
Decision Making in Manufacturing and Services
Vol. 1 • 2007 • No. 1–2 • pp. 25–34

Batch Scheduling of Deteriorating Products

Maksim S. Barketau∗, T.C. Edwin Cheng∗∗,
Mikhail Y. Kovalyov∗∗∗, C.T. Daniel Ng ∗∗∗∗

Abstract. In this paper we consider the problem of scheduling N jobs on a single machine,
where the jobs are processed in batches and the processing time of each job is a simple linear
increasing function depending on job’s waiting time, which is the time between the start of
the processing of the batch to which the job belongs and the start of the processing of the
job. Each batch starts from the setup time S. Jobs which are assigned to the batch are being
prepared for the processing during time S0 < S. After this preparation they are ready to be
processed one by one. The non-negative number bi is associated with job i. The processing
time of the i-th job is equal to bi(si − (sb

i + S0)), where sb
i and si are the starting time of

the b-th batch to which the i-th job belongs and the starting time of this job, respectively.
The objective is to minimize the completion time of the last job. We show that the problem
is NP-hard. After that we present an O(N) time algorithm solving the problem optimally
for the case bi = b. We further present an O(N2) time approximation algorithm with a
performance guarantee 2.

Keywords: scheduling, batching, remanufacturing, deterioration.

Mathematics Subject Classification: 90B35.

Received/Revised: 07 May 2007/02 June 2007

1. INTRODUCTION

We consider a situation of a distant communication involving radio, mobile or internet
channel in the presence of overloaded communication network which is being disturbed
by outside noises. The goal is to transfer a number of data packages from the client
to the server. Starting a transfer is preceded by the establishing of a connection
between client and server, which takes a period of time. After the connection has been

∗ Faculty of Economics, Belarus State University, Belarus; Department of Logistics, The Hong Kong
Polytechnic University, China; United Institute of Informatics Problems, National Academy of
Sciences of Belarus, Belarus. E-mail: barketau@mail.ru.

∗∗ Department of Logistics, The Hong Kong Polytechnic University, China.
E-mail: Edwin.Cheng@inet.polyu.edu.hk.

∗∗∗ Faculty of Economics, Belarus State University, Belarus.
E-mail: koval@newman.bas-net.by.

∗∗∗∗ Department of Logistics, The Hong Kong Polytechnic University, China.
E-mail: Daniel.Ng@inter.polyu.hk.

25

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AGH (Akademia Górniczo-Hutnicza) University of Science and Technology: Journals

https://core.ac.uk/display/229296135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

26 M.S. Barketau, T.C.E. Cheng, M.Y. Kovalyov, C.T.D. Ng

established the communication starts. Due to the overloaded communication network
and outside noises errors happen while transferring data, which implies prolonged time
of the transfer. The longer the connection is being used the more errors happen. Thus,
the transfer time of a data package depends on the time which data package awaits
for the transfer and increases linearly with the time elapsed since the establishing
of the connection. Another option is to establish new connection and transfer data
packages through a new channel. The problem is to minimize the total time spent on
the establishing connections and transfer of all data packages. The described situation
can be observed while connecting to the overloaded internet site or while performing
mobile communication session from the places with the geographical location that
influence the quality of a mobile communication.

Consider another example where a company sequentially performs a set of tasks
concerned with the improvement of its office or production facilities. The company
can combine several tasks into a single package and hire a group of workers to perform
all the tasks assigned to this package. On receiving the package, the group of workers
spends a fixed time to prepare for their work. After preparation the workers start
to perform the tasks at a normal pace. However, with the passage of time, they
become tired and their pace decreases, which depends on the nature of the tasks.
The objective is to combine the tasks into packages and to schedule the packages so
as to minimize the completion time of the last task.

In this paper we study a scheduling model for making a decision in the above
situations. In the next section we formulate the problem formally.

2. PROBLEM DESCRIPTION

Consider set I = {1, 2, . . . , N} of N jobs that are to be scheduled on a single machine.
The jobs are processed in batches. Each batch starts from the setup time S. The jobs
that are assigned to the batch are prepared for the processing during time S0 < S.
After this they are ready to be processed one by one. The processing time of a job
is a simple linear increasing function of the job’s waiting time. Let sb

i and si be the
starting time of the b-th batch to which the i-th job belongs and the starting time of
this job, respectively. The processing time of the i-th job is equal to bi(si− (sb

i +S0)).
Thus, the waiting time of the first job assigned to the batch is S − S0. The problem
is to minimize the makespan of the schedule. We denote this problem by 1|S, pi =
bi(si − (sb

i + S0))|Cmax.
Deterioration of jobs awaiting processing is a situation received increased attention

of the researchers recently. Deterioration causes increased processing time of the
job. First articles devoted to problems of deteriorating jobs scheduling are works of
Mosheiov (1994), Mosheiov (1992) and Browne and Yechiali (1990). A number of
works among which the work of Cheng and Ding (2001) has been published recently.
For the overview of scheduling problems with jobs processing times dependant on the
starting time of job processing, see Cheng, Ding and Lin (2004).

Batch Scheduling of Deteriorating Products 27

We introduced the aspect of batching in the above mentioned models. In our
model jobs are processed in batches and job processing time depends on the time
elapsed since the start of batch processing.

In the next section we introduce reader to some preliminary facts about the studied
problem.

3. PRELIMINARIES

Consider the schedule which consists of k batches. Let jobs of the j-th batch comprise
set Kj . The processing time of the j-th batch without the setup time then can be
calculated as T (j) = (S−S0)(

∏
i∈Kj

(bi +1)−1). Thus, the makespan of the schedule
is calculated as follows.

Cmax =
k∑

j=1

(S + (S − S0)(
∏

i∈Kj

(bi + 1)− 1)) = kS0 + (S − S0)
k∑

j=1

∏
i∈Kj

(bi + 1). (1)

Note that taking into account the inequality between geometric and arithmetic
average described in Beckenbach and Bellman (1971), the lower bound of the Cmax is

Cmax = kS0 + (S − S0)
k∑

j=1

∏
i∈Kj

(bi + 1) ≥ kS0 + (S − S0)k
k

√√√√ N∏
i=1

(bi + 1). (2)

Moreover, this inequality turns to equality if and only if
∏

i∈Kj
(bi + 1) =

k

√∏N
i=1(bi + 1), j = 1, . . . k.

4. COMPLEXITY RESULTS

As pointed out by Cheng et al. (2004) the basic problem that is widely used to prove
the NP-hardness of scheduling problems with lineary deteriorating jobs is Subset
Product problem described in Garey and Johnson (1979). We will use the following
natural modification of Subset Product problem, which is proved to be strongly
NP-Complete in Barketau et al. (2007).

Problem Product Partition: There are N positive integers u1, u2, . . . , uN . The
question is whether there is a subset X ⊂ I := {1, 2, . . . , N} such that

∏
i∈X ui =∏

i∈I\X ui.
Knowing the intractability of the problem Product Partition, we use it to

establish the intractability of problem 1|S, pi = bi(si − (sb
i + S0))|Cmax. But first

formulate the corresponding recognition problem which we also denote by 1|S, pi =
bi(si − (sb

i + S0))|Cmax.
Problem 1|S, pi = bi(si − (sb

i + S0))|Cmax : The set I = {1, 2, . . . , N} of N jobs
is to be scheduled on a single machine. The positive number bi is associated with

28 M.S. Barketau, T.C.E. Cheng, M.Y. Kovalyov, C.T.D. Ng

each job i. The jobs are processed in batches. Each batch starts with a setup time S.
All jobs assigned to the batch are prepared for the processing during time S0. After
this period of time jobs of the batch are ready to be processed one by one. Thus,
the waiting time of the first job is equal to S − S0. The processing time of a job is
a simple linear increasing function that depends on the job’s waiting time. Let sb

i

and si be the starting time of the b-th batch to which the i-th job belongs and the
starting time of this job, respectively. The processing time of the i-th job is equal to
bi(si − (sb

i + S0)). The question is if there is a schedule with a processing time less or
equal to C.

Theorem 1. Problem 1|S, pi = bi(si − (sb
i + S0))|Cmax is NP-hard.

Proof. Given the instance of problem Product Partition construct the following
instance of problem 1|S, pi = bi(si − (sb

i + S0))|Cmax: There are N jobs. Let bi =
ui − 1, 1 ≤ i ≤ N. Let S0 = P − 2b

√
P c − 1, where P =

∏
i∈I ui =

∏N
i=1(bi + 1).

Let S = S0 + 1. Let C = 2P − 2b
√

P c − 2. We show that there is a required subset
for problem Product Partition if and only if there is a schedule for the problem
1|S, pi = bi(si − (sb

i + S0))|Cmax with Cmax not greater than C = 2P − 2b
√

P c − 2.
Note that our reduction is not pseudopolynomial because of the presence of large
numbers P and

√
P in the input. But this reduction can be made in time polynomial

of the length of the input of problem Product Partition.
Assume that there is subset X such that

∏
i∈X ui =

∏
i∈I\X ui =

√
P . Consider a

schedule that consists of two batches. First batch comprises exactly those jobs whose
coefficients bi were counted on the basis of ui, i ∈ X. Second batch comprises the re-
maining jobs. Count Cmax of this schedule using (1): Cmax = 2S0+

∑2
j=1

∏
i∈Kj

(bi +

1) = 2(P − 2b
√

P c − 1) +
∏

i∈X ui +
∏

i∈I\X ui = 2P − 2b
√

P c − 2 = C.
Assume now that there is a schedule with Cmax ≤ C. Denote by Kj the set of

jobs in the j-th batch. If there is only one batch in the schedule, then its makespan is
Cmax = S0+

∏N
i=1(bi+1) = S0+P = 2P−2b

√
P c−1 > C. Thus, the schedule contains

more then one batch. If there are k > 2 batches in the schedule, then, according

to (2), the lower bound on the makespan is: Cmax ≥ kS0 + k k

√∏N
i=1(bi + 1) =

kS0 + k k
√

P ≥ kS0 ≥ 2P − 2
√

P − 2 + P − 4
√

P − 1 > C if P > 25. Thus the
schedule contains exactly two batches. Calculate its makespan and lower bound:

Cmax = 2S0 +
∑2

j=1

∏
i∈Kj

(bi + 1) ≥ 2S0 + 2
√∏N

i=1(bi + 1) = 2S0 + 2
√

P = 2P −
4b
√

P c+ 2
√

P − 2 ≥ C. Moreover, taking into account (2), Cmax is equal to C if and
only if

∏
i∈K1

(bi + 1) =
∏

i∈K2
(bi + 1) =

√
P . Therefore, if we compose X of exactly

those i ∈ I on the basis of which were calculated coefficients bi of jobs from the first
batch, X will be the required set of problem Product Partition.

Note that it is possible to prove the strong NP-hardness of modified problem
1|S, pi = bi(si − (sb

i + S0))|Cmax, in which numbers S and S0 in the input are coded
in a special manner to allow large values. Thus, the following corollary takes place.

Corollary 1. There is no algorithm polynomial of N and bmax = max{bi|1 ≤ i ≤ N}
solving problem 1|S, pi = bi(si − (sb

i + S0))|Cmax optimally.

Batch Scheduling of Deteriorating Products 29

5. THE CASE OF CONSTANT DETERIORATION RATES

Because the general problem appeared to be NP-hard, in this section we consider
the special case of the problem in which coefficients bi are equal for all the jobs, i.e.,
bi = b.

In this case the makespan of the schedule is determined by the number of batches
in the schedule and the set of their sizes. Using formula (1) we find the following
expression for the makespan of the schedule.

Cmax = fk({l1, l2, . . . , lk}) = kS0 + (S − S0)
k∑

j=1

(b + 1)lj , (3)

where k is the number of batches in the schedule, and lj is the number of jobs in the
j-th batch.

In the following lemma we formulate the property of the optimal schedule con-
taining k batches.

Lemma 1. Let N = kz + r, where z and r are integers, and z ≥ 0, 0 ≤ r < k. Among
the schedules made of k batches the optimal schedule contains r batches made of z +1
jobs each and k − r batches made of z jobs each.

Proof. Consider arbitrary feasible schedule containing k batches. Divide all the
batches of this schedule into two following sets. Let set Bz and set Bz+1 contain
batches that comprise not more than z jobs and batches that comprise not less than
z + 1 jobs, respectively.

Assume first, that |Bz+1| > r. In this case there is at least one batch of size
z−m,m > 0, in set Bz. Select one batch of the minimum size z+ l, l > 0, from the set
Bz+1 and transfer one job from this batch to the batch of size z −m,m > 0. Taking
into account formula 3, the changes in the makespan of the schedule are calculated
as follows.

∆Cmax = (S − S0)((b + 1)z−m+1 + (b + 1)z+l−1 − (b + 1)z−m − (b + 1)z+l) =
= (S − S0)((b + 1)z−mb(1− (b + 1)l+m−1)) < 0.

Because ∆Cmax is negative, we can repeat this step to obtain the schedule in
which |Bz+1| = r, and, consequently, |Bz| = k − r.

If |Bz+1| < r, than we use the same technique to construct the schedule with the
smaller makespan and for which |Bz+1| = r.

On constructing the schedule with |Bz+1| = r, consider the sizes of batches in the
set Bz+1. Assume that there is a batch with the size z + l, l > 1. In this case there
is at least one batch in the set Bz with the size z − m,m > 0. Transfering the job
from the batch of size z + l to the batch of size z−m, we construct the schedule with
the smaller makespan. Repeating this step, we obtain the schedule with the smaller
makespan than the initial one and for which |Bz+1| = r, each batch in the set Bz+1

have exactly z + 1 jobs and each batch in the set Bz have exactly z jobs.

30 M.S. Barketau, T.C.E. Cheng, M.Y. Kovalyov, C.T.D. Ng

Note that to prove Lemma 1 one can use results of the article Al-Anzi et al. (2007).
Lemma 1 justifies the following algorithm for the special case under consideration.

Algorithm A

Step 1: For each k = 1, . . . , N do Step 2
Step 2: Let N = kzk + rk where zk ≥ 0 and 0 ≤ rk < k. Find the makespan of the

optimal schedule made of k batches: Ck
max = kS0 + (S − S0)(rk(b + 1)zk+1 +

(k − rk)(b + 1)zk).
Step 3: Let Ck0

max = min{Ck
max|k = 1, . . . , N}. Optimal schedule contains k0 batches

and have rk0 batches made of zk0 +1 jobs and k−rk0 batches made of zk0 jobs.

Algorithm A runs in O(N) time. If function Ck
max of k is unimodal than algorithm

can be implemented to run in O(log N) time.

6. APPROXIMATION ALGORITHM

Let Π(k, G) be the problem of scheduling the set of jobs G ⊆ I = {1, 2, . . . , N}
optimally in k batches. We first present the approximation algorithm B(k,G), which
builds the approximate schedule for problem Π(k, G). Note that we don’t restrict
algorithm B(k,G) to construct schedules which contain exactly k batches. Instead
algorithm B(k, G) may construct schedules containing more than k batches.

Let PG =
∏

i∈G(bi + 1). Let F (G, x) = {i|i ∈ G and bi + 1 > x}.
Algorithm B(k,G)

Step 1: If F (G, k
√

PG) 6= φ then assign each job of set F (G, k
√

PG) into separate batch
alone and close each of the resulting |F (G, k

√
PG)| batches. Make call to

the algorithm B(k−|F (G, k
√

PG)|, G\F (G, k
√

PG)) and append batches of the
resulting schedule to the existing ones. Stop.
If F (G, k

√
PG) = φ then perform Steps 2 and 3.

Step 2: (assignment to basic batches) Now we assign jobs of set G to basic batches.
We call the batches we assign jobs in during this step basic batches and
batches which are composed on Step 3 extra batches. Let j be the current
basic batch to which we assign jobs. We start from j = 1. Assign jobs one
by one in arbitrary order to the batch j until PKj > k

√
PG, where Kj is the

set of jobs in batch j. As soon as after adding job, PKj
becomes greater then

k
√

PG close current batch j and set j = j + 1. Continue assigning jobs to
basic batches.
Close the last basic batch. Assume there are t basic batches. Let m = t + 1.

Step 3: (assignment to extra batches) We start to move last jobs from the basic
batches to the extra batches. Consider current extra batch m. For each basic
batch j with PKj > k

√
PG take the last job l assigned to the batch and move

this job to the extra batch m if PKm∪{l} ≤ k
√

PG. If PKm∪{l} > k
√

PG then
assign job l to the batch m + 1 and let m = m + 1. Continue assigning last
jobs from the basic batches to the extra batches on Step 3.
Note that the number of extra batches u is not greater than the number of
basic batches t.

Batch Scheduling of Deteriorating Products 31

The computational complexity of algorithm B(k, G) is O(|G|).
On Step 1 jobs from set F (G, k

√
PG) are assigned to the batches. Each job of

set F (G, k
√

PG) is assigned to the separate batch which is closed after assignment.
Problem Π(k, G) is reduced to problem Π(k− |F (G, k

√
PG)|, G\F (G, k

√
PG)) and cor-

responding recursive call to algorithm B(k − |F (G, k
√

PG)|, G\F (G, k
√

PG)) is made.
Step 1 of algorithm B(k,G) is justified by the following Lemma.

Lemma 2. There is an optimal schedule for problem Π(k,G) in which every job from
set F (G, k

√
PG) comprises a separate batch in the schedule.

Proof. Consider an optimal schedule for problem Π(k,G). The makespan of this op-
timal schedule Cmax is calculated according to (1).

Cmax = kS0 + (S − S0)
k∑

j=1

∏
i∈Kj

(bi + 1) = kS0 + (S − S0)
k∑

j=1

PKj
,

where Kj , j = 1, . . . , k, is the set of jobs in the j-th batch of the optimal schedule.
Let i be an arbitrary job from set F (G, k

√
PG). Assume that i is in the batch v,

i.e., i ∈ Kv. According to the definition of set F (G, k
√

PG), bi + 1 > k
√

PG and thus,
PKv

> k
√

PG.
There must be batch q for which PKq

< k
√

PG. Prove this. Assume that for every
batch j, j = 1, . . . , k, PKj

≥ k
√

PG. Additionally we have that PKv
> k
√

PG. Thus, the
following is true. PG =

∏k
j=1 PKj

> (k
√

PG)k = PG. There is a contradiction. Thus,
there is such batch q that PKq

< k
√

PG.
Assume that there are other jobs in batch v except job i. Move these jobs from

batch v to batch q. Calculate the difference in the makespan of the resulting schedule
C ′

max and the makespan of the original schedule Cmax divided by S − S0 for the
convenience of representation. We have

C ′
max − Cmax

S − S0
= PK′

v
+ PK′

q
− PKv

− PKq
,

where K ′
v = {i} and K ′

q = Kq ∪ (Kv\{i}).
We further have

PK′
v

+ PK′
q
− PKv

− PKq
= bi + 1 + PKq

PKv\{i} − (bi + 1)PKv\{i} − PKq
=

= PKv\{i}(PKq − bi − 1)− (PKq − bi − 1) = (PKv\{i} − 1)(PKq − bi − 1) ≤ 0

Thus, we obtained the optimal schedule in which job i alone comprises v-th batch.
Repeating the same technique for the remaining jobs of the set F (G, k

√
PG) we obtain

the optimal schedule in which every job from set F (G, k
√

PG) comprises a separate
batch in the schedule.

Let F0 := F (G, k
√

PG) and H0 := G\F (G, k
√

PG). According to Lemma 2 |F0|
batches from optimal schedule is known. After scheduling these batches on Step 1
algorithm B(k,G) makes a recursive call to algorithm B(k−|F0|, H0) to approximate
the remaining k − |F0| batches. Note that before going to Step 2 algorithm B(k, G)

32 M.S. Barketau, T.C.E. Cheng, M.Y. Kovalyov, C.T.D. Ng

makes a number of recursive calls to itself with changed parameters. Let there are s
recursive calls on Step 1. Call j, j = 1, . . . , s, is made to algorithm B(kj ,Hj−1), where
kj = k−|∪j−1

i=0 Fi|, Fj = F (Hj−1, kj

√
PHj−1) and Hj = Hj−1\Fj . During recursive call

j, j = 0, . . . , s− 1, jobs from set Fj is scheduled to the separate batch each and these
batches become closed. Thus, during recursive call s jobs from set F = ∪s−1

j=0Fj is
already scheduled into |F | batches. Applying Lemma 2 s times we obtain that there
is an optimal schedule which contains jobs from set F comprising a separate batch
each and the remaining jobs G\F scheduled into k − |F | batches. We will consider
only such optimal schedules in the remaining part of the section.

On Step 2 algorithm B(k,G) assign jobs to t basic batches. Note that t ≤ k.
Prove this. Assume that t > k. Let K ′

j be the set of jobs in batch j, j = 1, . . . , t, after
Step 2 of algorithm B(k,G). According to the Step 2 of algorithm B(k, G) PK′

j
>

k
√

PG, j = 1, . . . , t− 1. Then we have PG =
∏t

j=1 PK′
j
≥

∏k
j=1 PK′

j
> (k

√
PG)k = PG.

We obtained a contradiction. Thus, t ≤ k.
The estimation of approximation guarantee of algorithm B(k,G) is given in the

following lemma.

Lemma 3. Let Cmax and Ck
max be the makespan of an optimal schedule for problem

Π(k, G) and the makespan of the schedule built by algorithm B(k, G), respectively. The
approximation guarantee of algorithm B(k, G) is Ck

max/Cmax ≤ 2.

Proof. Let s be the number of recursive calls made on Step 1 of algorithm B(k,G).
Let Fj , j = 0, . . . , s − 1 be set of jobs which are assigned to the separate batch each
on Step 1 during j-th recursive call. Assume that f = |F0|+ |F1|+ . . .+ |Fs−1|. Thus,
first f batches of the schedule built by algorithm B(k,G) are made of the single
job each and these jobs are from the set F = F0 ∪ F1 ∪ . . . ∪ Fs−1. Let H = G\F.
Applying Lemma 2 s times we obtain that the optimal schedule for problem Π(k, G)
contains the same f batches made of the single job each where jobs are from the set
F. The remaining k− f batches in the optimal schedule are made of jobs from set H.
Therefore, taking into account (2), the lowerbound on the makespan of the optimal
schedule is calculated as follows:

Cmax ≥ kS0 + (S − S0)
∑
i∈F

(bi + 1) + (S − S0)(k − f) k−f
√

PH .

Find now the upper bound on the makespan of the schedule built by algorithm
B(k, G). As we pointed out first f batches of this schedule are made of single job
each where jobs are from set F. After s-th recursive call to algorithm B(k− f,H) the
remaining part of the schedule is created on Step 2 and 3 of the algorithm from the
jobs of set H. Thus, batches j, f + 1 ≤ j ≤ f + t, are basic and batches j, f + t + 1 ≤
j ≤ f + t + u, are extra batches. Note that according to the construction of batches
on Steps 2 and 3 of algorithm B(k− f,H) after Step 3 for each basic and extra batch
j, f + 1 ≤ j ≤ f + t + u, we have PKj

≤ k−f
√

PH , where Kj is the set of jobs in
the j-th batch. Because the number of basic batches t is not greater than k − f and

Batch Scheduling of Deteriorating Products 33

the number of extra batches u is not greater than t the following expression is an
upperbound on the makespan of the shedule.

Ck
max ≤ fS0 + (S − S0)

∑
i∈F

(bi + 1) + 2(k − f)S0 + 2(S − S0)(k − f) k−f
√

PH ≤

≤ 2kS0 + (S − S0)
∑
i∈F

(bi + 1) + 2(S − S0)(k − f) k−f
√

PH .

Using the lowerbound on the makespan of the optimal schedule and the up-
perbound on the makespan of the schedule built by algorithm B(k, G) calculate
Ck

max/Cmax.

Ck
max

Cmax
≤

2k S0
S−S0

+
∑

i∈F (bi + 1) + 2(k − f) k−f
√

PH

k S0
S−S0

+
∑

i∈F (bi + 1) + (k − f) k−f
√

PH

≤ 2

Now we present the approximation algorithm for problem 1|S, pi = bi(si − (sb
i +

S0))|Cmax. The idea of the algorithm is to apply algorithm B(k, I) for k = 1, . . . , N,
and choose the schedule with the minimal makespan.
Algorithm C

Step 1: For each k = 1, . . . , N make call to algorithm B(k, I) and obtain a schedule
with makespan Ck

max.
Step 2: Find C0

max = min{Ck
max|k = 1, . . . , N}. The corresponding schedule is the

output of the algorithm C.

The computational complexity of algorithm C is O(N2).

Theorem 2. Let Cmax and C0
max be the makespan of an optimal schedule for problem

1|S, pi = bi(si − (sb
i + S0))|Cmax and the makespan of the schedule built by algorithm

C, respectively. Algorithm C runs in O(N2) time and its approximation guarantee is
C0

max/Cmax ≤ 2.

Proof. Follows from Lemmas 2 and 3.

7. CONCLUSIONS

In this paper we studied a problem with elements of batch scheduling and simple
deterioration. Specifically, jobs are processed in batches preceded by a setup time
and the processing time of a job depends on the time elapsed since the start of the
batch that the job belongs to. A non-negative numbers bi is associated with job i.
The processing time of the i-th job is equal to bi(si − (sb

i + S0)), where sb
i , si and S0

are the starting time of the b-th batch to which the i-th job belongs, the starting time
of this job and batch preparation time, respectively.

We have shown that the problem is NP-hard.

34 M.S. Barketau, T.C.E. Cheng, M.Y. Kovalyov, C.T.D. Ng

For the special case of the problem with bi = b we presented an O(N) time
algorithm solving the problem optimally. For the general case we presented an O(N2)
time approximation algorithm with a performance guarantee 2.

Further research can be undertaken in the direction of developing approximation
algorithms with a good asymptotic behavior for the general problem 1|S, pi = bi(si −
(sb

i + S0))|Cmax.

REFERENCES

1. Al-Anzi F.S., Allahverdi A., Kovalyov M.Y., Batching Deteriorating Items with Applica-
tions in Computer Communication and Reverse Logistics, European Journal of Opera-
tional Research, accepted 2007.

2. Barketau M.S., Cheng T.C.E., Kovalyov M.Y., Ng C.T.D., Computational complexity of
“Product Partition” and related problems, working paper 2007.

3. Beckenbach E.F., Bellman R., Inequalities, Springer-Verlag, New-York 1971.

4. Browne S., Yechiali U., Schedulinng deteriorating jobs on a single processor, Operations
Research, 38 (1990), 495–498.

5. Cheng T.C.E., Ding Q., Single machine scheduling with step-deterioration processing
times, European Journal of Operational Research, 134 (2001), 623–630.

6. Cheng T.C.E., Ding Q., Lin B.M.T., A concise survey of scheduling with time-dependent
processing times, European Journal of Operational Research, 152 (2004), 1–13.

7. Garey M.R., Johnson D.S., Computers and intractability: A guide to the Theory of
NP-Completeness. Freeman, New York 1979.

8. Mosheiov G., V-Shaped policies for scheduling deteriorating jobs, Operations Research,
39 (1992), 6, 979–991.

9. Mosheiov G., Scheduling jobs under simple linear deterioration, Computers and Opera-
tions Research, 21 (1994), 6, 653–659.

	Barketau

