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Abstract. When solving problems in the real world using optimization tools, the model solved
by the tools is often only an approximation of the underlying, real, problem. In these cir-
cumstances, a decision maker (DM) should consider a diverse set of good solutions, not just
an optimal solution as produced using the model. On the other hand, the same DM will only
be interested in seeing a few of the alternative solutions, and not the plethora of solutions
often produced by modern search techniques. There is thus a need to distinguish between
good solutions using the attributes of solutions. We develop a distance function of the type
proposed in the Psychology literature by Tversky (1977) for the class of VRP problems. We
base our difference on the underlying structure of solutions.

A DM is often interested in focusing on a set of solutions fulfilling certain conditions
that are of specific importance that day, or in general, like avoiding a certain road due
to construction that day. This distance measure can also be used to generate solutions
containing these specific classes of attributes, as the normal search process might not supply
enough of these interesting solutions. We illustrate the use of the functions in a Multi-
objective Decision Support System (DSS) setting, where the DM might want to see the
presence (or absence) of certain attributes, and show the importance of identifying solutions
not on the Pareto front. Our distance measure can use any attributes of the solutions, not
just those defined in the optimization model.
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1. INTRODUCTION

The family of Vehicle Routing Problems (VRP), constitute a diverse and at the same
time practically important family of problems. Many organizations solve VRPs daily
or even more often. Instances of many of the different forms of the VRP are commonly
solved manually, or by some tool that is often optimization-based and embedded in
a DSS. Common features of the VRP are usually that each instance is defined by
a series of n stops that must be served by some number of vehicles using a shared
depot where all routes start and end, and that there are resource constraints, the
most common being a limited capacity on each vehicle. The goal of the VRP is then
to find routes so as to minimize some function that depends on things such as the
cost of making deliveries using the chosen routes, the number of vehicles needed, etc.
In Toth and Vigo (2002) a variety of extensions to the classical VRP are described,
some of which are usually required in order to make the VRP rich enough, and thus
suitable for modeling the real world problem at hand. For more information about
rich VRPs see, e.g., Hartl et al. (2006); Oppen et al. (2010).

Our goal in this paper is the specification of similarity measures between solutions
to a VRP instance. These functions should be based on some measure apart from the
objective function value of the solutions. Our function is based on the structural
difference between the solutions, because this is what a human dispatcher bases her
valuations of difference on. We produce measures of difference of the type proposed in
the Psychology literature by Tversky (1977). We also show how these measures can
be extended by including solution attributes not explicitly modeled in the underlying
optimization tool.

For convenience, we will define the output of the similarity functions on the
range zero to one. This means that they can be subtracted from 1 to yield a distance
function. We emphasize that we have no interest in describing optimization methods
in this paper, we simply provide means to measure the similarity between two VRP
solutions. It should also be stated that because we base our measure on the attributes
of stops, arcs and tours of VRP solutions, our measure can handle most extensions to
the classical VRP model, thus making it suitable for embedding in a real-world DSS.

Such distance measures can have many applications. The focus of this paper
is their use in a DSS to help a decision maker (DM). The DM might want to see
multiple good solutions that are different. We presume that an objective function
and the problem constraints determine the meaning of “good.” We give methods here
for quantifying the notion of “different,” based on the solution structures. Such a
measure, based on the difference between the solution attributes is also of high value
in Multi Criteria Optimization, MSO, as shown in Lgkketangen and Woodruff (2005).

The opposite use is in plan recovery, where the original plan has to be abandoned
due to some unforeseen event, e.g., a breakdown or accident. Here, the DM wants
a new plan that deviates as little as possible from the original. There is a similar
concern when trying to make robust plans, where small changes in the input should
give as little disruption as possible to the original plan, see e.g. Sérensen (2006). If
one observes that similarity is complimentary to difference, the same measure can of
course be used for this purpose also.
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There are other uses for diversity measures. For example, in search algorithms
such as scatter search ((Laguna and Marti, 2003) or genetic algorithms (Reeves, 2003)
it is assumed that a variety of solutions are available. In some cases, random construc-
tion can reasonably be assumed to create variety, but in highly constrained settings it
might be important to verify that solutions are in fact mutually distant (see Strensen
and Seveaux, 2006).

In local search based meta-heuristics such as tabu search (Glover and Laguna,
1997), there are several uses. The most obvious is as a diversity measure, to make
sure that the search has moved to a significantly different part of the search space. A
distance function can also be used in a constructive heuristic, to make sure that the
newly constructed solutions are sufficiently different from earlier solutions to justify
launching a local search from the new solution.

A DM is often interested to focus on a set of solutions fulfilling certain conditions
that are of specific importance that day, or in general, like avoiding a certain road
due to road-works that day, or, making sure that the routes are sufficiently similar
(for fairness reasons). The normal search process might not supply enough of these
interesting solutions. Our distance measure can also be used in a multi-criteria opti-
mization setting, to generate more of solutions containing “sufficient” levels of certain
attributes.

Since the words “similarity” and “distance” are complimentary, the literature
for computing values for them is intertwined. We will use the terms similarity and
distance function in their broad, intuitive sense.

This introduction is followed by Section 2, which gives examples of other distance
measures in the literature. Section 3 gives an introduction to Tversky’s similarity mea-
sure that we use as a basis for our distance measures, and in Section 4 our distance
measures are defined. We then show examples in Section 5. A description of compu-
tational experiments illustrating our methods is in Sections 7 and 6. The final section
offers conclusions.

2. OTHER DISTANCE MEASURES

The need for measuring distances between solutions is not new, and many metrics
have been suggested. The Euclidean distance is, of course, not directly applicable to
permutation vectors representing routing order. Our discussion here will be restricted
to functions that measure the distance between solutions represented as permutation,
as this is the common way to represent solutions to routing problems like the VRP
and TSP. We highlight here a few distance measures from the literature, even though
they all were designed for other purposed so that differences in the tour structure
and other attributes are not addressed properly for use in a DSS. They are typically
applied within an algorithm that is searching for good solutions.

Exact Match Distance. This can also be called the hamming distance (Hamming,
1950) for permutations (see Ronald, 1998); the distance is the number of positions
that are different in the two solutions. If S and T are the two solutions, then the
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distance between them is given by the following formula

N if S(7) =T«
dem (S, T) = sz where z; = {0 £5(8) =10) (1)

1 otherwise

The Deviation Distance. This is also called “Spearman’s footrule”. The measure
here is based on the sum of the total deviation of all items between the two strings
(see Ronald, 1998).

N

dgen(S.T) =Y _|i — j| where T(j) = S(i) = k (2)
k=1

Bontoux-Feillet Distance. This measure is defined in Bountoux and Feillet (2005)
for a Traveling Purchaser Problem. Here the distance between two solutions is defined
to be the quotient of the number of markets (i.e. nodes) in the symmetric difference
between the two solutions, divided by the number of markets in the union of the two
solutions.

The Edit Distance. Given three edit operations (add, delete and substitute). The
edit distance (also called the Levenshtein distance) is then the minimum number of
operations to transform string S into string T (see Seveaux and Sérensen, 2005; Wag-
ner and Fisher, 1974; Sérensen, 2007). This measure is more a search space distance
than a solution space distance, as the edit operations can be considered neighborhood
operations.

The Reversal Distance. This is the number of substring reversals required to trans-
form string S into string T (see Caprara, 1999). This measure is important in molecular
biology.

Apart from the Bontoux-Feillet distance, these functions are designed to operate
on permutations without regard to their perception by a DM as a VRP. An important
objective for our distance function is to be able to produce an explanation of the
differences that is understandable to a DM using attributes of a VRP solution. We
also go beyond the attributes of solutions that are used in the optimization process.
The Bontoux-Feillet Distance is for a single tour, and is similar to the Tversky ratio
that we now describe. That distance is specialized for the traveling purchaser problem,
while we will introduce a distance function specialized for VRPs.

3. TVERSKY’S SIMILARITY MEASURE

We begin our investigation with a ratio version of Tversky’s similarity measure (Tver-
sky, 1977). This ratio has been widely used to measure similarity and there is extensive
discussion of its properties in the psychology literature (Goertzel, 1997; Medin et al.,
1993). It has been used in diverse contexts such as spam detection (Dimmock and
Maddison, 2004) and clustering (Ryu and Eick, 2005). For two non-empty sets A and
B, define

AN B
A B)=
TAB) = B 1A B+ B- 4
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where |A| denotes the cardinality of set A. It is well known that 1 — J(-) is a semi-
metric; i.e., it satisfies the definition of a metric apart from, perhaps, the triangle
inequality.

We will base our similarity measures on generalizations of the ratio given by J(-).
Insights into creation of a generalization can be gleaned by considering the literature
on two related problems: comparing vectors of categorical data and comparing sets of
categorical data. This work has been extended to consider comparisons of vectors of
sets of data, which is not our current problem but it is close enough so that solutions
to it are instructive. A unifying proposal for vectors of sets and a nice summary of
related work is provided by Ryu and Eick (1998).

4. METHODS FOR COMPARING VECTORS, SETS OF VECTORS AND
VECTORS OF SETS OF VECTORS

Our interest here is strictly in the similarity and difference between solution, not
optimization, per se. We can assume that all the solutions we look at are good enough,
that is, the objective function value is within some fraction of the best found, or some
other threshold. Additionally, it should also be stressed that similarity is not the same
as visual pattern matching. This is exemplified in Figure 1, where the two solutions
may look very similar, but in fact may be very different in terms of the attributes of
interest to the DM.

Fig. 1. Two Distinct VRP Solutions.

A solution to a VRP instance consists of a collection of vehicle routes that traverse
some of the arcs to serve all the stops included in the instance. Each stop, each
potential arc, (whether included in the solution or not), and each tour has associated
with it a vector of attributes. Given the attribute vectors of two stops, two arcs
or two routes, we want to compute the similarity between them. The elements of
an attribute vector might be categorical, binary, measured, or might even be sets.
A unique identifier of the stop, the arc or the tour needs to be included in the attribute
vector and treated as categorical data. This is to avoid a situation where, e.g., two
different stops with identical sets of attributes are compared and their similarity is
computed to be 1.
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Our similarity functions are based on the attributes of the solutions. Before get-
ting into the formalisms, we can get intuition by thinking of VRP solutions from the
point of view of each stop. Each stop is on a tour, hence for each stop there is a set of
other stops that are on the same tour, a set of arcs that are in the tour and a vector
of attributes for the tour itself. Given sets of stops, sets of arcs and attributes of tours
for a given stop, we want to compute the similarity between the tour this stop is on in
one solution and another. Once we have the similarity for each stop we can compute
the similarity between solutions by summing the similarity over the stops.

In order to build up the similarity function, we need functions to find the sim-
ilarity between vectors, sets of vectors, and vectors of sets of vectors. The vectors
correspond to single stops, arcs or tours, the sets of vectors correspond to sets of
stops or arcs that share the same tour. Finally, the vector of sets of vectors corre-
spond to a complete solution for a VRP instance, viewed from the point of view of
each stop. Lokketangen and Woodruff (2005) developed a method for finding the dis-
tance between sets of vectors, where each vector in the set gives the attributes of that
member of the set. We use their method as a basis for our similarity function. In order
to generalize Tversky’s function, Lgkketangen and Woodruff generalized the intersec-
tion using a function h(-) and the difference using a function g¢(-); these functions
are described in Subsection 4.2. The functions, in turn, require functions to compare
attribute vectors which we obtained based on the work of Ryu and Eick; this is de-
scribed in the next subsection. In Section 5 we give a method of representing VRP
solutions so that differences between them can be computed. Subsequent sections give
an example and some computational experience.

4.1. COMPARING ATTRIBUTE VECTORS

For two particular values of vector element j, let the function 7, (-) take values on [0, 1]
corresponding to the dissimilarity between the two attribute values. For a measured
attribute, n;(-) should provide a continuous measure of dissimilarity scaled by the
variability as measured across all potential measurements or some other set of interest.
For example the distance between vectors & and y attributed to element j is,

n;(z,y) = min (17 |%—yﬂ|>
Sj

where s; is a measure of the dispersion of the values for attribute j; we have in mind
the standard deviation, but other measures of dispersion could be used. We assume
that 0/0 is zero. Scaling by the dispersion puts the difference on the same scale in terms
of deviation regardless of the original scale of the values. For categorical attributes,
including binary attributes, difference is replaced by an indicator of inequality so it
will take the value zero or one. If any of the vector elements are sets, then a function
such as Tversky’s can be used.
We then define

P P
Oz, y;w Z (x,y)w,) Z
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to be a measure of dissimilarity between vectors x and y. Here, p is the number
of vector elements (attributes) and w is an optional vector of user-specified weights
giving the relative importance of the different attributes.

4.2. COMPARING SETS OF VECTORS

In Lokketangen and Woodruff (2005) functions are developed that allow for a gener-
alization of the Tversky difference function given in Section 3 to compare two sets of
vectors. Given two sets A and B,

g(A,Biw)= Y > 8k K;w)/|B|

ke(A—B) k’eB

provides a generalization of |A — B|. Observe that if the vector size is one and all
vector elements are treated as categorical variables (i.e., A and B are sets), then
g(A, B;w) = |A— B| as shown in Lgkketangen and Woodruff (2005). This extends to
binary set elements if the range is used to scale §.

The numerator in Tversky’s ratio as given in Section 3 is the cardinality of AN B.
One can make use of the fact that for simple sets, |[ANB| = |A|—-|A—B| = |B|—|B—A]|.
Since, in general, |A|—g(A, B;w) # |B|—g(B, A; w), to obtain symmetry we use both
in our bounding approximation to |A N B|, namely

h(A, B;w) = (JA] = g(A, B;w) + [B] — g(B, A;w))/2

As with ¢(+), h(w, A, B) = |AN B| if A and B are simple sets and w is a vector of
ones.
This enables extension of Tversky’s similarity ratio to compute dissimilarity be-
tween sets of vectors. Define
h(A, B;w) 3)
(A, Biw) + g(A, B;w) + g(B, A;w)

d(A, B; =1-
(7 ,'LU) h

The function d(-) that we have given offers the advantage over the Tversky ratio
that instead of simply using the number of elements in the difference sets, the 4(-)
function is used to find out how different they are. In the next section we show
how these functions, originally developed for portfolio optimization problems, can be
extended to rich VRP solutions.

5. AN ATTRIBUTE BASED MEASURES
FOR SIMILARITY BETWEEN VRP SOLUTIONS

In a VRP setting, several different attributes for stops, arcs and tours might be of
interest for doing comparisons:

— For stops, attributes of interest could be related to accessibility (parking, maneu-
vering, loading/unloading facilities etc.), time windows, type and amount of load
picked up or delivered.
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— For arcs, attributes could include length, road quality (number of lanes, type of
pavement, average altitude, slope, curves etc.), average travel time, travel time
variations (rush hours, ferry routes etc.).

— Tours could be characterized by day/time for the tour, vehicle and driver. In some
applications, it might also be of interest to measure the importance of the tour. If e.g.
production and/or inventory constraints are involved, a tour would be important
if the goods picked up on the tour is critical to keep the production process from
stopping and less important if the load from the tour is put into inventory for use
the next day.

The attributes listed here are meant only as examples; the actual attributes used
could be fewer or more and have to be decided based on the application at hand.
Note also that a unique identifier is always included as an attribute, and that many
of these attributes might not be used in the optimization model.

Consider the following solution representation that leads to a fairly compact
expression of our similarity function. Order the stops (arbitrarily) and index them
from 1 to n; we will then use vectors of length n referred to as n-vectors. Given a
solution X, we can represent it in a way that is useful for our purpose. Represent X
by X, X and X, where X and X are n-vectors of sets and X is an n-vector.

In X each vector element 4 corresponds to a particular stop and gives the at-
tributes of the stops that share the route with ¢, omitting stop 7 and the depot.

The arc representation of a solution we will use is analogous: X gives the at-
tributes of the arcs that are on the route of each stop.

The third representation, X;, gives the attribute vector of the tour that stop i is
on.

We can now give an abstract definition of distance for two VRP solutions repre-
sented as X and Y that generalizes the Tversky function:

IS o o I o o I s o
HX,)Y)=a— ) d(X;,Y;w)+ 8= ) d(X;,Yi;w)+v— ) 6(X;,Yi;w
(X,Y)=o— ; ( )+ 6 ; ( )+ ; ( )
where the parameters a, 8 and ~ control the relative importance of stops, arcs and
tours, respectively. The sum of these three parameters should equal one to have the
function take values on [0, 1]. The vector w gives the weights for the different attributes
of stops, while w and w give the weights for attributes of arcs and tours, respectively.

6. EXAMPLE

To illustrate the computations, we will make use of a very small example with five
stops and three vehicles. For this example, we associate with each stop three at-
tributes: the stop number, the number of pallets to pick up and a binary variable
indicating whether the vehicle has to park in the street or not while loading. With
each arc we associate its (origin, destination) pair of nodes, the arc length and number
of lanes, and with each route we associate the number of the vehicle performing the
route.
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We will make use of two solutions:

— FE: stops one, four and five are the route for vehicle one; stops two and three are
the route for vehicle two.

— F': stops five and three are the route for vehicle one; stops two, one and four are
the route for vehicle three.

Table 1. Attributes for VRP example.

Stop attributes: Arc attributes:
Stop Pallets Street parking Arc Length Lanes
1 3 No 0-1 20 km 2
2 3 Yes 0-2 10 km 2
3 4 No 0-3 20 km 2
4 1 Yes 0-4 5 km 1
5 5 No 0-5 10 km 2
1-2 25 km 4
1-3 40 km 2
1-4 15 km 4
1-5 25 km 4
2-3 15 km 4
2-4 15 km 1
2-5 20 km 2
3-4 25 km 1
3-5 20 km 2
4-5 10 km 4

Table 1 gives the attributes for the stops and the arcs in our small example. Even
though some of the arcs are not used in any of the two solutions listed here, their
attributes are given because they may be used in some solution. Note also that vehicle
one is the only vehicle used in both solutions. The actual tours can be visualized as
in Figure 2.

So for the small example given, Ey gives the attributes of the stops that share
a route with stop one in this solution so it is {(4,1, Yes), (5,5,No)} because in so-
lution E, stop one shares the route with stops four and five. The other elements of
E can be constructed in the same way, so Ey = {(3,4,No)}, E3 = {(2,3, Yes)}, E,
= {(1,3,No), (5,5,No)}, and E5 = {(1,3,No), (4,1, Yes)}. This is repeated for £, so
Fy = {(2,3,Yes), (4,1, Yes)}, Fy = {(1,3,No), (4,1, Yes)}, F5 = {(5,5,No)}, [y =
{(1,3,No), (2,3, Yes)}, and F5 = {(5,5,No)}.

The arc representation of a solution we use is analogous, X gives the attributes
of the arcs that are on the route of each stop. If X represents solution FE, X, ={((0—
1),20,2),((1—4),15,4),((4—5),10,4),((5—0),10,2)} and Xo = {((0—2),10,2), ((2—
3),15,4),((3 —0),20,2)}.
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5 ; 2 5
3
Order Size Parking Vehicle
N NONON® O-Yes 1 —>
1 2 3 4 5 ®-No D e >
3 P G P >
Road Type
1 Lane
2 Lane
4 Lane

Fig. 2. Solutions E and F.

The third representation, X;, gives the attribute vector of the tour that stop 4
is on. Following our example, it means that, e.g., £ = 1 because we have defined so
few attributes for this simple, small example.

Writing down the representations is tedious and doing the calculations by hand
is treacherous, but the representations and calculations are easily programmed. To
help the reader verify any such programming, we illustrate some of the calculations
to complete the example by working backwards down one thread. We start with the
distance between the stop attributes for the first stop:

d(EBy, Fy;0)
that creates a need for generalized set differences for stops attributes, e.g.:
g(By, Pyw)y= Y > 6k K;w)/|Bl.
ke(E1—Fy) k'eF
The set E; — F} has only one member; the set difference is {(5,5, No)} so
9(Ey, Fryw) = §(, (5,5, No), (2,3, Yes)) + d(wb, (5,5, No), (4, 1, Yes))

To compute this, we need to compute ¢ function values. For example, with an impor-
tance weight vector of w given by the user:

(5(’[1)7 (57 5; NO)7 (27 37 YGS)) = w1771 (57 2) + w2772(5v 3) + ’12)37’]3(NO7 Yes)
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The 7 function requires some value for the expected spread of each vector element.
The first and third vector elements are categorical so since we do not have a full data
set to use estimate a value, we will assume 1/2 rather than estimating it from the
limited data we have. This results in,

1
13(No, Yes) = e

Since “No” differs from “Yes.” The value of 7,(5, 2) is also 2 because stop 5 is not the
same as stop 2. The number of pallets for stops that we have (namely: 3,3,4,1, and 5)
has a sample standard deviation of 1.48 so we use that for illustration purposes. This
yields -

We note that it actually takes less time to write computer code for the distances
in general than it takes to work through one full example by hand, even when the
example is small.

7. COMPUTATIONAL EXPERIMENTS

This section reports on computational experiments using the distance measure. Our
example instance is from http://branchandcut.org/VRP/data (as are all of our
examples). It has 5 vehicles and 32 customers. This has simple example to illustrate
calculations has the following attributes. A stop has the customer ID given as a
number and the customer demand, normalized by dividing with the capacity of the
vehicle. The arcs are represented by the pair of end-point nodes, and the arc length.
The tour attributes are just the number of the tour and the set of customers on the
tour, as all vehicles are the same, and there are no operational costs associated with
a vehicle.

Table 2 shows 4 different, good solutions to the instance A-n32-k5. In Table 3
shows the distances between them assuming equal weights on solution attributes. The
4 solutions are shown graphically in Figures 3 ,4 ,5 and 6. It is evident that solutions
A and B are similar. On the other hand, solutions C and D are very different. This is
reflected in the pair-wise distances shown in Table 3.

In order to illustrate the usefulness of our distance function #(X,Y") for the VRP,
we will look at this in a multi-criteria DSS setting (For an overview of multi-criteria
optimization and VRP see Jozefowiez and Semet, 2008). This will show the usefulness
of having a distance measure both for selecting between solutions to consider, and for
generating solutions containing specific attributes. We show our results on a set of
benchmark instances from the literature, modified for our multi-objective setting.

A user might also want to ask: what makes two solutions different? and what
are the important stops for determining the distance?. Because our distance function
is decomposable by stop, it is easy to answer these questions. In other words, since
t(X,Y) is computed by summing over the stops, the contribution of each stop can be
directly determined.
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Table 2. Different solutions to the instance A-n32-kb.

Solution

Tour

Customers

—_

30, 26, 28, 18, 22, 15, 29, 27
21, 31, 19, 17, 14, 24, 20
8,13, 7, 16, 12
6,3,2 23 4,11, 9

5,25, 10, 1

S SN GUEE SR e A N U R V)

30, 26, 23, 28, 18, 22, 15, 29, 27
21, 31, 19, 17, 14, 24, 20

8, 11, 13, 16, 12

7,6,3,2,4,9

5,25, 10, 1

30, 26, 31, 19, 23, 28, 18, 29, 27
12, 1, 21, 14, 24, 10, 20

15, 22, 8, 11, 13, 16
7,6,3,2,4,9,5

25, 17

U R W N ot R W N

29, 15, 10, 25, 5, 20
7,21, 31, 19, 17, 13

23, 3, 2, 6, 30

14, 28, 4, 11, 8, 18, 9, 22, 27
12, 1, 16, 26, 24

Table 3. Solution Distances.

A

B C D

g Qw >

0.18
0.54
0.66

0.18 0.54

0.42

0.66
0.68
0.42 0.76

0.68  0.76
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Fig. 3. Solution A to instance A-n32-k5. Fig. 4. Solution B to instance A-n32-k5.

Fig. 5. Solution C to instance A-n32-k5. Fig. 6. Solution D to instance A-n32-k5.

7.1. SOLUTION DISTANCES AND A DISTANCES

Our specific example will be in a DSS where the DM wants to be presented a small set
of routes that are good w.r.t. the overall cost, and within the specified route difference
threshold. We have implemented this in a solver based on Oppen and Lgkketangen
(2006) and Cordeau et al. (2001). This solver uses tabu search with an insert neigh-
borhood and infeasibility penalties in the move selection function. The optimization
algorithm design has been modified to work in a multi-objective setting, where the
final objective is a linear combination of the individual objectives. This means that
there is a control parameter A (between 0 and 1) that gives the blend between the
two objectives.

Objiot = A * Objy + (1 — X) * Obja

This blend may also be regarded as a policy. The goal in a multi-objective opti-
mization setting is often to find the set of solutions that define the Pareto Front, PF
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(i.e. the set of undominated solutions). In practice there is a limit to both computa-
tional time and resources, so every point on the PF cannot be mapped. Also, with
the weighted sum of the two objectives, concave regions of the PF may be undetected
(Corne et al., 2000). A DM is also in general interested in implementing a policy, and
not balance the different criteria dynamically.

A typical result is shown in Figure 7, which was generated from 11 runs of our
solver with A ranging from 0 to 1 in 0.1 increments. We will call this A-space.

o

1,400,004

1.200.00

Length
O

1,000.00

800.00— [+]

T T T
0.00 50.00 100,00 150,00 20000 250100
BasicBalance

Fig. 7. Pareto Front for instance A-n32-k5.

It is very easy to imagine that a large distance between solutions in A-space
(measured in \) corresponds to a large differences between solutions, and vice-versa.
This is not necessarily the case. In Table 4 are shown the distances between the
solutions E, F and G for instance A-n32-k5. The A-values used were £ = 0.0, F' = 0.1
and G = 1.0.

Table 4. Solution Distances — Multi Objective — A-n32-k5

E F G
E 0.76  0.70
F 0.76 0.64
G 070 0.64
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The solutions are shown graphically in Figures 8, 9 and 10. The distance between
solutions E and F in A-space is much smaller than the distance between solutions E
and G. (0.1 compared to 1.0). Even so, the difference in solution space is larger between
solutions E and F, than between solutions F and G. This illustrates the importance
of having the difference measure in solution space.

>
Fig. 8. Solution E to instance A-n32-k5. Fig. 9. Solution F' to instance A-n32-k5.

W o

Fig. 10. Solution G to instance A-n32-k5.

Table 5 shows the correlation between the solution distances for a set of quite
different instances from http://branchandcut.org/VRP/data. Both linear (Pearson)
and rank (Spearman) correlations are shown. All the numbers are below 0.5, which
can be understood as small or medium.
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Table 5. Correlation between distances in solution space and \ space.

Instance Pearson Spearman
A-n36-k5 0.37 0.37
A-n37-k6 0.29 0.26
A-n45-k7 0.31 0.29
A-n60-k9 0.41 0.40
A-n80-k10 0.46 0.42
B-n41-k6 0.32 0.30
B-n57-k9 0.42 0.39
P-n70-k10 0.22 0.19
P-n101-k4 0.18 0.16
E-n76-k10 0.37 0.34
G-n262-k25 0.44 0.37
M-n200-k17 0-49 0.44

7.2. USING A THRESHOLD

As stated above, a given value for A (in our two-objective setting) corresponds to
a given policy, or balance between the criteria. Such a policy is often implemented
as a threshold value for a given objective. In our example, a threshold on the route
balance would correspond to a statement like: “The maximum difference in duration
between two routes is 30 minutes.” This corresponds to saying that solutions fulfilling
this policy are of interest, and the most desirable are the solutions on, or near, the PF
that fulfill the criteria, and therefore have a ”good enough” solution value w.r.t. the
overall route length. This thus corresponds to a section of the PF graph. In Figure 11
this is indicated as follows. The overall Pareto Front is indicated by the curved line.
The DM indicates preferences using lines on the PF graph. The route balance policy is
indicated by the vertical dotted line. The horizontal dotted line indicates the minimum
desired solution quality. The set of optimal solutions will the be on the PF between
A and B. (If the route balancing objective had is implemented as a constraint, then
only the point A will be produced). As we are interested in a portfolio of different,
but good, solutions, we will find these between A and B. These solutions are not
necessarily positioned only on the PF, but can also be a dominated solution that
is close, as indicated by X. We call the set of solutions containing such dominated
solutions for the set of good solutions.

Table 6 shows the 95% confidence interval for the difference between the average
distance obtained from the set of good solutions and similarly from the non-dominated
solution set, for a set of the benchmark problems. As can be seen, there is no evidence
to say that the average distances between the solutions in the good solutions set are
not greater than those in the non-dominated solutions set. The solution having Best
length corresponds to the point A in Figure 11.
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A Minimum
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B Maximum Route Cost
X
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Route Balance

Fig. 11. Threshold and the Pareto Front.

»
>

Table 6. Solution difference test.

2 Most Different Best length
Lower  Upper Lower Upper
A-n36-k5 0.03 0.04 0.02 0.04
A-n37-k6 0.01 0.03 0.01 0.03
A-n45-k7 0.01 0.03 0.00 0.03
A-n60-k9 0.01 0.02 0.00 0.02
A-n80-k10 0.01 0.02 0.01 0.02
B-n41-k6 0.01 0.03 0.01 0.03
B-n57-k9 0.02 0.03 0.01 0.02
P-n70-k10 0.01 0.03 0.01 0.03
P-n101-k4 0.02 0.05 0.02 0.05
E-n76-k10 0.01 0.04 0.00 0.03
G-n262-k25 0.02 0.03 0.02 0.03
M-n200-k17  0.03 0.05 0.03 0.04

Instance

We can say that including dominated solutions in the set to give to the DM
will increase the diversity of the presented solutions. This is, according to previous
considerations, something that could be of interest for the DM.

The results presented here are intended only as illustrative examples. If attribute
weights or the objective function value limit are changed, the results will be different.
In practice, attribute weights and other parameters have to be set by the DM based
on their preferences for the application at hand.
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8. CONCLUSIONS

A decision maker (DM) is often more interested in a set of different, good solutions
to their problem, rather than just the (optimal) solution produced by a tool, using
a simplified model of the underlying real world problem. On the other hand, the
same DM will only be interested in seeing a few of the alternative solutions, and not
the plethora of solutions often produced by modern search techniques (see Dana and
Woodruff, 2009).

We have developed an attribute based distance function for use in a DSS for
rich, real world, VRP problems. Based on Tversky’s well-known similarity ratio, the
function makes use of the tour structure and other attributes of the solution. Of
particular importance is that the suggested difference measure also can use solution
attributes that are not explicitly modeled in the underlying optimization tool.

We have used this function in a multi-objective setting to produce diverse sets
of solutions having specific attributes that are of interest for the DM in a particular
planning situation. The examples shown illustrate that using a solution difference
measure for selecting solutions to display based on the structure and attributes of the
solutions gives more varied solutions for the DM to choose from.
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