operator θ = t ddt . It is known [2, S46 (3)] that if y(t) = pFq(a1, . . . , ap; b1, . . . , bq; t), then y
satisfies the differential equation⎡⎣θ q∏︁

j=1
(θ + bj − 1) − z

q∏︁
i=1

(θ + ai)

⎤⎦ y(t) = 0. (3)

Two hypergeometric functions are called contiguous if one of their parameters ai or bi differs in one by ±1.
We adopt the following notation:

F = pFq(a1, . . . , ap; b1, . . . , bq; t),
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The generalized hypergeometric difference equation | 63

F(ai±) = pFq(a1, . . . , ai ± 1, . . . , ap; bq , . . . , bq; t),

and
F(bi±) = pFq(a1, . . . , ap; b1, . . . , bi ± 1, . . . , bq; t).

Following [3, p. 81] we adopt the following notations:

Sn =
(a1 + n)(a2 + n) . . . (ap + n)

(b1 + n) . . . (bq + n)
, (4)

τn,k =
Sn

ak + n
, (5)

(a1)n+1 . . . (ap)n+1
(b1)n+1 . . . (bq)n+1

= Sn
(a1)n . . . (ap)n
(b1)n . . . (bq)n

, (6)

and

Uj =

p∏︁
s=1

(as − bj)

bj
q∏︁

s=1,(j)

(bs − bj)
.

A total of 2p + q contiguous relations exist for pFq, split into three classes [3, p. 85]: if p < q, then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a1 − ak)F = a1F(a1+) − akF(ak+), k = 2, 3, . . . , p
(a1 − bk + 1)F = a1F(a1+) − (bk − 1)F(bk−), k = 1, 2, . . . , q

F = F(ak−) + t
q∑︁
j=1

Wj,kF(bj+), k = 1, 2, . . . , p

a1F = a1F(a1+) − t
q∑︁
j=1

UjF(bj+).

(7)

If p = q, then ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a1 − ak)F = a1F(a1+) − akF(ak+), k = 2, 3, . . . , p
(a1 − bk + 1)F = a1F(a1+) − (bk − 1)F(bk−), k = 1, 2, . . . , q

F = F(ak−) + t
q∑︁
j=1

Wj,kF(bj+), k = 1, 2, . . . , p

(a1 + t)F = a1F(a1+) − t
q∑︁
j=1

UjF(bj+).

(8)

If p = q + 1, then ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a1 − ak)F = a1F(a1+) − akF(ak+), k = 2, 3, . . . , p
(a1 − bk + 1)F = a1F(a1+) − (bk − 1)F(bk−), k = 1, 2, . . . , q

(1 − t)F = F(ak−) + t
q∑︁
j=1

Wj,kF(bj+), k = 1, 2, . . . , p

[︀
(1 − t)a1 + (A − B)t

]︀
F = (1 − t)a1F(a1+) − t

q∑︁
j=1

UjF(bj+),

(9)

where A =
p∑︁
s=1

as and B =
q∑︁
s=1

bs.

Many classical special functions can be expressed in terms of pFq. The classical exponential function

exp

⎛⎝ t∫︁
0

p(τ)dτ

⎞⎠ satisfies the initial value problem

y′(t) = p(t)y(t), y(0) = 1. (10)
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64 | Martin Bohner and Tom Cuchta

Substituting αt for t in the relationship given by [4, (2.1.9)] yields

eαt = 0F0(; ; αt). (11)

The functions sin(at) and cos(at) satisfy the differential equation

y′′(t) = −a2y(t).

The relationship between sin(at) and 0F1 is known [4, (2.1.7)] to be

sin(at) = at0F1

(︂
; 32 ;−

a2t2
4

)︂
. (12)

The relationship between cos(at) and 0F1 is known [4, (2.1.8)] to be

cos(at) = 0F1

(︂
; 12 ;−

a2t2
4

)︂
. (13)

Classical Bessel functions Jn are defined by the series

Jn(t) =
∞∑︁
k=0

(−1)k t2k+n
k!Γ(k + n + 1)22k+n

.

It is known [2, p. 108 (1)] that

Jn(t) =
tn

2nΓ(n + 1) 0F1

(︂
; n + 1;− t

2

4

)︂
, (14)

and consequently, y(t) = 0F1

(︂
; n + 1;− t

2

4

)︂
= 2nn!Jn(t)

tn satisfies the differential equation [2, p. 109 (4)]

t2y′′(t) + ty′(t) + (t2 − n2)y(t) = 0. (15)

A “hypergeometric difference equation”, originally investigated in [5], is defined in [6] by

(a2x + b2)y(x + 2) + (a1x + b1)y(x + 1) + (a0x + b0)y(x) = 0,

and it is named this “because . . . its solutions can be expressed in terms of the hypergeometric series”, which
is referring specifically to 2F1. The “basic hypergeometric series” (or “q-hypergeometric series”) is defined in
[7] by the notation

rϕs(a1, . . . , ar; b1, . . . , bs; q, z) =
∞∑︁
k=0

(a1; q)k . . . (ar; q)k
(q; q)k(b1; q)k . . . (bs; q)k

[︁
(−1)kq(

k
2)
]︁1+s−r

zk .

The paper [8] defines a “discrete hypergeometric function” by

rMs(a1, . . . , ar; b1, . . . , bs; q, z) =
∞∑︁
k=0

(qa1 )k . . . (qa2 )kz(k)
(q)k(qb1 )k . . . (qbs )k

,

where z(k) is a q-analogue of zk. The paper [9] speaks of “discrete analogues” of theorems related to classical
hypergeometric functions, but the authors simply mean restricting the otherwise complex parameters and
variables to nonnegative integers. Difference equations “of hypergeometric type” are discussed in [10] and
are defined by the mixed forward and backwards difference equation

σ(t)∇∆y(t) + τ(t)∆y(t) + λy(t) = 0,

where σ and τ are first- or second-order polynomials.
A Taylor theorem for the difference operator is known [11, Theorem 1.113]:

f (t) =
∞∑︁
k=0

∆k f (0)(−1)k(−t)k
k! . (16)
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The generalized hypergeometric difference equation | 65

Let p : Z → C be so that for all t ∈ Z, 1+p(t) = ̸ 0. The discrete exponential function ep : Z → C is defined
to be the unique solution of the initial value problem

∆y(t) = p(t)y(t), y(0) = 1. (17)

In particular, if p ≡ α is constant and α ∈ C \ {−1}, then (16) shows

eα(t) =
∞∑︁
k=0

αk (−1)
k(−t)k
k! . (18)

The discrete trigonometric functions sinα and cosα are often defined for α ∈ C \ {1, −1} [11, Definition 3.25]
by

sinα(t) =
eip(t) − e−ip(t)

2i and cosα(t) =
eip(t) + e−ip(t)

2 .

Both functions are solutions of the difference equation

∆2y(t) + α2y(t) = 0. (19)

It is easy to see that the function cosα obeys the discrete Taylor series

cosα(t) =
∞∑︁
k=0

(−1)k(−t)2k
(2k)! , (20)

and that the function sinα obeys the discrete Taylor series

sinα(t) =
∞∑︁
k=0

(−1)k(−t)2k+1
(2k + 1)! . (21)

Discrete Bessel functions, Jn, were defined in [12] by

Jn(t) =
(−1)n(−t)n

2nn! 2F1

(︂
n − t
2 , n + 1 − t2 ; n + 1;−1

)︂
. (22)

It was shown that this function obeys the difference equation

t(t − 1)∆2y(t − 2) + t∆y(t − 1) + t(t − 1)y(t − 2) − n2y(t) = 0.

For further results on Jn, see also the recent paper [13] by Antonín Slavík.

2 Discrete hypergeometric series
We define the discrete generalized hypergeometric series for p, q ∈ N0 by

pFq(a1, . . . , ap; b1, . . . , bq; t, n, ξ ) =
∞∑︁
k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

ξ k(−1)nk(−t)nk
k! , (23)

where aj ∈ C for j = 1, 2, . . . , q and bj ∈ C \ (−N0) for j ∈ N. If n = 0 in (23), then pFq becomes a constant
value of pFq independent of t:

pFq(a1, . . . , ap; b1, . . . , bq; t, 0, ξ ) = pFq(a1, . . . , ap; b1, . . . , bq; (−1)nξ ).

If n = 1 in (23), then

pFq(a1, . . . , ap; b1, . . . , bq; t, 1, ξ ) = p+1Fq
(︀
a1, . . . , ap , −t; b1, . . . , bq; (−1)nξ

)︀
.

To get the relationship between pFq and pFq for n ∈ N \ {1}, we begin with the following lemma.
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66 | Martin Bohner and Tom Cuchta

Lemma 1. We have

(−t)nk = nnk
n−1∏︁
j=0

(︂
−t + j
n

)︂
k

for n ∈ N and k ∈ N0.

Proof. We compute

(−t)nk = (−t)(−t + 1) . . . (−t + n)(−t + n + 1) . . . (−t + nk − 1)

=

⎡⎣k−1∏︁
j=0

(−t + jn)

⎤⎦⎡⎣k−1∏︁
j=0

(−t + jn + 1)

⎤⎦ . . .
⎡⎣k−1∏︁
j=0

(︀
−t + jn + (n − 1)

)︀⎤⎦

= nnk

⎡⎣k−1∏︁
j=0

(−t + jn)

⎤⎦
nk

⎡⎣k−1∏︁
j=0

(−t + jn + 1)

⎤⎦
nk

. . .

⎡⎣k−1∏︁
j=0

(︀
−t + jn + (n − 1)

)︀⎤⎦
nk

= nnk
⎡⎣k−1∏︁
j=0

(︂
−t
n + j

)︂⎤⎦⎡⎣k−1∏︁
j=0

(︂
−t + 1
n + j

)︂⎤⎦ . . .
⎡⎣k−1∏︁
j=0

(︂
−t + (n − 1)

n + j
)︂⎤⎦

= nnk
(︂
−t
n

)︂
k
. . .
(︂
−t + (n − 1)

m

)︂
k

= nnk
n−1∏︁
j=0

(︂
−t + j
n

)︂
k
,

as was to be shown.

Now we may express pFq in terms of p+nFq for n ∈ N.

Proposition 2. Let y(t) = pFq(a1, . . . , ap; b1, . . . , bq; t, n, ξ ). Then,

y(t) = p+nFq

(︂
a1, . . . , ap ,

−t
n , −t + 1n , . . . , −t + n − 1n ; b1, . . . , bq; (−nξ )n

)︂
. (24)

We now consider the convergence of the series defining pFq.

Theorem 3. The series (23) converges for all t ∈ N. Now suppose t ∈ C \N, then (23) converges when:
i. p + n < q + 1,
ii. p + n = q + 1 and |ξ |nn < 1, or
iii. p + n = q + 1, |ξ |nn = 1, and

Re
(︃ q∑︁
k=1

bk −
p∑︁
k=1

ak −
1
n

n−1∑︁
k=0
−t + k

)︃
> 0.

Also, (23) diverges provided that
iv. p + n > q + 1, or
v. p + n = q + 1 and |ξ |nn > 1.

Proof. If t ∈ N, then (−t)nk eventually terminates by definition. Assume t ∈ C \ N. For j = 1, . . . , p, we see
(aj)k+1
(aj)k

= aj + k. Similarly, for j = 1, . . . , q, we see
(bj)k
(bj)k+1

= 1
bj + k

. Now we compute

(−t)n(k+1)
(−t)nk

= (−t)nk(−t + nk)n
(−t)nk

= (−t + nk)(−t + nk + 1) . . . (−t + nk + n − 1).
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The generalized hypergeometric difference equation | 67

Applying the ratio test, we take the limit as k →∞ of⃒⃒⃒⃒
ξ (a1 + k) . . . (ap + k)(nk − t) . . . (nk − 1 + n − t)(b1 + k) . . . (bq + k)k

⃒⃒⃒⃒
=
⃒⃒⃒⃒
ξ n

nkn+p + . . .
kq+1 + . . .

⃒⃒⃒⃒
.

The limit is zero when p + n < q + 1, yielding convergence of pFq in that case. The limit is infinity when
p+n > q+1, yielding divergence in that case. If p+n = q+1, then the limit is |ξ |nn and so when this quantity
is less than 1 we get convergence and when it is greater than one we get divergence. The case |ξ |nn = 1 can
be resolved by noting (24) and the well-known convergence properties of q+1Fq [2, p. 74].

We now provide an analogue of (2).

Theorem 4. We have

∆n
[︃
pFq

(︃ a1, . . . , ap
; t, 1, ξ

b1, . . . , bq

)︃]︃
=

p∏︁
j=1

(aj)n

q∏︁
ℓ=1

(bℓ)n

ξ npFq

(︃ a1 + n, . . . , ap + n
; t, 1, ξ

b1 + n, . . . , bq + n

)︃
.

Proof. We compute

∆n
[︃
pFq

(︃ a1, . . . , ap
; t, 1, ξ

b1, . . . , bq

)︃]︃
= ∆n

[︃ ∞∑︁
k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

ξ k(−1)k(−t)k
k!

]︃

=
∞∑︁
k=n

(a1)k . . . (ap)k
(b1)k . . . (bq)k

ξ k(−1)k−n(−t)k−n
(k − n)!

=
∞∑︁
k=0

(a1)k+n . . . (ap)k+n
(b1)k+n . . . (bq)k+n

ξ k+n(−1)k(−t)k
k!

=

p∏︁
j=1

(aj)n

q∏︁
ℓ=1

(bℓ)n

ξ npFq

(︃ a1 + n, . . . , ap + n
; t, 1, ξ

b1 + n, . . . , bq + n

)︃
,

which is exactly the desired relation.

Corollary 5. We have

∆
[︃
pFq

(︃ a1, . . . , ap
; t, 1, ξ

b1, . . . , bq

)︃]︃
= a1a2 . . . apb1b2 . . . bp

ξ pFq

(︃
a1 + 1, . . . , ap + 1

; t, 1, ξ
b1 + 1, . . . , bq + 1

)︃
.

Define the function shift operator ρ by (ρf )(t) = f (t − 1), and define the operator Θ by Θ = tρ∆, which is a
discrete analogue of θ.

Lemma 6. We have
Θ(−1)k(−t)k = k(−1)k(−t)k

for k ∈ N.

Proof. We calculate
Θ(−1)k(−t)k = tρ∆[(−1)k(−t)k]

= tρ[k(−1)k−1(−t)k−1]
= t[k(−1)k−1(−t + 1)k−1]
= k(−1)k(−t)k ,

which is exactly the desired relation.
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68 | Martin Bohner and Tom Cuchta

We now prove that pFq satisfies a difference equation that resembles a generalized form of (3).

Theorem 7. Define y(t) = pFq(a1, . . . , ap; b1, . . . , bq; t, n, ξ ). Then y satisfies the difference equation⎡⎣Θ q∏︁
j=1

(︂
1
nΘ + bj − 1

)︂
− nξ (−1)n(−t)nρn

p∏︁
i=1

(︂
1
nΘ + ai

)︂⎤⎦ y(t) = 0.

Proof. We first compute

nξ (−1)n(−t)nρn
p∏︁
i=1

(︂
1
nΘ + ai

)︂
y(t) = nξ (−1)n(−t)nρn

∞∑︁
k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

ξ k(−1)nk
k!

p∏︁
i=1

(︂
1
nΘ + ai

)︂
(−t)nk

= nξ (−1)n(−t)nρn
∞∑︁
k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

ξ k(−1)nk(−t)nk
k!

p∏︁
i=1

(k + ai)

= nξ (−1)n
∞∑︁
k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

ξ k(−1)nk(−t)nk+n
k!

p∏︁
i=1

(k + ai).

Now we compute

Θ
q∏︁
j=1

(︂
1
nΘ + bj − 1

)︂
y = Θ

∞∑︁
k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

ξ k(−1)nk
k!

q∏︁
j=1

(︂
1
nΘ + bj − 1

)︂
(−t)nk

= Θ
∞∑︁
k=0

(a1)k . . . (ap)k

q∏︁
j=1

(k + bj − 1)

(b1)k . . . (bq)k
ξ k(−1)nk(−t)nk

k!

= Θ
∞∑︁
k=0

(a1)k . . . (ap)k
(b1)k−1 . . . (bq)k−1

ξ k(−1)nk(−t)nk
k!

= ntρ
∞∑︁
k=1

(a1)k . . . (ap)k
(b1)k−1 . . . (bq)k−1

ξ k(−1)nk−1(−t)nk−1
(k − 1)!

= ntρ
∞∑︁
k=0

(a1)k+1 . . . (ap)k+1
(b1)k . . . (bq)k

ξ k+1(−1)nk+n−1(−t)nk+n−1
k!

= nξ (−t)ρ
∞∑︁
k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

ξ k(−1)nk+n(−t)nk+n−1
k!

p∏︁
i=1

(k + ai)

= nξ (−t)
∞∑︁
k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

ξ k(−1)nk+n(−t + 1)nk+n−1
k!

p∏︁
i=1

(k + ai)

= nξ (−1)n
∞∑︁
k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

ξ k(−1)nk(−t)nk+n
k!

p∏︁
i=1

(k + ai),

which is the same series as above, completing the proof.

If n = 1 in Theorem 7, then we obtain a direct analogue of (3).

Corollary 8. Let y(t) = pFq(a1, . . . , ap; b1, . . . , bq; t, 1, ξ ). Then y satisfies the difference equation⎡⎣Θ q∏︁
j=1

(︀
Θ + bj − 1

)︀
− ξtρ

p∏︁
i=1

(Θ + ai)

⎤⎦ y(t) = 0.

3 Contiguous relations
We define F, F(ai±), and F(bi±) in the same way as F,F(ai±), and F(bj±), but we use pFq in place of pFq. The
following with n = 1 is an analogue of [2, p. 82 (12)].
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Lemma 9. The following recurrence holds for j ∈ {1, 2, . . . , p}:(︂
1
nΘ + aj

)︂
F = ajF(aj+).

Proof. We calculate(︂
1
nΘ + aj

)︂
F =

∞∑︁
k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

ξ k(−1)nk
k!

(︂
1
nΘ + aj

)︂
(−t)nk = F(aj+),

as was to be shown.

The following with n = 1 is an analogue of [2, p. 82 (13)].

Lemma 10. The following recurrence holds for j ∈ {1, 2, . . . , q}:(︂
1
nΘ + bj − 1

)︂
F = (bj − 1)F(bj−).

Proof. We calculate(︂
1
nΘ + bj − 1

)︂
F =

∞∑︁
k=0

(a1)k . . . (ap)k
(b1)k . . . (bj)k−1 . . . (bq)k

ξ k(−1)nk(−t)nk
k! = (bj − 1)F(bj−),

as was to be shown.

The following with n = 1 is an analogue of [2, p. 82 (14)].

Lemma 11. The following formula holds for j ∈ {2, 3, . . . , p}:

(a1 − aj)F = a1F(a1+) − ajF(aj+).

Proof. Applying Lemma 9 with j = 1 and j ∈ {2, . . . , p} yields

(a1 − aj)F = (a1F(a1+) − ΘF) − (ajF(aj+) − ΘF) = a1F(a1+) − ajF(aj+),

as was to be shown.

The following with n = 1 is an analogue of [2, p. 82 (15)].

Lemma 12. The following formula holds for j ∈ {1, 2, . . . , q}:

(a1 − bj + 1)F = a1F(a1+) − (bj − 1)F(bj−).
Proof. Using Lemma 9 and Lemma 10, we get

(a1 − bj + 1)F = a1F(a1+) − (bj − 1)F(bj−),

as was to be shown.

The following with n = 1 is an analogue of [2, p. 83 (16)].

Lemma 13. If p < q and the bi are pairwise different, then we have

1
nΘF = ξ (−1)

n(−t)nρn
q∑︁
j=1

UjF(bj+).

Brought to you by | Missouri University of Science and Technology
Authenticated

Download Date | 4/26/19 2:55 PM



70 | Martin Bohner and Tom Cuchta

Proof. Using (6), we compute

1
nΘF =

∞∑︁
k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

ξ k(−1)nk
k!

[︂
1
nΘ(−t)nk

]︂
=

∞∑︁
k=1

(a1)k . . . (ap)k
(b1)k . . . (bq)k

ξ k(−1)nk
(k − 1)! (−t)nk

=
∞∑︁
k=0

(a1)k+1 . . . (ap)k+1
(b1)k+1 . . . (bq)k+1

ξ k+1(−1)nk+n
k! (−t)nk+n

=
∞∑︁
k=0

Sk
(a1)k . . . (ap)k
(b1)k . . . (bq)k

ξ k+1(−1)nk+n
k! (−t)nk+n .

(25)

If p < q, then it is known [2, p. 82] that Sn =
q∑︁
j=1

bjUj
bj + n

. Therefore,

1
nΘF =

∞∑︁
k=0

⎛⎝ q∑︁
j=1

bjUj
bj + k

⎞⎠ (a1)k . . . (ap)k
(b1)k . . . (bq)k

ξ k+1(−1)nk+n
k! (−t)nk+n .

Note that (−t)nk+n = (−t)n(−t + n)nk and

1
(bj)k

bj
bj + k

= 1
(bj + 1)k

, (26)

so we obtain after interchanging sums,

1
nΘF = ξ (−1)n(−t)nρn

q∑︁
j=1

UjF(bj+),

which is exactly the desired relation.

The following lemma with n = 1 is an analogue of [2, p. 83 (17)].

Lemma 14. If p < q and the bj are pairwise different, then

a1F = a1F(a1+) − ξ (−1)n(−t)nρn
q∑︁
j=1

UjF(bj+).

Proof. Lemma 9 with j = 1 says
1
nΘF + a1F = a1F(a1+).

Combining this with Lemma 13 yields

a1F = a1F(a1+) − ξ (−1)n(−t)nρn
q∑︁
j=1

UjF(bj+),

as was to be shown.

The following with n = 1 is an analogue of [2, p. 83 (18)].

Lemma 15. When p = q, we have

a1F + ξ (−1)n(−t)nρnF = a1F(a1+) − ξ (−1)n(−t)nρn
q∑︁
j=1

UjF(bj+).
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Proof. By (25), we get
1
nΘF =

∞∑︁
k=0

Sk
(a1)k . . . (ap)k
(b1)k . . . (bq)k

ξ k+1(−1)nk+n
k! (−t)nk+n .

If p = q, then it is known [2, p. 83] that Sn = 1 +
q∑︁
j=1

bjUj
bj + n

. Interchanging sums and taking into account (26),

we find
1
nΘF = ξ (−1)

n(−t)nρnF + ξ (−1)n(−t)nρn
q∑︁
j=1

UjF(bj+).

Lemma 9 with j = 1 says
1
nΘF = a1F(a1+) − a1F.

Combining the previous two formulas to eliminate 1
nΘF yields

a1F + ξ (−1)n(−t)nρnF = a1F(a1+) − ξ (−1)n(−t)nρn
q∑︁
j=1

UjF(bj+),

completing the proof.

The following lemma with n = 1 is an analogue of [2, p. 84 (20)].

Lemma 16. The following formula holds for p ≤ q and i ∈ {1, 2, . . . , p} :

F = F(ai−) + (−1)n(−t)nρn
q∑︁
j=1

Wj,iF(bj+).

Proof. We use Lemma 6 to compute

1
nΘF(ai−) =

∞∑︁
k=0

(a1)k . . . (ai − 1)k . . . (ap)k
(b1)k . . . (bq)k

ξ k(−1)nk
k!

[︂
1
nΘ(−t)nk

]︂
=

∞∑︁
k=1

ai − 1
ai + n

(a1)k . . . (ap)k
(b1)k . . . (bq)k

ξ k(−1)nk(−t)nk
(k − 1)!

=
∞∑︁
k=0

ai − 1
ai + k

(a1)k+1 . . . (ap)k+1
(b1)k+1 . . . (bq)k+1

ξ k+1(−1)nk+n(−t)nk+n
k!

= ξ (−1)n(−t)nρn
∞∑︁
k=0

ai − 1
ai + k

(a1)k+1 . . . (ap)k+1
(b1)k+1 . . . (bq)k+1

ξ k(−1)nk(−t)nk
k! .

Formula (6) shows
(a1)k . . . (ap)k
(b1)k . . . (bq)k

1
ak + n

= τn,k
(a1)k . . . (ap)k
(b1)k . . . (bq)k

.

Since p ≤ q, it is known [2, p. 84] that

τn,k =
q∑︁
j=1

bjWj,k
bj + n

.

Therefore, we have
1
nΘF(ai−) = (ai − 1)(−1)n(−t)nρn

q∑︁
j=1

Wj,iF(bj+).

By Lemma 9,
1
nΘF(ai−) = (ai − 1)(F − F(ai−)).

Therefore, using the preceding two formulas to eliminate 1
nΘF(ai−), we complete the proof.
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The following theorem presents the contiguous relations for pFq analogous to (7), (8), and (9).

Theorem 17. If p ≤ q, then there are a total of 2p + q contiguity relations for pFq. If p < q, then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a1 − ak)F = a1F(a1+) − akF(ak+), k = 2, 3, . . . , p
(a1 − bk + 1)F = a1F(a1+) − (bk − 1)F(bk−), k = 1, 2, . . . , q

F = F(ak−) + (−1)n(−t)nρn
q∑︁
j=1

Wj,kF(bj+), k = 1, 2, . . . , p

a1F = a1F(a1+) − ξ (−1)n(−t)nρn
q∑︁
j=1

UjF(bj+).

(27)

If p = q, then ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a1 − ak)F = a1F(a1+) − akF(ak+), k = 2, 3, . . . , p
(a1 − bk + 1)F = a1F(a1+) − (bk − 1)F(bk−), k = 1, 2, . . . , q

F = F(ak+) + t
q∑︁
j=1

Wj,kF(bj+), k = 1, 2, . . . , p

(a1 + t)F = a1F(a1+) − t
q∑︁
j=1

UjF(bj+).

(28)

If p = q + 1, then F becomes a constant independent of t whose contiguous relations are exactly the first two of
those in (9).

Proof. Considering (24), there are a total of 2(p+n)+ q+1 = 2p+2n+ q+1 contiguous relations of p+nFq that
may be relevant. The n relations involving the parameters −t + jn for j = 0, . . . , n − 1 are not relevant under
the definition of contiguous relations for pFq. The first two relations in (27) and (28) are those of Lemma 11
and Lemma 12. Lemma 14 and Lemma 16 complete the proof for p < q. Lemma 15 and Lemma 16 complete the
proof for p = q. If p = q + 1, then Theorem 3 guarantees that n = 0 and (2) shows that it is independent of t,
completing the proof.

4 Discrete special functions in terms of discrete hypergeometric
series

The following proposition is immediate from (18) and is an analogue of (11).

Proposition 18. For α ∈ C \ {−1}, we have

eα(t) = 0F0(; ; t, 1, α).

Now we show that 0F0 satisfies numerous difference equations, generalizing (17).

Theorem 19. The function y(t) = 0F0(; ; t, n, α) satisfies the difference equation

t∆y(t − 1) − nα(−1)n(−t)ny(t − n) = 0.

Proof. By Theorem 7, y satisfies
Θy(t) − nα(−1)n(−t)nρny(t) = 0.

Substituting the definition of Θ yields

tρ∆y(t) − nα(−1)n(−t)nρny(t) = 0,

and simplifying completes the proof.
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The following formula is an analogue of (12) and follows immediately from (21).

Proposition 20. For α ∈ C \ {−1, 1}, we have

sinα(t) = αtρ0F1
(︂
; 32 ; t, 2, −

α2
4

)︂
.

The following theorem is a modification and generalization of (19).

Theorem 21. The function y(t) = 0F1
(︂
; 32 ; t, n, −

α2
4

)︂
satisfies the difference equation

t(t − 1)
n ∆2y(t − 2) +

(︂
1
n + 1

2

)︂
t∆y(t − 1) + nα

2(−1)n
4 (−t)ny(t − n) = 0.

Proof. By Theorem 7, y satisfies

Θ
(︂
1
nΘ + 1

2

)︂
y(t) + nα

2(−1)n
4 (−t)nρny(t) = 0.

Substituting in the definition of Θ yields

tρ∆
[︂
1
n t∆y(t − 1) +

1
2

]︂
+ nα

2(−1)n
4 (−t)nρny(t) = 0,

hence
t(t − 1)
n ∆2y(t − 2) +

(︂
1
n + 1

2

)︂
t∆y(t − 1) + nα

2(−1)n
4 (−t)ny(t − n) = 0.

This completes the proof.

The following formula is an analogue of (13) and follows immediately from (20).

Proposition 22. For all α ∈ C \ {−1, 1}, we have

cosα(t) = 0F1
(︂
; 12 ; t, 2, −

α2
4

)︂
.

The following theorem generalizes (19), which holds for n = 2.

Theorem 23. The function y(t) = 0F1
(︂
; 12 ; t, n, −

α2
4

)︂
satisfies the difference equation

t(t − 1)
n ∆2y(t − 2) +

(︂
1
n −

1
2

)︂
t∆y(t − 1) + nα

2(−1)n
4 (−t)ny(t − n) = 0.

Proof. By Theorem 7, y satisfies

Θ
(︂
1
nΘ −

1
2

)︂
y(t) + nα

2

4 (−1)n(−t)nρny(t) = 0.

Substituting the definition of Θ yields

tρ∆
[︂
1
n t∆y(t − 1) −

1
2 y(t)

]︂
+ nα

2(−1)n
4 (−t)ny(t − n) = 0,

or equivalently,

t(t − 1)
n ∆2y(t − 2) +

(︂
1
n −

1
2

)︂
t∆y(t − 1) + nα

2(−1)n
4 (−t)ny(t − n) = 0,

as was to be shown.
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We now relate the discrete Bessel function to the discrete hypergeometric 0F1 by finding an analogue of (14).

Lemma 24. The discrete Bessel function satisfies

Jn(t) =
(−1)n(−t)n

2nn! 0F1
(︂
; n + 1; t − n, 2, −14

)︂
.

Proof. By direct computation, we get(︂
n − t
2

)︂
k

(︂
n + 1 − t

2

)︂
k
= (n − t)2k

22k
= (t − n)2k

22k
.

Therefore, (22) shows

Jn(t) = (−1)n(−t)n
2nn!

∞∑︁
k=0

(︀ n−t
2
)︀
k
(︀ n+1−t

2
)︀
k (−1)

k

(n + 1)kk!

= (−1)n(−t)n
2nn!

∞∑︁
k=0

(n − t)2k(−1)k
(n + 1)k22kk!

= (−1)n(−t)n
2nn!

∞∑︁
k=0

(t − n)2k(−14 )
k

(n + 1)kk!

= (−1)n(−t)n
2nn! 0F1

(︂
; n + 1; t − n, 2, −14

)︂
,

which is exactly the desired relation.

Now we prove an analogue of (15).

Theorem 25. The function y(t) = (−1)nJn(t)2nn!
(−t)n

satisfies the difference equation

t∆2y(t − 1) + (2n + 1)∆y(t) + ty(t − 1) = 0.

Proof. By Lemma 24 and Theorem 7, y solves[︂
Θ
(︂
1
2Θ + (n + 1) − 1

)︂
− 2
(︂
−14

)︂
(−1)2(−t)2ρ2

]︂
y(t) = 0,

which becomes
tρ
2 ∆(tρ∆y(t)) + ntρ∆y(t) +

t(t − 1)
2 ρ2y(t) = 0.

The product rule for ∆ shows

∆(tρ∆y(t)) = ∆(t∆y(t − 1)) = ∆y(t) + t∆2y(t − 1).

Therefore, y satisfies

t(t − 1)
2 ∆2y(t − 2) +

(︂
n + 1

2

)︂
t∆y(t − 1) + t(t − 1)2 y(t − 2) = 0.

Dividing by t, replacing t with t + 1, and multiplying by 2 complete the proof.
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