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1. Introduction 

It is a crucial requirement for manufacturing enterprises to be able to react on certain situations in the market or 
in the internal production environment in real-time. There is a strong need to leverage the latest big data 
technologies, novel machine learning and artificial intelligence methods for monitoring, predicting, and thereby 
improving the manufacturing processes. For this purpose it is necessary to operationalize big data driven predictive 
analytics by embedding it to the business, operation and manufacturing processes which supports human experts in 
making critical business decisions by providing actionable insights or acting as a fully automated decision making 
system [1]. The enterprises can create value only by making the predictive analytics as an integral part of the 
business processes and operational decisions [2].  

The main purpose of process monitoring in the manufacturing environment is identification of abnormalities and 
faults in process operations. Industrial process monitoring tasks are mainly categorized as (i) fault detection, (ii) 
fault identification and diagnosis, (iii) estimation of fault magnitudes, and (iv) product quality monitoring and 
control [3]. The techniques for monitoring the operational processes that rely on diverse analytical methods are 
classified into three groups: (i) quantitative model based methods, (ii) qualitative model based methods and (iii) 
process history based or data driven methods [4]. Model based approaches are based on first-principle methods and 
rely on the concept of residual analysis. They compute the residuals by comparing the estimated values with those of 
the a-priori known model and detect the anomalies. Although the model based methods are the most reliable 
approaches for process monitoring, such techniques suffer several disadvantages, as in the majority of cases the 
analytical description of newly developed complex industrial processes are unavailable and it is a time-consuming 
issue for domain experts to obtain it.  

On the contrary, process history based data-driven approaches don’t require a pre-determined model since the 
models are obtained from a large amount of available historical process data. As one of the most important data-
driven modelling approaches for diverse industrial process monitoring tasks, time series classification has found a 
broad range of applications in both discrete and process industries. However, current solutions to (multivariate) time 
series classification problems in the complicated process industry settings appear to be unsatisfactory since they 
heavily rely on domain experts for extracting the hand-crafted features. The requirements for real-time and 
immediate processing of stream data from Internet of Things (IoT) networks, and the concept drift which is referred 
as the evolution of behavior patterns in the sensor data over time, mitigate the effectiveness of conventional feature 
engineering and machine learning methods. Furthermore, the non-stationary, non-linear and dynamically evolving 
nature of the sensor data, which serve as valuable input for process monitoring modelling and the necessity to 
capture temporal relationship in the time series data, demand a novel design of machine learning algorithms. These 
approaches should satisfy the computational efficiency with a desired level of prediction accuracy and precision.  

The present paper aims to propose a multi-stage deep learning to address these challenges in the multivariate time 
series classification problem for monitoring the product quality in the process industry.  The contribution of the 
present paper is twofold: (i) the application of deep learning technique, particularly the stacked Long-Short Term 
Memory (LSTM) Autoencoders, to build hierarchical representations from unlabelled multivariate sensor time series 
data and (ii) the application of deep feedforward neural networks to make the cost-sensitive classifications by 
incorporating the knowledge by domain experts about the financial consequences of the prediction results. We 
evaluate the proposed approach in a real-world use case from the steel industry. As a process industry, the steel 
industry has quite special characteristics when evaluating data spanning the whole steel production process. In our 
case we attempt to predict the post-processing activities for semi-finished steel products depending on the steel 
surface quality. For this purpose we consider the sensor data which track various parameters of the steel continuous 
casting plant throughout the steel casting process and chemical data which describe the chemical compounds added 
to a steel casting mix based on the product qualities that are planned for an upcoming steel batch. 

The remainder of the paper is organized as follows: Section 2 introduces a brief review of the related works for 
time series classification problems. Section 3 provides an overview to the proposed multi-stage deep learning 
approach and discusses the LSTM Autoencoder stage for feature extraction and deep feedforward neural networks 
for classification problem. Section 4 introduces the case study. Section 5 introduces the experiment settings, 
evaluation metrics and empirical results. Section 6 concludes the paper and discusses the future work. 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.09.066&domain=pdf
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2. Related Work 

Time series classification was identified as one of the most challenging 10 problems in the data mining research 
and has already been investigated for a few decades [5]. The success of the distance based methods, particularly, k-
Nearest Neighbor (k-NN) classifiers for time series classifications, have already been documented [6]. The feature 
based time series classification approaches have also been applied in diverse domains ranging from healthcare to the 
statistical control of the industrial processes [7]. The main idea of the feature-based classification is the extraction of 
the discriminative features from the time series data and combining them to make classifications. However, these 
approaches are based on handcrafted feature engineering and demand intensive pre-processing work. The 
combination of different approaches such as Dynamic Time Warping + Decision Trees, Dynamic Time Warping + 
k-NN, and Gaussian Mixture Approaches, among others, have also found their applications in diverse domains [8]. 
Recently, a few attempts have been made aimed at the application of deep learning approaches for time series 
classification problems. In their comprehensive review, [9] examined the recent developments in deep learning and 
unsupervised feature learning for time-series problems. [10] and [11] proposed Convolutional Neural Networks 
(CNN) based deep learning framework for multivariate time series classification. 

3. Proposed Approach 

In the present study we proposed a multi-stage deep learning approach to address the classification based on the 
weakly labeled time series data obtained from multiple sensors. The classification with the weakly labeled data 
associates the long time series data with a single global class label. This in turn requires one to define the length of 
the sub-sequences by applying specific algorithms, such as sliding windows. The present study focuses on a 
predictive monitoring of production processes based on the product quality enabled by IoT networks and information 
obtained from the chemical analysis. The complicated nature of the problem reduces the effectiveness of handcrafted 
feature engineering process and demands the implementation of the models which are capable of representing the 
features from unlabeled data. Therefore, at the first stage of our methodology, we use the stacked LSTM 
Autoencoders as the baseline unsupervised model to extract the features from the time series data. After performing 
the necessary data processing stages, including the zero paddings and extracting the features automatically from the 
raw data with stacked LSTM Autoencoders at the second stage of the proposed approach, the deep feedforward 
neural networks is applied to perform the classification. 

3.1. LSTM Autoencoders 

Principal Component Analysis (PCA) is an effective method for reducing the data dimensionality and extracting 
the features. However, PCA can only model linear interdependencies among the features of the given dataset. 
Autoencoders are the non-linear generalization of PCA [12]. They are a family of neural networks which are well 
suited to explore the underlying structure in the dataset in an unsupervised (self-supervised) manner. Autoencoders 
encode the high dimensional input data to the hidden layers using the relevant activation functions and then try to 
reconstruct the original inputs through the decoder layer as accurate as possible. They are trained with the 
backpropagation algorithm with the purpose to minimize the reconstruction loss. Depending on the problem type and 
complexity various types of autoencoder models, such as simple or deep fully connected autoencoders, 
convolutional autoencoders, sequence-to-sequence autoencoders (LSTM Autoencoders), contractive autoencoders, 
and variational autoencoders, among others, can be applied to extract the features. 

RNN have been proofed to be effective for many sequence learning tasks like handwriting recognition, speech 
recognition, and sentiment analysis [13]. Distinguished from other topologies of neural networks, the output of RNN 
is fed back again to the net along with the next input data. This allows the RNN to remember previous states and 
learn interdependencies in time series data. However, since RNN are trained using backpropagation, they are 
affected by the vanishing gradient problem. Each time step in a time series introduces a new layer in the RNN and 
makes training the network very resource consuming. LSTM networks try to solve this problem by using the gating 
technique which estimates the relevance of future time steps and ignores irrelevant ones [13]. Since we focus on 
extracting the features from time series sensor data, we apply stacked LSTM Autoencoders to generate features, 
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which can be later feed to our classification algorithm, as described in the next sub-section. LSTM Autoencoder 
models have been successfully proposed for sequence-to-sequence learning tasks like machine translation [14], 
natural language generation and reconstruction [15], and image captioning [16].  

For each classification instance, there exist m� -dimensional vectors x���  representing time series data, where 
�	denotes the data source type and x��� describes the number of time steps for data source �. For each data source type 
�	we train a separate LSTM-Encoder  x��� as well as an LSTM-Decoder x���	�	���x���	 where	n	 � 	m�. Reducing the 
size of each time series to a constant n, the encoded feature vector of each sensor can just be concatenated and then 
passed to our classification model. While feeding all sensor data together in one LSTM might allow to reveal 
dependencies between different sensors this would come with the price of more heavy computations. The LSTM 
Autoencoders are trained to reconstruct the normal time-series for all steel slabs minimizing the reconstruction loss. 
However, the decoders are only used to find suitable encoding functions to be applied before the classification task.  
Figure 1 depicts the aforementioned model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Stacked LSTM Autoencoder and deep feedforward neural network 

3.2. Deep Feedforward Neural Networks 

Both academic and practical applications of deep neural networks have already provided very promising results in 
many applications from diverse domains [17]. Despite their superiority over the shallow prediction methods, it is a 
very challenging task to perform the learning on the big data due to complexities in parallelization of learning 
algorithms [18]. The necessity to overcome the shortcomings related to the learning processes of the traditional 
neural networks motivated the researchers to innovate diverse algorithmic approaches, such improving the 
optimizers, exploring novel approaches for parallelization, applying locally connected networks, etc., resulting in 
groundbreaking studies in the last decade [12], [18].  

In the present paper we apply fully connected deep feedforward neural networks to perform the classification 
based on the features extracted from the previous LSTM Autoencoders. The activation of the neuron through the 
network is related to the previous one with following formula [19]: 

 
																																																																															��� � ��� ����� ����� � ����                                                                  (1) 
 

where ��� is the activation of the ��� neuron in the ��� layer which is related to the activations in the  �� � ���� layer; 
� is the activation function; ����  is the weight from ��� neuron, and ��� is the bias of the ��� neuron in the ��� layer. 
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We examine the performance of our networks in different settings using diverse activation functions (see Table 

1). The hyperparameter and other advanced optimization parameters of the used deep neural network is presented in 
Table 2. 

Table 1. Non-linear activation functions                                                Table 2. Other Deep Learning Parameters 

4. Process Industry: Use Case 

The case study in the present paper concentrates on the proactive monitoring of the business and production 
processes at one of the major German steel producers with the aim to improve the product quality and customer 
satisfaction. Steel bar production processes are especially utmost important since almost half a million tons of steel 
are produced in this production facility annually. The variety in chemical properties of steel, the irregularities in the 
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defects. Depending on the type and grade of the surface defects, further processing of steel slabs must be carried out. 
Therefore, the production experts are required to perform the adaptation of the process instances and an intensive re-
planning of production processes in order to meet the customer demands without delays. In the present paper we 
apply the proposed multi-stage deep learning approach to predict the further processing activities by considering the 
time series sensor data and chemical properties of the steel. 

5. Empirical Results 

5.1. Process and Data 

In order to understand the used data for our time series classification problem, we provide a very brief description 
of the continuous casting process. Continuous casting process is the metallurgical process that enables to monitor 
the transformation of the molten liquid metal to the solid state for producing the semi-finished products. The process 
starts with the tapping of the molten steel from the ladle to the intermediate container, tundish. The melt with the 
temperature below 1600° C pours then into the mold through the casting tube. At this phase of the casting the liquid 
steel gets the solidified shell between the plates of the water-cooled mold. Furthermore, mold casting powder is 
continuously added to create a slag layer which eliminates the undesired inclusions from the liquid. The upward and 
downward oscillations of the mold can be observed, which may result in the depressions in the steel slab surface. 
After leaving the mold phase, the steel with the thin glowing shell is further cooled down with the water along the 
strand. After getting solidified completely, the cutting of the metal takes place and the slabs as semi-finished 
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The values of diverse continuous casting process variables may significantly affect the quality of the slabs. The 
irregular parameters may lead to the steel surface defects which are as a deviation from the normative appearance, 
form, size, macrostructure [20]. Cracks, laps, scratches and surface decarburizations are the main steel surface 
defects. Depending on the degree of these defects, various post-processing activities, such as steel pickling, surface 
grinding, etc., are required in order to bring the semi-finished products to the designed form. In the current practical 
applications the steel slabs are inspected visually through a multi-stage process that is very cost intensive. Therefore, 
in the present study we aim to predict the post-processing activities by considering different parameters obtained 
from the sensor installed along the strand, such as tundish mass, air ingress, mold level fluctuations, oscillation 
frequency, mold heat flux, mold water flow, casting speed, casting speed change, etc. We obtain data from 89 
sensors that control the values of the different variables in different positions. The size of analyzed sensor data was 3 
Terabytes. As mentioned above, we also used the data about the chemical properties of the steel that were strongly 
assumed to increase the prediction accuracy. 

5.2. Tools

The experiments were performed in two phases on two different computers, since the pre-processing stage had 
different computational requirements than the modeling stage. For the preprocessing phase we used a machine with 
6 TB disk space, 64 GB memory and 20 Intel Xeon CPUs E502-2630 v4 with 2.20GZ. As data manipulation 
software we used Apache Zeppelin on top of a standalone Apache Spark Cluster in a Docker environment [21].  

For the creation of the autoencoders, we used a machine with 16 GB memory and two NVIDEA GEFORCE 
GTX TITAN X. The autoencoders were implemented with the Keras package on top of Tensorflow in python 
notebooks [22]. The classification with deep feedforward neural networks were performed using the deeplearning4j 
library [23] on the top the WEKA data mining software [24] in order to be able to perform cost sensitive analysis. 

5.3. Evaluation Results 

To assess the performance of the proposed model, we used the evaluation metrics tailored to multi-class 
classification problems [25]. Particularly, we concentrated on two important measures, the average accuracy of the 
classifier and recall values for each class. The recall, the true positive rate for the particular class, is a very important 
measure for our case since we aim to avoid the false negatives. To be clear, if the semi-finished products have the 
surface defects and our model fails to identify them, then it may have undesired consequences - since in this case 
our predictive model suggests that the no further processing stages are required since steel slabs don’t have any 
surface problem. Relying on these results and sending the defective products to the customers may have 
significantly more monetary (also non-monetary) costs than the costs of inspecting the products.  

The multivariate time series classification problem for steel quality prediction based on the sensor data is not only 
complicated due to the irregularities in the input data but also imbalanced structure of the class distribution. In our 
case almost 85% of the steel slabs had the good quality and no further processing stage was required. The main 
challenge is identification of the slabs with failures. By applying our multi-stage deep learning classification model 
directly on the original data, we obtain the average accuracy of 87.49 %. This result can be interpreted positively for 
relatively balanced datasets (See Table 3). However, a deep look to the recall values of each class reveals that the 
direct application of the algorithm favors the majority class by getting a recall value 0.994. This value suggests that 
99.4% of the steel slabs with good quality were identified by the algorithm. The respective recall values for slabs 
with surface defects that required steel pickling or surface grinding were 0.026 (for both cases). These results imply 
that the algorithm could improve the results of the zero (base) model just slightly and was unable to detect the steel 
products (only 2.6% of them were identified) that require post-processing stages. Despite the obtained high 
accuracy, the direct application of the model fails to fulfill the requirements of the production managers. 

To overcome the problems related to the learning with imbalanced data, a set of diverse (i) data level techniques, 
(ii) algorithmic level approaches, and (iii) cost-sensitive methods were proposed [26]. The data level methods 
include randomly oversampling the minority class, randomly undersampling the majority class, informatively 
oversampling the minority class, informatively undersampling the majority class, and oversampling the small class 
by generating new synthetic data. The algorithm level approaches investigate the possibilities of adjusting the 
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We examine the performance of our networks in different settings using diverse activation functions (see Table 
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The values of diverse continuous casting process variables may significantly affect the quality of the slabs. The 
irregular parameters may lead to the steel surface defects which are as a deviation from the normative appearance, 
form, size, macrostructure [20]. Cracks, laps, scratches and surface decarburizations are the main steel surface 
defects. Depending on the degree of these defects, various post-processing activities, such as steel pickling, surface 
grinding, etc., are required in order to bring the semi-finished products to the designed form. In the current practical 
applications the steel slabs are inspected visually through a multi-stage process that is very cost intensive. Therefore, 
in the present study we aim to predict the post-processing activities by considering different parameters obtained 
from the sensor installed along the strand, such as tundish mass, air ingress, mold level fluctuations, oscillation 
frequency, mold heat flux, mold water flow, casting speed, casting speed change, etc. We obtain data from 89 
sensors that control the values of the different variables in different positions. The size of analyzed sensor data was 3 
Terabytes. As mentioned above, we also used the data about the chemical properties of the steel that were strongly 
assumed to increase the prediction accuracy. 

5.2. Tools

The experiments were performed in two phases on two different computers, since the pre-processing stage had 
different computational requirements than the modeling stage. For the preprocessing phase we used a machine with 
6 TB disk space, 64 GB memory and 20 Intel Xeon CPUs E502-2630 v4 with 2.20GZ. As data manipulation 
software we used Apache Zeppelin on top of a standalone Apache Spark Cluster in a Docker environment [21].  

For the creation of the autoencoders, we used a machine with 16 GB memory and two NVIDEA GEFORCE 
GTX TITAN X. The autoencoders were implemented with the Keras package on top of Tensorflow in python 
notebooks [22]. The classification with deep feedforward neural networks were performed using the deeplearning4j 
library [23] on the top the WEKA data mining software [24] in order to be able to perform cost sensitive analysis. 

5.3. Evaluation Results 

To assess the performance of the proposed model, we used the evaluation metrics tailored to multi-class 
classification problems [25]. Particularly, we concentrated on two important measures, the average accuracy of the 
classifier and recall values for each class. The recall, the true positive rate for the particular class, is a very important 
measure for our case since we aim to avoid the false negatives. To be clear, if the semi-finished products have the 
surface defects and our model fails to identify them, then it may have undesired consequences - since in this case 
our predictive model suggests that the no further processing stages are required since steel slabs don’t have any 
surface problem. Relying on these results and sending the defective products to the customers may have 
significantly more monetary (also non-monetary) costs than the costs of inspecting the products.  

The multivariate time series classification problem for steel quality prediction based on the sensor data is not only 
complicated due to the irregularities in the input data but also imbalanced structure of the class distribution. In our 
case almost 85% of the steel slabs had the good quality and no further processing stage was required. The main 
challenge is identification of the slabs with failures. By applying our multi-stage deep learning classification model 
directly on the original data, we obtain the average accuracy of 87.49 %. This result can be interpreted positively for 
relatively balanced datasets (See Table 3). However, a deep look to the recall values of each class reveals that the 
direct application of the algorithm favors the majority class by getting a recall value 0.994. This value suggests that 
99.4% of the steel slabs with good quality were identified by the algorithm. The respective recall values for slabs 
with surface defects that required steel pickling or surface grinding were 0.026 (for both cases). These results imply 
that the algorithm could improve the results of the zero (base) model just slightly and was unable to detect the steel 
products (only 2.6% of them were identified) that require post-processing stages. Despite the obtained high 
accuracy, the direct application of the model fails to fulfill the requirements of the production managers. 

To overcome the problems related to the learning with imbalanced data, a set of diverse (i) data level techniques, 
(ii) algorithmic level approaches, and (iii) cost-sensitive methods were proposed [26]. The data level methods 
include randomly oversampling the minority class, randomly undersampling the majority class, informatively 
oversampling the minority class, informatively undersampling the majority class, and oversampling the small class 
by generating new synthetic data. The algorithm level approaches investigate the possibilities of adjusting the 
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particular algorithm settings to increase the accuracy of classifying the minority class. The third approach, cost-
sensitive learning, considers the different penalty costs for misclassifications and forces the model to be able to 
detect the minority class instances. The scholars suggest that the cost-sensitive learning approaches are better 
solutions when the costs are unequal for classes [27]. Therefore, in the present paper we adopt the cost-sensitive 
learning approach. In our multi-class classification problem the costs were simulated by considering diverse 
decision making and financial settings and transferred to the cost matrix, whose size is defined as the number of 
classes. In the matrix, the diagonal elements represent the cost of correct classification, with the remaining elements 
representing the penalty costs for misclassifications [28]. 

 Adopting cost-sensitive learning mechanism lead to a higher recall classifier, but at the same time we flag some 
fraction of the steel slabs, which had good qualities. Although we end up in the deterioration of the precision and 
accuracy (from 87.49% to 73.56%), the results obtained from the application of the proposed multi-stage deep 
learning approach that incorporates the cost preference of the decision makers reveals that the model is now able to 
detect the both minority classes, steel pickling, and surface grinding. The recall values for these classes were 0.663 
and 0.792 respectively, which imply that 66.3% and 79.2% of the steel slabs that required the respective post-
processing stages were detected (see Table 4). At the same time, 74.5% of the steel slabs that require no further 
processing were identified. This results can be considered as satisfactory when including the financial considerations 
of the decision making process. 
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Table 3 and 4 present the results obtained from the deep neural networks classifier with 3 hidden layers, where 

each layer consist of 200 neurons, by training at 100 epochs and by using ReLU activation function. We have also 
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explicitly. 

6. Conclusion 

In the present paper we propose a novel multi-stage deep learning approach for multivariate time series 
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the stacked LSTM Autoencoders, we apply the deep feedforward neural network for making predictions. This 
approach aims to eliminate the necessity for domain expert knowledge in determination of useful features that are 
not always available in complex settings. In order to assess the performance of the proposed approach, we use the 
real world data obtained from a steel industry. The goal of the case study is predicting the post processing activities 
depending on the detected steel surface defects by using the time series data obtained from the sensors installed in 
different positions of the continuous steel casting process facility and chemical properties of the steel. Due to the 
imbalanced nature of the data, we use cost-sensitive learning technique and incorporate the varying preferences of 
decision makers in making predictions. For the future work, we plan to conduct a comparative analysis of the 
proposed approach with other types of unsupervised feature learning and classification approaches. We also intend 
to explore the diverse possibilities to improve the model accuracy by conducting experiments with more data. 
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