
Decision Making in Manufacturing and Services
Vol. 5 • 2011 • No. 1–2 • pp. 79–89

Separating I/O from Application Logic
for Rule-Based Control Systems

Igor Wojnicki�

Abstract. One of the main reasons of using a rule-based approach to program control systems
is that they can be formally verified. For such systems communication with the environment
is often encoded within the knowledge base. Such inclusion may lead to issues with porta-
bility, extendibility, maintainability, and interoperability. The paper proposes a four layer
architecture to solve these issues. A proof-of-concept RBS, targeted at control systems, and
an example case are also given.

Keywords: rule, rule-based, inference, i/o, control system

Mathematics Subject Classification: 68T35

Revised: 30 May 2011

1. INTRODUCTION AND MOTIVATION

There are several examples of using rule-based systems for control (G2 Gensym:
www.gensym.com) or diagnostic (Tiger: www.turbineserviceslimited.com) pur-
poses. One of the main reasons is that such systems can be formally verified (Ligęza,
2006). Such verification makes sure that the system behavior complies with its design.
A rule-based system (RBS) consists of a knowledge base and an inference engine

(Negnevitsky, 2002; Liebowitz, 1998; Jackson, 1999). The knowledge base is the ac-
tual application (control) logic, while the inference engine provides general means for
interpreting it. However, at some point a rule-based system needs to be integrated
with underlying OS, inputs, outputs, or other applications – the environment. Such
an integration is necessary in order to enable an RBS to process files, data streams,
react to stimuli (esp. in case of control systems), and communicate with users through
user interfaces.
Contemporary inference engines provide fairly extended means to interact with

the environment. However in most cases, as it is presented below, the rule base is rarely
separated from accessing and processing actual Input/Output (I/O). Such a coupling

� AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Com-
puter Science and Electronics, Department of Automatics, al. A. Mickiewicza 30, 30-059 Krakow,
Poland, E-mail: wojnicki@agh.edu.pl

79

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AGH (Akademia Górniczo-Hutnicza) University of Science and...

https://core.ac.uk/display/229296102?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


80 I. Wojnicki

may lead to several problems including issues with portability (to adapt a rule-based
application to a new environment, one has to alter its logic which might introduce
bugs), maintainability, extendibility (upon altering the application logic one can un-
intentionally disrupt its communication with the environment) and interoperability
with other software components (changing these components require changing the
application logic as well – ie. switching to a different user interface).
Solving these problems could be achieved by introducing a clear separation be-

tween the application logic and its environment. It constitutes a four layer architec-
ture which consists of: the application knowledge base, the environment knowledge
base, the environment routines, and the inference engine. Such an architecture is in-
spired by the Model-View-Controller (MVC) approach (Burbeck, 1992) known from
Software Engineering. The application knowledge base resembles the Model, the en-
vironment knowledge base is the Controller, while the environment routines is the
View. In such a case the application logic (the application knowledge base) does
not need to be altered in order to change its communication with the environment
i.e. provide a different user interface, provide data from different sources, to port or
to embed entire RBS, etc.
For the purpose of this paper the environment is defined as all the software and

hardware the RBS interfaces with, including data streams, I/O devices, embedding
application and underlying operating system. Terms: environment interaction and I/O
are used interchangeably.

2. RULE-BASED SYSTEMS AND THEIR ENVIRONMENT

Rule-based systems offer a wide range of approaches to the problem of environment
interaction. There are CLIPS, Jess, Drools and Kheops I/O facilities briefly described
in this section. Some summary and analysis are also given. These particular sys-
tems were chosen to investigate a diversity of techniques used by rule-based systems
designed to handle different domains (CLIPS and Kheops are applicable to create
rule-based control systems, while Jess and Drools usually handle business logic).
CLIPS (Giarratano, Riley, 2005) is a development and delivery tool for building

forward chaining expert systems. It can be used as a standalone application or embed-
ded within a C language program. One of the concepts used by CLIPS to provide I/O
facilities is logical names. There are predefined logical names which refer to the default
user input, output, error output, and warning output. To perform I/O operations on
logical names there is a set of functions provided. They allow for creating new logical
names associated with files, reading from and writing to them. There is another set
of functions which allow to process such incoming or outgoing data in terms of data
formatting or adapting it to the requirements of the knowledge base. Such functions
can be used within rules to provide actual data processing. Furthermore there is a way
to create logical names to communicate with virtually any data source or I/O device.
To accomplish that CLIPS introduces so-called I/O Router System. It provides an
infrastructure for defining user defined functions handling I/O operations regarding
particular logical name. Such a user defined set of functions is called a router and
it must be programmed in the C language (or any other language linkable with C).



Separating I/O from Application Logic . . . 81

The I/O Router System extends I/O operations accessible from CLIPS beyond file
operations and built-in set of logical names. Data can be read from or written to the
environment upon firing a rule then. The data processing itself is provided in rule
actions (by calling appropriate functions) or through user defined functions handling
particular logical name (using the Routers mechanism, appropriate user defined func-
tions are called upon referencing particular logical name). In both cases information
about I/O data processing is kept as a part of the application logic. CLIPS can also
interact with the environment through user defined functions without using logical
names or routers. Such a function can provide a value which comes from, or goes to,
any I/O device, user interface etc. User defined functions can be called from within
rules. There is also a fourth option available, if CLIPS is embedded within a C lan-
guage application. It is to use the CLIPS API to alter knowledge-base directly from
the embedding application.
To summarize. There are four methods the environment interactions can be car-

ried out from CLIPS: file based (with use of built-in logical names), router based, user
defined function based, and API based. The file based is reading from or writing to
a file which is delivered by the underlying OS. All data processing have to be provided
through CLIPS function calls within the rules. The router based approach provides
a set of user defined functions implementing basic primitives for reading from and
writing to a logical name. These functions enable communication with the environ-
ment. Function calls handling logical names are used within the rules to trigger the
I/O interactions then. The user defined function approach provides functions available
to CLIPS which call corresponding functions written in other languages (such as C,
Ada etc.) providing the I/O communication. The API based approach assumes that
the environment is pushing appropriate data into or reading them from the knowledge
base directly through using the CLIPS API. It is entirely up to the programmer which
of these approaches are taken.
Jess (Friedman-Hill, 2003) is designed as a library allowing to embed a rule-based

system into a Java application. Since Jess is inspired by CLIPS it inherits its environ-
ment interaction concepts. The main difference between CLIPS and Jess is in their
implementations. CLIPS is implemented in C while Jess in Java. Jess also utilizes
the concept of I/O Router System and logical names. There are several classes im-
plemented as Jess API which support handling logical names and routers. The user
defined functions concept is also provided. The user defined function facilities include
an ability to call an arbitrary method from a rule. A direct knowledge-base manip-
ulation from Java through Jess API calls is also possible which is adding, removing
and modifying facts, rules, and other Jess objects.
To summarize, Jess provides similar concepts for I/O communication as CLIPS

does. The only major difference regarding I/O is that Jess is implemented in Java
while CLIPS is implemented in C. It is also up to the programmer how declarative
the I/O handling would be and how much of data processing is implemented by rules
and how much by Java methods.
Drools (www.jboss.org/drools) is a rule engine for JBoss application server,

also known as JBoss Rules. It is a production rule system which can be integrated
with business applications complying with the Java Enterprise Edition specification.



82 I. Wojnicki

A Drools rule can launch any method or function upon firing (function is defined as
a named and parametrized set of instructions: Java statements, method calls etc.).
Launching such methods provide means for communication with the environment.
Drools also allows to pass named instances of objects to the inference engine. In such
a case any method of the object can be subsequently called upon firing a rule or
checking rule conditions. Furthermore there is an API which allows to alter rule-base
from Java. It also allows to set up listeners which allow to react to certain knowledge-
base states and changes.
Comparing with Jess and CLIPS, Drools lacks the router concept. The I/O com-

munication and processing is either implemented within rules or it could also be pro-
vided by Java methods. Drools API calls allow to set up listeners reacting to certain
knowledge base conditions. It is also up to the programmer which method to choose.
Kheops (Gouyon, 1994) is a development environment and a standalone inference

engine with a support for designing real-time rule-based systems to be suitable for
implementing control systems. The inference engine could also be embedded in a C
language application. Kheops represents facts in terms of attribute values. It relies
on a finite set of such attributes being propositional variables. The knowledge base
defines a consistent mapping from the input space to the output space using rules.
Kheops I/O is based on declaring attributes belonging to input or output spaces.
Attributes assigned to the input space provide input (input attributes), their values
are read from the environment, while attributes assigned to the output space provide
output (output attributes), their values are written to the environment. Attributes
which do not belong to the input or output spaces are assigned to the intermediate
space which expresses knowledge base state. Input attribute values have to be known
prior to running the inference process. They can be either read from a file or standard
input. When the inference process is concluded output attributes hold values being
the result of the process. These values can be written to a file, or standard output.
In addition to the above I/O concept any C language function call can be embedded
within a rule.

3. INTERACTIONS WITH ENVIRONMENT: CONCLUSIONS

Rule-based systems presented above offer a wide range of facilities to perform in-
teractions with the environment. I/O operations either trigger the inference process
(delivering facts), they are the result of the inference process upon its completion, or
they are performed during rule firing as a part of the condition or action. In most
cases, showed above, it is up to the programmer where the I/O data processing takes
place. It can be performed within the rules by the inference engine, or outside of it,
performed by the environment (C functions, Java methods, OS calls, services etc.).
In general, data processing and interaction with the environment can be performed
through: rules, routers, user defined functions, API calls, or designated attributes.
If I/O data processing is performed by rules the inference engine has to provide

appropriate processing facilities, usually functions, which can be called from within
rules. As a result rules may contain a lot of code which does not serve the purpose of
the system itself, solving a given problem, but instead they implement low level data



Separating I/O from Application Logic . . . 83

processing (i.e. writing some inferred data, facts or attribute values, to a file in some
given form; in such a case the rule has to perform a set of actions implementing I/O
operations: open a file, format data, write data to the file, close the file).
Somewhere in between user defined functions and I/O processing within rules

lays the routers concept (CLIPS, Jess). Technical details of the communication are
covered by external functions, while the inference engine operates on logical names
delivered by these functions. The logical names provide handlers to data streams
but still the rules have to implement opening, data formatting and closing. An I/O
operation might also be provided by calling an external function (or method) from
within a rule as a result of its action – an user defined function.
Such an approach keeps the rule base relatively clean, free of I/O processing.

Technical details of the I/O operations are carried out by that function instead of the
rule. Such a rule base carries the system logic, while technical details of delivering
input and output are covered by the functions external to it. The inference engine does
not care whether the I/O operation is about writing to a file, data stream, network
port, or calling a remote service. Such a an approach increases interoperability and
portability of such a rule base.
There are also purely declarative approaches (Kheops) where the I/O is precisely

defined and no opening, data formatting, and closing, within a rule, takes place. There
are well defined means for I/O communication available through arbitrarily chosen
attributes being input or output. All details regarding I/O operations are covered by
means external to the application logic. The inference engine deals with attributes and
nothing more, it does not care about how data is actually transmitted. This particular
approach, in case of Kheops, has some disadvantages though. The inference process
is run in turns. Inputs are loaded, the inference process is performed, the outputs are
saved. No environment interaction is possible during the process.
To conclude, assuming that an I/O operation is just a technical mean for data

flow, its processing should not be performed within rules themselves, or it should
be minimized at least. Putting it within rules makes them focus on actual I/O data
processing instead of the core issues the system is meant to deal with. There should
be a clear separation then. The knowledge base should provide the system logic while
appropriate data flow, to and from the environment, should be established through
external routines. The association of these routines with the knowledge base should
be as declarative as possible. This constitutes the proposed four layer architecture.

4. PROPOSED ENVIRONMENT INTERACTION

The following components are chosen to implement the four layer architecture:
– the application knowledge base is implemented with the EXtended Tabular
Trees (XTT) (Nalepa, Wojnicki, 2007),
– the environment knowledge base is implemented as Input/Output Declarations
(IOD),
– the environment routines are written either in Prolog or Java language,
– the inference engine is the Beating HeaRT engine, interpreting XTT based
logic.



84 I. Wojnicki

The XTT knowledge representation, is composed of decision tables. A single table
is presented in Figure 1 (this is XTT, a refined version of the original XTT, more
details can be found at hekate.ia.agh.edu.pl, XTT and XTT are used interchangeably
in this paper).

Fig. 1. A single XTT table.

The table represents a set of rules based on the same attributes. A single rule
can be read as follows:

IF (A1 o11 a11) and...(An o1n a1n)
THEN (B1=b11) ,...(Bp=b1p)

where A1...An are attributes used in the condition part, o11...o1n are logical op-
erators, B1...Bp are attributes used in the decision part; a11...a1n and b11...b1p
are expressions evaluating to single values or sets of values.
XTT includes two main extensions compared to the classic RBS: non-atomic

attribute values (sets of values are allowed to be used both in conditions and decisions),
non-monotonic reasoning support (assignments in the decision part apply to sets
of values providing assert/retract like operations). Each table row corresponds to
a decision rule. Rows are interpreted top-down. Tables can be linked in a graph-like
structure. A link is followed when a rule is fired.
At the logical level a table corresponds to a number of rules, processed in a se-

quence. If a rule is fired and it has a link, the inference engine processes the rule in
another table the link points to. The rule is based on an attributive language (Ligęza,
2006). It corresponds to a Horn clause: where is a literal in SAL (Set Attributive
Logic) in a form where o ∈ O is a object referenced in the system, and is a selected
attribute of this object, is a subset of attribute domain. Rules are interpreted using
a unified knowledge and fact base, that can be dynamically modified during the in-
ference process using set based assignments in the rule decision part. This approach
has been successfully used to model classic rule-based expert systems.
In order to implement the prosed four layer approach, the environment interac-

tions are provided through designated attributes within the application knowledge
base only. There is a strict declaration of inputs and outputs. Each attribute is as-
signed to a class: ro (read-only, input data), wo (write-only, output data), rw (read-
write, input or output data), or state.



Separating I/O from Application Logic . . . 85

If the attribute value is to come from the environment it should be assigned to
the ro (read-only) class. It also indicates that the inference engine is not allowed to
change its value as a result of a decision. The only way to change its value is to
trigger reading it from the environment. For each ro attribute a routine (a function,
method or predicate depending on language and the environment being used) has
to be provided, so-called ro trigger routine. It implements data transfer from the
environment into the attribute. The routine takes no arguments and it returns a new
value for the attribute upon calling.
Furthermore, ro attributes are allowed in the condition part of a rule only. Upon

referencing an XTT table with such an attribute appropriate ro trigger routine is
called by the inference engine and the attribute value is set. Error conditions regarding
reading values into ro attributes from the environment have to be covered by valid and
defined attribute values which indicate them. If the attribute value is to be written
to the environment the attribute should be assigned to the wo (write-only) class.
Such an attribute is mainly used in the decision part of a rule. However, to provide
a feedback regarding successful writing operation a wo attribute can be used in the
condition part of a rule as well.
Particular attribute values, including error codes, are up to the programmer. For

each wo attribute a routine (a function, method or predicate depending on language
and the environment being used) has to be provided, so-called wo trigger routine. It
implements data transfer from the attribute to the environment. The routine takes
attribute value which is to be written as an argument and returns a value which the
attribute is set to. The returned value can be subsequently used to detect an error
condition. Setting a wo attribute value triggers appropriate wo trigger routine. If there
is a need for a bi-directional communication it can be established by assigning the
attribute to the rw class. Its value can be both read from or written to the envi-
ronment. An rw attribute should have assigned two trigger routines, one for reading,
one for writing: an ro trigger routine and a wo trigger routine. A state attribute has
no trigger routines assigned, since such an attribute does not provide any means for
communication with the environment.
Such an approach is highly declarative. The knowledge base does not deal with

details regarding interfacing with the environment, it is focused on the application
logic. Furthermore it allows the inference engine to exchange attribute values with
the environment during the inference process making it highly interactive.
Assigning attributes to a class (ro, wo, rw, state) is provided while declaring

them. It is a part of the application knowledge base. However association between
particular ro, wo and rw attributes and proper trigger routines is provided through
I/O Declarations (IOD) implementing the environment knowledge base. Such an ap-
proach separates the application knowledge base from the environment and makes
it possible to exchange the rule base between different run-time environments. For
example reading attribute values from a file can be easily replaced by reading them
from a stream, a network socket, or a keyboard without altering any data in the rule
base. It would require just an assignment of a different trigger routine or alteration of
the routine itself. The rule base is focused on the problem to solve, while IOD allows
to establish communication with the environment.



86 I. Wojnicki

Currently IOD is implemented as Prolog language facts with use of io/3 predi-
cate. The first argument of the predicate is a unique attribute identifier (name), the
second is a trigger class – either ro trigger, wo trigger. The third one identifies the
actual trigger routine by its name. The routines are implemented as Prolog predicates
or Java methods.

5. EXAMPLE

The following case is a well known thermostat example (Negnevitsky, 2002; Ligęza,
2006). A simple rule-based system designed to control office temperature. XTT tables
representing its logic (the application knowledge base) is given in Figure 2. This
visualization of XTT diagrams is slightly enhanced comparing to the one presented
in Figure 1. These enchantments are targeted toward easier XTT table and rule
identification. Each of the XTT tables has a unique identifier displayed in its bottom-
left corner. Furthermore, each rule within an XTT table is uniquely labeled (the last
column of each XTT table). They serve identification and easier reading purposes only.

Fig. 2. Thermostat Case, XTT.

There are the following state attributes the thermostat application consists of:
today, operation, season. Furthermore, there are ro class attributes: hour, month, day
and a wo class attribute: thermostat settings. The goal of the thermostat system is
to set the temperature to the given set-point, based on the current time and date.

Fig. 3. Thermostat Case, Prolog Interface.



Separating I/O from Application Logic . . . 87

Fig. 4. Thermostat Case, Java Interface (Leś, Łosiewicz, 2009).

In general the xtt 0 table computes current season based on month. In turn, the
xtt 1 table identifies if current day (day) is a workday or weekend day and assigns
corresponding value to attribute today. Next, xtt 2 identifies if there are currently
business or non-business hours (attribute operation, values: nbizhrs for non-business
hours and bizhrs for business hours) based on hour and today. Finally xtt 3 assigns ap-
propriate temperature to attribute thermostat settings based on values of attributes:
operation and season.
The inference process is started with the XTT table labeled xtt 0. Since month

is an ro class attribute appropriate trigger is called to obtain its value from the
environment. If the application is used in a production environment the trigger should
obtain appropriate value from a real-time clock. Then the rule conditions within the
XTT table are checked and the conflict set is built. The conditions use in operator
which checks if the attribute value belongs to a given set. For example rul 0 condition
can be read as: if month ∈ 1, 2, 12. Then the conflict set is resolved and the rules
are fired by executing their decision parts. For example, if rul 0 condition is true,
its decision is to assign a value of winter to attribute season. Then the inference
engine switches to the XTT table pointed by the link at the fired rule, which is
xtt 1. Subsequently, the inference process repeats for th xtt 2 until it reaches xtt 3
which rules have no outgoing links, then the inference process ends with success.
The xtt 3 decision part contains assignments of values to an wo class attribute which
is thermostat settings. For example rul 10, assigns thermostat settings attribute the
value of 27. After firing such rule, appropriate wo trigger is called.
The trigger assignment is provided through IOD. An example IOD which enables

trigger routines written in Prolog language is given in Figure 5. It assigns attributes
day, month, hour and thermostat settings appropriate predicates written in Prolog
(get day , get hour, get month, get hour, set temperature respectively). For demon-
stration purposes these trigger routines read relevant data from standard input and
write outcomes of the inference process to the standard output. The results of the
inference process can be seen in Figure 3.
Another example of IOD (for the same application knowledge base) is given

in Figure 6. It enables trigger routines written in Java. It allows launching ap-
propriate methods which read in values for day, month and hour attributes which
are: Main.getDay, Main.getMonth, Main.getHour respectively. Additionally there is



88 I. Wojnicki

a method for writing out thermostat settings values: Main.setTemperature. For test-
ing purposes these methods implement a graphical user interface which can be seen
in Figure 4.
The above separate IODs can be used interchangeably. The same application, in

terms of its logic (the application knowledge base), can interact with the environment
through Java methods or Prolog predicates. A mixed interaction where some triggers
are written in Prolog and some in Java is also possible.

io(day,ro_trigger,get_day).
io(month,ro_trigger,get_month).
io(hour,ro_trigger,get_hour).
io(thermostat_settings,wo_trigger, set_temperature).

Fig. 5. Thermostat Case, IOD using Prolog.

io(day,ro_trigger,[’Main’,getDay]).
io(month,ro_trigger,[’Main’,getMonth]).
io(hour,ro_trigger,[’Main’,getHour]).
io(thermostat_settings,wo_trigger,[’Main’,setTemperature]).

Fig. 6. Thermostat Case, IOD using Java.

6. SUMMARY AND FURTHER RESEARCH

This paper proposes a four layer architecture for rule-based systems. It allows to
separate the application logic from definitions of its interactions with the environment.
It introduces an approach similar to that of MVC to RBS. The concept of the proposed
architecture is based on observations and analysis of contemporary technologies for
developing rule-based systems such as: CLIPS, Jess, Drools and Kheops.
The presented Beating HeaRT RBS is a proof-of-concept implementing the pro-

posed architecture. The application knowledge base is given using XTT knowledge
specification. The environment knowledge base is declared with IOD, while the en-
vironment routines are implemented in Prolog or Java languages. The approach has
been tested with several examples, including the thermostat case presented here. The
examples acknowledge the approach to be suitable for both simple one-pass rule-
based systems as well as more complex, highly interactive (with interactions during
the inference process) rule-based applications.
The proposed architecture increases adaptability, extendibility and maintainabil-

ity of RBS. Without altering the application knowledge base one can adapt it to a new
environment or equip it with different user interface. Furthermore altering the applica-
tion logic would not unintentionally disrupt its communication with the environment.
The four layer architecture can be applied to other RBS. It can be achieved

through consciously splitting the knowledge base into the application knowledge base
and the environment knowledge base and documenting the split properly.



Separating I/O from Application Logic . . . 89

Some further research focuses on formulation of a library providing trigger rou-
tines for variety of purposes. Such a library will allow to handle I/O communication in
various ways including: reading from and writing to a plain text file, stream, keyboard,
structured documents (such as XML based ones) or GUI (Graphical User Interface)
widgets, as ready to use components. It would verify portability and flexibility of the
proposed approach.

REFERENCES

Burbeck, S., 1992. Applications programming in smalltalk-80(tm): How to use model-view-
controller (mvc). Technical report, Department of Computer Science, University of
Illinois, Urbana-Champaign.

Friedman-Hill, E., 2003. Jess in Action: Rule Based Systems in Java. Manning.
Giarratano, J.C., Gary D. Riley, G.D., 2005. Expert systems: principles and programming
Thomson Course Technology.

Gouyon, J-P., 1994. Kheops users’s guide. Technical Report 92503, Report of Laboratoire
d’Automatique et d’Analyse des Systemes, Toulouse, France.

Jackson, P., 1999. Introduction to Expert Systems. Addison-Wesley, 3rd edition.
Leś, W., Łosiewicz, M., 2009. The xtt inference engine and the java virtual machine coupling.
Master’s thesis, AGH University of Sience and Technology.

Liebowitz, J. (Ed.), 1998. The Handbook of Applied Expert Systems. CRC Press, Boca Raton.
Ligęza, A., 2006. Logical Foundations for Rule-Based Systems. Springer-Verlag, Berlin,
Heidelberg.

Nalepa, G.J., Wojnicki, I., 2007. Proposal of generalized rule programming model. 3rd Work-
shop on Knowledge Engineering and Software Engineering (KESE 2007) at the 30th
annual German conference on Artificial intelligence, September 2007.

Negnevitsky, M., 2002. Artificial Intelligence. A Guide to Intelligent Systems. Addison-
Wesley, Harlow, England; London; New York.


