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Seismicity Enhances Macrodispersion in Finite Porous
and Fractured Domains: A Pore‐Scale Perspective
Lizhi Zheng1 , Lichun Wang2 , and Wen Deng3

1Department of Geological Sciences, The University of Texas at Austin, Austin, TX, USA, 2Institute of Surface‐Earth
System Science, Tianjin University, Tianjin, China, 3Department of Civil, Architectural and Environmental Engineering,
Missouri University of Science and Technology, Rolla, MO, USA

Abstract Understanding the effects of oscillating flow field induced by seismicity on the transport
process is vital for predicting the fate and transport of solute in many dynamic environments. However,
there is prominent discrepancy in arguing with the response of dispersion to the oscillating flow field (i.e.,
the longitudinal dispersion coefficient would decrease, increase, or maintain unchanged). To unravel the
underpinning physics about this controversial response, we simulated two‐hundred twenty pore‐scale
numerical experiments for the seismicity‐induced oscillating flow field and associated solute transport in the
idealized finite porous (i.e., fluidic plate) and fractured (i.e., parallel plates) domains. The numerically
obtained breakthrough curves were fitted to the macroscopic advection‐dispersion equation to retrieve the
mean velocity and apparent macrodispersion coefficient (DL). We found that DL increases to its maxima
when the oscillating flow field resonates with the finite systems, that is, the period (T) of the oscillating flow
field or the seismic wave approaches the pore volume (τ) of a finite domain. The resonant effects diminish
and DL barely changes when T is much larger or smaller than τ. Moreover, the degree of enhancement in DL

increases exponentially with the amplitude of the seismic force. Fundamental understanding of the response
of macrodispersion to the oscillating flow field adds value in predicting the fate of solute in transient flow
systems via the advection‐dispersion equation.

Plain Language Summary The fate and transport of solute mainly depend on the advection and
dispersion processes that tie to the flow field. The challenge of quantifying the flow field lies in the
complexity of characterizing heterogeneous geological media. Moreover, the flow field can be oscillating
periodically in some geological settings. When present, the oscillating flow field can substantially alter the
solute transport process. However, many researchers hold controversial arguments about the effects of the
oscillating flow field on the macroscopic dispersion process (i.e., macrodispersion). In this study, we unravel
the effects of the seismicity‐induced oscillating flow field on macrodispersion in finite domains.
Two‐hundred twenty pore‐scale numerical flow and transport experiments have been done through the
idealized finite porous and fractured domains.We find that themacrodispersion coefficient maximizes when
the period of the oscillating flow field approaches the flushing time of a finite domain. The enhancement of
macrodispersion increases exponentially with the amplitude of the seismic wave and oscillating flow field.
Our study quantitatively reveals the enhanced macrodispersion feature at a mechanistic level that might
shed light on predicting solute transport in many other transient flowing systems.

1. Introduction

A better understanding of spreading andmixing of solute in geological media is critical for predicting the fate
of solute and contaminants in many geological systems (Dentz et al., 2011). Essentially, the dispersion pro-
cess dictates the rate of spreading and mixing (Fischer et al., 1979). Therefore, there are increasing numbers
of literatures investigating the dispersion problem. For example, many researchers revealed that the spatial
variability of the velocity field induced by the material heterogeneity can enhance macroscopic dispersion
(Cirpka et al., 2015; Dentz, le Borgne, et al., 2011). This has been also demonstrated by a fact that the disper-
sion coefficient is a scale‐dependent property for porous and fractured media (Gelhar & Axness, 1983).
Indeed, the influence of spatial heterogeneity on flow often leads to non‐Fickian transport where the early
arrival and long tailing of breakthrough curves (BTCs) are expected to occur (Le Borgne et al., 2008; Wang &
Cardenas, 2014). Therefore, all factors that alter the spatial heterogeneity of a geological media might cause
non‐Fickian transport (Kang et al., 2016) and enhance the macrodispersion process.
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Furthermore, in many natural environments, temporal fluctuation of the velocity field exists in geological
media and plays a significant role in affecting transport process. This temporal fluctuation can be induced
by the boundary conditions of fluctuating water levels caused by, for example, hydrological cycle, plants eva-
potranspiration, and Earth tides that oscillate daily, seasonally, and even annually (Boutt & Fleming, 2009;
Deon et al., 2017). Or, the temporal fluctuation can be caused by the imposed body force caused by, for exam-
ple, earthquakes, constructions, and traffic noise (Manga et al., 2012). Recently, fluid injection has been also
proposed to cause seismicity at the regional scale (Elsworth et al., 2016; Weingarten et al., 2015). A better
understanding on how the temporal velocity fluctuation affects transport is important to improve the theory
of complex transport process in geological media. Our study focused on solute transport that is affected by
the seismicity‐induced oscillating flow.

To address and quantify the dispersion process induced by the temporally fluctuating flow, studies mainly
relied on theoretical analysis (Dentz et al., 2011; Dentz & Carrera, 2003, 2005; Rehfeldt & Gelhar, 1992;
Zhang & Neuman, 1996), and a few researches resorted to the physical (Zhang et al., 2009) and numerical
(Dreuzy et al., 2012; Pool et al., 2016) experiments. In any case, all studies confirmed that the transverse dis-
persion coefficient will be enhanced to some extent due to the temporal velocity fluctuation (Cirpka et al.,
2015; Cirpka & Attinger, 2003). However, there is a large discrepancy with respect to the longitudinal disper-
sion coefficient (DL) under the influence of temporal velocity fluctuation.

Over the last four decades, many researchers have suggested that DL increases under the oscillating flow for
idealized cases (Chatwin, 1975) and natural environments (Dentz & Carrera, 2005). However, some recent
studies found, DL can decrease (Zhang & Neuman, 1996), or fairly maintain constant (Dentz, Carrera, &
De Dreuzy, 2011; Dreuzy et al., 2012) when the oscillating flow field was present, or even fluctuated over
time in response to the oscillating flow (Elfeki et al., 2007). The mechanisms of these controversial argu-
ments about the effects of the oscillating flow on DL are not quite clear. Previous study indicated that the
truncation of certain terms in the stochastic perturbation method for theoretically deriving DL can yield
quite opposite results, that is, the resulting effect switches from increased DL to barely changed DL

(Dentz, Carrera, & De Dreuzy, 2011). However, more work is needed to elucidate the underpinningmechan-
isms of how the oscillating flow field affects DL. That is, how to quantitatively connect the frequency and
amplitude of the oscillating flow with DL. This study addresses these questions based on hundreds of
pore‐scale simulations.

Unlike previous studies that focused on infinite systems at the continuum scale (Dreuzy et al., 2012), our
study tries to address the above‐mentioned controversial problem about the effects of the oscillating flow
field on DL in a finite geological domain at the pore scale (millimeter scale); the domain studied here has
a fixed intrinsic timescale (i.e., pore volume or residence time). This is because many natural environments
are having a finite domain, or at least, the magnitude of timescale of a system is in the same order of mag-
nitude to the period of the oscillating flow field. For example, the hyporheic zones that link surface water
and groundwater in the Mississippi River network have residence time distributions ranging from below
1 hr to above 1 year (Kiel & Bayani Cardenas, 2014), and the external force, that is, surface water level fluc-
tuates daily and seasonally (Michael et al., 2005). This suggests that the period of the fluctuating velocity in
the hyporheic zones is comparable and relevant to their residence timescale. Moreover, the coastal intertidal
zone is another great finite domain example that is spatially limited by the magnitude and period of ocean
tides (Befus et al., 2013). Given a wide presence of finite flowing domains, understanding solute transport in
such a finite domain has been however underappreciated, especially considering the oscillating flow field;
this motivates our study to unravel the complexity of transport caused by the transient flow field. The
pore‐scale simulations served our purpose for fundamentally explaining the effects of the oscillating flow
fields on macrodispersion.

For a finite flowing domain, we hypothesize that DL increases only when the intrinsic timescale (i.e., pore
volume τ) of a finite system is identical to or at the same order of magnitude of the period (T) of the tempo-
rally oscillating flow field. We denote these phenomena as resonant effect when τ ≈ T in this study. Here τ is
defined as flushing time or pore volume at steady state; τ is the ratio of the volume of void space of the finite
domain to the time‐averaged flushing discharge. Moreover, we hypothesize that when T is much greater or
smaller than τ, the resonant effects diminish and DL barely changes in response to the oscillating flow field.
To attest our hypotheses, we resorted to hundreds of pore‐scale numerical transport experiments in porous
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and fractured media by varying T while keeping τ constant. The results of reliable numerical experiments
supported our hypotheses as further discussed below.

2. Methodology

The exploratory pore‐scale numerical transport experiments were conducted through two‐dimensional (2D)
idealized pores and a fracture (Figure 1); the 2D cases are sufficient to attest our hypotheses and to avoid
unnecessary computational burden that might be encountered in a three‐dimensional domain. We first
solved the flow field governed by the Navier‐Stokes equation (NSE) via COMSOL Multiphysics for an idea-
lized homogeneous porous media (i.e., a fluidic plate with porosity = 0.29 in Figure 1a) and via the analytical
solution for an idealized fracture (i.e., a parallel‐plate model in Figure 1b). For simplicity, the transient flow
field was subject to a body force induced by the imposed seismic wave (Deng & Cardenas, 2013). To mitigate
numerical dispersion especially when the flow field oscillated to a certain degree, we resorted to the particle
tracking random walk (PTRW) to model a conservative solute transport process by MatLab. The details of
solving the flow field and solute transport are further elaborated below.

2.1. Oscillating Flow Field in Homogeneous Porous Media and Fractures

Fluid flow through a 2D porous and fractured media is essentially governed by the NSE (Bear, 1972). The
incompressible and isothermal NSE considering seismicity at transient state is described by (Deng &
Cardenas, 2013)

ρ
∂u
∂t

þ ρ∇· uuð Þ ¼ −∇P þ μ ∇uþ∇uT
� �þ F

∇·u ¼ 0

8<
: (1)

where ρ (1,000 kg/m3) is fluid density, u is velocity vector, μ (0.001 Pa‐s) is dynamic fluid viscosity, P is total
pressure, t is time, and F is an oscillating body force induced by the seismic wave that follows a sinusoidal
function (Beresnev, 2006)

F ¼ −ρA sin 2πftð Þ (2)

where A represents the acceleration amplitude and f is the frequency (i.e., the reciprocal of period T) of the
seismic wave. In this study, f and T refer to the timescale of the oscillating flow field.

For a seismic wave, the observed f varies largely from low ~1 × 10−3 Hz to high ~1 × 102 Hz magnitudes in
geological systems induced by earthquake or episodic tremor and slip (Beresnev, 2006; Deng & Cardenas,
2013; Ito & Obara, 2006). Additionally, the undetected f might be much lower than the reported value due
to seismic attenuation (Pride et al., 2004). Considering the wide range of f, we turned to the seismic wave
rather than other factors (e.g., ocean tides (Chambers et al., 2002)) to generate the oscillating flow field in
this study. The possible range of f used in this study was set to be flexible (1 × 10−5–1 × 102 Hz). This is exem-
plified by the different colored lines (i.e., represent various T) in Figure 2. More imposed seismic waves with
different f are not shown here. Besides the effects induced by f or T (= 1/f), we altered the amplitude A to
further examine the effects of a seismic wave on the macrodispersion process (Figure 2). In short, we inves-
tigated the effects of dimensionless amplitude (ρA/∇P) and dimensionless period (T/τ) on the
transport process.

For solving the flow field in a finite porous media, we imposed a fixed pressure (i.e., pressure gradient
∇P = 5,000 Pa/m) at the inlet and outlet that drove flow in the longitudinal (i.e., x) direction (Figure 1a).
This resulted in a constant τ. The top and bottom sides were set as no flux (i.e., no‐slip) boundaries.
Moreover, we incrementally increased T and A in equation (2) to generate oscillating flow fields
accordingly. T and A were nondimensionalized using the fixed ∇P and τ as exemplified in Figure 2.
Specifically, ρA/∇P increased from 0.2 to 1.6, and T/τ spanned from 0.0066 to 6.67. In total, we implemented
8 × 8 × 2 numerical experiments for both flow and transport processes within the finite fluidic plate.

For the finite parallel plates, the inlet and outlet were also specified as a fixed pressure boundary condition
(i.e., pressure gradient ∇P = 10 Pa/m) that drove flow in the x direction (Figure 1c). No slip boundary was
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applied to the bottom and top surfaces. The analytical solution to the flow field governed by the NSEwith the
imposed seismic wave can be described as (Fischer et al., 1979; Wang et al., 2012)

u yð Þ ¼ b2

8μ
1−

4y2

b2

� �
∇P þ ρA sin 2πftð Þð Þ (3)

where b is the fracture aperture and y represents the transverse direction
that is perpendicular to the x direction (Figure 1c). The parabolic profile of
u was homogeneous in the longitudinal direction for a given A and f,
where ρA/∇P increased from 0.5 to 10, and T/τ spanned from 0.0083 to
83.3; this was achieved by increasing A and f with constant ∇P and τ. In
total, we have done 6 × 26 numerical experiments for the transport pro-
cess within the parallel plates. The wider range of ρA/∇P and T/τ was
used to further attest the resonant effects on macrodispersion. The details
of τ for the finite fluidic plate and parallel plates are further discussed
below.

2.2. The Fixed Pore Volume (τ) of Finite Porous and
Fractured Media
2.2.1. The Fluidic Plate Representing Porous Media
We designed a fluidic plate (Figure 1a) that has width = 6.6 × 10−4 m,
length = 1.6 × 10−3 m, depth = 1 unit, the individual radius of

Figure 1. The schematic diagram for demonstrating the snapshot of the oscillating velocity field in a fluidic plate (a and b) and in a parallel plates (c). (a) The fluidic
plate consists of connected pore bodies by pore throat surrounded by the solid grains (i.e., the hollow circles). The colored velocity field is driven by the
pressure gradient with fluid flowing in the x direction as indicated by the black arrow. The top and bottom surfaces are no flux boundaries. (b) The detailed velocity
for a representative block within the fluidic plate, where the local velocity fairly follows the parabolic shape. (c) The velocity profile across the parallel plates
strictly follows a parabolic shape. The pressure gradient drives fluid flowing in the x direction. No slip boundary is specified for the top and bottom sides surrounded
by the gray matrix.

Figure 2. The explanatory seismic body forces with a varying degree of
dimensionless period T/τ and dimensionless amplitude ρA/∇P, where T
and A are period and amplitude of a seismic wave, τ is pore volume (i.e.,
volume/discharge) of a finite system, ρ is fluid density, t is time, ∇P is
pressure gradient that drives fluid flowing in the longitudinal direction as
demonstrated in Figure 1, and sin() represents the sinusoidal function.
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grain = 2.5 × 10−5 m, area of void space = 3.08 × 10−7 m2, and porosity = area of void space/total area = 0.29.
Given an imposed ∇P = 5,000 Pa/m without seismic force (A = 0 and f = 0 in equation (2)), the resultant
discharge = 2.04 × 10−9 m3/s. Therefore, τ = volume/discharge = 151.3 s.
2.2.2. The Parallel Plates Representing Fracture
The parallel plates have an aperture b = 5 × 10−4 m, length = 0.025 m, and volume = 1.25 × 10−5 m3 assum-
ing one unit width. The imposed∇P= 10 Pa/m resulted in discharge = 1.04 × 10−7 m3/s without considering
seismic force (A = 0 and f = 0 in equation (2)). Thus, τ = volume/discharge = 120 s for the microfracture
studied here.

2.3. PTRW for Simulating Solute Transport

Given that the finite porous and fractured systems all have a constant τ for the given ∇P at laminar flow
regime, hereafter, we analyzed the effects of dimensionless period T/τ on macrodispersion by fixing τ but
varying T. The resultant oscillating fields subjected to the seismic waves with different A and f were used
to simulate the solute transport process.

The 2D numerical transport experiments were implemented via the PTRW. Generally, the PTRW keeps
track of individual particles' location considering their advective and diffusive jumps (James et al., 2005;
Wang & Cardenas, 2015)

xnþ1 ¼ xn þ u xn;nΔtð ÞΔt þ N 0; 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DmΔt

p
(4)

where x [x, y] denotes the spatial location of a given particle, n is current time step, n+ 1 is future time step,u
is velocity vector, Δt is time step size, N(0, 1) is an independent number picked from the standard normal
distribution with mean value = 0 and variance = 1, and Dm is molecular diffusion coefficient
(2.03 × 10−9 m2/s).

The PTRW was implemented through MatLab. The main difference in implementing transport simulations
in porous and fractured media lied in the treatment of particles' reflection; that is, the reflection by the solid
grain (i.e., the circle) within a porous media is different from that by the top and bottom surfaces of a frac-
ture. Here we provided the schematic diagrams (Figure 3) and the mathematic expressions (Appendices A1
and A2.) on handling particles' reflection by the solid surfaces. In any case, the reflection principle was
employed when a particle hit the solid surfaces without energy loss to satisfy no‐flux boundary condition
(James & Chrysikopoulos, 2000).

We released 5 × 103 particles for both porous and fractured media. Numerical results were insensitive to the
further increase of number of particles (results are not shown here). The PTRW was implemented with an
adaptive time step. The time step was updated every time step and was determined by min(T/20, scale2/
[20 · Dm], scale

2/[10 · velocity]), where min() represents the minimum function, scale = radius of grain
(Figure 1) for the fluidic plate, and scale = aperture for the parallel plates. This ensured a balance between
computational efficiency and simulation accuracy (Detwiler et al., 2002; Wang & Cardenas, 2015).

The ratio of cumulative particles arriving at the outbound to the total number of particles constitutes the
BTCs. The macrodispersion coefficient (DL) was obtained by fitting the classical macroscopic advection‐
dispersion equation to the BTCs from PTRW solutions (Wang & Cardenas, 2017).

2.4. The Apparent Dispersion Coefficient for Describing Macrodispersion

Generally, there are two broadly applied methods for quantifying the dispersion process: (1) fitting the
macroscopic advection‐dispersion equation to the measured BTCs to obtain the apparent dispersion coeffi-
cient (Gelhar et al., 1992); (2) quantifying the actual spreading of solute based on the first and second
moments of a solute plume via the effective or ensemble dispersion coefficient (Dentz & Carrera, 2003,
2005). In this study, we relied on the first method to estimate the apparent DL because (a) we attempted
to reproducing the numerically measured BTCs, and (b) the effective or ensemble DL determined by the sec-
ond method changes over time (Wang & Cardenas, 2015). Indeed, the first method was more convenient to
analyze constant DL for different cases than the second method, because the latter is supposed to produce
varying DLs in response to the oscillating velocity fields.
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The optimization algorithm for inversely estimating the mean velocity and DL was conducted in MatLab to
achieve the global minimum fitting errors. In total, we run 64 inversions for porous media cases and run 156
inversions for fracture cases.

3. Results and Discussions
3.1. The Oscillating Flow Field and Fluid Flux

The seismic wave (green line in Figure 4) with varying degrees of A and T led to the oscillating flow field in
porous and fractured media. This has been demonstrated in porous media (Figure 4a when ρA/∇P= 1.4 and
T= τ) and fracture (Figure 4b when ρA/∇P = 2 and T= τ). In these two specific cases when T= τ (Figure 4),
the oscillating body force induced by the seismic wave led to the flow velocity acceleration and deceleration
accordingly, that is, flow velocity field followed the same trend of the oscillating seismic wave. Specifically,
the velocity field was accelerated compared to the steady flow case when time < τ/2, since the seismic body
force acted in the same direction as the steady flow. While the velocity field was decelerated when
τ/2 < time < τ, the imposed seismic force acted in the opposite direction to the steady flow. Consequently,
the magnitude of velocity simultaneously reached its maximum (time = τ/4) and minimum (time = 3τ/4)
when the seismic force increased up to its maxima and decreased down to its minima, respectively
(Figure 4). Depending on the magnitude of ρA/∇P, the minimum velocity can be negative if ρA/∇P> 1, indi-
cating the reverse flow might occur periodically (Figure 4b). In our simulations, the reverse flow occurred
when using the wide range of ρA/∇P (ρA/∇P ranged from 0.2 to 1.6 for porous media, and it ranged from
0.5 to 10 for fractures).

An alternative way to diagnose the oscillating flow field was to integrate flux at the outbound; this yielded
discharge Q. The oscillating feature of Q (the blue lines in Figure 4) strictly followed the trend of the seismic
wave (e.g., the green lines in Figure 4); this is essentially because the acceleration or deceleration of the velo-
city field simultaneously followed the increased or decreased seismic force, respectively. The highest Q cor-
responded to the velocity field reaching its maxima, and vice versa. The oscillating feature of the velocity
field in terms of magnitude and flow direction exerted a critical impact on the solute transport process as
discussed below.

3.2. The Effects of Oscillating Flow Field on the BTCs

BTCs are the results of collective factors, including characteristics of the flow field (Le Borgne et al., 2008),
types of solute source (point, line, and area) (Webster et al., 2007), boundary conditions (Dejam et al., 2014),
and duration of transport process (i.e., length of domain, Wang et al., 2012). In this study, we focused on the
effects of the oscillating flow field by eliminating other factors; this was achieved by using a flux weighted
line source and no flux boundaries. Moreover, the fluidic plate and parallel plates were created long

Figure 3. Illustration of particle's reflection by the solid circle within a fluidic plate (a) and by the parallel plates (b). (a) The particle moves from point A to point E
by hitting the solid grain with a radius R. The mathematical expression for determining point E is based on the locations of point B (determined by the advective
and diffusive jumps), point C (the center of solid grain), and point D (the intersection point). (b) The particle moves from point A to point D by hitting the
bottom plate. The location of point D can be determined by the preknown points B and C. The details of mathematical derivations can be found in Appendix A.
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enough with the given ∇P to ensure asymptotic dispersion when the flow field was steady. This was
demonstrated by the perfect fitting using the ADE for the BTC with T = 0, that is, the black dots in
Figure 5. Thus, the preasymptotic dispersion regime was excluded in this study (Bolster et al., 2014) for
the steady flow.

BTCs fairly showed Fickian transport when T was much larger (T/τ > 3) or smaller (T/τ < 0.1) than τ as
demonstrated by the representative BTCs in the fluidic plate (Figure 5b). This observation also held true
for transport in fractures (results are not shown here). The mean velocity in porous domain almost main-
tained unchanged for small T, but it increased when T became large (Figure 5a), which was also

Figure 4. The schematic diagrams of the oscillating discharge Q (blue lines) and the oscillating velocity field for the fluidic plate (a) and the parallel plates (b). The
oscillating flow field is subjected to a seismic wave (green lines) with amplitudeA and period T, whereQsteady corresponds to the steady discharge without imposing
the seismic force, τ is the pore volume (i.e., volume/discharge) of the fluidic plate or the parallel plates, ρ is the fluid density, t is the time, sin() represents the
sinusoidal function, and∇P is the pressure gradient. In these two cases, the flow field resonateswith the finite porous and fractured media, that is, T = τ. The insets
in Figure 4a show the snapshots of the velocity field over time, whereU is velocity magnitude with its maximumUmax and minimumUmin. The inset in Figure 4b
shows the colored velocity profiles corresponding the velocity field over time as indicated by the same colored circles.
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suggested by the advance of plume in Figures 6 and 7 and in Movies S1–S8 in the supporting information.
This is because the small T represents a seismic wave having a large f, where the very frequent
perturbation of the velocity field does not contribute to altering DL and the mean velocity (Figure 5a and
T/τ < 1 in Figures 6 and 7) due to the short response time (Beresnev, 2006). The above statement is
consistent with many previous studies that focused on infinite domain (Dreuzy et al., 2012) where τ is
infinite large and T is comparably tiny. On the other hand, the large T represents a seismic wave with a
small f, where the effects of slow perturbation were not prominent on altering dispersion, since solute
breakthroughed the domain much faster than the perturbation effect manifested (Figure 5b and T/τ > 1
in Figures 6 and 7). Moreover, the mean velocity was accelerated when T was large (Figures 5–7 and
Movies S2 and S6 in the supporting information), because the seismic force that was initially applied
aligned with the steady flow direction in this study (Figure 2). Likewise, the mean velocity would be
presumably decelerated if the seismic force was initially imposed in the direction opposite to the steady
flow. Therefore, the mean velocity depends on the direction of the seismic force when the seismic wave
penetrates to the finite domain.

Figure 5. (a) The exemplary breakthrough curves from numerical experiments in the fluidic plate for cases with different period (T) but a constant amplitude of the
seismic wave, where τ is the pore volume = volume/discharge. (b) The goodness of fitting the advection‐dispersion equation (ADE) as denoted by lines to the
numerically simulated breakthrough curves as shown by circles. Different color in Figure 5b corresponds to the seismic wave with different T in Figure 5a, but the x
axis is shifted by one pore volume for each breakthrough curve. (c) The relationship between the root‐mean‐square error (RMSE) and T/τ, where the x axis is
plotted at a logarithmic scale. The RMSE denotes the mean value of concentration difference between the analytical solutions to the ADE and the numerical results
from implementing the particle tracking random walk.
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Figure 6. The snapshots of particle transport through the fluidic plate at time = 0.5 pore volume (the left panel) and time = 1 pore volume (the right panel), where
the pore volume (τ) = volume/discharge = 151.3 s. Four cases are demonstrated here when the flow field is steady (in the first row), and when the flow field is
oscillating (from the second to the fourth rows) induced by the seismic waves with a constant dimensionless amplitude ρA/∇P = 0.8 but different dimensionless
period T/τ (T/τ = 6.67, 1.0, and 0.067 for the second to the fourth rows). ρ is fluid density, ∇P is pressure gradient, A represents the acceleration amplitude of the
seismic force F = − ρA sin (2πft), f is frequency (i.e., the reciprocal of period T) of the seismic wave, t is time, and sin() represents the sinusoidal function.

Figure 7. The snapshots of particle transport through the parallel plates at time = 0.5 pore volume (the left panel) and time = 1 pore volume (the right panel), where
the pore volume (τ) = volume/discharge = 120 s. Four cases are demonstrated here when the flow field is steady (T/τ= 0 in the first row), and when the flow field is
oscillating (from the second to the fourth rows) induced by the seismic waves with a constant dimensionless amplitude ρA/∇P = 1 but different dimensionless
period T/τ (T/τ = 8.33, 1.0, and 0.083 for the second to the fourth rows). ρ is fluid density, ∇P is pressure gradient, A represents the acceleration amplitude of the
seismic force F = − ρA sin (2πft), f is frequency (i.e., the reciprocal of period T) of the seismic wave, t is time, and sin() represents the sinusoidal function.
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More interestingly, BTCs showed non‐Fickian behavior with early arrival and heavy tailing when the fluc-
tuating flow field resonates with the finite system (green and yellow curves in Figure 5, T/τ = 1 in Figures 6
and 7, and Movies S3 and S7 in the supporting information), that is, T is close to τ. This led to the broadest
BTCs spanning almost 2.5 pore volumes when T/τ = 1 (Figure 5a), which also corresponded to the broadest
spreading of solutes when T/τ = 1 compared to the cases with T/τ being further apart from 1 (Movies S1–S8
in the supporting information). Essentially, solute was accelerated first leading to fast arrival, and it was
decelerated afterward where the reverse flow might occur, which led to a long tailing feature in the BTCs
(Figure 5a and T/τ = 1 in Figures 6 and 7). Therefore, the closer T is to τ, the larger degree of non‐Fickian
transport manifests. The degree of non‐Fickian transport was demonstrated by the root‐mean‐square error
when fitting the advection‐dispersion equation to the numerically‐derived BTCs (Figure 5c).

It should be noted that the above‐mentioned arguments are valid when the amplitude of the seismic force
(i.e., ρA) is not negligible compared to ∇P; this is demonstrated by Figures 5–7 where ρA/∇P > 0.8. When
∇P dominates over the seismic forces (i.e., ρA/∇P << 1), this leads to a negligible effect of the oscillating
velocity field on the mean velocity and DL (Figure 8).

3.3. Pore‐Scale Perspective of Seismicity‐Affected Macrodispersion

We obtained 64 and 128 sets of the mean velocity and DL for the fluidic plate and for the parallel plates,
respectively, considering a broad range of ρA/∇P and T/τ. The mean velocity and DL were estimated by

Figure 8. The relationships of the longitudinal dispersion coefficient (DL) (a and b) and the mean velocity (U) (c‐d) with the dimensionless period (T/τ) and dimen-
sionless amplitude (ρA/∇P) of the seismic wave within the fluidic plate and the parallel plates, where τ is the pore volume = volume/discharge, DL and U are
estimated by fitting the advection‐dispersion equation to the experimental breakthrough curves; DL0 and U0 are the counterparts corresponding to the steady flow
field without applying the seismic force, ρ is fluid density,∇P is pressure gradient,A represents the acceleration amplitude of the seismic force F= − ρA sin (2πft), f
is frequency (i.e., the reciprocal of period T) of the seismic wave, t is time, and sin() represents the sinusoidal function.
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fitting the advection‐dispersion equation to the numerically‐derived BTCs; both of them were further con-
nected to ρA/∇P and T/τ for the fluidic plate and for the parallel plates (Figure 8).
3.3.1. Effects of the Oscillating Flow Field on the Apparent Macrodispersion Coefficient
Generally speaking, with increasing T/τ for a given ρA/∇P, DL reached its maxima when T/τ approached 1
(i.e., log10(T/τ) ≈ 0 at the logarithmic scale) and afterward decreased to its counterpart (DL0) that was esti-
mated for the steady flow field (i.e., A = 0, Figures 8a and 8b). Hereafter, the maximum DL is called as the
resonant DL when T/τ ≈ 1. The trend of DL with increasing T/τ is consistent with the transition of transport
regime. That is, as T/τ increased, transport gradually transitioned from Fickian to non‐Fickian regimes
(Figure 5) when the oscillating flow field resonates with the finite porous and fractured systems (i.e.,
T/τ = 1), while a further increase in T/τ (>1) would induce transport to transition back to Fickian regime
(Figure 5). All these transitions are fundamentally attributed to a fact that the oscillating flow field and con-
sequently the solute transport process resonates with the finite pore‐scale system when T approaches τ,
where the fast arrival and heavy tailing in the BTCs is expected to occur (Figure 5 and T/τ = 1 in
Figures 6 and 7).

Moreover, the degree of enhancement for the resonant DL strictly depends on the amplitude of velocity fluc-
tuations (i.e., ρA/∇P). The resonant DL increases exponentially with ρA/∇P at different increasing rates for
the fluidic plate and for the parallel plates (Figures 8a and 8b). For example, the maximum ρA/∇P are 1.6
and 10 for the fluidic plate and for the parallel plates, respectively, but the maximum DL/DL0 are 3.4 and
82.3, respectively. The difference of the increase in DL suggests that, in addition to the effect of ρA/∇P,
the enhancement of resonant DL is tightly dependent on the geometry and the pattern of flow field
(Cirpka et al., 2015; Wang & Cardenas, 2017).

Aside from increasing DL when the flow field resonates with the finite systems (Figures 5 and 8), our study
demonstrates that DL could be slightly reduced (i.e., DL/DL0 < 1) when T/τ > 1 (Figures 8a and 8b). The
reduction in DL occurred, because solute breakthroughed the domain much earlier than the time for flush-
ing the entire system (see T/τ> 1 in Figures 6 and 7). That is, the earlier breakthrough with a fast mean velo-
city slightly lessened the degree of solute spreading, which is different from the conventional view: the
dispersion coefficient is proportional to the mean velocity (Bear, 1972).
3.3.2. Effects of the Oscillating Flow Field on the Mean Velocity
In addition to the effects on DL, the oscillating flow field can significantly alter the mean velocity in a
finite domain when T/τ > 1, but it plays a trivial role in changing the mean velocity when T/τ < 1
(Figures 8c and 8d). In our study, the onset of the seismic force was applied in the same direction as
the steady flow field (Figure 2); therefore, the mean velocity was enhanced to some extent (Figures 8c
and 8d). The degree of velocity enhancement (U/U0) depended on the magnitude of ρA/∇P and T/τ.,
where U is the mean velocity for the oscillating flow field, and U0 is the counterpart for a steady
flow field.

Similar to the trend of DL with increasing T/τ, for a given ρA/∇P, U/U0 increased at first and then asympto-
tically decreased with T/τ (Figures 8c and 8d). However, U/U0 reached its maxima at log10(T/τ) ≈ 0.5, while
DL/DL0 reached its maxima when log10(T/τ) = 0. This is because U is greatly enhanced when the oscillating
flow field is experiencing the positive seismic force (time/τ< 0.25 in Figure 2), that is, the seismic force aligns
with the direction of the steady flow. Any system that has a T/τ that is further away from the threshold, that
is, log10(T/τ) = 0.5, the effects of positive and negative seismic forces would to some extent cancel each other
out, or the effects of seismic forces gradually diminish; this eventually resulted in a relatively small U
(Figures 8c and 8d).

Moreover, for a given T/τ and when T/τ > 1, U/U0 increases monotonically with ρA/∇P, this is due to a fact
that the larger ρA/∇P is, the greater degree of oscillation (Figure 2), where the positive and negative contri-
butions induced by seismicity were not fully canceled out since T/τ > 1.

4. Implications of the Effects of the Oscillating Flow in a Finite Domain

Many geophysical mysteries are underpinned by the flow and transport processes (Alley et al., 2002).
While extensive researches have focused on the steady flow and associated transport processes
(Le Borgne et al., 2008), how the transient flow fields, especially the oscillating flow features, in a
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finite domain affect transport process remains unclear. Based on pore‐scale simulations, our
study reveals the underpinning physics by quantitatively relating the mean velocity and the apparent
macrodispersion coefficient to the frequency and amplitude of the seismicity‐induced
oscillating flow field.

The results from two‐hundred twenty simulations for the fluidic plate and parallel plates suggested that the
effects of the oscillating flow field were trivial on altering U and DL when T was much less than τ for a finite
system. That is, the fast oscillating flow field only added white noise to the BTCs, where the transport regime
remained unchanged compared to the corresponding cases with a steady flow field. On the other hand, the
effects of the oscillating flow field on U and DL became remarkable when T was close to τ, where the degree
of enhancement of U and DL depended on ρA/∇P.

Although the oscillating flow fields were only generated by applying the seismic forces with a varying degree
of A and T, the oscillating flow features induced by other factors (e.g., fluctuating boundary conditions) can
be well preserved and reproduced by introducing the seismic wave. For example, the seasonally and daily
fluctuating river water level drives the oscillating hyporheic flux (Boutt & Fleming, 2009) and the fluctuating
tides that affect the oscillating submarine groundwater discharge (Sawyer et al., 2013). Note that all these
above‐mentioned natural systems have a finite domain subjected to an oscillating flow field. Our results
can be broadly applied to better predict the fate and transport of dissolved substances considering oscillating
flow fields and thus might shed light on, for example, the sustainability and vulnerability of groundwater
system along the coastal lines (Sawyer et al., 2016).

5. Conclusions

To address the underpinning mechanisms of how the oscillating flow field affects macrodispersion, we
conducted two‐hundred twenty pore‐scale numerical experiments for examining the transport process
through the idealized finite porous and fractured domains. The oscillating flow field was induced by
imposing a seismic force that followed a sinusoidal function with a varying degree of amplitude and fre-
quency. We fitted the advection‐dispersion equation to the resultant BTCs to obtain the mean velocity
and apparent dispersion coefficient (DL). Our pore‐scale study focusing on the finite domains quantita-
tively showed the resonant features of the transport process. This is demonstrated by a fact that DL

reached its maxima when the period (T) of the oscillating flow field approximated the pore volume τ
(= volume/discharge) of a finite system, that is, the oscillating flow field resonates with the finite system.
The degree of enhancement of dispersion diminished when T was further apart from τ. Moreover, when
T/τ = 1, DL increased exponentially with the amplitude of the seismic force. The mean velocity was also
enhanced to some extent when T > τ, because the imposed seismic force was initially applied in the same
direction as the pressure‐driven flow. The information of the mean velocity and DL considering the seis-
micity effects can be used to predict the fate and transport of solute in many geological settings via the
classical advection‐dispersion equation.

Appendix A

A1. Particles' Reflection by a Circle Grain

Assuming that a particle, located at its current position A (x1, y1), has a jumping distance due to advection
and diffusion that might penetrate into the solid grain at the position B (x2, y2; Figure 3a), the associated
reflection location outside of the circle grain is E (x5, y5) considering no energy loss during the physical
rebounding steps from A to D and to E (Figure 3a).

In this case, the spatial locations of points A–C are known as a priori. The calculations for estimating
the relevant angles (α, β, and γ) are based on the locations of points A–C and the radius (R) of solid
grain. This is demonstrated by equations (A1)–(A3). The information of the relevant angles and the
points' locations (A–C) is further used to determine the point D (x4, y4) and eventually the targeted point
E (x5, y5).
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α ¼ arccos
x3−x2ð Þ x1−x2ð Þ þ y3−y2ð Þ y1−y2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x3−x2ð Þ2 þ y3−y2ð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1−x2ð Þ2 þ y1−y2ð Þ2
q

0
B@

1
CA (A1)

β ¼ arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3−x2ð Þ2 þ y3−y2ð Þ2

q
sin αð Þ
R

� �
(A2)

γ ¼ π−α−β (A3)

x4; y4ð Þ ¼ x2−
x2−x1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2−x1ð Þ2 þ y2−y1ð Þ2
q sin γð ÞR

sin αð Þ ; y2−
y2−y1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2−x1ð Þ2 þ y2−y1ð Þ2
q sin γð ÞR

sin αð Þ

0
B@

1
CA (A4)

x5; y5ð Þ ¼
 
x2−2 x3−x4ð Þ x3−x4ð Þx2 þ y3−y4ð Þy2 þ x4−x3ð Þx4 þ y4−y3ð Þy4

x3−x4ð Þ2 þ y3−y4ð Þ2 ; y2

−2 y3−y4ð Þ x3−x4ð Þx2 þ y3−y4ð Þy2 þ x4−x3ð Þx4 þ y4−y3ð Þy4
x3−x4ð Þ2 þ y3−y4ð Þ2

!
(A5)

A2. Particles' Reflection by the Parallel Plates

Assuming that a particle, located at its current position A (x1, y1), has a jumping distance due to advection
and diffusion that might penetrate into the parallel plates (with a distance b between the top and bottom sur-
faces) at the position B (x2, y2), the associated reflection location within the parallel plates is point D (x4, y4)
considering no energy loss during the physical rebounding steps from A to C and to D (Figure 3b).

In this case, the spatial locations of points A–C are known as a priori. The reflection point D (x4, y4) can be
simply quantified by equation (A6).

x4; y4ð Þ ¼ x2;−b−y2ð Þ (A6)
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