
Decision Making in Manufacturing and Services

Vol. 1 • 2007 • No. 1–2 • pp. 137–152

A Distributed Decision-Support System

for Virtual Prototyping

Thomas M. Tirpak∗, Lawrence E. Lach∗∗,
Weimin Xiao∗∗∗, Juan M. Lopez∗∗∗∗

Abstract. Virtual Prototyping (VP) is a data-driven design process that promotes both
knowledge reuse and innovation. High-profile applications in the automotive and aerospace
industries have demonstrated its potential to significantly reduce prototype cycles, time to
market, and total product cost. This paper addresses VP as a specialized application of
Decision-Support Systems, and discusses common requirements for engineering design tools,
as well as requirements specific to the design of electronic products, such as mobile phones.
Motorola Labs’ test bed for VP is introduced in terms of its open, agent-based architecture
utilizing Java CORBA. One of the key principles of the VP System is the reuse of expert
knowledge across multiple engineering domains. This is highlighted via several use cases,
showing that the system can function not only as an Intranet-accessible repository of model
services but also as an integral part of decision-making within the native CAD environment.

Keywords: Distributed Decision-Support, Virtual Prototyping, CAE.

Mathematics Subject Classification: 68U35, 68U07, 90B50.

Received/Revised: 03 December 2006/20 April 2007

1. INTRODUCTION

Especially in high-tech industries, innovation and time-to-market both play a signifi-
cant role in a company’s ability to compete in the marketplace. Thus, it is necessary
to provide product development teams with tools that guide decision-making and col-
laboration. For almost four decades, the field of Computer-Aided Engineering (CAE)
has developed along with, and as a driver for, advances in computing and networking
technologies. CAE, and its better-known cousin Computer Aided Design (CAD), are

∗ Motorola Home & Networks Mobility Business, Schaumburg, U.S.A.
E-mail: T.Tirpak@Motorola.com (Corresponding Author)

∗∗ Motorola Labs Physical Realization Research Center, Schaumburg, U.S.A.
E-mail: Q12020@email.mot.com.

∗∗∗ Motorola Labs Physical Realization Research Center, Schaumburg, U.S.A.
E-mail: AWX003@email.mot.com.

∗∗∗∗ Motorola Labs Physical Realization Research Center, Schaumburg, U.S.A.
E-mail: AJL068@email.mot.com.

137

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AGH (Akademia Górniczo-Hutnicza) University of Science and Technology: Journals

https://core.ac.uk/display/229296196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


138 T.M. Tirpak, L.E. Lach, W. Xiao, J.M. Lopez

two activities within the larger framework of Product Lifecycle Management (PLM),
whose goal is to enable companies to quickly and profitably develop and support
products satisfying the requirements of their customers.

A study conducted by the U.S. National Academies (National Research Council,
2004) characterized Advanced Engineering Environments (AEEs) as integrated com-
putational systems and tools that facilitate design and production activities within
and across organizations, which may include:

— Design tools such as computer-aided design (CAD), computer-aided engineer-
ing (CAE), and simulation.

— Production tools such as computer-aided manufacturing (CAM), manufactur-
ing execution systems, and workflow simulation.

— Program management tools such as configuration management, risk manage-
ment, and cost and schedule control.

— Data repositories storing integrated data sets.

— Communications networks giving participants inside and outside the organiza-
tion secure access to data.

To address future needs for AEEs, the National Academies have proposed a Frame-
work for Virtual Manufacturing. It should be noted that software tools are not cur-
rently available for many required product development activities. For other activities,
tools are readily available or emerging, but they are not interoperable or are used
inefficiently. This framework includes Virtual Prototyping as a means to implement
product verification and validation activities.

According to Sandborn (2000), there is general agreement that a virtual prototype
is a model that can be evaluated against system requirements prior to major design or
manufacturing investment. At the most basic level, the term “Virtual Prototyping”
refers to the creation and use of simulation models to guide product development
decisions. Research and applications of Virtual Prototyping, however, have addressed
a wide range of computer-assisted, data-driven activities throughout the lifecycle of
a product, i.e., from the initial idea for a product to its support in the marketplace,
and have sought improvements in concept exploration, requirements definition, design,
and design validation. One aspect of Virtual Prototyping, namely design visualization
or Digital Mock-ups (DMUs), has received much attention, because of its benefits for
evaluating early product concepts and for assembly planning, e.g., detecting potential
collisions/interference of parts and validating the integration of subsystems.

As noted by Thomke (2003), computer-aided design experimentation has enabled
companies to “front-load” their development processes and thereby reduce cycle times.
Virtual Prototyping (VP) has been used widely in the automotive and aerospace
industries. For example, Durstewitz (2002) describes a virtual collaboration environ-
ment for aircraft design, which includes modeling, visualization, and shared workspace
tools. Murphy (2001) addresses the many types of simulation that are performed dur-
ing the lifecycle of an aerospace product, and the manner in which digital prototypes
can support product development decisions. Park (2005) presents an e-Engineering



A Distributed Decision-Support System for Virtual Prototyping 139

framework being developed for automotive suspension module design, based on in-
telligent software agents, Internet/Web, workflow, optimization, and Product Data
Management (PDM).

Danesi (2006) discusses a product development methodology including co-design
and distributed design. A digital mock-up (DMU) is at the center of communication
and interaction. Li et al. (2004) present a Complex Product Virtual Prototyping Envi-
ronment that includes a collaborative design support platform, model depository with
environmental models, product model database, virtual prototyping engine, and visu-
alization environment. Applications involve electronic, mechanical, control, software,
etc., subsystems, and the approach utilizes a collaborative grid simulation platform.

Research and applications of VP have also focused on hardware-software
co-simulation and validation of code on sets of simulated integrated circuits (ICs).
Such models can provide critical insights regarding what product functionality should
be implemented as hardware and what should be implemented as software. For
example, Belanovic (2004) discusses a system for automated generation of virtual
prototypes to guide the design of embedded systems.

Selko et al. (2006) divides the cycle time for product design as: imagin-
ing what you want, finding the right information and interpreting it correctly,
and using design tools. They discuss a workflow-driven user interface that helps
to quickly find and reuse existing parts and systems, reuse industry and cor-
porate standards, capture and reuse expert knowledge, and capture and reuse
engineering processes. The Federated Intelligent Product Environment (FIPER)
http://www.fiperproject.com and the Enterprise Accessible Software Application
(EASA) http://www.easa.aeat.com/index.htm are two examples of toolkits for
capturing engineering processes and integrating supporting services, such as design
simulation and optimization. In essence, these are Business Process Modeling (BPM)
tools specifically configured to manage the workflows and computerized resources of
engineering and product development organizations.

This paper overviews the development of the Motorola Labs Virtual Prototyping
System as a test bed for investigating methods and software for evaluating and op-
timizing designs, and exploring design innovations. Section 2 discusses some of the
challenges of designing electronic products and summarizes the requirements for the
VP System. Section 3 presents the open system architecture that was developed,
based on a collection of software agents and the Java Common Object Request Bro-
ker Architecture (CORBA). Section 4 explains the operation of the VP System as an
Intranet-accessible set of design evaluation services. Section 5 addresses the use of the
system as an automated design-checker, launched from within a CAD tool. Section 6
offers some concluding remarks and recommendations for future work.

2. REQUIREMENTS FOR A VIRTUAL PROTOTYPING SYSTEM

Building on many years of experience in modeling mechanical and electrical systems,
as well as manufacturing process, e.g., (Tirpak, 2002), Motorola Labs formed a work-
ing group in 1998 with the charter of creating “a data-driven design process that



140 T.M. Tirpak, L.E. Lach, W. Xiao, J.M. Lopez

enables innovation and reduces the number of prototype cycles, time to market, and
total product cost while meeting the quality, performance, reliability and value needs
of our customers and markets.” This section of the paper highlights the need for
next-generation engineering tools, as initially characterized by the core team, as well
as their recommendations for developing a Graphical User Interface (GUI) to support
decision makers. Challenges specific to electronic product development and the overall
goals for the Virtual Prototyping System are likewise discussed.

2.1. OPPORTUNITIES TO IMPROVE ENGINEERING TOOLS

Product development teams typically use a number of different software tools, some
of which are internally developed and some of which are licensed from third-parties.
A 1999 survey found that within Motorola, a variety of tools were used for elec-
trical design, e.g., Mentor Board Station and Cadence, for mechanical design, e.g.,
Pro/Engineer, and for Design-to-Manufacturing (DTM) information management,
e.g., Tecnomatix Unicam. There was also a significant number of internally devel-
oped databases with manufacturing/component information, e.g., the Aladdin Prod-
uct Cost Estimation Tool (PCET), and product performance models, e.g., the Green
Design Advisor (GDA).

Based on a review of the engineering design software and tools in Motorola’s
development environments, the following issues were identified:

— Engineering software tools are usually very complicated:
• They solve complex engineering problems in great detail;
• They require very detailed input, or a large data set, in order to solve the

problem;
• They are expensive with respect to license, administration, and maintenance

costs;
• They are not designed for a layperson to use. Even a trained engineer might

find them difficult to use.
— Engineering software tools are usually developed by someone other than the

end user:
• They typically address a single engineering domain, such as component lay-

out, DTM processing, manufacturing cost estimation, environmental assess-
ment, etc.;

• They typically do not communicate with other tools;
• They typically require frequent software updates. However, the tools cannot

or should not be updated by the end-users because of licensing, domain
expertise, resources, and/or economic reasons.

— It is not practical to:
• Install all the tools on every design engineer’s computer;
• Ask the engineer himself/herself to exchange data between the tools;
• Ask the engineer to master all the tools;
• Ask the engineer to understand all the other engineering domains outside of

the area of her/his expertise.



A Distributed Decision-Support System for Virtual Prototyping 141

In addition to the above issues with tools, internal benchmarks also highlighted four
issues, occurring to a greater or lesser degree within certain organizations’ product
development processes, which contributed to longer-than-necessary cycle times:

— Inadequately defined product requirements.
— Insufficient or inappropriate design reuse.
— Design conflicts between different subsystems.
— Late identification of design issues, e.g., in Accelerated Lifecycle Testing (ALT).

2.2. USER INTERFACES FOR PRODUCT DEVELOPMENT TOOLS

One of the goals of engineering tools is to increase the level of automation of design
activities. Nevertheless, within current development environments, human designers
still make important decisions, and will continue to do so in next-generation tools.
Thus, the computer-human interface is a critical part of any VP System.

A Graphical User Interface (GUI) for VP must support and exploit the distributed
nature of the decision-making processes for engineering and design. Consequently, the
GUI must facilitate both hierarchical and concurrent decision-making. This can be
accomplished through a GUI that provides ordered interactions with a hierarchical
view of the entire design. In general, there are five stages of interaction:

— Specifying the Design Domains and Level of Detail
— Selecting Analyses Based on Available Data
— Viewing the Computed Design Metrics
— Identifying Design Opportunities
— Guiding Product Management

An analysis of design processes at Motorola and other companies identified three
principal failure modes in decision-making: Wrong Knowledge, Missing Knowledge,
and Fundamentally Incompatible Knowledge. Correspondingly, a VP system and its
GUI need to support human decision-makers with respect to all three of these modes
for each of the five stages of interaction (as listed above).

2.3. CHALLENGES OF DESIGNING ELECTRONIC PRODUCTS

An engineering director once inquired, “If it is possible to develop a digital mock-up
of a whole airplane, which includes a phone on each seat, why is it so difficult to
develop a full digital mock-up of an entire mobile phone?” The answer lies in:

(1) the types of engineering design domains represented in the mock-up,
(2) the coupling between these domains,
(3) the level of detail required for the model to meaningfully guide decisions.

Whereas an airplane has millions of parts, full digital-mockups are typically limited
to the mechanical and geometric aspects of the design. In contrast, mobile phones
have significantly fewer components, but they have a high degree of interaction, due to
the physics of electromagnetic energy propagation and the nearly infinite possibilities
of software-defined functionality.



142 T.M. Tirpak, L.E. Lach, W. Xiao, J.M. Lopez

Designing and developing handheld electronic devices such as mobile phones is a
process that requires engineering expertise from multiple domains, e.g., mechanical,
electrical and radio frequency (RF). The Motorola Labs team found that separate
groups of experts are typically responsible for separate portions of the product design
for each domain. Decisions are made in each domain that can affect other design do-
mains, and potentially result in design conflicts, leading to multiple prototype builds.
Stories of complex, multidisciplinary design trade-offs include modifying the shape of
a metal ornament on a mobile phone housing which was affecting the RF performance
of the product’s antenna.

Another example was the phone for which the clock frequency of the micropro-
cessor interfered with the refresh of data on the Liquid Crystal Display (LCD). Me-
chanical examples include adjusting the placement of integrated circuits (ICs) on the
keypad driver circuit board, to avoid excessive deflection from keypad actuation.

2.4. DESIGN GOALS FOR THE VP SYSTEM

As discussed earlier in this paper, Virtual Prototyping (VP) is a strategy for faster
time to market by enabling product development with fewer prototype builds. Mo-
torola Labs engineers took a tactical approach to VP by addressing how to en-
hance collaboration among engineering tools for multiple design domains, perform
multi-disciplinary optimization (MDO), and provide engineers with meaningful sug-
gestions for how to improve product designs. Thus, the design goals for the VP
System included:

— Making available to product designers, within their “native” design environ-
ments, i.e., CAD tools, the expert knowledge and simulation models that exist
throughout the company.

— Providing knowledge to designers regarding how the decisions they make in
their own design domain affect the rest of the product design.

— Developing and maintaining a scalable, plug-and-play network of simulation
models via a distributed network of interfaces, services and infrastructure.

— Enabling designers to efficiently search significant portions of design spaces.

Figure 1 presents a logical view of a VP System, which includes domain-specific tools
for design, simulation, and optimization. These are represented by the large ovals,
with the titles: Electrical, Cost, Quality/Reliability, etc. In addition, the system
includes models representing multidisciplinary performance trade-offs. These are de-
picted as small circles labeled Ki, and require the codification of tacit knowledge
typically found in the heads of experts in an R&D organization (Tirpak, 2005). The
third aspect of the system is the communication integration layer. The highlighted
parts of Figure 1 depict the knowledge flows for one possible scenario. In this case,
the designer utilizes a domain-specific tool for electrical design, as well as multidis-
ciplinary performance trade-off models for component costs (K2), quality/reliability
(K3), manufacturability (K5), and mechanical design (K6).



A Distributed Decision-Support System for Virtual Prototyping 143

Fig. 1. Knowledge Management View of Virtual Prototyping

3. SYSTEM OVERVIEW

The Motorola Labs VP System is an application delivery system that hosts a network
of models and servers for evaluating and optimizing product designs. It includes a
total of about twenty models from the electrical, mechanical, board-layout, and other
domains. Utilities for identifying optimal designs via Multidisciplinary Optimization
(MDO) and Automated Concept Exploration (ACE) have also been implemented.
These services accept inputs through the VP System client’s Graphical User Interface
(GUI) built from Extensible Markup Language (XML) templates. The VP System
client can be launched as a Java application. A command-line interface also supports
batch-mode execution of defined analysis scenarios.

The remainder of this section addresses the Common Object Request Broker Ar-
chitecture (CORBA) which provides communication between the VP System server,
the dedicated domain model servers, and the VP System client. Sections 4 and 5
provide examples of the VP System in operation.

3.1. DISTRIBUTED AGENT ARCHITECTURE

Figure 2 presents a high-level architectural view of the VP System in terms of its
interfaces, infrastructure, and services. The depicted configuration involves five dif-
ferent computers connected via the Intranet. The VP System client software, which
is installed on the designer’s local computer, communicates with multiple VP Servers,
each of which manages a set of services.

Model services are the most common type of service. They can include practi-
cally any type of computational model, representing design knowledge. Optimization
services implement multiple algorithms to solve optimization problems whose formu-
lation is encoded via the Optimization Interface Layer (OIL) for one or more model
services. Database services, as their name implies, manage queries to Structured
Query Language (SQL) databases. Expert system services implement a Rule Based
System (RBS) that processes “facts” contained in not only the VP Scenario but also



144 T.M. Tirpak, L.E. Lach, W. Xiao, J.M. Lopez

the outputs from one or more model services. It should be noted that each of the
services is called via a corresponding Java CORBA agent. It is possible to launch
services that are local to the computer running the agent software, as well as services
on remote machines.

Fig. 2. VP System Architecture

Each VP Server implements an Action Manager, which interacts with the user
via information, e.g., VP Scenarios, received from the VP client, and communicates
with existing engineering domain services, such as the Green Design Advisor (GDA).
Connectable software services are the building blocks of the VP System. The Java
CORBA Agent framework provides connectivity. The elements of the agent defined
by the Interface Definition Language (IDL) are:

module AgentApp {

interface Callback {

void agentCallback(in string sMsg);

};

interface Agent {

string callAgent(in Callback callback, in string sMsg);

};

};

The above agent IDL program states that the client-side program calls the server-side
program through a standard method, i.e., callAgent; the server side program can use
the agentCallback method to trigger a client-side event; and the server-side program
returns the results of the operation.

The benefits of using an agent are:

— It provides a unified interface for all the engineering domain services;
— It provides a unified data representation format for all the services.



A Distributed Decision-Support System for Virtual Prototyping 145

The VP System’s data representation format has three elements: Item, ItemList,
and ItemSet. An Item is a name-value pair with an extra pointer to an ItemSet. An
ItemSet is a two-dimensional table that can be converted to an ItemList. An ItemList
is a list of Items. The ItemList can convert itself to a string, or convert the string
back to an ItemList. Software based on this type of data structure has the advantage
of being able to change its data representation without any changes to the CORBA
interface.

In the AgentClient class, the constructor AgentClient has been programmed to
connect to the CORBA naming service through the Java-CORBA convention. The
function connectToAgent has been programmed to find the server-side agent program
with the Java-CORBA convention. The function callAgent can be used directly in
its standard format to call the server-side agent by its agent name, or as the starting
point for a more complex sequence of operations.

At the time the VP System architecture was defined, the Java language standard
did not implement the CORBA Event Service; therefore, a CallbackListener class
and its associated classes CallbackServant and CallbackHandler were designed to add
server-side “event-push” to the agent framework, e.g., for monitoring the tasks being
completed by an agent. The customized program to respond to server-side call-back
events would start from the function callbackEvent.

3.2. EXAMPLES OF CLIENT AND SERVER PROGRAMS

Figure 3 depicts the class diagram of the server side and client side programs used
to integrate one of the VP System’s model services, namely, the printed wiring board
cost estimation service.

Fig. 3. Example VP Server and Client Class Diagrams

The PWBCost class uses CFA (finishing cost per area, $/m2), CLA (cost per layer
per area, $/m2), CPTH (cost per plated through hole, $), CTEST (cost of test, $), D0
(defective density, 1/m2), NLAY (number of metal layers), NPTH (number of plated
through holes), LB (length of PWB, m), and WB (width of PWB, m) to determine



146 T.M. Tirpak, L.E. Lach, W. Xiao, J.M. Lopez

the manufacturing cost of the PWB. The PWBCost class also calculates the cost
sensitivities related to those variables at their current values.

3.3. BENEFITS OF THE JAVA CORBA ARCHITECTURE

The agent framework greatly simplifies the integration of software tools for various
engineering domains within the VP system. Software tools can be developed, tested,
and installed on different computers and locations by different groups. Then, the
tools can be connected to the agent framework through the AgentServant, and be
ready to provide services. Thus, model services can be developed collaboratively by
engineering domain experts.

The agent framework reduces the degree of dependency of the software design on
the application interface, which is typically a major concern in object-oriented pro-
gramming. It provides a server-side event-push that can be used to write distributed
event-message based applications. The event-push can also be used to send an ac-
knowledgment to the client with intermediate results. This feature is very important
for engineering software tool integration, since complex engineering analyses tend to
run for quite some time, and their computational progress needs to be monitored.

The agent programs are compact, simple, and highly reusable. They rely only on
the Java standard without other vendor-specific software dependencies. In summary,
the framework provides an economical and unified solution to connect and reuse
individual engineering domain software tools.

4. DECISION MODE I: “CALCULATOR”

This section of the paper discusses the operation of the VP System as an
Intranet-accessible collection of design evaluation and optimization services, from
which the user selects one or more services, inputs data to their GUIs, and runs them.

4.1. RUNNING A SINGLE DOMAIN MODEL

Figure 4 shows the Scenario Manager screen of the VP System, which is displayed
immediately after a successful logon to the system. It should be noted that electrical
and mechanical CAD files, if necessary for the model service(s) to be run, can be
linked to the scenario via the Shared Files screen. If one wishes to run a single
domain model service, one can access it by clicking on the service tree on the left side
of the screen. The service tree can be configured via the Options screen, e.g., when
one regularly runs a specific set of services and does not wish to see the other available
services in the tree. Running VP Scenarios with multiple domain model services will
be discussed in Section 4.2.



A Distributed Decision-Support System for Virtual Prototyping 147

Fig. 4. Scenario Manager of the VP System

Fig. 5. Panel Optimization Service Screen

Figure 5 shows the main screen for the Panel Optimization Service. The user
may modify the board size information and optimization settings, displayed in the
edit-fields on this screen. One of the options is to allow the board dimension informa-
tion from an electronic CAD file in Mentor neutral format, if one has been specified
in the Shared Files portion of the VP Scenario, to override the values provided on the
Panel Optimization Service screen.



148 T.M. Tirpak, L.E. Lach, W. Xiao, J.M. Lopez

Inputs for this service include: Fixed or Variable Printed Wiring Board (PWB)
Size, Panel Size, Bounds on Array Sizes, and the Minimum Inter-Board Spacing.
When the user clicks the “Run” button at the bottom of the Panel Optimization
Service screen (below what is actually shown in Fig. 5), the service simultaneously
optimizes the layout of PWBs within arrays, and the layout of arrays within a panel,
so as to maximize the total number of PWBs per panel, thereby minimizing their
manufacturing cost.

Figure 6 shows the service report screen, which lists the outputs, including: PWB
Size, Configuration of PWBs within an Array, Configuration of Arrays within a Panel,
and the Total Number of PWBs per Panel. For example, one of the modules that
was optimized for Motorola’s Mobile Devices Business, resulted in a 28.8% increase
in boards per panel and potential 22.4% cost savings.

Fig. 6. Panel Optimization Service Report

4.2. RUNNING MULTIPLE DOMAIN MODELS

As previously mentioned, it is possible to run more than one model service at a time.
This can be accomplished by defining a VP Scenario, as shown in Figure 4. The
VP Scenario includes the Shared Files, e.g., CAD file, the scenarios (included the
GUI-based inputs) for the individual model services, and their respective run modes.
The sequence of steps is as follows:

— Select model services
— Load shared files
— Configure model services
— Save model scenarios
— Save VP scenario
— Run VP scenario
— View collection of evaluation reports



A Distributed Decision-Support System for Virtual Prototyping 149

There are two main benefits of running an entire VP Scenario rather than a sin-
gle service. First is that the user can easily run a “standard” set of analyses, e.g.,
for manufacturability. For example, this may consist of running four services for:
estimating part cost, calculating commonality metrics with respect to a platform
design, identifying any parts that have had issues in the manufacturing facilities, and
identifying any parts for which mechanical lab test results are available.

The second benefit is that multiple, dependent attributes of a design can be eval-
uated and/or optimized. For example, one may wish to use the Embedded Passives
Optimization service to identify the parts that should be realized as embedded de-
vices, rather than discrete components, and then use the Panel Layout Optimization
service to determine the layout of panels and arrays with sufficient area for the discrete
components. In this case, the VP Server follows its precedence rules for which service
to launch first, and which services must complete their runs before other services can
be launched. It should be noted that the Expert System Service is launched only
after all other model services have successfully completed. The small window located
in the upper-right part of Figure 6 displays the current status of each service.

5. DECISION MODE II: “SPELL-CHECKER”

This section of the paper discusses the operation of the VP System as part of a de-
signer’s work within the “native environment”, e.g., Mentor or Cadence for electronic
CAD, and Pro/E for mechanical CAD. The use case for this mode of decision support
mirrors that of spell-checkers commonly available within word processing programs.
It is envisioned that as a designer is completing a design, he/she would periodically
check the performance of the design with respect to the knowledge available in the
VP System’s model services. Likewise, at specified milestones in a product’s lifecycle,
e.g., “solution lockdown” and “manufacturing introduction”, it would be necessary
to verify that a design meets certain performance criteria.

5.1. LAUNCHING THE VP SYSTEM

Using the macro languages available in Pro/Engineer and Mentor Board Station,
simple macros have been created to launch the VP System to evaluate the CAD file
with which the designer is currently working. The macro first exports the working
design to an open, text-based format, i.e., as the Standard for the Exchange of Product
Model Data (STEP), and saves it to a temporary folder within the directory structure
of the VP System installation on the designer’s local computer. The macro then
launches the VP System in batch-mode to evaluate the STEP file using a predefined
VP Scenario, e.g., “MENTORSTEP (AJL068)”, which specifies the model services to
be run.

Thanks to the macros, launching the VP System to evaluate Mentor and Pro/E
designs is as simple as typing the key sequence “vp()” from the user’s keyboard,
while working in the CAD tool environment. Different macros may be defined to
launch a different VP Scenario for each type of analysis milestone, e.g., “solution



150 T.M. Tirpak, L.E. Lach, W. Xiao, J.M. Lopez

lockdown”, etc. For each scenario, a set of model services is run, and the VP Expert
System subsequently uses its rule set to compare the output metrics from multiple
model services against established performance thresholds for the design. It should
be noted that although the RBS is very easy to use, its creation requires considerable
knowledge of the product requirements in order to define the conditions for “Errors”,
“Warnings”, and “Suggestions”, and to author corresponding explanations.

5.2. REVIEWING THE EXPERT SYSTEM REPORT

Figure 7 shows the top portion of the report from an Expert System Service which
has been implemented according to the VP System’s conventions for “spell-checking a
design”. The full report contains the number of “Errors”, “Warnings”, and “Sugges-
tions”, as well as brief messages with advice regarding what to change in the design.
It is clear that this design “passed the test” since its status is “OK”. The VP System’s
Report Screen provides the Expert System Service report along with the individual
reports for all the constituent model services.

Fig. 7. VP Expert System Design Check

The following is an example of how engineers used the “spell-checker” feature.
The VP System was launched via macro from within Mentor Board Station and
run for two model services. For each part number in the bill-of-materials (BOM),
potential quality issues were identified in a database of more than 850 reports on
materials, ALT, and other tests performed by an analytical lab in Motorola’s Tianjin,
China factory. Likewise, the mentor neutral files were automatically loaded into the
Embedded Passives Device Selection service, and recommendations were generated
regarding additional parts that could be realized as embedded parts, rather than
discrete components.

6. CONCLUDING REMARKS

Virtual Prototyping (VP) is a data-driven design process that promotes both knowl-
edge reuse and innovation. High-profile applications to-date in the automotive and
aerospace industries have demonstrated its potential to significantly reduce prototype
cycles, time to market, and total product cost. Thus, it will play an increasingly more



A Distributed Decision-Support System for Virtual Prototyping 151

important role in digital product development and Advanced Engineering Environ-
ments (AEEs).

This paper has addressed VP as a specialized application of Decision-Support
Systems, and discussed common requirements for engineering design tools, as well
as requirements specific to the design of electronic products, such as mobile phones.
Motorola Labs’ test bed for VP was introduced in terms of its open, agent-based
architecture utilizing Java CORBA. One of the key principles of the VP System
is the reuse of expert knowledge across multiple engineering domains. This was
highlighted via several use cases, showing that the system can function not only
as an Intranet-accessible repository of model services but also as an integral part of
decision-making within the native CAD environment.

Using the VP System, the Motorola Labs team has completed a variety of prelimi-
nary design analyses for products, such as mobile phones and base stations. Typically,
the best results were for focused domain applications, such as Embedded Passives
(EP) module design, where the VP team worked directly with Motorola’s EP experts
to develop and apply models for simulation and optimization.

The key to design cycle time reduction lies not only in the tools but in the pro-
cesses. Thus, the lessons from the VP System are guiding further work towards a
One Pass to Production Process, with an aggressive cycle time goal for transforming
product requirements into manufacturable designs. In other words, the first physical
“prototype” is the actual product for the customer. Primary inputs include: prod-
uct requirements, design history, and validated components (platform/reuse library).
Primary outputs include: CAD files, a DMU for visualization, a bill of materials
with costs, and a description of the design functionality/behavior. Controls include:
Project Management methodology and assigned engineering resources. In this sce-
nario, one would naturally validate the design with detailed simulations, i.e., Virtual
Prototypes. Fundamental questions related to the multiple dimensions of workflows,
engineering analysis, and knowledge sharing, are being addressed by research in the
field of Computer Supported Cooperative Work (CSCW).

Acknowledgments

The authors would like to thank Jun Ma, an intern from Northwestern University,

who worked on the VP System for four summers. Thanks also to the Motorola engi-

neers who collaborated on design domain model service development and applications,

especially Robert Croswell and John Savic, and to the managers who supported this

project, including Iwona Turlik, Tom Babin, and Rupin Javeri.

REFERENCES

1. P. Belanovic, M. Holzer, B. Knerr, M. Rupp, G. Sauzon, Automatic Generation of
Virtual Prototypes, Proc. of 15th IEEE Intl.Workshop on Rapid System Prototyping
(RSP’04), 2004.



152 T.M. Tirpak, L.E. Lach, W. Xiao, J.M. Lopez

2. F. Danesi, N. Gardan, Y. Gardan, Collaborative design: from concept to application,
Proc. of Geometric Modeling and Imaging – New Trends (GMAI’06). 2006.

3. M. Durstewitz, B. Kiefner, R. Kueke, H. Putkonen, P. Repo, T. Tuikka, Virtual Collab-
oration Environment for Aircraft Design. Proc. of the Sixth Intl. Conf. on Information
Visualisation (IV’02). 2002.

4. B.H. Li et al., The Recent Research on Virtual Prototyping Engineering for Complex
Products. Proc. of 8th Intl. Conf. Computer Supported Cooperative Work in Design. pp
18–25. 2004.

5. C.A. Murphy, T.D. Perera, The Definition and Potential Role of Simulation within an
Aerospace Company. Proc. of 2001 Winter Simulation Conf., pp 829–837. 2001.

6. National Research Council, Retooling Manufacturing: Bridging Design, Materials, and
Production. The National Academies Press, Washington, DC. 2004.

7. S.W. Park, J.K. Lee, B.C. Shin, Introduction to Development of e-Engineering Frame-
work for the Automotive Module Design. Proc. of 12 th Intl. Conf. on Computer Sup-
ported Cooperative Work in Design, pp 146–151. 2005.

8. Sandborn, B., Virtual Prototyping Printed Circuit Boards, The Board Authority, Dec.
2000, pp 6–10. 2000.

9. A. Selko, K. Versprille, T. Vanderhoof, R. Strand, 2006. Deliver Innovative Products:
Knowledge-Driven Digital Product Development, Industry Week Webcast. Oct. 31, 2006.

10. S.H. Thomke, Experimentation Matters: Unlocking the Potential of New Technologies
for Innovation. Harvard Business School Press. Boston, MA. 2003.

11. T.M. Tirpak, P.K. Mohapatra, P.C. Nelson, R.R. Rajbhandari, A Generic Classification
and Object-Oriented Simulation Toolkit for SMT Assembly Equipment. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part A, 32 (2002), 1, 104-122.

12. T.M. Tirpak, Five Steps to Effective Knowledge Management. Research-Technology
Management. 48 (2005), 3, 15–16.


	Tirpak

