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OSCILLATION CRITERIA FOR THIRD-ORDER FUNCTIONAL
DIFFERENTIAL EQUATIONS WITH DAMPING

MARTIN BOHNER, SAID R. GRACE, IRENA JADLOVSKÁ

Abstract. This paper is a continuation of the recent study by Bohner et
al [9] on oscillation properties of nonlinear third order functional differential

equation under the assumption that the second order differential equation is
nonoscillatory. We consider both the delayed and advanced case of the stud-

ied equation. The presented results correct and extend earlier ones. Several

illustrative examples are included.

1. Introduction

In this article, we consider nonlinear third-order functional differential equations
of the form(

r2

(
r1(y′)α

)′)′(t) + p(t)
(
y′(t)

)α + q(t)f
(
y(g(t))

)
= 0, t ≥ t0, (1.1)

where t0 is fixed and α ≥ 1 is a quotient of odd positive integers. Throughout the
whole paper, we assume that the following hypotheses hold:

(i) r1, r2, q ∈ C(I,R+), where I = [t0,∞) and R+ = (0,∞);
(ii) p ∈ C(I, [0,∞));

(iii) g ∈ C1(I,R), g′(t) ≥ 0, g(t)→∞ as t→∞;
(iv) f ∈ C(R,R) such that xf(x) > 0 and f(x)/xβ ≥ k > 0 for x 6= 0, where k

is a constant and β ≤ α is the ratio of odd positive integers.
By a solution of equation (1.1) we mean a function y ∈ C([Ty,∞)), Ty ∈ I, which

has the property r1y
′, r2(r1(y′)α)′ ∈ C1([Ty,∞)) and satisfies (1.1) on [Ty,∞). Our

attention is restricted to those solutions y of (1.1) which exist on I and satisfy the
condition

sup{|y(t)| : t1 ≤ t <∞} > 0 for all t1 ≥ t0.
We make the standing hypothesis that (1.1) admits such a solution. A solution of
(1.1) is called oscillatory if it has arbitrarily large zeros on [Ty,∞) and otherwise
it is called nonoscillatory. Equation (1.1) is said to be oscillatory if all its solutions
are oscillatory.

The study on asymptotic behavior of third-order differential equations was ini-
tiated in a pioneering paper of Birkhoff [7] which appeared in the early twentieth
century. Since then, many authors contributed to the subject studying different
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classes of equations and applying various techniques. A summary of the most sig-
nificant efforts on oscillation theory of third-order differential equations as well as
an extensive bibliography can be found in the survey paper by Barrett [6] and
monographs by Greguš [10], Swanson [13] and the recent one of Padhi and Pati
[12].

The aim of this note is to complement the very recent study [9] on asymptotic
and oscillatory properties of (1.1). The method and arguments used in the present
paper are different than those used in [9]. We rely on the assumption that the
related second-order ordinary differential equation

(r2v
′)′(t) +

p(t)
r1(t)

v(t) = 0 (1.2)

is nonoscillatory. We consider both the delay and advanced case of (1.1). While
oscillation of all solutions is attained in the delay case, we state in the advanced
case some new sufficient conditions for all solutions to either oscillate or converge
to zero.

It is interesting to note how the asymptotic behavior of (1.1) changes when
the middle term is inserted. As is customary, we choose a third-order Euler-type
differential equation for demonstration.

Example 1.1. The equation

y′′′(t) +
1

4t2
y′(t) +

1
4t3

y(t) = 0

admits oscillatory solutions and the nonoscillatory solution, where the roots of the
characteristic equation are λ1,2 = 1.5490 ± 0.3925i and λ3 = −0.097912. But the
corresponding equation without damping

y′′′(t) +
1

4t3
y(t) = 0

has only nonoscillatory solutions where the characteristic roots are λ1 = 1.2696,
λ2 = 1.8376, λ3 = −0.10716. Clearly, the middle term generates oscillation.

Because of the middle term p(y′)α, the problem of convergence to zero as t →
∞ and/or nonexistence of a nonoscillatory solution y with yy′ < 0 seems to be
especially crucial and challenging. We recall the related existing results.

Lemma 1.2 (See [4, Lemma 2.4]). Assume that α = 1. Let ρ2 be a sufficiently
smooth positive function and define

φ := (r2ρ
′
2)′r1 + ρ2p.

Suppose that there exists t1 ∈ I such that

ρ′2 ≥ 0, φ ≥ 0, φ′ ≤ 0 on [t1,∞),∫ ∞
t1

(kρ2(s)q(s)− φ′(s)) ds =∞,

where kρ2q − φ′ ≥ 0 on [t1,∞) and not identically zero on any subinterval of
[t1,∞). If (1.2) is nonoscillatory and y is a solution of (1.1) with yL1y < 0, then
limt→∞ y(t) = 0.

However, since the proof of Lemma 1.2 is based on integration by parts, it cannot
be generalized for α 6= 1. The proposed method will take this problem into account.
On the other hand, in [9], the authors offered a partial result for (1.1) in the sense
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that either (1.1) is oscillatory or r2(r1(y′)α)′ is oscillatory (see [9, Theorem 3.1]).
Oscillation of (1.1) has been left as an interesting open problem. So far, very little
is known when g(t) > t. Some attempts in unifying results for both delay and
advanced case have been made in [3]. We also extend these results by employing
Riccati type transformation and comparison with oscillatory first-order advanced
differential equations.

2. Preliminary lemmas and definitions

As in [9], we define

L0y = y, L1y = r1(y′)α, L2y = r2(L1y)′, L3y = (L2y)′

on I. With this notation, (1.1) can be rewritten as

L3y(t) +
p(t)
r1(t)

L1y(t) + q(t)f(y(g(t))) = 0. (2.1)

Following [9], we define the functions:

R1(t, t1) =
∫ t

t1

ds

r
1/α
1 (s)

, R2(t, t1) =
∫ t

t1

ds
r2(s)

,

R∗(t, t1) =
∫ t

t1

R
1/α
2 (s, t1)

r
1/α
1 (s)

ds,

R(g(t), t1) :=


R∗(g(t),t1)
R∗(t,t1) if g(t) < t,

R1(g(t),t1)
R1(t,t1) if g(t) ≥ t,

for t0 ≤ t1 ≤ t < ∞. Note that the above definition of R(g(t), t1) will allow us to
consider delayed and advanced type equations simultaneously in the proof of our
main results.

Throughout and without further mentioning, it will be assumed that

Ri(t, t0)→∞ as t→∞ for i = 1, 2.

All the functional inequalities considered in the paper are assumed to hold eventu-
ally, that is, they are satisfied for all t large enough.

Now, we provide several auxiliary results that are of importance in establishing
our main results.

Lemma 2.1. Let v be a solution of (1.2) which is positive on [t1,∞). Then

v′ > 0 (2.2)

and ( v

R2(·, t1)

)′
≤ 0 (2.3)

on [t1,∞).

Proof. Let v be a solution of (1.2) with v > 0 on [t1,∞). Then (r2v
′)′ < 0 on

[t1,∞) so that r2v
′ is decreasing on [t1,∞). First assume v′(t2) < 0 for some

t2 ≥ t1. Then r2(t)v′(t) ≤ r2(t2)v′(t2) =: c < 0 for all t ≥ t2 and thus

v(t) = v(t2) +
∫ t

t2

v′(s) ds ≤ v(t2) + c

∫ t

t2

ds
r2(s)
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= v(t2)− c
∫ t2

t1

ds
r2(s)

+ cR2(t, t1)→ −∞ as t→∞,

a contradiction. Thus (2.2) holds. Now let t ≥ t1. Then

v(t) ≥ v(t)− v(t1) =
∫ t

t1

1
r2(s)

r2(s)v′(s) ds ≥ r2(t)v′(t)R2(t, t1)

and we see that ( v

R2(·, t1)

)′
(t) =

r2(t)v′(t)R2(t, t1)− v(t)
r2(t)R2

2(t, t1)
≤ 0.

Hence v/R2(·, t1) is nonincreasing on [t1,∞). �

Lemma 2.2 (See [5, Theorem 1.1]). Assume that v is a positive solution of (1.2)
on I. Then(

r2(r1(y′)α)′
)′

(t) + p(t)(y′(t))α =
1
v(t)

(
r2v

2(
r1

v
(y′)α)′

)′
(t), (2.4)

for t ∈ I.

If (1.2) is nonoscillatory, the classical work of Hartmann [11] has termed a non-
trivial solution v of (1.2) a principal solution (unique up to a constant multiple)
such that ∫ ∞ ds

r2(s)v2(s)
=∞.

Since every eventually positive solution of (1.2) is increasing, the principal solution
of (1.2) satisfies ∫ ∞

t0

ds
r2(s)v2(s)

=∞,
∫ ∞
t0

( v(s)
r1(s)

)1/α

ds =∞. (2.5)

In the proofs of our theorems, an equivalent binomial form of (1.1) will be used
repeatedly. This will also allow us to take correctly into account the possible case
of L2y being oscillatory that was missing in the previous results.

Lemma 2.3 (See [9, Lemma 2.2]). Suppose that (1.2) is nonoscillatory. If y is a
nonoscillatory solution of (1.1) on [t1,∞), t1 ≥ t0, then there exists t2 ≥ t1 such
that

yL1y > 0 (2.6)
or

yL1y < 0 (2.7)
on [t2,∞).

Lemma 2.4. If y is a nonoscillatory solution of (1.1) with y(t)L1y(t) > 0 for
t ≥ t1, t1 ∈ I. Then

yL2y ≥ 0, yL3y < 0
on [t1,∞).

Proof. Let y be a nonoscillatory solution of (1.1), say y(t) > 0, y(g(t)) > 0, and
L1y(t) > 0 for all t ≥ t1. By (2.1), we see that L3y(t) < 0 for all t ≥ t1 so L2y is
strictly decreasing on [t1,∞). Now assume there exists t2 ≥ t1 with L2y(t2) < 0.
Then for t ≥ t2,

L1y(t) = L1y(t2) +
∫ t

t2

(L1y)′(s) ds = L1y(t2) +
∫ t

t2

L2y(s)
r2(s)

ds
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≤ L1y(t2) + L2y(t2)R2(t, t2)→ −∞ as t→∞,
a contradiction. �

Lemma 2.5 (See [9, Lemma 2.3]). Let y be a nonoscillatory solution of (1.1) with
y(t)L1y(t) > 0 for t ≥ t1, t1 ∈ I. Then

L1y(t) ≥ R2(t, t1)L2y(t), t ≥ t1, (2.8)

y(t) ≥ R∗(t, t1)L1/α
2 y(t), t ≥ t1. (2.9)

Lemma 2.6. Let y be a solution of (1.1) with y(t)L1y(t) > 0 for t ≥ t1, t1 ∈ I. If∫ ∞
t1

1
r2(u)

∫ ∞
u

(
p(s)
r1(s)

+ kq(s)Rβ1 (g(s), t1)) dsdu =∞, (2.10)

then limt→∞ L1y(t) =∞.

Proof. Let y be a nonoscillatory solution of (1.1), say y(t) > 0, y(g(t)) > 0, and
L1y(t) > 0 for t ≥ t1. Then by Lemma 2.4, L2y ≥ 0 and L1y is increasing, so
L1y(t) ≥ L1y(t1) =: ` > 0. Obviously,

y(g(t)) ≥ `1/αR1(g(t), t1) for t ≥ t1.
Setting both estimates into (1.1) and integrating from t to ∞, one gets

L2y(t) ≥ `
∫ ∞
t

p(s)
r1(s)

ds+ k`β/α
∫ ∞
t

q(s)Rβ1 (g(s), t1) ds.

By integrating the last inequality from t1 to ∞, we obtain (2.10). �

Lemma 2.7. Assume (2.10) holds. Let y be a solution of (1.1) with y(t)L1y(t) > 0
for t ≥ t1, t1 ∈ I. Then there exists t2 > t1 such that

y(g(t)) ≥ R(g(t), t1)y(t), for all t ≥ t2. (2.11)

Proof. Let y be a nonoscillatory solution of (1.1), say y(t) > 0, y(g(t)) > 0, and
L1y(t) > 0 for t ≥ t1.

We first prove (2.11) if g(t) ≤ t holds for all t ∈ I. From (2.8), we have( L1y

R2(·, t1)

)′
(t) =

L2y(t)R2(t, t1)− L1y(t)
r2(t)R2

2(t, t1)
≤ 0.

Thus L1y
R2(·,t1) is nonincreasing on [t1,∞) and moreover, this fact yields

y(t) = y(t1) +
∫ t

t1

R
1/α
2 (u, t1)L1/α

1 y(u)

r
1/α
1 (u)R1/α

2 (u, t1)
du

≥ L
1/α
1 y(t)

R
1/α
2 (t, t1)

∫ t

t1

R
1/α
2 (u, t1)

r
1/α
1 (u)

du =
L

1/α
1 y(t)R∗(t, t1)

R
1/α
2 (t, t1)

(2.12)

for t ≥ t1. Consequently,( y

R∗(·, t1)

)′
(t) =

L
1/α
1 y(t)R∗(t, t1)− y(t)R1/α

2 (t, t1)

r
1/α
1 (t)(R∗(t, t1))2

≤ 0 for all t ≥ t1,

which implies that y
R∗(·,t1) is nonincreasing on [t1,∞). Thus, if g(t) ≥ t1, then

y(g(t)) ≥ R∗(g(t), t1)
R∗(t, t1)

y(t) = R(g(t), t1)y(t).
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Now, we show that (2.11) holds in case of g(t) ≥ t for all t ∈ I. Since L1/α
1 y is

increasing on [t1,∞), it is easy to see that, where t3 > t2,

y(t) = y(t3) +
∫ t

t3

L
1/α
1 y(s)

r
1/α
1 (s)

ds

≤ y(t3) + L
1/α
1 y(t)R1(t, t3)

= y(t3)− L1/α
1 y(t)R1(t3, t1) + L

1/α
1 y(t)R1(t, t1),

for all t ≥ t3. On the other hand, it follows from (2.10) that

lim
t→∞

L
1/α
1 y(t) =∞.

Therefore, there exists t2 > t3 such that

y(t) ≤ L1/α
1 y(t)R1(t, t1) (2.13)

on [t2,∞). Now, one can see that( y

R1(·, t1)

)′
(t) =

L
1/α
1 y(t)R1(t, t1)− y(t)

r
1/α
1 (t)R2

1(t, t1)
≥ 0 for all t ≥ t2,

so we conclude that y
R1(·,t1) is nondecreasing on [t2,∞). Hence, if g(t) ≥ t2, then

y(g(t)) ≥ R1(g(t), t1)
R1(t, t1)

y(t) = R(g(t), t1)y(t).

The proof is complete. �

Lemma 2.8. Let y be a solution of (1.1) with y(t)L1y(t) > 0 for t ≥ t1, t1 ∈ I.
Assume that ∫ ∞

t1

(
p(s)
r1(s)

R2(s, t1) + kq(s)(R∗(g(s), t1))β) ds =∞. (2.14)

Then limt→∞ y(t)/R∗(t, t1) = 0.

Proof. Let y be a nonoscillatory solution of (1.1), say y(t) > 0, y(g(t)) > 0, and
L1y(t) > 0 for t ≥ t1. By l’Hospital’s rule, it is easy to see that

lim
t→∞

y(t)
R∗(t, t1)

= lim
t→∞

L2y(t).

Assume to the contrary that L2y(t) ≥ ` > 0 for all t ≥ t1. Integrating (1.1) from
t1 to t and using (2.8) and (2.9), we find

L2y(t1) ≥
∫ t

t1

p(s)
r1(s)

L1y(s) ds+
∫ t

t1

q(s)f(y(g(s))) ds

≥ `
∫ t

t1

p(s)
r1(s)

R2(s, t1) ds+ k`β/α
∫ t

t1

q(s)(R∗(g(s), t1))β ds.

Letting t→∞, one gets a contradiction with (2.14) and so ` = 0. �



EJDE-2016/215 OSCILLATION FOR THIRD-ORDER DIFFERENTIAL EQUATIONS 7

3. Main results

Now, we are prepared to present the main results of this paper.

Lemma 3.1. Let (1.2) be nonoscillatory. If∫ ∞
t1

R
1/α
2 (x, t1)

r
1/α
1 (x)

(∫ ∞
x

∫∞
u
q(s) ds

r2(u)R2(u, t1)
du
)1/α

dx =∞, (3.1)

then any solution y of (1.1) with yL1y < 0 converges to zero as t→∞.

Proof. Assume to the contrary that y is a nonoscillatory solution of (1.1), say
y(t) > 0, y(g(t)) > 0, and L1y(t) < 0 for t ≥ t1, t1 ∈ I such that

lim
t→∞

y(t) = ` > 0.

Using assumption (iv) on f and (2.4) in (1.1), we have(
r2v

2(
r1

v
(y′)α)′

)′
(t) + kq(t)v(t)yβ(g(t)) ≤ 0. (3.2)

Then by [5, Lemma 1.6], y satisfies

y′ < 0,
(r1

v
(y′)α

)′
> 0,

(
r2v

2
(r1

v
(y′)α

)′)′
< 0 (3.3)

on [t1,∞). Integrating (3.2) from t to ∞ and using y(g(t)) ≥ `, we obtain

(
r1

v
(y′)α)′(t) ≥ k`β

r2(t)v2(t)

∫ ∞
t

q(s)v(s) ds. (3.4)

Taking (2.2) into account, (3.4) becomes(r1

v
(y′)α

)′(t) ≥ `1
r2(t)v(t)

∫ ∞
t

q(s) ds,

where `1 = k`β > 0. Integrating the last inequality from t to ∞ and using (2.3)
from Lemma 2.1, we arrive at

−(y′(t))α ≥ `1
v(t)
r1(t)

∫ ∞
t

∫∞
u
q(s) ds

r2(u)v(u)
du

≥ `1
R2(t, t1)
r1(t)

∫ ∞
t

∫∞
u
q(s) ds

r2(u)R2(u, t1)
du.

Finally, by integrating the above inequality from t1 to t, we have

y(t1) ≥ `1/α1

∫ t

t1

R
1/α
2 (x, t1)

r
1/α
1 (x)

(∫ ∞
x

∫∞
u
q(s) ds

r2(u)R2(u, t1)
du
)1/α

dx.

Letting t → ∞, we obtain a contradiction with (3.1). Hence ` = 0. The proof is
complete. �

Theorem 3.2. Suppose that (1.2) is nonoscillatory and that (2.10) and (2.14)
hold. If there exists a constant c > 0 and a function ρ ∈ C1(I,R+) such that

lim sup
t→∞

∫ t

t1

(
kρ(s)q(s)Rβ(g(s), t1)− A2(s)

4B(s)

)
ds =∞, (3.5)
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where, for t ≥ t1,

A(t) =
ρ′(t)
ρ(t)

− p(t)
r1(t)

R2(t, t1),

B(t) = βcβ−αρ−1(t)(R∗(t, t1))β−1
(R2(t, t1)

r1(t)
)1/α

,

(3.6)

then any solution y of (1.1) is either oscillatory or converges to zero as t→∞.

Proof. Let y be a nonoscillatory solution of (1.1) on [t1,∞), t ≥ t1. Without loss
of generality, we may assume that y(t) > 0 and y(g(t)) > 0 for t ≥ t1, t1 ≥ t0.
From Lemma 2.3, it follows that L1y < 0 or L1y > 0 on [t1,∞).

First, we assume L1y > 0. By Lemma 2.4, L2y(t) ≥ 0 for t ≥ t1. Setting the
estimate (2.11) into (2.1) and using the assumption (iv) on f , we obtain

L3y(t) +
p(t)
r1(t)

L1y(t) + kRβ(g(t), t1)q(t)yβ(t) ≤ 0 (3.7)

on [t2,∞) for some t2 > t1. We define

ω = ρ
L2y

yβ
> 0 on [t2,∞). (3.8)

Differentiating the function ω and using (3.7) and (2.8) in the resulting equation,
we have

ω′(t) ≤ −kρ(t)q(t)Rβ(g(t), t1) +A(t)ω(t)− β y
′(t)
y(t)

ω. (3.9)

From the definition of L1y and (2.8), we obtain

y′(t) =
(L1y(t)
r1(t)

)1/α

≥
(R2(t, t1)

r1(t)

)1/α

L
1/α
2 y(t).

Thus

y′(t)
y(t)

≥
(R2(t, t1)
ρ(t)r1(t)

)1/α ρ1/α(t)L1/α
2 y(t)

yβ/α(t)
yβ/α−1(t)

=
(R2(t, t1)
ρ(t)r1(t)

)1/α

w1/α(t)yβ/α−1(t),

and the inequality (3.9) becomes

ω′(t) ≤ −kρ(t)q(t)Rβ(g(t), t1) +A(t)ω(t)

− βω1+1/α(t)yβ/α−1(t)
(R2(t, t1)
ρ(t)r1(t)

)1/α

.
(3.10)

By Lemma 2.8, it follows from (2.14) that

0 <
y(t)

R∗(t, t1)
≤ L2y(t1) =: c for all t ≥ t1.

Hence
yβ/α−1(t) ≥ cβ/α−1(R∗(t, t1))β/α−1. (3.11)

From the definition of ω and (2.9), we obtain

ω(t) = ρ(t)
L2y(t)
yβ(t)

≤ ρ(t)(R∗(t, t1))−αyα−β(t), t ≥ t2.
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Using (3.11) in the above inequality, we have

ω(t) ≤ cα−βρ(t)(R∗(t, t1))−β ,

and since α ≥ 1,

w1/α−1(t) ≥ c(α−β)(1/α−1)ρ1/α−1(t)(R∗(t, t1))−β(1/α−1). (3.12)

Using (3.11) and (3.12) in (3.10), we have

ω′(t) ≤ −kρ(t)q(t)Rβ(g(t), t1) +A(t)ω(t)

− βcβ−αρ−1(t)(R∗(t, t2))β−1
(R2(t, t1)

r1(t)

)1/α

w2(t)

= −kρ(t)q(t)Rβ(g(t), t1) +A(t)ω(t)−B(t)ω2(t)

= −kρ(t)q(t)Rβ(g(t), t1)−
(√

B(t)ω(t)− A(t)
2
√
B(t)

)2

+
A2(t)
4B(t)

≤ −kρ(t)q(t)Rβ(g(t), t1) +
A2(t)
4B(t)

(3.13)

for all t ≥ t2, where A and B are as in (3.6). Integrating the inequality (3.13) from
t2 to t, we find∫ t

t2

(
kρ(s)q(s)Rβ(g(s), t1)− A2(s)

4B(s)

)
ds ≤ ω(t2)− ω(t) ≤ ω(t2),

which contradicts condition (3.5).
Assume L1y < 0. By Lemma 3.1, condition (4.1) ensures that any solution of

(1.1) tends to zero as t→∞. The proof is complete. �

For t ≥ t1 ≥ t0, we let

P (t) =
1

r2(t)

∫ ∞
t

p(s)
r1(s)

ds, Q1(t) =
(R∗(g(t), t1))β

r2(t)Rβ/α2 (g(t), t1)

∫ ∞
t

kq(s) ds,

µ(t) = exp
(
−
∫ t

t1

P (s) ds
)
.

Now, we present the following comparison result for the advanced case, which com-
plements [9, Theorem 3.5].

Theorem 3.3. Assume that g(t) ≥ t holds for all t ∈ I. Let all the hypotheses
of Theorem 3.2 hold, except (3.5). If every solution of the first-order advanced
equation

z′(t)− (µ(g(t)))1−β/αQ1(t)zβ/α(g(t)) = 0 (3.14)

is oscillatory, then any solution y of (1.1) is either oscillatory or converges to zero
as t→∞.

Proof. Let y be a nonoscillatory solution of (1.1) on [t1,∞), t ≥ t1. Without loss
of generality, we may assume that y(t) > 0 and y(g(t)) > 0 for t ≥ t1 for some
t1 ≥ t0. From Lemma 2.3, it follows that L1y(t) < 0 or L1y(t) > 0 for t ≥ t1.
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First, we assume L1y > 0. Then by Lemma 2.4, L2y > 0 on [t1,∞). Integrating
(1.1) from t to ∞ and using the assumption (iv), we obtain

L2y(t) ≥
∫ ∞
t

p(s)
r1(s)

L1y(s) ds+
∫ ∞
t

kq(s)yβ(g(s)) ds

≥ L1y(t)
∫ ∞
t

p(s)
r1(s)

ds+ yβ(g(t))
∫ ∞
t

kq(s) ds
(3.15)

for t ≥ t1. If g(t) ≥ t1, we have from (2.12) that

y(g(t)) ≥ R∗(g(t), t1)

R
1/α
2 (g(t), t1)

L
1/α
1 y(g(t)). (3.16)

Setting (3.16) into (3.15), we obtain

L2y(t) ≥ L1y(t)
∫ ∞
t

p(s)
r1(s)

ds+ L
β/α
1 y(g(t))

(R∗(g(t), t1))β

R
β/α
2 (g(t), t1)

∫ ∞
t

kq(s) ds,

which can be written as

w′(t)− P (t)w(t)−Q1(t)w(g(t)) ≥ 0,

where w(t) = r2(t)L1y(t). Setting z(t) = µ(t)w(t) > 0 in the above inequality and
noting that µ(t) ≥ µ(g(t)), we obtain

z′(t)− (µ(g(t)))1−β/αQ1(t)zβ/α(g(t)) ≥ 0.

By [2, Lemma 2.2.10], the corresponding differential equation (3.14) also possesses
an eventually positive solution, which is a contradiction.

Assume L1y < 0. By Lemma 3.1, condition (4.1) ensures that any solution tends
to zero as t→∞. The proof is complete. �

The following corollary is immediate.

Corollary 3.4. Assume that g(t) ≥ t and α = β. Let all the hypotheses of Theorem
3.2 hold, except (3.5). If

lim inf
t→∞

∫ g(t)

t

Q1(s) ds >
1
e
, (3.17)

then any solution y of (1.1) is either oscillatory or converges to zero as t→∞.

4. Oscillation of (1.1)

For delay equations, we are able to ensure nonexistence of possible nonoscillatory
solutions y with yL1y < 0.

Theorem 4.1. Assume that g(t) < t for all t ∈ I. Let the hypotheses of Theorem
3.2 hold. If, moreover, there exists c∗ > 0 such that

lim sup
t→∞

∫ t

g(t)

R
1/α
2 (s, t1)

r
1/α
1 (s)

(∫ t

s

∫ t
u
q(x) dx

r2(u)R2(u, t1)
du
)1/α

ds = c∗, (4.1)

then (1.1) is oscillatory.
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Proof. Assume to the contrary that y is a nonoscillatory solution of (1.1), say
y(t) > 0, y(g(t)) > 0 and L1y(t) < 0 for t ≥ t1, t1 ∈ I with limt→∞ y(t) = 0. As
in the proof of Lemma 3.1, we obtain that y is a solution of the inequality (3.2)
satisfying (3.3) on [t1,∞). Since α ≥ β, there exists t2 ≥ t1 such that

yβ−α(g(t)) ≥ cβ−α (4.2)

for all t ≥ t2 and every c > 0. Using (4.2) in (3.2), we obtain(
r2v

2(
r1

v
(y′)α)′

)′
(t) + kcβ−αq(t)v(t)yα(g(t)) ≤ 0. (4.3)

Integrating (4.3) twice from s to t, t > s, one obtains

− y′(s) ≥ kcβ−α
( v(s)
r1(s)

)1/α(∫ t

s

∫ t
u
q(x)v(x)yβ(g(x)) dx

r2(u)v2(u)
du
)1/α

. (4.4)

Using the property (2.3) of v, (4.4) becomes

−y′(s) ≥ kcβ−α
(R2(s, t1)

r1(s)

)1/α(∫ t

s

∫ t
u
q(x)yα(g(x)) dx
r2(u)R2(u, t1)

du
)1/α

.

Integrating the above inequality from g(t) to t, we obtain

y(g(t)) ≥ kcβ−αy(g(t))
∫ t

g(t)

R
1/α
2 (s, t1)

r
1/α
1 (s)

(∫ t

s

∫ t
u
q(x) dx

r2(u)R2(u, t1)
du
)1/α

ds,

which is a contradiction with (4.1). The proof is complete. �

We propose one condition in which the function p(t) is directly included.

Theorem 4.2. Assume that g(t) < t for all t ∈ I. Let the hypotheses of Theorem
3.2 hold. If, moreover, there exists a constant c∗ > 0 such that

lim sup
t→∞

{∫ t

g(t)

1

r
1/α
1 (s)

(∫ t

s

1
r2(v)

∫ t

v

Q(u) dudv
)1/α ds

}
> 1, (4.5)

where

Q(t) = kcβ−α∗ q(t)− p(t)R2(t, t1)
r1(t)(R∗(t, g(t)))α

> 0 for all t ≥ t1,

then (1.1) is oscillatory.

Proof. Assume to the contrary that y is a nonoscillatory solution of (1.1), say
y(t) > 0, y(g(t)) > 0 and L1y(t) < 0 for t ≥ t1, t1 ∈ I with limt→∞ y(t) = 0. We
consider L2y(t). The case L2y(t) ≤ 0 cannot holds for all large t, say t ≥ t2 ≥ t1,
since by integrating this inequality, we see

y′(t) =
(L1y(t2)

r1(t)

)1/α

≤
(L1y(t2)

r1(t)

)1/α

for all t ≥ t2, (4.6)

which contradicts the positivity of y(t). Therefore, either L2y(t) > 0 or L2y(t)
changes sign on [t2,∞). We claim that Q(t) > 0 implies L2y(t) > 0 on [t2,∞).
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Similarly to the proof of Lemma 3.1, we obtain that y is a positive solution of (3.2)
satisfying (3.3) on [t1,∞). Now, for x ≥ u ≥ t1, we obtain

y(u)− y(x) = −
∫ x

u

( v(s)
r1(s)

)1/α(r1(s)
v(s)

(y′(s))α
)1/α

ds

≥ −y′(x)
(r1(x)
v(x)

)1/α
∫ x

u

( v(s)
r1(s)

)1/α

ds

≥ − L
1/α
1 y(x)

R
1/α
2 (x, t1)

∫ x

u

(R2(s, t1)
r1(s)

)1/α

ds

= −L
1/α
1 y(x)R∗(x, u)

R
1/α
2 (x, t1)

.

(4.7)

Using (4.7) with u = g(t), x = t and −L1y(t) > 0, we obtain

y(g(t)) ≥ R∗(t, g(t))

R
1/α
2 (t, t1)

(−L1/α
1 y(t)), for t ≥ t1,

e.g.,

L1y(t) ≥ − R2(t, t1)
(R∗(t, g(t)))α

yα(g(t)).

Using this inequality in (2.1), we obtain

− L3y(t) ≥
(
kq(t)yβ−α(g(t))− p(t)R2(t, t1)

r1(t)(R∗(t, g(t)))α
)
yα(g(t)). (4.8)

In view of (3.1) and the fact that α ≥ β, there exists t2 ≥ t1 such that

yβ−α(g(t)) ≥ cβ−α (4.9)

for every c > 0 and for all t ≥ t2. Thus we have

−L3y(t) ≥
(
kcβ−αq(t)− p(t)R2(t, t1)

r1(t)(R∗(t, g(t)))α
)
yα(g(t))

= Q(t)yα(g(t)) > 0.
(4.10)

Hence L3y < 0 and similarly as in the proof of Lemma 2.4, we see that L2y ≥ 0 on
[t2,∞). Integrating (4.10) from s to t, t > s, we obtain

L2y(s) ≥
∫ t

s

Q(u)yα(g(u)) du.

Integrating again from s to t, we obtain

−L1/α
1 y(s) ≥

(∫ t

s

1
r2(v)

∫ t

v

Q(u)yα(g(u)) dudv
)1/α

.

Finally, integrating the above inequality from g(t) to t, we arrive at

y(g(t)) ≥ y(g(t))
∫ t

g(t)

1

r
1/α
1 (s)

(∫ t

s

1
r2(v)

∫ t

v

Q(u) dudv
)1/α

ds,

which in view of (4.5) results in contradiction. The proof is complete. �

The following corollary is immediate.

Corollary 4.3. Assume that g(t) < t for all t ∈ I. Let the hypotheses of Theorem
3.2 hold. If, moreover, there exists a constant c∗ > 0 such that (4.1) or (4.5) holds,
then (1.1) is oscillatory.



EJDE-2016/215 OSCILLATION FOR THIRD-ORDER DIFFERENTIAL EQUATIONS 13

Remark 4.4. Estimate (4.5) slightly differs from the one used in [9] but it correctly
takes into account a class of nonoscillatory solutions with yL2y oscillatory.

0 20 40 60 80 100 120
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Figure 1. y(t) = 2
t −

sin(t)
t2
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Figure 2. y′(t) = 2 sin(t)
t3 − 2

t2 −
cos(t)
t2

5. Examples

We give a couple of examples to illustrate our main results.

Example 5.1. Consider the equation of Euler type

y′′′(t) +
a

t2
y′(t) +

b

t3
y(λt) = 0, t ≥ 1, λ > 0, a ≤ 1/4, (5.1)

where a, b are some positive constants. Setting k = 1 and ρ(t) = t2, we can conclude
from Theorem 3.2 that any solution y of (5.1) is oscillatory or converges to zero as
t→∞ for

b >
(2− a)2

4λ2
for λ ∈ (0, 1); b >

(2− a)2

4λ
for λ ≥ 1.
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Figure 3. y′′(t) = − 6 sin(t)
t4 + 4

t3 + 4 cos(t)
t3 + sin(t)

t2

If we take λ ∈ (0, 1) and, moreover,

b(λ2(1− lnλ)− lnλ− 1) > 4

or
b(1− λ2)− a

(1− λ2)

(
λ− lnλ

2
− λ2

4
− 3

4

)
> 1,

then it follows from Corollary 4.3 that (5.1) is oscillatory. We note that none of
the results in [1, 3, 4, 8, 9, 14] can guarantee oscillation of (1.1).

Example 5.2. We consider the equation(
t1/4(y′(t))1/3

)′′
+

3
16t7/4

(y′(t))1/3 +
a

t25/12
y1/3(λt) = 0, (5.2)

for t ≥ 1, λ > 0. In [5], the authors deduced that (5.2) is oscillatory for λ = 0.4
provided that a > 16.1197. The same conclusion follows from Corollary 4.3 for
a > 8.1263, which is a significantly better result. We also stress that in contrast to
[5], we do not require any information about the auxiliary solution v of (1.2). On
the other hand, if we set λ > 1 say λ = 2, then, from Theorem 3.2, any solution of
(5.2) is either oscillatory or converges to zero as t→∞ for a > 0.2589.

6. General Remarks

The results of this note complement those obtained in a recent paper [9] and
can be applied to both delayed and advanced third-order differential equations
with damping. As is well known, it is only the delay in (1.1) that can generate
oscillation of all solutions.

The class of positive solutions with L2y oscillatory has been eliminated under
the essential assumption that (1.2) is nonoscillatory. It appears that the case when
(1.2) is oscillatory is still open. For instance, the equation

y′′′(t) + y′(t) +
2(t3 + 2t2 sin(t) + 6t− 12 sin(t) + 9t cos(t))

t3(2t− sin(t))
y(t) = 0 (6.1)

admits a nonoscillatory solution y satisfying (2.7) with L2y oscillatory, as depicted
on Figures 1–3. Eliminating such a case seems to be the major challenge.
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It might be also interesting to extend results of this paper to higher-order differ-
ential equations of the form(

r2

(
r1

(
y(n−2)

)α)′)′(t) + p(t)
(
y(n−2)(t)

)α
+ q(t)f(y(g(t))) = 0

for n odd. This would be left to further research.
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