
Decision Making in Manufacturing and Services
Vol. 5 • 2011 • No. 1–2 • pp. 57–67

BPMN – A Logical Model and Property Analysis

Antoni Ligęza�

Abstract. Business Process Modeling Notation has become a powerful and widely accepted
visual language for modeling business processes. Despite its expressive power and high us-
ability, a weak point of BPMN is the lack of formal semantics and difficulties with assuring
correctness of the overall process. In this paper an attempt is made towards investigation
and development of foundations for a logical, declarative model for BPMN. Such model
should enable formal analysis of desired properties referring to correct operation of Business
Processes modeled with use of BPMN.

Keywords: Business Process Modeling Notation, BPMN, Business Rules, Rule-Based Sys-
tems, eXtended Tabular Trees, XTT, XTT2, System Verification, Formal Analysis, Declar-
ative Model

Mathematics Subject Classification: 68N30

Revised: 30 May 2011

1. INTRODUCTION

Design and analysis of progressively more complex business processes requires ad-
vanced methods and tools. Two modern approaches to modeling such processes have
recently gained wider popularity. These are the Business Process Modeling Nota-
tion (Silver 2009, Stephen and Derek 2008, Allweyer 2010), or BPMN for short, and
Business Rules (Ross 2006, Ambler 2003, Giurca et al. 2009). Although aimed at
a common target, both of the approaches are rather mutually complementary and
offer somewhat distinctive features enabling process modelling.
BPMN constitutes a set of graphical symbols, such as links modeling workflow,

various splits and joins, events and boxes symbolizing data processing. It constitutes
a transparent visual tool for modeling complex processes promoted by OMG (OMG
2011). What is worth underlying is the expressive power of current BPMN. In fact it
allows for modeling conditional operations, loops, event-triggered actions, splits and
joins of data flow paths and communication processes (Ouyang et al. 2006b). More-
over, modeling can take into account several levels of abstraction which enables hierar-
chical approach. Another characteristic feature of BPMN is that the workflow covers

� AGH University of Science and Technology, Krakow, Poland

57

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AGH (Akademia Górniczo-Hutnicza) University of Science and...

https://core.ac.uk/display/229296301?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

58 A. Ligęza

both data processing visualization and workflow control specification. The workflow
diagram, however, although it provides transparent, visual picture of the process, due
to lack of formal model makes attempts at more rigorous analysis problematic.
Business Rules, also promoted by OMG (OMG 2003), offer an approach to spec-

ification of knowledge in a declarative manner. The way the rules are applied is left
over until it comes to rule execution. The rules themselves can play different roles in
the system (OMG 2003). Some two most important ones cover declarative knowledge
specification for inference of new facts, and control knowledge specification for efficient
implementation of inference process.
The main common problem of BPMN is lack of a formal declarative model defin-

ing precisely the logic behind the diagram. Hence defining and analyzing correctness
of BPMN diagrams (e.g. in terms of termination or determinism) is a hard task. There
are only few papers undertaking the issues of analysis and verification of BPMN dia-
grams (Dijkman et al. 2007, Ouyang et al. 2006a, Ouyang et al. 2006b). However, the
analysis is performed mostly at the structural level and does not take into account
the semantics of dataflow and control knowledge.
This paper presents an attempt at defining foundations for a more formal, logical,

declarative model of BPMN diagrams. The model is aimed at enabling definition
and further analysis of formal properties of a class of restricted BPMN diagrams.
The analysis should take into account properties constituting reasonable criteria of
correctness. The focus is on development of a formal, declarative model of BPMN
components and its overall structure. In fact, a combination of recent approaches to
development an verification of rule-based systems (Nalepa and Ligęza 2010, Ligęza
and Nalepa 2011) seems to have potential influence on BPMN analysis.

2. BPMN: A RESTRICTED STRUCTURAL MODEL

In this section a simplified structural model of BPMN diagrams is put forward. It
constitutes a restricted abstraction of crucial intrinsic workflow components. As for
events, only start and termination events are taken into account. Main knowledge
processing units are activities (or tasks). Workflow control is modeled by three types of
gateways: split and join operations. Finally, workflow sequence is modeled by directed
links. No time/temporal aspects are considered. The following elements will be taken
into consideration:

– S – a non-empty set of start events (possibly composed of a single element),
– E – a non-empty set of end events (possibly composed of a single element),
– T – a set of activities (or tasks); a task T ∈ T is a finite process with single
input and single output, to be executed within a finite interval of time,
– G – a set of split gateways or splits, where branching of the workflow takes
place; three disjoint subtypes of splits are considered:
• GX – a set of exclusive splits where one and only one of the alternative paths
can be followed (a split of EX-OR type),

• GP – a set of parallel splits where all the paths of the workflow are to be
followed (a split of AND type or a fork), and

BPMN – A Logical Model and Property Analysis 59

• GO – a set of inclusive splits where one or more paths should be followed
(a split of OR type).

– M – a set of merge gateways or join nodes of the diagram, where two or
more paths meet; three further disjoint subtypes of merge (join) nodes are
considered:
• MX – a set of exclusive merge nodes where one and only one input path is
taken into account (a merge of of EX-OR type),

• MP – a set of parallel merge nodes where all the paths are combined together
(a merge of AND type), and

• MO – a set of inclusive merge nodes where one or more paths influence the
subsequent item (a merge of OR type).

– F – a set of workflow links, F ⊆ O × O, where O = S ∪ E ∪ T ∪ G ∪M is the
join set of objects. All the component sets are pairwise disjoint.

The splits and joins depend on logical conditions assigned to particular branches.
It is assumed that there is defined a partial function Cond : F → C assigning logical
formulae to links. In particular, the function is defined for links belonging to G ×
O ∪ O × M, i.e. outgoing links of split nodes and incoming links of merge nodes.
The conditions are responsible for workflow control. Some simple logical models are
presented in Section 4. For intuition, a simple BPMN diagram is presented in Figure 1.
Having selected the core BPMN elements it is necessary to state restrictions on

the overall diagram structure. The following is a set of typical requirements defining
the so-called well-formed diagram (Ouyang et al. 2006b):

– ∀s ∈ S, in(s) = ∅ and |out(s)| = 1 – any start node s ∈ S has no incoming
links and exactly one outgoing link,
– ∀e ∈ E, |in(e)| = 1 and out(e) = ∅ – any end event node e ∈ E has no outgoing
links and exactly one incoming link,
– ∀T ∈ T, |in(T)| = 1 and |out(T)| = 1 – any task node T ∈ T has exactly one
input and one output link,
– ∀g ∈ G, |in(g)| = 1 and |out(g)| � 2 – any split node g ∈ G has exactly one
incoming link and at least two outgoing ones,
– ∀m ∈M, |in(m)| � 2 and |out(m)| = 1 – any merge node m ∈M has at least
two incoming links and exactly one outgoing link,
– ∀f ∈ F, f ∈ out(S∪T∪G∪M)× in(E∪T∪G∪M), i.e. every link joins some
legal output of some object with a legal input of some (other) object,
– every object o ∈ O is on some path from some start event and an end event.

From now on only diagrams satisfying the above minimal requirements will be taken
into account.
Note that a well-formed diagram does not assure that for any input knowledge

the process can be executed leading to a (unique) solution. This further depends
on the particular input data, its transformation during processing, correct work of
particular objects, and correct control defined by the branching/merging conditions
assigned to links.

60 A. Ligęza

3. THERMOSTAT: AN ILLUSTRATIVE EXAMPLE

In order to provide intuitions, the theoretical considerations will be illustrated with
a simple example process. The process goal is to establish the so-called set-point tem-
perature for a thermostat system (Negnevitsky 2002). The selection of the particular
value depends on the season, whether it is a working day or not, and the time of the
day. A BPMN diagram of the process is specified in Figure 1.

Determining
season

Determining
workday

Determining
operat ion hours

Determining
thermostat

sett ings

Fig. 1. An example BPMN diagram – top-level specification of thermostat system.

After start, the process is split into two independent paths of activities. The
upper path is aimed at determining the current season1 (aSE; it can take one of
the values {sum, aut, win, spr}; the detailed specification is provided with rules 7–10
below). A more visual specification of this activity with an appropriate set of rules is
shown in Figure 2.

month in {1,2,12}

month in {3,4,5}

month in {6,7,8}

month in {9,10,11}

set season
to summer

set season
to autumn

set season
to spring

set season
to winter

Fig. 2. An example BPMN diagram – detailed specification a BPMN task.

The lower path activities determine whether the day (aDD) is a workday
(aTD = wd) or a weekend day (aTD = wk), both specifying the value of today (aTD ;
specification provided with rules 1 and 2), and then, taking into account the current
time (aTM), whether the operation (aOP) is during business hours (aOP = dbh) or

1 For technical reasons all attribute names used in this example start with lower-case ’a’.

BPMN – A Logical Model and Property Analysis 61

not (aOP = ndbh); the specification is provided with rules 3–6. Finally, the results are
merged together and the final activity consists in determining the thermostat settings
(aTHS) for particular season (aSE) and time (aTM) (the specification is provided
with rules 11–18).
The whole process is formally specified with the following eighteen inference rules.

Rule 1 : aDD ∈ {monday , tuesday ,wednesday , thursday , friday} −→ aTD = wd.
Rule 2 : aDD ∈ {saturday , sunday} −→ aTD = wk.
Rule 3 : aTD = wd ∧ aTM ∈ (9, 17) −→ aOP = dbh.
Rule 4 : aTD = wd ∧ aTM ∈ (0, 8) −→ aOP = ndbh.
Rule 5 : aTD = wd ∧ aTM ∈ (18, 24) −→ aOP = ndbh.
Rule 6 : aTD = wk −→ aOP = ndbh.
Rule 7 : aMO ∈ {january , february , december} −→ aSE = sum.
Rule 8 : aMO ∈ {march, april ,may} −→ aSE = aut.
Rule 9 : aMO ∈ {june, july , august} −→ aSE = win.
Rule 10 : aMO ∈ {september , october ,november} −→ aSE = spr.
Rule 11 : aSE = spr ∧ aOP = dbh −→ aTHS = 20.
Rule 12 : aSE = spr ∧ aOP = ndbh −→ aTHS = 15.
Rule 13 : aSE = sum ∧ aOP = dbh −→ aTHS = 24.
Rule 14 : aSE = sum ∧ aOP = ndbh −→ aTHS = 17.
Rule 15 : aSE = aut ∧ aOP = dbh −→ aTHS = 20.
Rule 16 : aSE = aut ∧ aOP = ndbh −→ aTHS = 16.
Rule 17 : aSE = win ∧ aOP = dbh −→ aTHS = 18.
Rule 18 : aSE = win ∧ aOP = ndbh −→ aTHS = 14.

Even in this simple example, answers to the following important questions are
not obvious:

– correctness: is any of the four activities specified in a correct way? Will each
task end with producing desired output for any admissible input data?
– consistency : will it be possible to merge knowledge coming from different
sources at the merge node?
– termination/completeness: does the specification assure that the system will
always terminate producing some temperature specification for any admissible
input data?
– determinism: is the output setting determined in a unique way?

Note that we do not ask about correctness of the result; in fact, the rules provide
a kind of executable specification, so there is no reference point to claim that final
output is correct or not.

4. BPMN DIAGRAM ANALYSIS: CONSISTENCY ISSUES

A BPMN diagram can model quite complex processes. Apart from external consis-
tency validation (i.e. whether or not the diagram models correctly the external system
in a complete way, does not introduce any non-existent features, and there is isomor-
phism between those two), an important issue is the internal consistency requirement
for correct structure of the diagram and correct workflow specification. The first one

62 A. Ligęza

refers to static specification of components and their connections. The second one
consists in correct work of the structure for all admissible input data specification.
The structural correctness is defined by requirements for well-formed BPMN

diagram (see Section 2). However, even having correct structure, the process can
gone wrong due to unserved data or wrong workflow control, for example. Below, an
attempt is made at specification of some minimal requirements for (i) correct work
of process components (tasks), (ii) assuring data flow, (iii) correct work of splits, (iv)
correct work of merge nodes, and finally – (v) termination of the overall process.

4.1. PROCESS COMPONENTS CORRECTNESS

In this section we put forward some minimal requirements defining correct work of
rule-based process components performing BPMN activities. Each such component
is composed of a set of inference rules, designed to work within the same context; in
fact, preconditions of the rules incorporate the same attributes. In our example we
have four such components: determining workday (rules 1–2), determining operation
hours (rules 3–6), determining season (rules 7–10) and determining the thermostat
setting (rules 11–18).
In general, the outermost logical model of a component T performing some ac-

tivity/task can be defined as a triple of the form:

T = (ψT , ϕT ,A), (1)

where ψT is a formula defining the restrictions on the component input, ϕT defines
the restrictions for component output, and A is an algorithm which for a given input
satisfying ψT produces an (desirably uniquely defined) output, satisfying ϕT . For in-
tuition, ψT and ϕT define a kind of a ’logical tube’ – for every input data satisfying ψT
(located at the entry of the tube), the component will produce and output satisfying
ϕT (still located within the tube at its output). The precise recipe for data processing
is given by algorithm A.
The specification of a rule-based process component given by (1) is considered

correct, if and only if for any input data satisfying ψT the algorithm A produces
an output satisfying ϕT . It is further deterministic (unambiguous) if the generated
output is unique for any admissible input.
For example, consider the component determining operation hours. Its input

restriction formula ψT is the disjunction of precondition formulae ψ3 ∨ ψ4 ∨ ψ5 ∨ ψ6,
where ψi is a precondition formula for rule i. We have ψT = ((aTD = wd)∧ (aTM ∈
[0, 8]∨aTM ∈ [9, 17]∨aTM ∈ [18, 24]))∨(aTD = wk). The output restriction formula
is given by ϕT = (aOP = dbh) ∨ (aOP = ndbh). The algorithm is specified directly
by the rules; rules are in fact a kind of executable specification.
In order to be sure that the produced output is unique, the following mutual

exclusion condition should hold:
�|= ψi ∧ ψj (2)

for any i �= j, i, j ∈ {1, 2, . . . , k}. A simple analysis shows, that the four rules have
mutually exclusive preconditions, and the joint precondition formula ψT covers any

BPMN – A Logical Model and Property Analysis 63

admissible combination of input parameters; in fact, the subset of rules is locally
complete and deterministic (Ligęza 2006).

4.2. CORRECT DATA FLOW

In our example we consider only rule-based components. Let φ define the context
of operation, i.e. a formula defining some restrictions over the current state of the
knowledge-base that must be satisfied before the rules of a component are explored.
For example, φ may be given by ϕT ′ of a component T ′ directly preceding the current
one. Further, let there be k rules in the current component, and let ψi denote the
joint precondition formula (a conjunction of atoms) of rule i, i = 1, 2, . . . , k. In order
to be sure that at least one of the rules will be fired, the following condition must
hold:

φ |= ψT , (3)

where ψT = ψ1 ∨ ψ2 ∨ . . . ∨ ψk is the disjunction of all precondition formulae of
the component rules. The above restriction will be called the funnel principle. For
intuition, if the current knowledge specification satisfies restriction defined by φ, then
at least one of the formula preconditions must be satisfied as well.
For example, consider the connection between the component determining work-

day and the following it component determining operation hours. After leaving the
former one, we have that aTD = wd∨aTD = wk. Assuming that the time can always
be read as an input value, we have φ = (aTD = wd∨aTD = wk)∧aTM ∈ [0, 24]. On
the other hand, the disjunction of precondition formulae ψ3 ∨ψ4 ∨ψ5 ∨ψ6 is given by
ψT = (aTD = wd)∧(aTM ∈ [0, 8]∨aTM ∈ [9, 17]∨aTM ∈ [18, 24]))∨(aTD = wk).
Obviously, the funnel condition given by (3) holds.

4.3. CORRECT SPLITS

An exclusive split GX (q1, q2, . . . qk) ∈ GX with k outgoing links is modelled by a fork
structure assigned excluding alternative of the form:

q1 � q2 � . . . � qk,

where qi ∧ qj is always false for i �= j. An exclusive split can be considered correct if
and only if at least one of the alternative conditions is satisfied. We have the following
logical requirement:

|= q1 ∨ q2 ∨ . . . ∨ qk, (4)

i.e. the disjunction is in fact a tautology. In practice, to assure (4), a predefined
exclusive set of conditions is completed with a default q0 condition defined as q0 =
¬q1 ∧ ¬q2 ∧ . . . ∧ ¬qk; obviously, the formula q0 ∨ q1 ∨ q2 ∨ . . . ∨ qk is a tautology.
Note that in case when an input restriction formula φ is specified, the above

requirement given by (4) can be relaxed to

φ |= q1 ∨ q2 ∨ . . . ∨ qk. (5)

64 A. Ligęza

An inclusive split GO(q1, q2, . . . qk ∈ GO is modelled as disjunction of the form:

q1 ∨ q2 ∨ . . . ∨ qk,
An inclusive split to be considered correct must also satisfy formula (4), or at least
(5). As before, this can be achieved through completing it with the q0 default formula.
A parallel split GP(q1, q2, . . . qk) ∈ GP is referring to a fork-like structure, where

all the outgoing links should be followed in any case. For simplicity, a parallel split
can be considered as an inclusive one, where all the conditions assigned to outgoing
links are set to true.
Note that, if φ is the restriction formula valid for data at the input of the split,

then any of the output restriction formula is defined as φ∧ qi for any of the outgoing
link i, i = 1, 2, . . . , k.

4.4. CORRECT JOINS

Consider a workflow merge node, where k knowledge inputs satisfying restrictions
φ1, φ2, . . . , φk respectively meet together, while the selection of particular input is
conditioned by formulae p1, p2, . . . , pk, respectively.
An exclusive merge MX (p1, p2, . . . , pk) ∈MX of k inputs is considered correct if

and only if the conditions are pairwise disjoint, i.e.

�|= pi ∧ pj (6)

for any i �= j, i, j ∈ {1, 2, . . . , k}. Moreover, to assure that the merge works, at least
one of the conditions should hold:

|= p1 ∨ p2 ∨ . . . ∨ pk, (7)

i.e. the disjunction is in fact a tautology. If the input restrictions φ1, φ2, . . . , φk are
known, condition (7) might possibly be replaced by |= (p1∧φ1)∨(p2∧φ2)∨. . .∨(pk∧φk).
Note that in case a join input restriction formula φ is specified, the above re-

quirement can be relaxed to

φ |= p1 ∨ p2 ∨ . . . ∨ pk, (8)

and if the input restrictions φ1, φ2, . . . , φk are known, it should be replaced by φ |=
(p1 ∧ φ1) ∨ (p2 ∧ φ2) ∨ . . . ∨ (pk ∧ φk).
An inclusive merge MO(p1, p2, . . . , pk) ∈ MO of k inputs is considered correct if

one is assured that the merge works – condition (7) or (8) hold.
A parallel merge MP ∈MP of k inputs is considered correct by default. However,

if the input restrictions φ1, φ2, . . . , φk are known, a consistency requirement for the
combined out takes the form that φ must be consistent (satisfiable), where:

φ = φ1 ∧ φ2 ∧ . . . ∧ φk (9)

An analogous requirement can be put forward for the active links of an inclusive
merge.

BPMN – A Logical Model and Property Analysis 65

Note that even correct merge leading to a satisfiable formula assure only passing
the merge node; the funnel principle must further be satisfied with respect to the
following-in-line object. To illustrate that consider the input of the component de-
termining thermostat setting. This is the case of parallel merge of two inputs. The
joint formula defining the restrictions on combined output of the components for
determining season and determining operation hours is of the form:

φ = (aSE = sum∨aSE = aut∨aSE = win∨aSE = spr)∧(aOP = dbh∨aOP = ndbh).
A simple check of all possible combinations of season and operation hours shows that
all the eight possibilities are covered by preconditions of rules 11-18; hence the funnel
condition (3) holds.

4.5. GLOBAL TERMINATION CONDITIONS

Finally, having a well-formed BPMN diagram with correct components, one can ask
if the work terminates for a given input data. This question can be reformulated as
if for a given termination node e ∈ E, the node will be eventually reached. This can
be assured by the requirement for node reachability condition defined recursively as
follows:

– any start node s ∈ S is trivially reachable; it is simultaneously initiated by
assigning it current input data satisfying formula φ;
– consider task T specified by (1); its output node is reachable if and only if
its input node is reachable with restriction formula φ, such that the funnel
condition given by (3) is satisfied;
– the case of split nodes:
• an output node of an exclusive split node corresponding to a branch defined
by switching condition qi is reachable if and only if its input node is reachable
with restriction formula φ, and φ |= qi; note that for a given φ only one
output node can be reachable, and for correct exclusive split nodes exactly
one can be reached for a particular current data;

• an output node of an inclusive split node corresponding to a branch defined
by switching condition qi is reachable if and only if its input node is reachable
with restriction formula φ, and φ |= qi; note that for a given φ more than
one output node can be reachable, and for correct exclusive split nodes at
least one will be reached for the current data;

• any output node of a parallel split node is reachable, if and only if its input
node is reachable.

– the case of merge nodes:
• the output node of an exclusive merge node is reachable if and only if at least
one of its input nodes is reachable, and the conjunction of input formula φi
and the link condition pi is satisfied,

• the output node of an inclusive merge node is reachable if and only if at least
one of its input nodes is reachable, and the conjunction of input formula φi
and the link condition pi is satisfied; in general case, when several input

66 A. Ligęza

nodes, say i, i+1, . . . , j have satisfied selection conditions, the formula (pi ∧
φi) ∨ (pi+1 ∧ φi+1) ∨ . . . ∨ (pj ∧ φj) must be satisfied,

• the output node of a parallel merge node is reachable if and only if all of it
input nodes are reachable, and the conjunctive input formula is satisfiable.

Finally, a BPMN diagram specifies a workflow that terminates, if all at least one
of its terminal nodes is reachable for a given input data and the selected start node.

5. CONCLUDING REMARKS

An attempt at providing a logical, declarative model for well-defined BPMN diagram
is presented. The model is aimed at defining formal semantics of diagram components
and the workflow operation. The main focus is on specification of correct components
and correct dataflow. Global termination conditions are specified in a recursive way.
Note that the logical analysis can be performed off-line, on the base of logical

requirements φ, ψ and ϕ of data. However, if such specifications are data-dependant
(e.g. in case of loops or more complex non-monotonic data processing) the analysis
may be possible only in on-line form, separately for any admissible input data.

ACKNOWLEDGMENTS

Research supported from the Polish Ministry of Science and Education under the
BIMLOQ Project N N516 422338, 2010–2012.

REFERENCES

Allweyer, T., 2010. BPMN 2.0. Introduction to the Standard for Business Process Modeling.
BoD, Norderstedt.

Ambler, S.W., 2003. Business Rules. http://www.agilemodeling.com/artifacts/
businessRule.htm, 2003.

Dijkman, R. M., Dumas, M. and Ouyang, C., 2007. Formal semantics and automated analysis
of BPMN process models, preprint 7115. Technical report, Queensland University of
Technology, Brisbane, Australia.

Giurca, A., Gasevic, D. and Taveter, K., (Eds.), 2009. Handbook of Research on Emerging
Rule-Based Languages and Technologies: Open Solutions and Approaches. Information
Science Reference, Hershey, New York.

Ligęza, A., 2006. Logical Foundations for Rule-Based Systems. Springer-Verlag, Berlin,
Heidelberg.

Ligęza, A., Nalepa G.J., 2011. A study of methodological issues in design and development
of rule-based systems: proposal of a new approach. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 1(2), 117–137, http://dx.doi.org/10.1002/
widm.11.

Nalepa, G.J., Ligęza, A., 2010. HeKatE methodology, hybrid engineering of intelligent sys-
tems. International Journal of Applied Mathematics and Computer Science, 20(1),
35–53, March 2010.

BPMN – A Logical Model and Property Analysis 67

Negnevitsky, M., 2002. Artificial Intelligence. A Guide to Intelligent Systems. Addison-
Wesley, Harlow, England, London, New York.

OMG, 2003. Production Rule Representation RFP. Technical report, Object Management
Group, 2003.

OMG, 2011. Business Process Model and Notation (BPMN): Version 2.0 specification. Tech-
nical Report formal/2011-01-03, Object Management Group, January 2011.

Ouyang, C., Dumas, M., ter Hofstede, A.H. and van der Aalst, W.M., 2006a. From bpmn
process models to bpel web services. IEEE International Conference on Web Services
(ICWS’06).

Ouyang, C., van der Aalst, M.P., Dumas, M. and ter Hofstede, A.H., 2006b. Translating
BPMN to BPEL. Technical report, Faculty of Information Technology, Queensland
University of Technology.

Ross, R.G., 2006. The RuleSpeak Business Rule Notation. Business Rules Journal, 7(4),
April 2006.

Silver, B., 2009. BPMN Method and Style. Cody-Cassidy Press.
Stephen, W.A., Derek, M., 2008. BPMN Modeling and Reference Guide: Understanding and
Using BPMN. Future Strategies Inc., Lighthouse Point, Florida, USA.

