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Abstract

A System of Systems (SoS) architecting problem requires creating a selection of systems in order to provide a set of capabilities. 
SoS architecting finds many applications in military/defense projects. In this paper, we study a multi-objective SoS architecting 
problem, where the cost of the architecture is minimized while its performance is maximized. The cost of the architecture is the 
summation of the costs of the systems to be included in the SoS. Similarly, the performance of the architecture is defined as the 
sum of the performance of the capabilities, where the performance of a capability is the sum of the selected systems' contributions 
towards its performance. Here, nevertheless, the performance of a system in providing a capability is not known with certainty. To 
model this uncertainty, we assume that the performance of a system for providing a capability has lower and upper bounds and 
subject to complete uncertainty, i.e., no information is available about the probability distribution of the performance values. To 
solve the resulting multi-objective SoS architecting problem with uncertainty, we propose and compare three robust approaches: 
max-min, max-max, and max-mid. We apply these methods on a military example and numerically compare the results of the 
different approaches.
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1. Introduction and Literature Review

Many systems are formed from components, which are systems themselves1. Formally, we call such a system as 
System of Systems (SoS) and define it as a collection of the systems that are brought together to provide a predefined 
set of capabilities2. The art of constituting such a system is SoS architecting and this paper addresses a robust SoS
architecting problem. SoS architecting has many applications in military, engineering, healthcare, and transportation 
systems3,4,5. This work focuses on a military application of SoS architecting problem. More precisely, we study a 
multiobjective military SoS architecting problem, where no system can provide the entire set of required capabilities; 
therefore, the SoS architect selects and connects a subset of the systems so that the SoS architecture can perform all 
the required capabilities. In doing so, the architect’s objectives are to minimize the cost of including and connecting
systems and to maximize the performance of the resulting SoS. Similar problems have been investigated in the
literature6,7,8.

In this problem, we define the cost of the SoS architecture, which should be minimized, as the summation of the 
costs of contributing systems in providing the capabilities and the costs of the connection interfaces among the selected 
systems. The performance of the SoS architecture is defined as the sum of the performance of capabilities of the 
included systems in the SoS. However, the performance of a system in providing a capability is not known with 
certainty. To model this uncertainty, we assume that the performance of a system for providing a capability has lower 
and upper bounds and subject to complete uncertainty, i.e., no information about the probability distribution of a 
performance value is given. The paper is organized as follows. In section 2, a formulation of the problem is presented. 
Section 3 discusses the details of solution methods and Section 4 explains a numerical study. Finally, Section 5 
concludes the paper and gives future research directions.

2. Problem Formulation

Suppose that the SoS needs capabilities such that each of the available systems can provide some of the 
capabilities. Let the sets = {1, … , } and = {1, … , } represent the set of capabilities, indexed by , and the set of 
systems, indexed by , respectively. We define = 1 if system provides capability and = 0 otherwise, and 
be a × matrix of values. In addition, let and denote system ’s cost and performance of providing 
capability , respectively. The SoS architecting problem is to find a subset of the systems such that all the requested 
capabilities are presented and the resulting SoS exhibits high performance and low cost. 

However, as discussed before the value of is uncertain and no information is available in regard to its probability 
distribution. As one might know the minimum and maximum values of , we assume that [ , ]. We define 
decision variables to show whether system is included in the SoS. If system is in the SoS, = 1, otherwise= 0. If two systems are included in the SoS, they should be connected and we show this connection with a binary 
variable . This variable is equal to one if both systems and are included in the SoS and it is zero, otherwise. Let 

be a × 1 vector of values and be a × matrix of values. We define as the cost of interface 
between system and system .

Here, the decision of the SoS architect is to select systems and connect them. The total cost of architecting a SoS 
can be calculated as ( , ) = + , , where the first part is the total cost of the 
selected systems for providing capabilities and the second part is the cost of the interfaces among the selected systems. 
The total performance of SoS is ( ) = such that [ , ]. Considering total performance 
as a linear summation of individual performances is a simplistic approach to capture the total performance of a SoS.
In practice, linear summation of systems’ performances may not be a correct aggregation of the individual 
performances. Nonetheless, existence of an explicit aggregation function for the total performance is sufficient to 
formulate the problem as follow and solve it, using any evolutionary technique as presented in this study. Given this, 
the SoS architecting problem (SoS-AP) with the cost minimization and performance maximization objectives reads 
as follows:

SoS-AP max ( )min ( , ). . 1, (1)
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+ + 1, , , > (2){0,1} (3){0,1} , , > (4)

In SoS-AP, constraints (1) ensure that all capabilities are provided by at least one system. Constraints (2) guarantee 
to assign an interface between any pair of systems that are included in the SoS. This set of constraints is symmetric, 
which means z + z x + x 1 and z + z x + x 1 show the same relationship; hence, we only 
consider the first set by index relation s > r. Finally, constraints (3) and (4) impose the binary definitions of the 
decision variables. Considering the first objective over variables and constraints (1) and (3), problem SoS-AP is a
Set Covering Problem; therefore, it is . In the next section, we demonstrate an evolutionary method that 
can solve the problem relatively easy and accounts for uncertainty.

3. Solution Method

SoS-AP is a biobjective integer linear programming problem and because it is a variation of set covering problem, 
it is . Hence, we will propose an evolutionary heuristic to solve this problem, approximately. Furthermore, 
recall that we do not know the exact value of ’s, but we have the range of these values as intervals [ , ]. To 
capture the dependence of the SoS performance on these uncertain parameters, we define ( , ) =

as the total SoS performance, where is a × matrix of realizations. To encounter 
uncertainty in the decision making, one may use max-min and max-max approaches.

Max-min Approach: The max-min (pessimistic) approach aims to maximize the possible minimum performance 
of the SoS due to the uncertain performance parameters. Therefore, under the max-min approach, the first objective 
of the SoS-AP becomes   {  ( , )}. One can then note that given any SoS architecture , its performance 
will be minimum when all parameter values are at their lower bounds. That is, ( , ) = ( , ), where 

is a × matrix of values. 
Max-max Approach: The max-max (optimistic) approach aims to maximize the possible maximum performance 

of the SoS due to the uncertain parameters. Therefore, under the max-max approach, the first objective of the SoS-AP
becomes    {  ( , )}. One can then note that given any SoS architecture , its performance will be 
maximum when all parameter values are at their upper bounds. That is, ( , ) = ( , ), where is 
a × matrix of values. 

The max-min and max-max approaches are two extreme approaches and can have issues. Particularly, a SoS with 
a high maximum performance can have a low minimum performance. Similarly, a SoS with a low maximum 
performance can have a high minimum performance. Therefore, solely considering either the maximum or minimum 
performance of a given SoS does not necessarily reflect the range of the SoS’s performance. Furthermore, since 
performance parameters are completely uncertain, one cannot calculate the expected performance of a SoS and utilize 
it in evaluating the SoS architectures. To overcome these issues, we next define an alternative approach, which we 
refer to as max-mid approach.

Max-mid Approach: The max-mid approach aims to maximize the middle point between the possible maximum 
and the possible minimum performances of the SoS due to the uncertain performance parameters. Therefore, under 
the max-mid approach, the first objective of the SoS-AP becomes ( ( , ) + ( , ) /2}. We 
already know from above that ( , ) = ( , ) and ( , ) = ( , ) ; thus ( ( , ) + ( , ))/2 = ( ( , ) + ( , ))/2 . Letting = ( + )/2 , then one 
concludes that ( ( , ) + ( , ))/2 = ( , ).

Under each of these approaches, SoS-AP, referred to as , , and for max-min, max-
max, and max-mid approaches, respectively, can be formulated as follows:

: max   ( , )      min   ( , )          . .   Eqs. (1) (4) max   ( , )      min   ( , )          . .   Eqs. (1) (4) : max   ( , )      min   ( , )          . .   Eqs. (1) (4)
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For solving each of these problems, there are different approaches available. One may reduce them into a single 
objective using a weighted sum approach or use goal programming to minimize the maximum weighted deviation of
the individual minima7,8. Here, however, we approximate the Pareto front ( ) for problems , , and 

and call the approximated set of efficient solutions by , , and , respectively. Specifically, for a 
given realization of the performance parameters , a solution = [ , ] is a Pareto efficient solution to either of 
problems if and only if there exist no other solutions = [ , ] such that ( , ) ( , ) and ( , )( , ) with at least one strict inequality, where can be either of , , depending on the problem.

Evolutionary algorithms have been used successfully to approximate the set of Pareto efficient solutions7,8. The 
evolutionary algorithm in this work incorporates a similar concept. This algorithm consists of four main steps6:

(1) Chromosome representation and initialization: We define a chromosome as the set of all values. Note that the 
set of values are sufficient to define a solution. Knowing the set of : we can find the value of 
variables. Hence, a chromosome is any feasible = : to the problem SoS-AP and the length of 
chromosome is . To generate a feasible , we generate a random 0-1 vector of size . Index of the vector refers 
to the systems and 0-1 values at each position shows whether the corresponding system is selected or not. Next, 
we check if all capabilities are provided by the chromosome. If not, we select among the systems that can provide 
those capabilities, i.e. changing zeros to ones within . The process will continue until all capabilities are provided.
Using this approach, we generate chromosomes as the initial population.

(2) Fitness evaluation: Given a feasible chromosome , we can generate vector by considering an interface between 
any two pairs of the selected systems as implied by . Hence, we can easily evaluate the objective function values 
of a given feasible chromosome. Then, we determine the set of Pareto efficient chromosomes within the current 
population. The set of Pareto efficient solutions in the current population are used as the parent chromosomes to 
generate the next population through mutation operations.

(3) Mutation: Given a set of parent chromosomes, they will be mutated and the parent chromosomes plus the mutant 
chromosomes define the new population. Keeping the parent chromosomes of the previous population within the 
new population assure that the new population’s parents are at least as good as the previous population’s parents. 
We use three simple mutation operators to mutate the parent chromosomes. Adding operator generates new 
chromosomes from a parent chromosome one by one by replacing a 0 in the parent chromosome with 1. Dropping
operator generates new chromosomes from a parent chromosome one by one by replacing a 1 in the parent 
chromosome with 0 as long as the feasibility of the chromosome is guaranteed. Swapping operator sways a 0 with 
a 1 within the parent chromosome as long as the feasibility of the chromosome is guaranteed. After applying these 
three operators to the entire set of parent chromosomes, we randomly generate random initial solution by using 
the method in step (1). Doing this may increase the chance of searching over an unexplored region of the feasible 
space. 

(4) Termination: The evolutionary process will stop if the set of parent chromosomes remain the same for 
consecutive population, where is an integer that is supplied by the decision maker to the algorithm. 

4. Numerical Analysis

In this section, we first introduce an example that demonstrates the efficient solutions to a Search and Rescue 
problem. Then, we discuss three approaches for solving a general SoS-PA problem and the benefits of the max-mid 
approach.

4.1. An Application

Here we show how to architect a Search and Rescue (SAR) mission planning8. A combination of different systems 
can constitute a SAR, which makes the SAR planning a system of systems problem. The set of available systems, in 
this example, includes Helicopter, Unmanned Aerial Vehicle (UAV), Cutter Boat, and Search Vessel. We assume that
these systems can provide a subset of following capabilities: Night Vision, Radar, Speed Reach, Survival Removal, 
and Medical Help, which are shown Table 1. This table provides matrix A based on the definition of this matrix. 
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We also assume the system of systems for SAR mission was established several times and the individual systems’ 
performances on providing capabilities were uncertain with the lower bound and upper bound and the cost for 
providing capabilities was known by certainty. In addition, the communication cost between any pair of systems was
equal, which is a constant value. After solving this SAR problem with three different approaches, namely max-min
(considering ), max-max (considering ), and max-mid (considering = ( + )/2), the computational 
time of the algorithm to solve the problem under each approach was quite close (less than half of a second) and all 
approaches shared seven efficient solutions among each other and only max-max approach returned one additional 
solution. The set of shared solutions is given in Table 2. For example solution 1 in this table suggests constituting the 
system of systems by selecting Helicopter and UAV, while solution 2 suggests selecting Cutter Boat and Search 
Vessel. Because of the high percent of shared efficient solutions returned by each approach (eighty-seven percent), 
this example shows how max-mid approach can be used as an alternative approach instead of max-max or max-min 
approaches when the performances of systems are uncertain. 

Table 1 List of Systems and Capabilities in SAR Mission (Matrix )

Capabilities
Systems

Helicopter UAV Cutter Boat Search Vessel

Night vision 0 1 1 0

Radar 1 1 1 1

Speed Reach 1 0 1 0

Survival Removal 1 0 1 1

Medical Help 1 0 0 1

Table 2 Shared Efficient Solutions between three Approaches

Solutions
Systems

Helicopter UAV Cutter Boat Search Vessel
1 - -

2 - -

3 - -

4 -

5 -

6 -

7

4.2. Comparison of Methods

This section compares the approximated Pareto efficient solutions for SoS-PA that are returned by using the 
evolutionary algorithm under each of the three approaches discussed. Superscripts , , and are used to classify 
the information for each approach , , and , respectively. The comparison is quantitative and 
qualitative based. For the quantitative comparison, we record the computational time in seconds ( ), the number of 
approximated Pareto efficient solutions returned (| |), the average size of a population (| |), and the total number 
of populations evaluated (# ). For qualitative comparison, we compare the approximated Pareto efficient solutions 
returned under each approach as follows. We first compute the non-dominated solutions of the union of all solutions
denoted by = ( ). The procedure (non-dominated) finds the non-dominated solutions 
of a given set of solutions considering the four possible objectives we have. More precisely, the procedure 
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compares any pair of solutions , , where is a given set of solutions, considering the solutions’ ( , ),( , ), ( , ), and ( , ) values. If one solution is better than the others in all four objectives, the latter 
one is removed; if not, both are kept. The set that the procedure works on for the purpose of the numerical study 
is = { }. Then, every element of is evaluated with respect to the four objectives ( , ),( , ), ( , ), and ( , ).

For the purpose of the numerical study, we consider 9 classes for every combination of {5,10,15} and {5,10,15}. In each class, 10 problem instances are randomly generated and the averages over the 10 instances are
reported. For every instance, parameters are generated randomly as ~ [20,40], ~ [1,5], ~ [10,20], and ~ [20,40], where [ , ] is a continuous uniform distribution between and . Furthermore, for a given problem 
instance, matrix is generated as follows: -column of 0-1 values of size randomly generated, then, every row of 

is checked to see if corresponding capability is provided, i.e. there is 1 in that row. If not, a random position in that 
row is set to 1. That is, 90 instances are considered and each instance is solved under all approaches , ,

, with the evolutionary algorithm. We set = , = , and = 2 in the evolutionary algorithm.
Tables 3 and 4 contain the information about the quantitative analysis and Table 5 is dedicated to the qualitative 

analysis. We have the following observations based on these tables:
As expected, there is no significant difference in the computational times of the three approaches. Evolutionary 
algorithm returned the final approximation of efficient solutions in average 11.42, 12.77, and 12.42 seconds for
problems , , and , respectively. This is expected, because these problems share the same 
feasible region. This is true for (i) the number non-dominated solutions they return (| | | | | |), (ii) 
number of populations that the algorithm evaluates (# # # ), and (iii) the average size of 
population at each iteration (| | | | | |). Although, the average size of population for problem 

is slightly smaller than the other two. 

The size of that is returned by procedure is approximately 50% larger than the number of non-dominated
solutions returned by the evolutionary algorithm under each approach. This larger size of is expected since 
more objective functions are being considered in the procedure over the union of the Pareto efficient solutions 
individually returned under each approach.

On average, 99.97%, 100% and 99.95% of the solutions returned under approaches , and ,
respectively, are within . That is, in terms of all objectives, all three approaches perform very closely.

On average, 78.90%, 83.05% and 82.13% of the Pareto efficient solutions based on all four objectives are coming 
from the Pareto efficient solutions individually returned under approaches , and ,
respectively. That is, all three approaches contribute very closely to the union set of non-dominated Pareto 
efficient solutions based on all four objectives. 
One last observation is that the 63% of all solutions in is shared by between the non-dominated solutions 
individually returned under each of the three problems.

The above observations suggest that max-mid approach can be an alternative method to generate SoS architectures 
that are not only good in terms of cost and max-mid performance but also max-max and max-min performance. 
Considering the max-mid approach enables generating alternative non-dominated solutions when all four objectives 
(cost, maximum performance, minimum performance, and medium performance) are equally important for SoS 
architect. 

Table 3 Quantitative Comparison of Algorithms: size of Pareto fronts and computational time

| | | | | | | | 
5

5 11.3 10 10.5 10.6 0.10 0.10 0.10
10 97 74.1 73.5 75.3 2.36 2.79 2.66
15 254.1 165.8 186 178.4 22.18 24.46 23.40

10 5 6.3 6.1 6.2 6 0.07 0.07 0.07
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10 115.1 83.6 91.4 90.4 3.04 3.38 3.37
15 375.4 234.2 269.5 255.8 30.67 38.23 35.36

15
5 6.2 5.8 6.1 5.7 0.07 0.08 0.07

10 104.6 85.7 84.3 87.6 3.21 3.02 3.00
15 453.5 277.8 306.3 313.3 41.07 42.80 43.73

Average 158.17 104.79 114.87 113.68 11.42 12.77 12.42

Table 4 Quantitative Comparison Algorithms: number of populations and average size

  #  #  #  | | | | | | 
5

5 4.6 4.3 4.2 10.59 10.88 10.99
10 6.1 6.7 6.5 150.86 147.32 148.39
15 8.9 8.8 8.7 862.11 890.85 935.47

10
5 3.5 3.6 3.4 8.07 8.10 8.08
10 6.2 6.3 6.4 145.05 156.59 153.20
15 8.1 8.3 8.3 1094.68 1157.60 1102.48

15
5 3.3 3.4 3.3 7.58 7.52 7.48
10 6.2 6 5.9 136.57 138.98 141.09
15 8.4 7.9 8 1160.07 1310.66 1259.93

Average 6.144 6.144 6.078 397.29 425.39 418.57

Table 5 Qualitative Comparison

| | | |  | | | | | | | | | |
5

5 100 % 100 % 100 % 89.25% 93.30% 94.59% 82.55%
10 100 % 100 % 100 % 76.90% 77.08% 78.60% 55.74%
15 100 % 100 % 100 % 65.78% 73.28% 70.50% 41.64%

10
5 100 % 100 % 100 % 98.00% 98.89% 96.89% 96.89%
10 100 % 100 % 100 % 74.08% 81.38% 80.19% 55.97%
15 99.94% 100 % 100 % 63.86% 72.74% 69.45% 39.28%

15
5 100 % 100 % 100 % 95.50% 97.50% 93.00% 93.00%
10 99.84% 100 % 99.88% 83.85% 83.46% 85.78% 67.87%
15 99.97% 100 % 99.65% 62.86% 69.86% 70.15% 36.46%

Average 99.97% 100 % 99.95% 78.90% 83.05% 82.13% 63.27%

5. Conclusion and Future Research

In this study we formulate a SoS architecting problem as a biobjective integer linear programming model when the 
performance of the systems in providing capabilities is subject to unknown certainty. To solve such a problem we use 
two well-known approaches (max-min and max-max) and propose another approach (max-mid). An evolutionary 
algorithm is proposed to solve the SoS architecting problem under each approach. Through the numerical study, we 
observe that time and the number of solutions does not vary between the three approaches. Furthermore, each 
approach return similar number of solutions, which are non-dominated based on maximum possible performance, 
minimum possible performance, and medium of the performance range along with the cost. Therefore, the max-mid 
approach can be used as an alternative approach for constructing SoS architecting with good maximum and minimum 
performances. A future research problem is to investigate the SoS architecting problem with all four objectives at the 
same time. Another future direction is to see how the Pareto efficient solutions under max-max and max-min 
approaches can be improved by adding the max-mid objective.
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