
Decision Making in Manufacturing and Services
Vol. 10 • 2016 • No. 1–2 • pp. 31–43

Insertion Algorithms with Justification
for Solving the Resource-Constrained Project Scheduling

Marcin Klimek∗, Piotr Łebkowski∗∗

Abstract. The paper presents the resource-constrained project scheduling problem with
the makespan minimization criterion. To solve the problem, the authors propose insertion
algorithms that generate schedules with the use of forward serial and parallel decoding
procedures. Schedules are improved with the use of the double justification by the extremes
technique (first right and then left justification). The efficiency of the procedures proposed is
tested on standard test problems from the PSPLIB library.

Keywords: insertion algorithms, resource-constrained project scheduling problem, makespan
minimisation, justification, forward scheduling, priority rules

Mathematics Subject Classification: 90B35

Submitted: December 13, 2016

Revised: March 29, 2017

1. INTRODUCTION

Among the important practical problems of computing today is the project scheduling
problem; that is, the problem of defining the start or finish times of project activities,
allocating resources (plant and equipment, human resources) to individual activi-
ties with the adopted optimizing, time, and financial criteria met. On a generated
schedule, orders are based on the raw materials necessary to perform project activities,
funds for activity performance are secured, etc.

This paper analyzes the classic Resource-Constrained Project Scheduling Problem
(RCPSP) with the makespan minimization criterion. This is one of the most-frequently-
-undertaken operational research problems. The algorithms and models used are
discussed in survey papers (Brucker et al., 1999; Hartmann and Briskorn, 2012;
Józefowska and Węglarz, 2006; Kolisch and Padman, 2001). Being a generalization of
the job-shop problem, the RCPSP is strongly NP-hard (Błażewicz et al., 1983). For such
problems, it is of a larger practical value to identify effective heuristic algorithms. The
use of exact algorithms (that is, the branch and bound procedure [Demeulemeester and
Herroelen, 1992], dynamic programming, discrete optimization, or binary programming)
∗ State School of Higher Education, Department of Computer Science, Biala Podlaska, Poland,

e-mail: marcin_kli@interia.pl
∗∗ AGH University of Science and Technology, Faculty of Management, Krakow, Poland

DOI: http://dx.doi.org/10.7494/dmms.2016.10.1-2.31 31



32 M. Klimek, P. Łebkowski

is limited to scheduling projects with a few activities, as the time required to find an
optimal solution is unacceptably long in the case of larger problems. Approximate
(heuristic) algorithms with polynomial complexity are commonly used to solve the
RCPSP; they find schedules in an acceptable amount of time, even for problems with
a larger number of activities. Constructive algorithms generate schedules based on
simple priority rules (priority algorithms) or rules governing the insertion of consecutive
activities (insertion algorithms), whose advantage is a short execution time. They are
used to quickly generate schedules for projects that include a large number of activities
as well as generate initial schedules that are subsequently improved (the quality
of the solutions generated with constructive algorithms is frequently unacceptable)
with the use of metaheuristics; i.e., simulated annealing, genetic algorithms, tabu
searches, etc. The effectiveness of metaheuristics is analyzed to a broad extent in
Hartmann and Kolisch (2000) and Kolisch and Hartmann (2006).

Priority-rule-based heuristics use priority rules and SGS (Schedule Generation
Scheme) procedures (Kolisch, 1996a). They are either single-pass methods generating
a single schedule or multi-pass methods (X-pass methods) generating multiple schedules.
Single-pass methods are quick and very simple to implement, but their efficiency is low,
even for the most-efficient priority rules (Kolisch, 1996b), which are LFT (Latest Finish
Time), EFT (Earliest Finish Time), MTS (Most Total Successors), and MTSPT
(Most Total Successors Processing Time). The proposed multi-pass methods include
algorithms that simultaneously use multiple priority rules (multi-priority rule methods)
or sampling methods, where priorities for individual activities are allotted at random,
with the priority rules used taken into consideration.

In this paper, insertion algorithms with justification are proposed; they are built
in a similar fashion as effective flow shop procedures, whose effectiveness for the
RCPSP has yet to be tested (to the best of the authors’ knowledge). Schedules
are generated based on the predefined activity list, in which the order of activities
follows the predefined priority rule, with ordering constraints taken into consideration.
The activity list is decoded to an executable schedule with the use of forward SGS
procedures. Solutions are then improved with the use of the justification technique
(Valls et al., 2005; Valls et al., 2006; Valls et al., 2008), similar to the technique known
as forward-backward improvement (Tormos and Lova, 2001; Tormos and Lova, 2003;
Goncalves et al., 2011), used in the most-efficient heuristics for the RCPSP.

The efficiency of the algorithms proposed is tested on test problems from the
PSPLIB library (Project Scheduling Problem LIBrary) (Kolisch and Sprecher, 1997).

2. PROBLEM FORMULATION

A project is a unique set of interrelated activities that are to be executed in order to
achieve the set objectives with use of available resources (employees, plant, and materi-
als). In this paper, the classic nonpreemptive single-mode RCPSP is discussed. For the
purposes of solving the RCPSP, the underlying project is presented as directed graph
G(V,E) in the AON (Activity-On-Node) representation, where V is the set of nodes
(vertices) representing activities, while E is the set of arcs (edges) representing ordering
and finish-start zero-lag precedence relationships between the activities. The activities



Insertion Algorithms with Justification for Solving . . . 33

are performed with use of renewable resources, whose total number is limited and
independent of time. The scheduling objective is to identify a schedule (start times
for all activities) that would minimize a project’s makespan (see Formula (1)) against
resource constraints (see Formula (2)) and ordering constraints (see Formula (3)).

Minimize:
F = sn+1 − s0, (1)

against the constraints:

∀t = 1, .., sn+1,∀k = 1, ..,K :
∑
i∈J(t)

rik ¬ ak, (2)

∀(i, j) ∈ E, si + di ¬ sj (3)

where:

n – the number of project activities; in graphG(V,E), two additional dummy
activities (numbered 0 and n+ 1) are inserted, representing the graph’s
initial and final vertices, respectively;

i – the number (index) of an activity;
si – the start time of the activity i;

sn+1 − s0 – the difference of the start times of dummy activities n+ 1 and 0; it is
equal to the project makespan; sn+1 is determined as the latest of the
finish times for activities from 1 to n, while s0 is the earliest of the start
times for activities from 1 to n;

J(t) – the set of activities executed in time interval [t− 1, t];
ak – the number of available resources of type k; at any time t, the number

of resources used must not exceed the number of available resources ak
for k = 1, . . . ,K;

K – the number of types of renewable resources;
k – the number (index) of a resource type;

rik – the demand of activity i for the resource of type k;
di – the duration of activity i.

A solution to the resource-constrained project scheduling problem with the make-
span minimization criterion is the vector of the activities’ start or finish times, known
as the direct representation. Heuristics use indirect representations. For the RCPSP,
the best results are obtained (Hartmann and Kolisch, 2000; Kolisch and Hartmann,
2006) for a representation taking the form of an activity list, where a solution is
a permutation of the numbers of consecutive activities, taking into consideration the
ordering relations.

An indirect-representation solution is transformed into a direct-representation
solution with the use of decoding procedures known as schedule generation schemes
(SGS), which transform an activity list into an executable schedule (the vector of
the activity start times is determined in the process), taking into consideration the
precedence and resource constraints.



34 M. Klimek, P. Łebkowski

The SGSs most often used for the RCPSP with the makespan minimization
criterion include (Kolisch, 1996a):
– serial SGS – a procedure in which, for each consecutive instant t, the start time
is determined for the first yet-to-be arranged activity in the activity list so that
the time is as soon as possible, given the ordering and resource constraints;

– parallel SGS – a procedure in which, at each consecutive instant t, these non-
scheduled activities (analyzed in the order defined on the list of activities) are
started which may be started at a given instant t, given the ordering and resource
constraints.
Various solution-generation techniques can be used to decode an activity list

with an SGS:
– forward scheduling – planning of consecutive activities starting from the top of

the list;
– backward scheduling – planning of consecutive activities starting from the bottom
of the list, determining activity start times against the predefined due date.

The insertion algorithms proposed herein use forward scheduling.

3. PROPOSED INSERTION ALGORITHMS

For various optimization problems (including project scheduling), constructive algo-
rithms are developed based on the insertion approach. In the case of such algorithms,
a set of test solutions is created for scheduling problems by inserting activities at
various places in the current solution (received during earlier iterations of the algo-
rithm). From such a test solution set, the solution is selected with the best value of
the objective function to serve as the current schedule in the next algorithm iteration.
As a rule, an insertion algorithm runs in two phases:
1) initial phase, during which the initial activity list is developed with a selected

algorithm using priority rules;
2) proper insertion phase, during which a sequence of n partial permutations is

created, starting from a one-element permutation and finishing at an n-element
permutation; each consecutive partial permutation is built by inserting the next
activity on the activity list into the current partial permutation.

The initial activity list, order of selecting activities from the list, and places assigned to
activities in partial permutations are algorithm specific. In this paper, new constructive
algorithms Alg1, Alg2, and Alg3 for solving the RCPSP are proposed; they have
been developed by the authors (Klimek, 2010; Klimek and Łebkowski, 2010) based on
the concept of procedures used for flow shop problem (Nawaz et al., 1983; Woo and
Yim, 1998).

The operation of the first of the algorithms proposed, Alg1, may be presented in
the following steps, in which P is the activity list that the SGS decoding procedure
transforms into the current schedule, while L is the list of currently eligible activities;
i.e., those that may be started, as all of their predecessors are already on list P :
Step 1. Creation of initial list L comprised of all activities that may be started at

time t = 0, ordered in line with the adopted priority rule.



Insertion Algorithms with Justification for Solving . . . 35

Step 2. Insertion of the first activity from list L into all possible positions on current
activity list P (with ordering constraints taken into consideration) and, in each
case (each insertion position), generation of a partial schedule. From among
all of the partial schedules obtained, the best schedule is selected against the
optimization criterion adopted for partial schedules.

Step 3. Updating L: the activity inserted in Step 2 is deleted, and all of its successors
(all of whose predecessors are already on list P ) are placed on the list with
the order according the adopted priority rule maintained.

Steps 2 and 3 are repeated until all activities are on list L, which is subsequently
transferred by an SGS scheme into a schedule - solution of the RCPSP. The operation
of procedures Alg2 and Alg3 is similar to that of Alg1, with the proviso that:

– the activities on list L may be ordered arbitrarily, as the order does not affect the
operation of the algorithm;

– in Step 2 of the Alg2 procedure, the insertion of each activity from list L into
the last place of list P is sampled, and that activity is selected to occupy that
place for which the best partial schedule is generated;

– in Step 2 of the Alg3 procedure, the insertion of each activity from list L into
every available place on list P is sampled; then, that activity and that insertion
place are selected for which the best partial schedule is generated.

In Step 2 of theAlg1,Alg2 andAlg3 procedures, partial schedules are assessed in
the following way: the project makespan is determined for the activity list represented
by current list P followed by the other project activities in the order determined based
on the priority rule used.

Table 1 presents the priority rules that have proven effective for the RCPSP
(Kolisch, 1996b) and that have been used in the insertion algorithms proposed to
arrange activities not yet on list P while determining the value of objective function F ,
as well as to arrange activities on list L in the case of the Alg1 procedure.

Table 1. Activity priority rules

Rule name Rule description

LST minimum Latest Start Time for activities, with due date
taken into consideration

LFT minimum Latest Finish Time for activities, with due date
taken into consideration

MTS Most Total Successors, maximum number of all activity
successors

MTSPT Most Total Successors Processing Time, maximum aggre-
gate duration of a given activity and all of its successors

Given a priority rule, if multiple activities have the same priority, then such
activities are placed on the activity list in the order of activity numbers (the lower
the activity number, the higher the activity is on the list). While generating solutions,
the use of double justification by extremes is tested. Such a justification transforms
(improves) a schedule generated by SGS procedures. First, all activities are right



36 M. Klimek, P. Łebkowski

justified, then they are left justified. The right (left) justification by extremes means
that activities with maximum finish time (minimum start time) in schedule S subject
to justification are justified consecutively. The right (left) justification of a given
activity consists in determining (for that activity) the start time as late (early) as
possible, given the ordering and resource constraints. The use of the justification
technique enables a new schedule to be found for which activity makespans are no
longer than in schedule S, and often shorter (Valls et al., 2005; Valls et al., 2006; Valls
et al., 2008).

4. ILLUSTRATIVE EXAMPLE

In order to explain the operation of the algorithms and double justification technique
proposed, we will give an example. The project illustrating the problem considered
is presented in Figure 1. The project consists of eight activities executed with the
use of a single resource type, whose availability is 10. Vertices 0 and 9 represent the
start and finish of project G(V,E); they are dummy activities with a zero makespan
and zero demand for resources. The edges of the graph reveal “technological” ordering
relationships between activities; for instance, Activity 6 may start only after Activity 4
is finished.

Fig. 1. Example of project in Activity-On-Node representation

Based on the priority rules, the proposed insertion algorithms determine the
order of activities on the list L (Alg1 algorithm) and arrange activities not on list P
while generating schedules for the purposes of assessing the partial schedules (Alg1,
Alg2, and Alg3 algorithms). Assume that the MTS priority rule is used, according
to which activities are placed on the activity list in decreasing order of the numbers of
activity successors, with the ordering relations taken into consideration. The priorities
of individual activities are as follows: MTS1 = 3,MTS2 = 1,MTS3 = 0, MTS4 = 1,
MTS5 = 0,MTS6 = 0, MTS7 = 1, and MTS8 = 0. The resulting activity list is
{1, 2, 4, 7, 3, 5, 6, 8}. For a given activity list, the decoding SGS procedure determines
a schedule; that is, the start (finish) times for individual activities. For instance,
Figure 2 presents the schedule generated by the serial SGS procedure for activity list
{1, 2, 4, 7, 3, 5, 6, 8} obtained based on the MTS priority rule.



Insertion Algorithms with Justification for Solving . . . 37

Fig. 2. Schedule based on MTS priority rule, generated by serial procedure

The schedule illustrated in Figure 2 (whose makespan is 10) admits improvement
with use of the double justification technique. Right justification by extremes is applied
first. Activities are subject to this justification in decreasing order of their respective
finish times; justified are, consecutively, Activities 6, 8, 5, 3, 7, 4, 2, and 1 (where
activities have the same finish time, they are justified in decreasing order of their
numbers). Right justification of a given activity comes down to determining the latest
possible start time for that activity, given the ordering and resource constraints and
the current project makespan of 10. The schedule obtained after right justification
(presented in Figure 3) is clearly better than the original one, as its makespan is 9
(by 1 less than that of the schedule in Figure 2). It has proved possible to delay the
start of all activities except Activity 6.

Fig. 3. Schedule from Figure 2 transformed by right justification

Right justification by extremes is followed by left justification by extremes. Acti-
vities are subject to this justification in increasing order of their respective start times



38 M. Klimek, P. Łebkowski

in the right justified schedule in Figure 3; justified are, consecutively, Activities 1, 2,
4, 7, 3, 6, 8, and 5 (where activities have the same start time, they are justified in
increasing order of their numbers). Left justification of a given activity comes down
to determining the earliest possible start time for that activity, given the ordering
and resource constraints. The schedule obtained after left justification is presented in
Figure 4; its makespan is 9. It has proved possible to start all activities earlier than in
the schedule presented in Figure 3.

Fig. 4. Schedule from Figure 3 transformed by left justification

Even without the justification techniques, the use of the insertion algorithms
proposed leads to identifying optimal schedules with a makespan of 8 for this simple
project analyzed herein as an example. Figure 5 presents the schedule found by Alg1
with use of the Serial SGS procedure against the MTS priority rule.

Fig. 5. Minimum-makespan schedule found by Alg1 with use of Serial SGS procedure
against MTS priority rule



Insertion Algorithms with Justification for Solving . . . 39

5. RESULTS OF EXPERIMENTS

Experiments were run using an application implemented in C#, in the Visual Stu-
dio.NET environment, on an Intel Core i7-4770 CPU 3.4-GHz, 8-GB-RAM computer
for 480 test instances from the J30 set (30-activity projects) and 480 instances from
the J90 set (90-activity projects) sourced from the PSPLIB library (Kolisch and
Sprecher, 1997).

The experiments were designed to assess the efficiency of the insertion algorithms
developed for the project makespan minimization as well as to verify the effectiveness of
schedule improvement with the use of double justification (DJ). The tables presenting
the numerical results set forth the following: Av_dev – the average deviation from
optimal (for 30-activity projects) or the best-known solutions (for 90-activity projects);
Best_s – the number of solutions (from among the 480 test instances) with the value of
objective function F equal to that recorded for the best-known schedule (the optimal
schedule in the case of the 30-activity projects).

The priority rules used in the computations were the effective LST, LFT, MTS,
and MTSPT rules described above, and additionally the RND rule, according to
which the priorities are assigned to individual activities at random. For comparison
purposes, numerical experiments were first performed for the single-pass-priority-rule
heuristic and the selected priority rules, with solution quality checked following the
the use of double justification (DJ). The results of the numerical experiments for the
single-pass-priority-rule heuristic are presented in Tables 2 and 3, and the proposed
Alg1, Alg2, and Alg3 insertion algorithms are shown in Tables 4 and 5. The running
times and numbers of the solutions checked for Alg1, Alg2, and Alg3 are presented
in Table 6.

Table 2. Results of experiments for 30-activity projects – single-pass priority rule heuristic

Serial SGS Serial SGS+DJ Parallel SGS Parallel SGS+DJ
Av_dev Best_s Av_dev Best_s Av_dev Best_s Av_dev Best_s

RND 16.40% 146 6.42% 245 10.99% 159 4.74% 251
LST 12.51% 160 5.71% 239 8.52% 166 4.23% 260
LFT 11.56% 166 5.44% 242 8.25% 166 4.14% 258
MTS 11.63% 158 5.52% 235 8.32% 163 4.24% 256

MTSPT 12.46% 158 5.65% 238 8.71% 164 4.29% 256

Table 3. Results of experiments for 90-activity projects – single-pass priority rule heuristic

Serial SGS Serial SGS+DJ Parallel SGS Parallel SGS+DJ
Av_dev Best_s Av_dev Best_s Av_dev Best_s Av_dev Best_s

RND 18.99% 135 6.60% 303 12.55% 135 5.30% 305
LST 15.49% 146 5.71% 302 11.17% 144 4.71% 313
LFT 15.34% 153 5.70% 304 11.33% 143 4.91% 311
MTS 14.74% 152 5.65% 302 10.60% 147 4.67% 313

MTSPT 15.60% 148 5.65% 303 11.05% 143 4.85% 310



40 M. Klimek, P. Łebkowski

Table 4. Results of experiments for 30-activity projects – proposed insertion algorithms

Serial SGS Ser. SGS+DJ Parallel SGS Par. SGS+DJ
Av_dev Best_s Av_dev Best_s Av_dev Best_s Av_dev Best_s

RND 8.25% 180 3.38% 270 6.02% 185 2.59% 286
LST 3.08% 273 2.26% 307 3.15% 239 1.60% 316

Alg1 LFT 3.05% 271 1.75% 332 3.08% 235 1.40% 322
MTS 3.44% 255 1.88% 322 3.20% 228 1.53% 317

MTSPT 3.06% 271 1.88% 326 3.09% 238 1.39% 322
RND 5.03% 224 1.89% 311 4.03% 211 1.79% 308
LST 4.35% 225 1.97% 313 3.93% 211 1.61% 314

Alg2 LFT 4.34% 231 1.83% 316 3.73% 212 1.63% 310
MTS 4.21% 236 1.81% 315 3.71% 211 1.64% 306

MTSPT 4.35% 230 1.85% 314 3.84% 210 1.55% 309
RND 4.68% 226 1.85% 311 4.02% 205 1.68% 311
LST 3.92% 232 1.80% 319 3.78% 213 1.56% 318

Alg3 LFT 3.93% 237 1.63% 324 3.60% 214 1.58% 313
MTS 3.86% 242 1.69% 320 3.56% 213 1.55% 312

MTSPT 4.00% 237 1.74% 318 3.63% 213 1.49% 313

Table 5. Results of experiments for 90-activity projects – proposed insertion algorithms

Serial SGS Ser. SGS+DJ Parallel SGS Par. SGS+DJ
Av_dev Best_s Av_dev Best_s Av_dev Best_s Av_dev Best_s

RND 13.32% 157 4.92% 314 8.78% 161 4.01% 321
LST 4.33% 316 3.35% 332 4.07% 245 2.71% 333

Alg1 LFT 4.59% 307 3.26% 329 4.12% 236 2.53% 337
MTS 5.18% 279 3.38% 330 4.65% 217 2.62% 333

MTSPT 4.74% 304 3.27% 332 4.32% 234 2.67% 335
RND 8.35% 207 3.54% 329 6.42% 191 3.02% 329
LST 7.46% 219 3.17% 334 5.77% 199 2.75% 331

Alg2 LFT 7.40% 217 3.13% 333 5.69% 196 2.76% 334
MTS 7.27% 218 3.20% 334 5.64% 207 2.81% 331

MTSPT 7.48% 216 3.26% 329 5.93% 200 2.80% 334
RND 7.91% 217 3.33% 330 6.07% 205 2.98% 335
LST 7.17% 221 3.12% 336 5.59% 202 2.72% 331

Alg3 LFT 7.16% 219 3.11% 333 5.56% 199 2.69% 334
MTS 6.98% 219 3.06% 333 5.53% 209 2.72% 332

MTSPT 7.12% 217 3.19% 330 5.75% 201 2.70% 34



Insertion Algorithms with Justification for Solving . . . 41

Table 6. Comparison of running times and numbers of solutions checked
for insertion algorithms under analysis

Serial SGS Serial SGS+DJ Parallel SGS Parallel SGS+DJ
CPU Nr_s CPU Nr_s CPU Nr_s CPU Nr_s

Alg1 0.006 157.9 0.068 158.0 0.035 158.1 0.092 158.1
J30 Alg2 0.004 124.2 0.055 123.1 0.028 124.1 0.075 123.2

Alg3 0.009 217.7 0.096 215.3 0.048 217.1 0.127 215.5
Alg1 0.043 1078.2 0.732 1078.1 0.397 1079.9 1.085 1079.1

J90 Alg2 0.030 711.7 0.499 699.4 0.256 702.1 0.715 695.0
Alg3 0.056 1332.6 0.935 1308.3 0.476 1324.0 1.336 1313.4

Algorithm Alg1 (using the parallel SGS procedure and double justification)
proved most-effective. The use of effective priority rules improves the quality of the
obtained solutions. Schedules generated by algorithms using random priority rule
(RND) are of the worst quality and have the longest average running times. The
quickest is the Alg2 algorithm, which defines and verifies the least number of schedules
in the course of its operation. The slowest is the Alg3 algorithm, which defines and
verifies the largest number of schedules. The best schedules were generated by Alg1
using the parallel SGS and the double justification technique.

The parallel SGS yields better solutions than the serial SGS. A significant im-
provement in solution quality is observed following the use of the double justification
of solutions. While use of this technique increases computation time, it decreases the
project makespan.

When an insertion algorithm is used, the number of analyzed schedules grows
quickly with an increase in the number of project activities, which may prevent their
use for scheduling very large projects. The number of solutions checked for 90-activity
projects is several times larger than that for 30-activity projects.

It is difficult to compare the algorithms proposed herein with the others analyzed
in the research literature. They are more-efficient than single-pass priority rule methods.
For multi-pass priority rule methods, the research reports give schedule quality after
1000 or 5000 iterations (1000 or 5000 generated schedules). The schedules generated for
30-activity projects with the use of multi-pass priority rule methods (such as sampling
procedures) are slightly better than those found by the algorithms proposed (which,
however, analyze significantly fewer solutions). The use of schedules found by insertion
algorithms as initial solutions for metaheuristics might be profitable. The authors
plan to research this problem in the future. The results of our experiments confirm
the good efficiency of the constructive algorithms proposed, using efficient activity
prioritizing rules.

6. CONCLUSIONS

In this paper, the authors have proposed insertion algorithms for the RCPSP with
the makespan minimization criterion, with schedule improvement through the use
of the double justification technique. The procedures analyzed use the ideas applied



42 M. Klimek, P. Łebkowski

to solve the flow shop scheduling problem. The efficiency of these procedures has
been verified for test instances from the PSPLIB library. Numerical experiments have
confirmed the good efficiency of the Alg1 algorithm, which generates schedules slightly
worse than the best-known (or optimal) solutions.

The schedules generated by the insertion algorithms proposed may be used as
initial solutions for local search algorithms.

REFERENCES

Błażewicz, J., Lenstra, J., Kan, A.R., 1983. Scheduling subject to resource constraints
classification and complexity. Discrete Applied Mathematics, 5(1), pp. 11–24.

Brucker, P., Drexl, A., Mohring, R., Neumann, K., Pesch, E., 1999. Resource-constrained
project scheduling: Notation, classification, models, and methods. European Journal of
Operational Research, 112(1), pp. 3–41.

Demeulemeester, E., Herroelen, W., 1992. A branch-and-bound procedure for the mul-
tiple resource-constrained project scheduling problem. Management Science, 38(12),
pp. 1803–1818.

Goncalves, J., Resende, M., Mendes, J., 2011. A biased random-key genetic algorithm with
forward-backward improvement for the resource constrained project scheduling problem.
Journal of Heuristics, 17(5), pp. 467–486.

Hartmann, S., Briskorn, D., 2012. A Survey of Variants and Extensions of the Resource-
Constrained Project Scheduling Problem. European Journal of Operational Research,
207(1), pp. 1–14.

Hartmann, S., Kolisch, R., 2000. Experimental evaluation of state-of-the-art heuristics for
the resource-constrained project scheduling problem. European Journal of Operational
Research, 127(2), pp. 394–407.

Józefowska, J., Węglarz, J. (eds.), 2006. Perspectives in modern project scheduling, Springer,
Berlin.

Klimek, M., Łebkowski, P., 2010. Algorytmy wstawień dla zagadnienia harmonogramowania
projektu ze zdefiniowanymi kamieniami milowym. In: Knosala, R. (red.), Komputerowo
zintegrowane zarządzanie, T. 1, Opole, Oficyna Wydawnicza PTZP, pp. 676–685.

Kolisch, R., 1996a. Serial and parallel resource-constrained project scheduling methods
revisited: Theory and computation. European Journal of Operational Research, 90(2),
pp. 320–333.

Kolisch, R., 1996b. Efficient priority rules for the resource-constrained project scheduling
problem. Journal of Operations Management, 14(3), pp. 179–192.

Kolisch, R., Hartmann, S., 2006. Experimental Investigation of Heuristics for Resource-
Constrained Project Scheduling: An Update. European Journal of Operational Research,
74(1), pp. 23–37.

Kolisch, R., Padman, R., 2001. An integrated survey of deterministic project scheduling.
OMEGA, 29(3), pp. 249–272.

Kolisch, R., Sprecher, A., 1997. PSPLIB – a project scheduling library. European Journal of
Operational Research, 96(1), pp. 205–216.

Nawaz, M., Enscore, E., Ham, I., 1983. A heuristic algorithm for the m machine, n-job
flow-shop sequencing problem. OMEGA, 11(1), pp. 91–95.



Insertion Algorithms with Justification for Solving . . . 43

Tormos, P., Lova, A., 2001. A competitive heuristic solution technique for resource-constrained
project scheduling. Annals of Operations Research, 102(1), pp. 65–81.

Tormos, P., Lova, A., 2003. An efficient multi-pass heuristic for project scheduling with con-
strained resources. International Journal Of Production Research, 41(5), pp. 1071–1086.

Valls, V., Ballestin, F., Quintanilla, S., 2005. Justification and RCPSP: a technique that
pays. European Journal of Operational Research, 165(2), pp. 375–386.

Valls, V., Ballestin, F., Quintanilla, S., 2006. Justification technique generalisations.
In: Józefowska, J., Węglarz, J. (eds.), Perspectives in Modern Project Scheduling, Sprin-
ger, Berlin, pp. 205–223.

Valls, V., Ballestin, F., Quintanilla, S., 2008. A hybrid genetic algorithm for the resource-
-constrained project scheduling problem. European Journal of Operational Research,
185(2), pp. 495–508.

Woo, D.S., Yim, H.S., 1998. A heuristic algorithm for mean flowtime objective in flowshop
scheduling. Computers and Operations Research, 25(3), pp. 175–182.


