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Very Fast Non-Dominated Sorting

Czesław Smutnicki∗, Jarosław Rudy∗, Dominik Żelazny∗

Abstract. A new and very efficient parallel algorithm for the Fast Non-dominated Sorting
of Pareto fronts is proposed. By decreasing its computational complexity, the application
of the proposed method allows us to increase the speedup of the best up to now Fast and
Elitist Multi-Objective Genetic Algorithm (NSGA-II) more than two orders of magnitude.
Formal proofs of time complexities of basic as well as improved versions of the procedure are
presented. The provided experimental results fully confirm theoretical findings.
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1. INTRODUCTION

The field of Multi-Objective Optimization (MOO) has received considerable attention
in the last few years, since many classic single-criterion problems (like scheduling,
container loading, vehicle routing, etc.) have been modified towards bi- and multi-
criteria cases. Such alterations usually tune well with practical situations as real-life
problems require the decision makers to view them from more than one perspective.
While practical, such problems are also extremely hard to solve and existing general-
purpose algorithms may prove unefficient or infeasible when applied to their multi-
criteria variants.

Therefore, considerable effort was put into the development of optimization
methods aimed solely at MOO. One of the commonly used notion in such methods is
the concept of Pareto-efficiency, where the domination relation is used to obtain a set
of non-dominated solutions from all considered solutions, called the Pareto frontier. In
result a number of approaches to MOO is aimed at obtaining the Pareto frontier or its
approximation, see Minella et al. (2008) for more detail, especially when the decision
maker’s preferences are unknown in advance. Because of NP-hardness of majority of
problems, chiefly methods approximating Pareto frontier were proposed.
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Among known metaheuristic approaches used for the approximate solving
of MOO problems, Fast and Elitist Multi-objective Genetic Algorithm (NSGA-II)
of Deb et al. (2002) is commonly considered the best one, see also the conclusions
from Minella et al. (2008), Yijie and Gongzhang (2008) and Rudy and Żelazny (2012).
This algorithm relies on a procedure, called Fast Non-dominated Sorting (FNS), with
the computational complexity O(KN2), which divides the given set of N solutions,
evaluated through K criteria, into so called Pareto fronties (layers), defined as follows:
solutions from the first layer are not dominated by any solution, the solutions from the
second layer are only dominated by solutions from the first layer, and so on. Adjective
“fast” follows from the reduction of complexity from the originally proposed O(KN3) to
the improved O(KN2). Layers are used in the selection phase of the genetic algorithm,
when a certain number of solutions (individuals) from the current offspring must be
chosen to create the next population. Solutions from the first layer are chosen first
and, if more solutions are needed, successive layers are considered. Solutions belonging
to one layer are also ranked using the notion of solution distance, which keeps the
selection process from choosing many similar solutions.

Simultaneously, with the development of solution methodology, parallel versions of
methods have appeared in the literature, in order to improve the numerical properties
of sequential algorithms for a wide range of problems, see e.g. Bożejko et al. (2013)
and Bożejko et al. (2014) in case of scheduling problems. This refers also to MOO,
in particular NSGA-II and its variants. Interestingly, for NSGA-II all published
parallelizations deal with offspring creation (which is evident), but not with the
FNS prcedure. A distributed computing approach to NSGA-II proposed in the paper
Deb et al. (2003) introduced a modified domination criterion. Another approach to
parallel NSGA-II was presented in paper Jozefowiez et al. (2006) and introduced the
Elitist Diversification Mechanism for the purpose of parallel application to Vehicle
Routing Problem with Route Balancing. A study of master-slave approaches to
NSGA-II can be found in paper Durillo et al. (2008). Finally, a survey of different
parallel approaches, including NSGA-II, to multi-objective optimization was presented
in paper Talbi et al. (2008).

Table 1. Possible speedups for NSGA-II without parallelization of the FNS procedure

L running time [s] p Sp S∞

FNS GA NSGA-II FNS/NSGA [%]

50 2.34 2.69 5.03 47 1 1 1

100 10.64 5.52 16.16 66 1 1 1

200 37.08 10.73 47.81 78 1 1 1

50 2.34 0.05 2.39 98 50 2.10 2.15

100 10.64 0.05 10.7 99 100 1.51 1.52

200 37.08 0.05 37.13 100 200 1.29 1.29
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While developing the parallel version of the NSGA-II we observed the significant
influence of the FNS procedure on the final computational complexity of NSGA-II,
thus its running time and possible speedup. Let as assume the population size L = 100.
Then, the number of solutions to sort is equal to N = 2L = 200 (since the FNS
procedure works on both the parent and the children populations, both of size L).
Indeed, for N = 200, the procedure FNS consumes nearly 80% of the total computation
time, see Table 1 for sigle-processor run. The FNS procedure takes up so much time
because of its time complexity which was described by Deb et al. (2002) to be O(KN2),
while the complexity of the remaining parts (i.e. general GA framework) is O(KL),
where K is the number of criteria, L is the population size and N is the number of
solutions to sort (N = 2L). This means that for sufficiently large N FNS will always
take the majority of the computation time. Assuming that FNS cannot be realized
as a parallel procedure, we can obtain via Amdahl’s law from Amdahl (1967) the
following surprising result. Let B < 1 be the fraction representing the running time of
the FNS procedure compared to the entire running time of the NSGA-II algorithm in
a single-processor environment. Then, the speedup of NSGA-II using p processors (in
comparison to single processor run) is given by:

Sp =
1

B + 1
p (1−B)

(1)

which limits the theoretical possible speedup to

S∞ = lim
p→∞

Sp =
1
B

(2)

For N = 200 and p = 1 we have B = FNS/NSGA ≈ 78% which yields S∞ = 1.29, far
away from our expectations. This means that even if we can easily make the other parts
of the NSGA-II (crossover and mutation process, goal function evaluation) to work
in parallel, the overall speed up capability of the algorithm remains severely limited
as shown in the last column of Table 1. Therefore, the key success to improve the
parallel NSGA-II lies in the efficient parallelization of the FNS procedure, which is
the primary purpose of this work. The remainder of this paper is organized as follows:
in Section 2 sequential algorithm for FNS procedure is described, along with proof of its
computational complexity. In Section 3 two parallel approaches to FNS are presented,
including time complexity proofs. The results of the computer experiment using GPU
and CUDA technologies is presented in Section 4. Finally, Section 5 provides the
conclusions.

2. SEQUENTIAL ALGORITHM

We start the analysis with the sequential version of the FNS method. Our implemen-
tation differs slightly from the original work by Deb et al., although it has the same
time complexity of O(KN2). In particular, for N solutions we create a matrix of size
N × N called the domination matrix D. The element di,j of this matrix indicates
whether solution i dominates solution j. Thus, the sequential algorithm is constructed
as a part of the proof of Theorem 1.
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Theorem 1. Let S = {S1, S2, . . . , SN} be a set of N solutions and let C =
{c1, c2, . . . , cK} be a set of K criteria. Let sci be the objective function value for
solution i on criterion c. Then, the FNS of Pareto fronts can be done in time O(KN2)
on a sequential processor.

Proof. First, we compute a domination matrix: the time needed for this is KN(N − 1)
since for every pair of solutions (j1, j2) we need to check the K criteria and the number
of such pairs is N(N − 1). For each solution, we also compute the number (sum) of
solutions that it dominates. This can be done while computing the matrix itself (each
domination simply adds 1 to one of the sums) and thus can be done in KN(N − 1)
steps as well. A solution never dominates itself, so the remaining N elements of the
matrix are filled with 0 s (no domination relation) in N steps.

Next, we have a loop that assigns solutions to fronts. Let us assume the number
of fronts is F ¬ N . Let us consider front i and let fi be the number of solutions that
will be assigned to this front. The assignment works as follows: for each solution we
check whether its previously computed sum equals 0 (this means the solution is not
dominated) in constant time. We do this for every non-assigned solution, so for at most
N solutions. Next, we need to remove the solutions added from the future calculations.
We do this by substracting 1 from every sum representing a solution is dominated
by any solution from the current front (one solution can be dominated many times,
requiring multiple subtractions). This is done in Nfi steps as every solution requires
at most N substractions and the number of solutions is fi.

Therefore, the single iteration of the loop requires N + Nfi steps. Thus, the
number of steps needed to assign all the fronts (entire loop) is equal to:

F∑
i=1

(N + fiN) = FN +N

F∑
i=1

fi (3)

However, we notice that all solutions need to be assigned to fronts, so
∑F
i=1 fi = N .

Thus, the above equation takes the form of FN +N2. Moreover, F ¬ N , so we simply
get N2 +N2 for all the iterations. Thus, the total complexity for the non-dominated
sorting procedure is:

2KN(N − 1) + 2N2 = O(KN2 +N2) = O(KN2) (4)

3. PARALLEL ALGORITHM

Now, let us consider a parallel version of this algorithm using p procesors. We have N
solutions and K values for every solution, so the size of our input is O(NK). From
this, it would seem that NK parallel processors should be enough to reduce the
computation time significantly. However, we notice that most of the processing is not
done directly on the input, but on the domination matrix, which has size N × N .
From this, we conclude that the logical number of processors for the parallel algorithm
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should be O(N2). We assumed the PRAM CREW (Concurrent Read, Exclusive Write)
model. Thus, p processors can write to one memory location only sequentially in time
O(p). Below in Theorem 2 the computational complexity of O(K+N logN) is claimed
and the algorithm is constructed in the proof.

Theorem 2. Let S = {S1, S2, . . . , SN} be a set of N solutions and let C =
{c1, c2, . . . , cK} be a set of K criteria. Let sci be objective function value for solution i
on criterion c. Then, the FNS of Pareto frontiers can be done in time O(K +N logN)
on P = N2 parallel processors, assuming the PRAM CREW model.

Proof. First, we compute a domination matrix: the time to compute element i, j
(whether solution i dominates j) requires K steps (comparison of values of at most
all K criteria for i and j). Since the number of processors is equal to the size of the
matrix (N×N) and calculation of each element is independent from others (concurrent
read is allowed, data is written to different matrix elements), then the matrix can be
computed in O(K).

Next, we need to assign the solutions to the first front. We start by calculating
the sum of values in each row of the matrix – if this sum for row i equals 0, then
the solution ji is not dominated by any other solution and has to be assigned to the
current front. We have N rows and N2 parallel processors, so each row can be sumed
independently by the N processors.

The sum of a vector of X values can be done in O(logX) using X
2 parallel

processors: in the first step we reduce X values into X
2 values (each value is a sum

of two elements). In next step we reduce X
2 values into X

4 and so on, until we get
a single value i.e. XX = 1. The needed number of such steps is logX. Let us notice
that this method assumes that the vector size is a power of 2 i.e. X = 2a, a ∈ N.
In our case the vector size N is not necessarily a power of 2. Fortunately, we can
extend our matrix (the extended part is filled with 0s) to be of size N ×R, where R is
the smallest power of 2 such that N ¬ R. It is trivial to show that R ¬ 2N . Thus,
we need a sum of matrix rows of size at most 2N . As shown above this can be done
in time O(log 2N) = O(logN) on 2N2 = N parallel processors – just the number of
processors we have for each row. After this we have N sums computed in O(logN)
and we can assign solutions to the current front.

Let us consider front i and, as before, let fi be the number of solutions assigned
to that front. We need to check N solutions and assign to the front all that have the
sum equal to 0. With N parallel processors (we have much more than that) this can
be done in O(1). Next, however, each solution assigned to front i forces us to increase
the global counter of assigned solutions (our halting condition). This means concurrent
write and with fi writes this can take time O(fi). Single front i can therefore be
assigned in O(logN + 1 + fi) = O(logN + fi).

This process has to be repeated for every front. If we assume F fronts, then the
total computational complexity for this procedure is:

O(K +
F∑
i=1

(logN + fi)) (5)
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However, from Theorem 1 we know that:

F∑
i=1

fi = N (6)

also:

F∑
i=1

logN = F logN (7)

Lastly, F ¬ N . Thus, the final complexity is:

O(K +N logN +N) = O(K +N logN) (8)

The obtained time complexity is better that the sequential FNS, but we would
like to show that the same number of parallel processors can be used to achieve even
better result. This procedure will be called Very Fast Non-dominated Sorting (VFNS)
and has the time complexity as stated in Theorem 3.

Theorem 3. Let J = {J1, J2, . . . , JN} be a set of N solutions and let C =
{c1, c2, . . . , cK} be a set of K criteria. Let jci be objective function value for solu-
tion i and criterion c. Then, the VFNS of the Pareto frontiers can be done in time
O(K +N) on P = N2 parallel processors, assuming the PRAM CREW model.

Proof. First, we compute a domination matrix and, as in Theorem 3 this takes O(K).
Next, we need to calculate the sum of values in each row of the matrix, but we

will do it only once – later we will just substract the values from those sums. Thus,
we calculate N vectors of sizes up to 2N . This can be done in time O(logN) as in
Theorem 2.

Now, we can assign solutions to the fronts. Let us consider front i which will be
assigned fi solutions as before. With over N processors we can check each solution
independently. Unfortunately, each front assignment will force as to increase the global
counter of solutions assigned so far and substract from (update) one of the previous
sums. Since this requires a concurrent write, it can be done in O(fi) steps. Thus, for
a single front we have O(fi). For all F fronts, however, we get:

F∑
i=1

fi = N = O(N) (9)

since the sum of solutions in all fronts must equal N . Thus, the final computational
complexity on N2 parallel processors with the CREW model restrictions is:

O(K + logN +N) = O(K +N) (10)
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The last theorem allows us to perform the VFNS in linear time with regard to
both the number of solutions N and the number of criteria K. If K = N , then we
managed to reduce the complexity from O(N3) to O(N), thus the number of parallel
processors equal to N2 is justified. We assume that the number of criteria will never
be larger than the number of solutions.

4. COMPUTER EXPERIMENT

In order to test the theoretical results obtained above, we decided to perform a series
of computer simulations using the Compute Unified Device Architecture (CUDA)
platform for parallel computing on GPU devices. The chosen GPU was nVidiaTM

Tesla K20, reported with 2946 cores, managed with its own strategy regarding the
balancing of processor usage and sharing memory. In order to compare the sequential
and parallel algorithm, we implemented them both to run in CUDA, i.e. the sequential
algorithm runs in only one thread, while the parallel algorithm launches N threads in
N blocks, for N2 threads in total. We focused on the parameter N , since it is rare to
consider a number of criteria higher than 3 or 4, thus K can be treated as a constant.
The time results for both algorithms are shown in Figure 1.

Fig. 1. Runs of FNS (sequential) and VFNS (parallel) methods

We observe that while the computation time of the sequential algorithm grows
quickly, the parallel algorithm remains almost constant in comparison, never exceeding
over 3 ms. The plot of the sequential algorithm is ragged. Limitations of the GPU
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device used are partially responsible for this, but the other cause may be that the
running time of the algorithm is dependent on the numbers of fronts F present in
the data set. The same feature is true for the parallel algorithm when magnified.

Since our purpose was to state and reduce the time complexity of the FNS
method, we would like to compare the obtained empirical results with the theoretical
computations model of O(KN2) and O(K+N) for the sequential and parallel algorithm
respectively. With K treated as a constant these complexities become O(N2) and
O(N) respectively. We used the Curve Fitting Tool to try and match our data to these
models. For the sequential algorithm the obtained curve was AxB with coefficient A in
interval [0.002993, 0.003035] and B in [1.879, 1.881]. The coefficient of determination
(R2) was 1 and Root-Mean-Square Error (RMSE) was 0.49. For the parallel algorithm
model Ax + B, we obtained coefficient A in interval [0.004017, 0.004256] and B in
[0.5214, 0.5927]. R2 = 0.9123 with RMSE = 0.1979. All coefficients were obtained with
95% confidence bounds. From this we conclude, that the empirical results match well
with the obtained theoretical models.

Next, we considered the speedup achievable due to the use of the parallel algorithm.
Both algorithms were executed on the same CUDA device, making speedup analysis
easier. Since the plots of the algorithms are not smooth, it is possible for the speedup
to vary for similar values of N . Thus, we decided to present the average, minimum
and maximum values of the speedup on different interval of N . The results of our
computer experiment are shown in Table 2.

Table 2. Speedups for different input sizes for parallel FNS method, p = 2496

Instance size Minimum Maximum Average

1–32 1.37 8.46 4.43
33–64 7.35 15.32 10.34
65–96 12.65 20.16 16.11
97–128 19.58 28.13 23.23
129–160 24.26 34.15 29.47
161–192 31.67 44.29 36.41
193–224 40.10 55.68 46.26
225–256 46.76 64.21 55.69
257–288 55.47 76.17 66.23
289–320 70.85 88.78 80.14
321–352 73.09 102.18 88.97
353–384 92.42 114.14 102.16
385–416 94.36 121.33 111.71
417–448 112.00 143.15 123.48
449–480 113.63 148.21 135.52
481–512 138.28 162.85 146.03
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In all cases the minimum speedup of one interval is higher than in the previous
one and very often even higher than the average speedup of the previous interval.
Moreover, the relative range i.e. (max−min)/avg gets lower with the increase of N .
The obtained average speedup for the interval around N = 500 is close to 150 and the
maximum value is 162. We have also performed some tests for higher instance sizes
that 512. The results strongly suggest that the maximal value of speedup for N = 650
can exceed even 200.

We can use the obtained speedup values to show the new paralellization limits for
the NSGA-II algorithm with the parallel VFNS procedure. First, we remember that
the number of solutions to sort is twice the number of population size (because sorting
is performed on L children and L parents). Thus, we look up the speedup values for
N = 100, N = 200 and N = 400 to correspond to population sizes L = 50, L = 100
and L = 200 and compute new speedup values for the NSGA-II algorithm, which are
shown in Table 3.

Table 3. Speedups for NSGA-II with parallelization of the FNS, p = 2496

L running time [s] Sp

FNS GA NSGA-II FNS/NSGA [%]

50 0.467 0.054 0.521 90 9.664

100 0.790 0.055 0.845 93 19.119

200 1.079 0.054 1.133 95 42.202

We observe that the reduction of the running time thanks to the VFNS procedure
allowed to speedup the entire NSGA-II algorithm 5 to 30 times higher that the
theoretical limit without the standard FNS procedure (Tab. 1). Let us also note that
those are empirical results obtained with the available number of processors severely
limited (GPU allowed for up to 2496 CUDA cores). We conclude that the paralellel
VFNS procedure allowed to speedup the NSGA-II algorithm by at least an order of
magnitude for the population size L  100.

Finally, in order to approximate the potential speedup, we can make an interpola-
tion as follows. It is well known that an algorithm of complexity O(c) performing on p
processors can be processed on p′ < p processors in the time O(cp/p′). Since results
in Table 3 are obtained for p′ = 2496 processors, thus for L = 200, we can reach the
theoretical speedup of over 650 by using p = N2 = 4002 processors.

5. CONCLUSIONS

In this paper we proposed a method of speeding up the Fast Non-dominated Sorting
procedure called the Very Fast Non-dominated Sorting that can be used for various
purposes in Multi-Criteria Optimization and similar fields, particularly for the NSGA-II
algorithm. We managed to reduce the complexity of the procedure from polynomial
to linear. We also presented formal proofs and computer simulations supporting
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the complexities of both the sequential and parallel version of the algorithm. The
obtained speedup values are significant and exceed 100 with N over 400. The resulting
empirical speedup of the NSGA-II is 30 times its original limit number for N = 400
and the possible speedup with sufficient number of processors exceeds 650 (compared
to the single-processor NSGA-II run).
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