
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Engineering Management and Systems
Engineering Faculty Research & Creative Works

Engineering Management and Systems
Engineering

01 Nov 2016

Multiobjective System of Systems Architecting with Performance Multiobjective System of Systems Architecting with Performance

Improvement Funds Improvement Funds

Hadi Farhangi

Dincer Konur
Missouri University of Science and Technology, konurd@mst.edu

Cihan H. Dagli
Missouri University of Science and Technology, dagli@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/engman_syseng_facwork

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

Recommended Citation Recommended Citation
H. Farhangi et al., "Multiobjective System of Systems Architecting with Performance Improvement Funds,"
Procedia Computer Science, vol. 95, pp. 119-125, Elsevier, Nov 2016.
The definitive version is available at https://doi.org/10.1016/j.procs.2016.09.301

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Engineering Management and Systems Engineering Faculty Research & Creative Works by
an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use
including reproduction for redistribution requires the permission of the copyright holder. For more information,
please contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229297025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/engman_syseng_facwork
https://scholarsmine.mst.edu/engman_syseng_facwork
https://scholarsmine.mst.edu/engman_syseng
https://scholarsmine.mst.edu/engman_syseng
https://scholarsmine.mst.edu/engman_syseng_facwork?utm_source=scholarsmine.mst.edu%2Fengman_syseng_facwork%2F622&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholarsmine.mst.edu%2Fengman_syseng_facwork%2F622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/j.procs.2016.09.301
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:scholarsmine@mst.edu

 Procedia Computer Science 95 (2016) 119 – 125

Available online at www.sciencedirect.com

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of scientific committee of Missouri University of Science and Technology
doi: 10.1016/j.procs.2016.09.301

ScienceDirect

Complex Adaptive Systems, Publication 6
Cihan H. Dagli, Editor in Chief

Conference Organized by Missouri University of Science and Technology
2016 - Los Angeles, CA

Multiobjective System of Systems Architecting with Performance
Improvement Funds

Hadi Farhangia, Dincer Konura*, Cihan H. Daglia

aMissouri University of Science and Technology, Engineering Management and Systems Engineering, 600 W. 14th Street, Rolla MO, 65409, USA

Abstract

A System of Systems architecting problem aims to determine a selection of systems, which are capable of providing a set of
desired capabilities. A SoS architect usually has multiple objectives in generating efficient architectures such as minimization of
the total cost and maximization the overall performance of the SoS. This study formulates a biobjective SoS architecting problem
with these two objectives. Here, we consider that, by allocating funds to the systems, the SoS architect can improve the
performance of the capabilities the systems can provide. The resulting architecting problem is a biobjective mixed-integer linear
programming model. Specifically, the system selection decisions are binary while the fund allocation decisions are continuous.
We first discuss the application of the adaptive epsilon-constraint method as an exact method for solving this model. Then, we
propose an evolutionary method and compare its performance with the exact method. Finally, a numerical study demonstrates the
benefits of fund allocation in the SoS architecting process.
© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of scientific committee of Missouri University of Science and Technology.

Keywords: System of Systems; Multiobjective optimization; Performance Improvement

1. Introduction and Literature Review

The system of systems (SoS) is a system, whose components are systems themselves1. SoS needs a set of
capabilities and these capabilities come from systems that form the SoS2. It is worth mentioning the variety of

* Corresponding author. Tel.: +1-573-341-7256.
E-mail address: konurd@mst.edu

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of scientific committee of Missouri University of Science and Technology

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.09.301&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.09.301&domain=pdf

120 Hadi Farhangi et al. / Procedia Computer Science 95 (2016) 119 – 125

applications of SoS in military, engineering, healthcare, and transportation3,4,5. During the construction of a SoS, the
architect typically accounts for multiple objectives such as the minimization of the total cost and maximization of
the overall performance of the constructed SoS6. This study assumes that the cost minimization and performance
maximization are the SoS architect’s objectives and accordingly formulates a biobjective SoS architecting problem.
Here, we consider that the SoS architect can improve the performance of the capabilities that the selected systems
can provide by allocating funds to them. A similar study of Konur and Dagli6 investigates a related topic, where the
systems negotiate with the SoS architect for fund allocation. In particular, Konur and Dagli6 assume that the systems
individually decide on how to utilize the allocated funds for achieving maximum performance improvements in their
capabilities. Here, on the other hand, we consider that the SoS architect directs how the systems should use the
allocated funds. Specifically, the SoS architect specifies how much of the allocated fund should be utilized in the
improvements of the capabilities that a selected system can provide.

Note that it is possible to increase the overall performance of the SoS by allocating more funds to the systems;
however, this will also increase the total cost of the SoS. We define the overall SoS performance as the sum of the
performances of the capabilities provided by the selected systems. The total cost of the SoS is defined as the sum of
the fixed capability costs charged by the systems, the funds allocated to the systems, and the cost of interfaces used
to assure connectivity of the SoS architecture. The problem of interest in this study can be defined as follows: Which
systems should be selected and how much funds should be allocated to each capability of the selected systems in
order to minimize the total cost and maximize the overall performance of the SoS guaranteeing that the SoS is
capable and connected? In Section 2, we give the formulation of this problem. Section 3 explains the solution
analysis. The numerical studies are summarized in Section 4 and Section 5 concludes the paper.

2. Problem Formulation

The SoS architecting problem is to find a subset of the available systems to provide the entire set of
capabilities such that the resulting SoS is connected and it shows high performance and low cost. In addition, a total
fund amount of is available to assign to the selected systems in order to improve their performances in providing
capabilities. Therefore, in addition to which systems to select, SoS architect should also decide how to allocate this
total fund among the selected systems. Particularly, let capabilities be indexed by such that , where =
{1, … , }, and systems indexed by such that , where = {1, … , }. Let us define = 1 if system is included
in the SoS and = 0 otherwise, and let be the × 1 vector of ’s. For SoS connectivity, a variable is
defined such that = 1 if both systems and are included in the SoS, i.e. = 1 and = 1, and = 0
otherwise. Let be the × matrix of values. For fund allocation decisions, we define continuous variables

0 as the amount of funds that is being allocated to system to improve its performance in providing
capability . Let be the × matrix of values.

A system can provide some or all of the capabilities required by the SoS. Let = 1 if system can provide
capability and = 0 otherwise, and be the × matrix of values. Moreover, we define and as
the cost and the performance (without any additional improvement spending) of system in providing capability ,
respectively. Furthermore, to assure connectivity, interfaces should be used between any pair of selected systems.
Let be the cost of connecting system to system with an interface. In this study, similar to Konur and Dagli6,
we assume that the performance of systems in providing capabilities can be improved linearly by the fund
allocations. Specifically, let = be the increase over by allocating amount of funds to system ’s
capability , where defines the rate of improvement in the performance of system in providing capability .
Since, there should be a natural upper bound on the maximum performance achievable, we also define as the
upper bound for the amount of funds that can be allocated to system to improve capability .

Based on the above discussion, the SoS problem of interest (P-SoS) can be formulated as follows:

max (,) = +
min (, ,) = + , +

. . 1 (1)
+ + 1 , , > (2)

121 Hadi Farhangi et al. / Procedia Computer Science 95 (2016) 119 – 125

(3)
(4)

0 , (5)
{0,1} (6)

{0,1} , , > (7)

The first objective is the maximization of the total performance (,) , where the first part is the total
performance of the included systems in providing their capabilities and the last part is the total improvement in
performances after the allocation of funds.

Linear summation of the individual performances of systems, as the first part of this objective function, is rather a
simplistic approach to capture the performance of SoS. In real world application, this part of the objective can be
replaced by a weighted sum of individual performances given that the weights that are known beforehand by the
decision maker. The second objective function is the minimization of the total cost (, ,), where the first part
is the total cost of the selected systems in providing their capabilities, the second part is the cost of interfaces, and
the last part is the total allocated funds. Constraints (1) guarantee that at least one system provides each capability.
These constraints are covering constraints, which make P-SoS, . Constraints (2) ensure that every pair of
selected systems in the SoS are connected. Since this set of constraints are symmetric, in which + +

1 and + + 1 are equivalent, we only consider the first set by index relation > .
Constraints (3) assure that if system is selected, the total allocated fund to this system cannot exceed the maximum
funds available; if it is not selected, we do not allocate any fund to it. Constraint (4) guarantees that the total
allocated funds is less than the available fund. Constraints (5) define non-negativity and upper bound for ; if =
1, the upper bound is , otherwise the upper bound is zero, which makes = 0. Constraints (6) and (7) define the
rest of variables as binary variables.

3. Solution Analysis

P-SoS is a biobjective mixed integer linear programming problem and due to the covering constraints (1), even
the single objective case is . To solve such a problem, one may reduce the two objectives into a single
one by using a weighted sum approach or it is possible to find a solution that is at the lowest distance to the
optimum of each objective8. In this work, however, our aim is to approximate the set of Pareto efficient solutions. A
solution = [, ,] is a Pareto efficient solution for P-SoS if and only if there exists no other solution =
[, ,] such that (,) (,) and (, ,) (, ,) with at least one of the inequalities
being strict. Due to the complexity of the problem, we next develop an evolutionary algorithm that approximates a
set of Pareto efficient solutions in two stages. At the first stage, the method generates a feasible SoS, i.e., , say ,
and generates = based on considering the connections between any pairs of systems that are presented in .
At the second stage, Pareto efficient fund allocations for the given SoS (,) are generated by solving the
following biobjective linear programming problem.

P- : max () =

min () =

. . Eqs. (3)-(5).

The problem P- is a biobjective linear programming problem and is the direct result of P-SoS, when =
and = . The objective functions of this problem are shown with () as the total performance and () as
the total cost, which both are functions of . It will be discussed later that the efficient solutions to this problem
provide a trade-off for fund allocation to systems considering both objectives of this problem.

122 Hadi Farhangi et al. / Procedia Computer Science 95 (2016) 119 – 125

The basic steps of the two-stage evolutionary algorithm are similar to the other works in the literature8,9, which
are explained next.

(1) Chromosome representation and initialization: We define the vector as the chromosome. To generate a
feasible chromosome, we randomly generate a binary vector of size and check if all capabilities are provided.
If a capability is missing, we select a non-selected system which can provide the missing capability (replace 0 by
1). Using this approach, we generate chromosomes as the initial population.

(2) Chromosome evaluation and finding vectors and : Given a feasible , vector is generated by considering
the connections between any two pairs of systems that are selected in . However, to compute vector , P-
should be solved. To do so, we use the classical -constraint method, which solves min{TC(F): TP(F)

, Eqs. (4), (5), (8)} for increasing values of . This way, for a given chromosome , we generate number of
Pareto efficient fund vectors, namely , ,…, and get , , , … , , , solutions for P-SoS.
Once these solutions are generated for each chromosome in the population, the evaluation step determines the set
of Pareto efficient , , solutions by pairwise comparison of all such solutions. The unique chromosomes
generating at least one Pareto efficient , , are accepted as the parent chromosomes for the next
population.

(3) Mutation: Given a set of parent chromosomes, we perform adding, dropping, and swapping mutations. For the
adding mutation, we consider each 0 in a given vector and we replace it with 1 to generate a new chromosome.
If there are of 0’s in a chromosome, adding mutation will generate new feasible chromosomes. For the
dropping mutation, we consider each 1 in the vector and we drop make it 0. If the resulting chromosome is still
feasible, we accept it. For swapping mutation, we find all 0’s and 1’s. We swap any pair of 0’s and 1’s and if the
resulting vector is feasible, we accept it. In addition to these mutation operators, we randomly generate new
feasible solutions using the process described in step (1).

(4) Termination: The algorithm will stop if the parent chromosomes do not change for consecutive iterations.

To verify the performance of the above evolutionary algorithm, we compute a subset of the set of efficient
solutions for P-SoS using the adaptive constraint method. The method is a variation of the adaptive

constraint method of Laumann, 20067. The adaptive constraint version of P-SoS, i.e. , is created by
adding objective in constraints.

min (, ,)
. . (,)

 Eqs. (1) (7)
By varying values within bounds of objective and updating it based on the latest evaluation of this function, we
can find a subset of Pareto efficient solutions. That is, different than increasing with equal steps as in the classical
-constraint method, we increase it based on the latest solution. The reason for this as follows. Since, this problem is

a mixed-integer model, the bound on TP is not necessarily tight. Therefore, by considering the TP of the latest
solution, we avoid solving unnecessary mixed-integer models.

4. Numerical Analysis

In this section, we perform two sets of numerical study. First, we compare the adaptive constraint method
with the evolutionary method we presented in the previous section. Second, we use the evolutionary algorithm to
investigate the effects of allocating funds in the SoS architecture. The analysis is performed mainly on the integer
part of solutions, i.e. vector . The rationale behind the decision is the fact that one can generate and very easy
for a given , as discussed in the step (2) of the evolutionary algorithm.

4.1. Comparison of the Algorithms

To compare the adaptive constraint method with the evolutionary method, we consider 9 problem classes
corresponding to each combination of {3,6,9} and {3,6,9} . For each class, 10 instances are randomly
generated, in total 90 instances, and the averages of the results over these 10 problem instances are considered. All

123 Hadi Farhangi et al. / Procedia Computer Science 95 (2016) 119 – 125

90 instances are solved by both algorithms. For every instance, parameters are randomly generated as
[20,40], [20,40], [1,5], [5,10], and [1,4], where [,] is a uniform discrete

distribution between and . For this study, we assumed that the total available fund is equal to the summation of
the maximum individual funds that we can assign to each system, i.e. = as we do not allocate funds to
a system to improve a capability that it originally cannot provide. Finally, we generated the matrix as a binary
random matrix of size × . Then, every row of the matrix is checked to see if there is a system that can provide
the corresponding capability. If not, we randomly select a system to provide that capability. Furthermore, the
settings of evolutionary algorithm are = and = .

Table 1 summarizes the results of comparison between the algorithms. We only compared the number of unique
integer parts, i.e. vector that we refer to as the Unique Integer Part (UIP), in the final set of returned solutions by
the algorithms. Superscripts and are used to address adaptive constraints and evolutionary algorithm,
respectively. In this table, | | is the number of unique integer parts (NUIP) of the set of solutions and records
the computational time in seconds. In addition, # and | | show the number of evaluated populations and the
average size of the population of the evolutionary algorithm, respectively. The results show that in average 97.22%
of NUIP of the solutions returned by the evolutionary algorithm are indeed integer parts of the Pareto efficient
solutions returned by the adaptive constraint method. Furthermore, evolutionary algorithm requires less
computational time on average. These confirm the quality of evolutionary algorithm.

Table 1 Comparison of Exact and Approximated Algorithms

| | | | % in # | |

3
3 3.3 3.3 100% 0.71 0.05 3.8 9.91
6 15.7 20.7 95.59% 2.68 0.39 5.2 54.99
9 27.9 48.6 93.75% 4.87 2.46 7 228.25

6
3 2.3 2.3 100% 0.74 0.05 3.2 7.98
6 13.7 19.4 97.22% 4.28 0.32 4.7 43.22
9 33.3 57.7 94.87% 11.86 2.66 6.1 249.42

9
3 1.5 1.5 100% 0.58 0.08 3 5.43
6 9.7 11.9 98.75% 5.67 0.20 4.1 25.25
9 32.3 62 94.79% 20.37 2.76 5.7 251.61

Mean 15.52 25.27 97.22% 5.75 0.99 4.76 97.34

4.2. Analysis on Funds

In this section, we investigate the case of a SoS architecting with funds and the case of SoS architecting without
fund allocations. Setting of the numerical analysis for this part is very similar to Section 4.1, except the size of
problem instances is increased. Here, we consider every combination of {4,8,12} and {4,8,12} . The
notation is as follows: superscripts and refer to the no-funding case and the funding case, respectively. The
notations for | |, , # , and | | are similar to the previous subsection. In addition, the following tables have
a column for | |, which is the NUIP that we get by combining all the non-dominated solutions of the two cases.
We refer to as the Union of Unique Integer Parts (Union-UIP) and its size as the Union-NUIP.

Table 2 summarizes the quantitative comparison of non-funding SoS versus funding SoS, while Table 3
demonstrates the qualitative comparison. The following observations are based on these tables:

On average, SoS architecting without funds generates less Pareto efficient SoS architectures compared to the
SoS architecting with fund allocations (see Table 1 for | | vs. | |). This is because, some of the SoS
architectures may be dominated unless improvements are achieved by fund allocations. Also, as expected,
evolutionary algorithm evaluates more SoS architectures in case of fund allocations are allowed, which also is
the reason for higher computational time (see Table 1 for | | vs. | |).
In all of the 90 problem instances, 100% of UIP returned by SoS with funds appear within Union-UIP, while
this percentage for SoS without funds is 75%. That is, some of the Pareto efficient SoS architectures returned by

124 Hadi Farhangi et al. / Procedia Computer Science 95 (2016) 119 – 125

SoS architecting without funds are dominated by Pareto efficient SoS architectures enhanced with funds
returned by SoS architecting with funds. In addition, NUIP that is shared between SoS with and without funds
and Union-UIP is 71% of the NUIP of the Union-UIP. Finally, 99.94% of NUIP of the Union-UIP comes from
SoS with funds, while this percentage for SoS without funds is 71.85% in average.

These observations show that SoS architecting with funds can improve both objectives of SoS architecting and it
is recommended to allocate funds to systems to improve their performances.

Table 2 Quantitative Comparison of Non-funding vs. Funding

| | | | | | # # | | | |

4
4 5.1 4.9 5.1 0.04 0.07 3.70 3.80 5.62 13.94
8 37.2 35.5 37.2 0.72 1.30 6.00 6.00 50.60 141.10
12 88.5 80.4 88.4 4.73 13.07 7.60 7.50 264.38 1017.98

8
4 4.2 4.1 4.2 0.05 0.06 3.20 3.30 5.46 9.47
8 44.5 39.8 44.5 0.79 1.45 5.60 5.70 52.00 129.93
12 128.4 101.4 128.4 6.30 21.30 7.30 7.00 319.09 1197.38

12
4 2.4 2.4 2.4 0.04 0.04 3.10 3.10 3.13 7.49
8 45 43.6 45 0.86 1.46 5.40 5.30 55.59 132.17
12 141.9 138.3 141.5 8.53 25.25 7.20 6.60 349.37 1226.51

Average 55.24 50.04 55.19 2.45 7.11 5.46 5.37 122.80 430.66

Table 3 Qualitative Comparison of Non-funding vs. Funding

| |
| | | |

| |
| | | | | |

4
4 96.25% 100 % 94.17% 100% 94.17%
8 72.71% 100 % 71.93% 100% 71.93%

12 52.64% 100 % 47.87% 99.87% 47.74%

8
4 96.33% 100 % 96.25% 100% 96.25%
8 74.20% 100 % 66.79% 100% 66.79%

12 57.88% 100 % 46.63% 100% 46.63%

12
4 100% 100 % 100% 100% 100%
8 72.44% 100 % 70.53% 100% 70.53%

12 53.87% 100 % 52.45% 99.57% 52.02%
Average 75.15% 100 % 71.85% 99.94% 71.78%

5. Conclusion

This study investigates a SoS architecting problem, which allows allocating funds to the systems for performance
improvements. The problem is formulated as a biobjective mixed integer linear programming model. An
evolutionary method for Pareto front approximation is proposed and the quality of algorithm is compared to the -
constraint method. Through the comparison, the quality of evolutionary algorithm is confirmed. The next section of
the numerical study demonstrates that by fund allocation, better solutions can be achieved that can improve both
objectives.

125 Hadi Farhangi et al. / Procedia Computer Science 95 (2016) 119 – 125

Acknowledgements

This work is partially supported by the US Department of Defense through the Systems Engineering Research
Center (SERC) under Contract HQ0034-13-D-0004. SERC is a federally funded University Affiliated Research
Center managed by Stevens Institute of Technology.

References

1. Maier MW. Architecting principles for systems-of-systems. In: INCOSE International Symposium; 1996 Jul 1. p. 565-573.
2. Agarwal S, Pape LE, Dagli CH, Ergin NK, Enke D, Gosavi A, Qin R, Konur D, Wang R, Gottapu RD. Flexible and Intelligent Learning
Architectures for SoS (FILA-SoS): Architectural Evolution in Systems-of-Systems. Procedia Computer Science. 2015;44:76-85.
3. Jamshidi MO. System of systems engineering-New challenges for the 21st century. Aerospace and Electronic Systems Magazine, IEEE; 2008
May;23(5): p.4-19.
4. Jamshidi M. Introduction to system of systems. System of Systems Engineering. Innovations for the 21st Century; Jamshidi, M., editor. 2008;
13: 1-43.
5. Jamshidi M, editor. System of systems engineering: innovations for the twenty-first century. John Wiley & Sons; 2011.
6. Konur D, Dagli CH. Military system of systems architecting with individual system contracts. Optimization Letters. 2015;9(8):1749-67.
7. Laumanns M, Thiele L, Zitzler E. An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method.
European Journal of Operational Research. 2006;169(3):932-942.
8. Konur D, Farhangi H, Dagli CH. On the Flexibility of Systems in System of Systems Architecting. Procedia Computer Science. 2014;36:65-
71.
9. Konur D, Farhangi H, Dagli CH. A multi-objective military system of systems architecting problem with inflexible and flexible systems:
formulation and solution methods. OR Spectrum. 2016:1-40.

	Multiobjective System of Systems Architecting with Performance Improvement Funds
	Recommended Citation

	Multiobjective System of Systems Architecting with Performance Improvement Funds

