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Abstract

A System of Systems architecting problem aims to determine a selection of systems, which are capable of providing a set of 
desired capabilities. A SoS architect usually has multiple objectives in generating efficient architectures such as minimization of 
the total cost and maximization the overall performance of the SoS. This study formulates a biobjective SoS architecting problem
with these two objectives. Here, we consider that, by allocating funds to the systems, the SoS architect can improve the 
performance of the capabilities the systems can provide. The resulting architecting problem is a biobjective mixed-integer linear 
programming model. Specifically, the system selection decisions are binary while the fund allocation decisions are continuous.
We first discuss the application of the adaptive epsilon-constraint method as an exact method for solving this model. Then, we 
propose an evolutionary method and compare its performance with the exact method. Finally, a numerical study demonstrates the
benefits of fund allocation in the SoS architecting process.
© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of scientific committee of Missouri University of Science and Technology.
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1. Introduction and Literature Review

The system of systems (SoS) is a system, whose components are systems themselves1. SoS needs a set of 
capabilities and these capabilities come from systems that form the SoS2. It is worth mentioning the variety of 
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applications of SoS in military, engineering, healthcare, and transportation3,4,5. During the construction of a SoS, the 
architect typically accounts for multiple objectives such as the minimization of the total cost and maximization of
the overall performance of the constructed SoS6. This study assumes that the cost minimization and performance 
maximization are the SoS architect’s objectives and accordingly formulates a biobjective SoS architecting problem.
Here, we consider that the SoS architect can improve the performance of the capabilities that the selected systems 
can provide by allocating funds to them. A similar study of Konur and Dagli6 investigates a related topic, where the 
systems negotiate with the SoS architect for fund allocation. In particular, Konur and Dagli6 assume that the systems 
individually decide on how to utilize the allocated funds for achieving maximum performance improvements in their 
capabilities. Here, on the other hand, we consider that the SoS architect directs how the systems should use the 
allocated funds. Specifically, the SoS architect specifies how much of the allocated fund should be utilized in the 
improvements of the capabilities that a selected system can provide.  

Note that it is possible to increase the overall performance of the SoS by allocating more funds to the systems; 
however, this will also increase the total cost of the SoS. We define the overall SoS performance as the sum of the 
performances of the capabilities provided by the selected systems. The total cost of the SoS is defined as the sum of 
the fixed capability costs charged by the systems, the funds allocated to the systems, and the cost of interfaces used 
to assure connectivity of the SoS architecture. The problem of interest in this study can be defined as follows: Which 
systems should be selected and how much funds should be allocated to each capability of the selected systems in 
order to minimize the total cost and maximize the overall performance of the SoS guaranteeing that the SoS is 
capable and connected? In Section 2, we give the formulation of this problem. Section 3 explains the solution
analysis. The numerical studies are summarized in Section 4 and Section 5 concludes the paper.

2. Problem Formulation

The SoS architecting problem is to find a subset of the available systems to provide the entire set of 
capabilities such that the resulting SoS is connected and it shows high performance and low cost. In addition, a total 
fund amount of is available to assign to the selected systems in order to improve their performances in providing 
capabilities. Therefore, in addition to which systems to select, SoS architect should also decide how to allocate this
total fund among the selected systems. Particularly, let capabilities be indexed by such that  , where  =
{1, … , }, and systems indexed by such that , where = {1, … , }. Let us define = 1 if system is included 
in the SoS and = 0 otherwise, and let be the × 1 vector of ’s. For SoS connectivity, a variable is 
defined such that = 1 if both systems and are included in the SoS, i.e. = 1 and = 1, and = 0
otherwise. Let be the × matrix of values. For fund allocation decisions, we define continuous variables

0 as the amount of funds that is being allocated to system to improve its performance in providing 
capability . Let be the × matrix of values.

A system can provide some or all of the capabilities required by the SoS. Let = 1 if system can provide 
capability and = 0 otherwise, and be the × matrix of values. Moreover, we define and as
the cost and the performance (without any additional improvement spending) of system in providing capability ,
respectively. Furthermore, to assure connectivity, interfaces should be used between any pair of selected systems. 
Let be the cost of connecting system to system with an interface. In this study, similar to Konur and Dagli6,
we assume that the performance of systems in providing capabilities can be improved linearly by the fund 
allocations. Specifically, let = be the increase over by allocating amount of funds to system ’s 
capability , where defines the rate of improvement in the performance of system in providing capability .
Since, there should be a natural upper bound on the maximum performance achievable, we also define as the 
upper bound for the amount of funds that can be allocated to system to improve capability .

Based on the above discussion, the SoS problem of interest (P-SoS) can be formulated as follows:

max ( , ) = +
min ( , , ) = + , +

. . 1 (1) 
+ + 1 , , > (2) 
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(3) 
(4) 

0 , (5) 
{0,1} (6) 

{0,1} , , > (7) 

The first objective is the maximization of the total performance  ( , ) , where the first part is the total 
performance of the included systems in providing their capabilities and the last part is the total improvement in 
performances after the allocation of funds. 

Linear summation of the individual performances of systems, as the first part of this objective function, is rather a 
simplistic approach to capture the performance of SoS. In real world application, this part of the objective can be 
replaced by a weighted sum of individual performances given that the weights that are known beforehand by the 
decision maker. The second objective function is the minimization of the total cost ( , , ), where the first part 
is the total cost of the selected systems in providing their capabilities, the second part is the cost of interfaces, and 
the last part is the total allocated funds. Constraints (1) guarantee that at least one system provides each capability. 
These constraints are covering constraints, which make P-SoS, . Constraints (2) ensure that every pair of 
selected systems in the SoS are connected. Since this set of constraints are symmetric, in which + +

1 and + + 1 are equivalent, we only consider the first set by index relation  > .
Constraints (3) assure that if system is selected, the total allocated fund to this system cannot exceed the maximum 
funds available; if it is not selected, we do not allocate any fund to it. Constraint (4) guarantees that the total 
allocated funds is less than the available fund. Constraints (5) define non-negativity and upper bound for ; if =
1, the upper bound is , otherwise the upper bound is zero, which makes = 0. Constraints (6) and (7) define the 
rest of variables as binary variables.

3. Solution Analysis

P-SoS is a biobjective mixed integer linear programming problem and due to the covering constraints (1), even 
the single objective case is . To solve such a problem, one may reduce the two objectives into a single 
one by using a weighted sum approach or it is possible to find a solution that is at the lowest distance to the 
optimum of each objective8. In this work, however, our aim is to approximate the set of Pareto efficient solutions. A
solution = [ , , ] is a Pareto efficient solution for P-SoS if and only if there exists no other solution =
[ , , ] such that ( , ) ( , ) and ( , , ) ( , , ) with at least one of the inequalities 
being strict. Due to the complexity of the problem, we next develop an evolutionary algorithm that approximates a
set of Pareto efficient solutions in two stages. At the first stage, the method generates a feasible SoS, i.e., , say ,
and generates = based on considering the connections between any pairs of systems that are presented in .
At the second stage, Pareto efficient fund allocations for the given SoS ( , ) are generated by solving the 
following biobjective linear programming problem.

P- : max ( ) =

min ( ) =

. . Eqs. (3)-(5).  

The problem P- is a biobjective linear programming problem and is the direct result of P-SoS, when =
and = . The objective functions of this problem are shown with ( ) as the total performance and ( ) as 
the total cost, which both are functions of . It will be discussed later that the efficient solutions to this problem 
provide a trade-off for fund allocation to systems considering both objectives of this problem. 
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The basic steps of the two-stage evolutionary algorithm are similar to the other works in the literature8,9, which 
are explained next.

(1) Chromosome representation and initialization: We define the vector as the chromosome. To generate a 
feasible chromosome, we randomly generate a binary vector of size and check if all capabilities are provided. 
If a capability is missing, we select a non-selected system which can provide the missing capability (replace 0 by 
1). Using this approach, we generate chromosomes as the initial population. 

(2) Chromosome evaluation and finding vectors and : Given a feasible , vector is generated by considering 
the connections between any two pairs of systems that are selected in . However, to compute vector , P-
should be solved. To do so, we use the classical -constraint method, which solves  min{TC(F): TP(F)

, Eqs. (4), (5), (8)} for increasing values of . This way, for a given chromosome , we generate number of 
Pareto efficient fund vectors, namely  , ,…, and get , , , … , , , solutions for P-SoS.
Once these solutions are generated for each chromosome in the population, the evaluation step determines the set 
of Pareto efficient , , solutions by pairwise comparison of all such solutions. The unique chromosomes 
generating at least one Pareto efficient , , are accepted as the parent chromosomes for the next 
population.

(3) Mutation: Given a set of parent chromosomes, we perform adding, dropping, and swapping mutations. For the 
adding mutation, we consider each 0 in a given vector and we replace it with 1 to generate a new chromosome.
If there are of 0’s in a chromosome, adding mutation will generate new feasible chromosomes. For the 
dropping mutation, we consider each 1 in the vector and we drop make it 0. If the resulting chromosome is still 
feasible, we accept it. For swapping mutation, we find all 0’s and 1’s. We swap any pair of 0’s and 1’s and if the 
resulting vector is feasible, we accept it. In addition to these mutation operators, we randomly generate new 
feasible solutions using the process described in step (1). 

(4) Termination: The algorithm will stop if the parent chromosomes do not change for consecutive iterations.

To verify the performance of the above evolutionary algorithm, we compute a subset of the set of efficient 
solutions for P-SoS using the adaptive constraint method. The method is a variation of the adaptive 

constraint method of Laumann, 20067. The adaptive constraint version of P-SoS, i.e. , is created by 
adding objective in constraints. 

min   ( , , )             
. .    ( , )          

  Eqs. (1) (7)
By varying values within bounds of objective and updating it based on the latest evaluation of this function, we 
can find a subset of Pareto efficient solutions. That is, different than increasing with equal steps as in the classical 
-constraint method, we increase it based on the latest solution. The reason for this as follows. Since, this problem is 

a mixed-integer model, the bound on TP is not necessarily tight. Therefore, by considering the TP of the latest 
solution, we avoid solving unnecessary mixed-integer models. 

4. Numerical Analysis

In this section, we perform two sets of numerical study. First, we compare the adaptive constraint method 
with the evolutionary method we presented in the previous section. Second, we use the evolutionary algorithm to 
investigate the effects of allocating funds in the SoS architecture. The analysis is performed mainly on the integer 
part of solutions, i.e. vector . The rationale behind the decision is the fact that one can generate and very easy
for a given , as discussed in the step (2) of the evolutionary algorithm.

4.1. Comparison of the Algorithms

To compare the adaptive constraint method with the evolutionary method, we consider 9 problem classes 
corresponding to each combination of {3,6,9} and  {3,6,9} . For each class, 10 instances are randomly 
generated, in total 90 instances, and the averages of the results over these 10 problem instances are considered. All 
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90 instances are solved by both algorithms. For every instance, parameters are randomly generated as 
[20,40], [20,40], [1,5], [5,10], and [1,4], where [ , ] is a uniform discrete 

distribution between and . For this study, we assumed that the total available fund is equal to the summation of 
the maximum individual funds that we can assign to each system, i.e. = as we do not allocate funds to 
a system to improve a capability that it originally cannot provide. Finally, we generated the matrix as a binary 
random matrix of size × . Then, every row of the matrix is checked to see if there is a system that can provide 
the corresponding capability. If not, we randomly select a system to provide that capability. Furthermore, the 
settings of evolutionary algorithm are = and = .

Table 1 summarizes the results of comparison between the algorithms. We only compared the number of unique 
integer parts, i.e. vector that we refer to as the Unique Integer Part (UIP), in the final set of returned solutions by 
the algorithms. Superscripts and are used to address adaptive constraints and evolutionary algorithm, 
respectively. In this table, | | is the number of unique integer parts (NUIP) of the set of solutions and records 
the computational time in seconds. In addition, # and | | show the number of evaluated populations and the 
average size of the population of the evolutionary algorithm, respectively. The results show that in average 97.22%
of NUIP of the solutions returned by the evolutionary algorithm are indeed integer parts of the Pareto efficient 
solutions returned by the adaptive constraint method. Furthermore, evolutionary algorithm requires less 
computational time on average. These confirm the quality of evolutionary algorithm.

Table 1 Comparison of Exact and Approximated Algorithms

| | | | % in # | |

3
3 3.3 3.3 100% 0.71 0.05 3.8 9.91
6 15.7 20.7 95.59% 2.68 0.39 5.2 54.99
9 27.9 48.6 93.75% 4.87 2.46 7 228.25

6
3 2.3 2.3 100% 0.74 0.05 3.2 7.98
6 13.7 19.4 97.22% 4.28 0.32 4.7 43.22
9 33.3 57.7 94.87% 11.86 2.66 6.1 249.42

9
3 1.5 1.5 100% 0.58 0.08 3 5.43
6 9.7 11.9 98.75% 5.67 0.20 4.1 25.25
9 32.3 62 94.79% 20.37 2.76 5.7 251.61

Mean 15.52 25.27 97.22% 5.75 0.99 4.76 97.34

4.2. Analysis on Funds

In this section, we investigate the case of a SoS architecting with funds and the case of SoS architecting without 
fund allocations. Setting of the numerical analysis for this part is very similar to Section 4.1, except the size of 
problem instances is increased. Here, we consider every combination of {4,8,12} and {4,8,12} . The 
notation is as follows: superscripts and refer to the no-funding case and the funding case, respectively. The 
notations for | |, , # , and | | are similar to the previous subsection. In addition, the following tables have 
a column for | |, which is the NUIP that we get by combining all the non-dominated solutions of the two cases.
We refer to as the Union of Unique Integer Parts (Union-UIP) and its size as the Union-NUIP. 

Table 2 summarizes the quantitative comparison of non-funding SoS versus funding SoS, while Table 3 
demonstrates the qualitative comparison. The following observations are based on these tables:

On average, SoS architecting without funds generates less Pareto efficient SoS architectures compared to the 
SoS architecting with fund allocations (see Table 1 for | | vs. | |). This is because, some of the SoS 
architectures may be dominated unless improvements are achieved by fund allocations. Also, as expected, 
evolutionary algorithm evaluates more SoS architectures in case of fund allocations are allowed, which also is 
the reason for higher computational time (see Table 1 for | | vs. | |). 
In all of the 90 problem instances, 100% of UIP returned by SoS with funds appear within Union-UIP, while 
this percentage for SoS without funds is 75%. That is, some of the Pareto efficient SoS architectures returned by 
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SoS architecting without funds are dominated by Pareto efficient SoS architectures enhanced with funds 
returned by SoS architecting with funds. In addition, NUIP that is shared between SoS with and without funds 
and Union-UIP is 71% of the NUIP of the Union-UIP. Finally, 99.94% of NUIP of the Union-UIP comes from 
SoS with funds, while this percentage for SoS without funds is 71.85% in average.

These observations show that SoS architecting with funds can improve both objectives of SoS architecting and it 
is recommended to allocate funds to systems to improve their performances.

Table 2 Quantitative Comparison of Non-funding vs. Funding

| | | | | | # #  | | | |

4
4 5.1 4.9 5.1 0.04 0.07 3.70 3.80 5.62 13.94
8 37.2 35.5 37.2 0.72 1.30 6.00 6.00 50.60 141.10
12 88.5 80.4 88.4 4.73 13.07 7.60 7.50 264.38 1017.98

8
4 4.2 4.1 4.2 0.05 0.06 3.20 3.30 5.46 9.47
8 44.5 39.8 44.5 0.79 1.45 5.60 5.70 52.00 129.93
12 128.4 101.4 128.4 6.30 21.30 7.30 7.00 319.09 1197.38

12
4 2.4 2.4 2.4 0.04 0.04 3.10 3.10 3.13 7.49
8 45 43.6 45 0.86 1.46 5.40 5.30 55.59 132.17
12 141.9 138.3 141.5 8.53 25.25 7.20 6.60 349.37 1226.51

Average 55.24 50.04 55.19 2.45 7.11 5.46 5.37 122.80 430.66

Table 3 Qualitative Comparison of Non-funding vs. Funding

| |
| | | |

| |
| | | | | |

4
4 96.25% 100 % 94.17% 100% 94.17%
8 72.71% 100 % 71.93% 100% 71.93%

12 52.64% 100 % 47.87% 99.87% 47.74%

8
4 96.33% 100 % 96.25% 100% 96.25%
8 74.20% 100 % 66.79% 100% 66.79%

12 57.88% 100 % 46.63% 100% 46.63%

12
4 100% 100 % 100% 100% 100%
8 72.44% 100 % 70.53% 100% 70.53%

12 53.87% 100 % 52.45% 99.57% 52.02%
Average 75.15% 100 % 71.85% 99.94% 71.78%

5. Conclusion 

This study investigates a SoS architecting problem, which allows allocating funds to the systems for performance 
improvements. The problem is formulated as a biobjective mixed integer linear programming model. An 
evolutionary method for Pareto front approximation is proposed and the quality of algorithm is compared to the -
constraint method. Through the comparison, the quality of evolutionary algorithm is confirmed. The next section of 
the numerical study demonstrates that by fund allocation, better solutions can be achieved that can improve both 
objectives.
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