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Abstract

Self-organizing systems-of-systems offer the possibility of autonomously adapting to new circumstances and tasking. This could
significantly benefit large endeavors such as smart cities and national defense by increasing the probability that new situations are
expediently handled. Complex self-organizing behaviors can be produced by a large set of individual agents all following the same
simple set of rules. While biological rule sets have application in achieving human goals, other rules sets may be necessary as
these goals are not necessarily mirrored in nature. To this end, a set of system, rather than biologically, inspired rules is introduced
and an agent-based model is used to simulate and analyze the behavior produced with various parameters. Agents represent systems
and their decisions are defined by the given rule set and parameters. The environment provides a variety of time-critical missions
on an ongoing basis. The effectiveness of a particular rule or set of rules is measured by a set of key performance metrics such as
the rate at which missions achieve their required capabilities within a given deadline and the average time required to do so.
Different rules will be compared using this criterion along with an assessment of their ability to demonstrate beneficial self-
organizing behavior.
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1. Introduction

Self-organizing behaviors are ubiquitous in nature, providing a large measure of stability despite widely varying
and unpredictable circumstances [1]. Self-organizing behavior is differentiated from other behaviors in that it is the
product of individuals making decision based on local information without external direction. This gives it resilience
and scalability because the behavior is encoded in the individual and not dependent upon any particular external entity.
While the benefit is obvious, the rules governing individual behavior are not.

Very simple rules have been discovered that produce complex behavior mimicking actual behavior observed in
natural systems. One example of this is Schelling’s Segregation Model [2] where population segregation is modeled
used a single rule. This paper will define four rules for that individual systems will follow in the hopes that an effective
self-organizing behavior can be demonstrated for a system-of-systems problem.

This problem has two classes of entities: systems and missions. Missions require a minimum set of capabilities in
order to be carried out and have a deadline for acquiring these capabilities before the mission is failed. There are
various types of missions, each requiring a different set of capabilities. Systems provide the capabilities required by
missions. There are multiple types of systems, each providing a different set of capabilities, although they all move
at the same speed. Simulations using various weightings of the four rules will then be carried out and the results
analyzed. The parameters of the rule set are the weights given to each rule in the set.

2. Approach

An appropriate approach for this type of problem is spatial agent-based modeling [3]. NetLogo [4] was chosen as
the modeling software because of its ease of use and excellent reputation. The missions have the following states:
inactive, activated, go, and failed. Missions in the inactive state do nothing until activated at random. In the activated
state, they signal their capability needs, location, deadline, and committed systems. If the required capability mix is
achieved, then the mission transitions to go and then back to inactive after the mission is complete. If the deadline
expires before these capabilities are acquired, the mission fails and transitions back to inactive. The systems have four
states as well: idle, enroute, committed, and engaged. Systems are idle when they have not decided on a mission. An
enroute system has decided on a mission and is moving towards it. A committed system is one that has reached its
mission and is can no longer change missions until this one finishes or fails. An engaged system is one that is
participating in a mission that is now in a go state. The four rules that systems use for their decision making, that
decision being which mission to choose, are:

Mission popularity (measures likelihood of mission gaining required assets),

Distance to mission (measures time commitment required to reach a mission),

Contribution to mission (measures degree to which a mission can make use of a system), and
Urgency of mission (measures time remaining before mission failure).

The first rule, mission popularity, is the number of systems assigned to each mission that are in a committed state
which is then normalized by dividing by the total number of systems. The second rule, distance to mission, is the
Euclidean distance from the agent to the mission rendezvous point normalized by dividing by the longest distance
possible. The third rule, contribution to mission, is the number of capabilities supplied by the system that match those
required by the mission and is normalized by dividing by the number of capabilities possible. The fourth, and final,
rule is mission urgency which is defined as the time left until a mission’s deadline expires and is normalized by
dividing by the maximum mission deadline.

There is a stochastic element involved as well. A system in the idle state will decide to pursue a mission that it has
decided upon with the probability given in the accept rate. A system can decide to pursue a different mission while
enroute with a probability defined as the reconsider rate. The stochastic variables are intended to prevent similar
systems from always choosing the same mission and becoming redundant. Finally, the weights applied to each rule
are restricted to the range [—1, +1], which allows a rules to act as its own antithesis with a negative weight or to be
eliminated when its weight is zero. These weights, along with accept and reconsider rates, are the only parameters of
the rule set and the weights are known as the rule affinities. When only one rule is non-zero, the magnitude of its
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weight is irrelevant. When all weights are zero, the behavior is determined entirely by the stochastic variables. When
more than one rule is active (non-zero), their relative influence is determined by their assigned weights (affinities).

3. Experimental Setup

A total of eight capabilities are available. The capabilities are generic and not named, the only important quality
about them is that each one is unique. There are twenty-eight types of systems, each one providing two of the eight
possible capabilities. There are fifty-six types of missions, each one requiring five of the eight capabilities. This
means that depending on how well the capabilities of the committed systems match the required capabilities, each
mission will require between three and five systems to succeed (although many more may become committed due to
inefficient rules).

Two set of trials will be performed. The first set of trials will consist of sixteen combinations of rules where the
accept rate is kept at 0.1 and the reconsider rate is kept at 0.03. These rates were chosen because they worked relatively
well in preliminary trials across a wide range of rules. The second set of trials consists of eleven combinations of
different accept rates and reconsider rates using the best rule set found in the first set of trials. The experiments were
carried out using NetLogo to provide the simulation and to collect the pertinent statistics. The experimental setup
performing a typical run is shown in Fig. 1.
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Fig. 1. NetLogo experimental setup. The sliders on the left allow the parameters to be adjusted while the monitors and graphs on the right display
the relevant statistical properties. The center is a graphical representation showing the current state of the agents where pentagons represent
missions and arrows represent the systems and their direction of travel.
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4. Results

The results for the first set of trials is shown in Table 1. Since case fifteen had the highest success rate, it was used
in the second set of trials. The results of the second set of trials are shown in Table 2.

Table 1. Differing rule sets with fixed accept and reconsider rates.

Decision Variable Key Performance Metric
Case Committed | Distance | Capability | Deadline Success | Coverage Coverage Mission Time Time

Affinity Affinity Affinity Affinity Rate Neglected | Occasional Delay Enroute | Committed
1 0 0 0 0 0.184 0.756 0.009 149.9 264.3 135.7
2 -0.5 0 0 0 0.006 0.935 0.000 371.8 409.9 3524
3 0.5 0 0 0 0.426 0.465 0.048 582 34.1 9.0
4 0 -0.5 0 0 0.160 0.564 0.086 291.2 25.0 267.8
5 0 0.5 0 0 0.012 0.902 0.000 4229 620.8 2224
6 0 0 -0.5 0 0.000 0.000 0.000 0.0 148.4 348.8
7 0 0 0.5 0 0.033 0.715 0.000 379.7 265.6 339.0
8 0 0 0 -0.5 0.433 0.282 0.177 536.5 62.0 5:1
9 0 0 0 0.5 0.126 0.489 0.075 95.2 103.2 248.2
10 0.5 -0.2 0 0 0.514 0.384 0.056 92.0 24.2 15.9
11 0.5 0 0.5 0 0.604 0.257 0.095 138.9 454 2555
12 0.5 0 0 -0.1 0.437 0.341 0.099 204.1 335 16.0
13 05 0 0 0.1 0.456 0.428 0.052 528 28.3 10.7
14 0.5 -0.2 0.5 0 0.735 0.113 0.118 177.8 40.0 45.9
15 0.5 -0.2 0.5 -0.1 0.770 0.060 0.123 2922 46.4 51.2
16 0.5 -0.2 0.5 0.1 0.692 0.146 0.137 126.2 372 44.7

Table 2. Fixed rule set with differing accept and reconsider rates.

Stochastic Variable Key Performance Metric
Case Accept | Reconsider || Success | Coverage Coverage Mission Time Time

Rate Rate Rate Neglected | Occasional Delay Enroute | Committed
1 1 0 0.449 0.047 0.123 2949 67.2 9.0
2 1 1 0.406 0.044 0.240 363.5 27.6 15.6
3 0.05 0.01 0.709 0.044 0.163 327.9 62.7 83.3
4 0.05 0.03 0.751 0.040 0.165 297.6 50.6 59.9
5 0.05 0.05 0.769 0.043 0.120 289.8 46.2 51.0
6 0.1 0.01 0712 0.051 0.173 325.1 62.0 82.3
7 0.1 0.03 0.759 0.045 0.141 296.6 50.8 58.9
0.1 0.05 0.770 0.060 0.123 292.2 460.4 L2
0.15 0.01 0.707 0.045 0.181 328.1 62.6 82.2
10 0.15 0.03 0.757 0.066 0.144 297.1 50.6 583
11 0.15 0.05 0.761 0.060 0.121 288.9 46.1 515

The metrics used to evaluate the various rules were: success rate, coverage neglected, coverage occasional, mission
delay, time enroute, and time committed. The success rate is simply the percentage of attempted missions that did not
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fail. Coverage neglected is a measure of the percentage of missions that received little to no commitment from systems
while coverage occasional were those that received little to moderate commitment. Mission delay is the time elapsed
between activation and go; failed missions do not count in this metric. Time enroute measures how long systems
spend enroute to missions while time committed measures how long systems spend committed to a mission while
waiting for the mission to achieve go. The primary metric is mission success, while the other metrics describe fair
(coverage neglected and coverage occasional) and efficient (time enroute and time committed) the rules are.

When applying a single rule, there was a great variation in the success rate. The worst rule, which amounted to
systems being attracted to missions that did not need their capabilities, had a success rate of zero. The best single rule
(success rate of 0.433) was being most attracted to missions whose deadline was about to expire. The second-best rule
(success rate of 0.426) was that of being attracted to the most popular mission. However, when combining rules,
results were not as expected. When the two most successful single rules were combined, they were the worst of all
the two rule combinations at 0.437. The best was 0.604 and occurred when popularity was combined with capability.
The best overall rule set involved all four rules and achieved a success rate of 0.770. When looking at the rules with
success rates over 0.5, only coverage neglected and mission delay correlated with the success rate. While coverage
neglected correlated negatively with the success rate as might be expected, the mission delay correlated positively
which was not intuitive. Changing the accept and reconsider rates showed that the results were not too sensitive
provided that the rates were not deterministic (zero or one). When rates were zero or one, the success rate dropped
substantially.

5. Conclusions

The mission success rate when systems chose missions purely at random was 0.184 while the best single rule
produced a success rate of 0.433 and the best overall rule set produced a success rate of 0.770. This means that
behavior created by this rule set when properly weighted significantly outperforms random behavior. This problem,
as defined in the experimental setup is difficult to solve well as demonstrated by the low (under 20%) success rate of
the random case. The high success rate of 77% achieved by the best weighting found in the test cases shows that this
rule set produces effective self-organizing behavior in a systems-of-systems environment. However, it was also found
that rules do not combine in obvious ways—sometimes a combination of relatively effective rules are less effective
than a combination of effective and ineffective rules. Finally, the results showed that it was important to have a
stochastic element to the decision making even with the best rules. The stochastic element creates a diversity of
behavior limiting similar systems from all choosing the same missions and becoming redundant. However, too much
randomness overrides the purpose of the rules and degrades performance. The effective range of the stochastic
variables was found to be between 2% and 10%.

References

[1] Camazine, Scott, Jean-Louis Deneubourg, Nigel R. Franks, James Sneyd, Guy Theraulaz, and Eric Bonabeau. Self-Organization in Biological
Systems. Princeton University Press, 2001.

[2] Schelling, Thomas C. (1971) “Dynamic Models of Segregation.” Journal of Mathematical Sociology 1 (2): 143-186.
[3] Boccara, Nino. Modeling Complex Systems, 2nd ed., ser. Graduate Texts in Contemporary Physics. Springer, 2010.

[4] Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling,
Northwestern University. Evanston, IL.



	Establishing Rules for Self-Organizing Systems-Of-Systems
	Recommended Citation

	Establishing Rules for Self-Organizing Systems-of-Systems

