
Decision Making in Manufacturing and Services
Vol. 5 • 2011 • No. 1–2 • pp. 5–17

Neighbourhood Properties
in Some Single Processor Scheduling Problem
with Variable Efficiency and Additional Resources

Mateusz Gorczyca�, Adam Janiak�, Władysław Janiak�

Abstract. In the paper, we consider a problem of scheduling a set of tasks on a single proces-
sor. Each task must be preprocessed before it can be started on a processor. The efficiency
of preprocessing is variable, i.e., the rate of the task preprocessing depends on the amount
of continuously divisible resource allotted to this task. This dependency is given by concave,
continuous, non-negative and strictly increasing function of the resource amount. The total
consumption of resource at each moment is upper bounded. The objective is to minimize
the maximum task completion time. The considered problem is NP-hard. Such a problem
appears, e.g., in steel mill systems, where ingots (before hot rolling on the blooming mill)
have to achieve the required temperature in the preheating process in soaking pits. Some new
properties of the problem are proved. These properties are used to construct the procedure
for evaluation of the neighbourhood. The procedure is proposed to improve the efficiency of
algorithms based on the neighbourhood concept, such as metaheuristics. The computational
experiment is conducted to examine the efficiency of the proposed procedure. The described
approach can be easily used in the other discrete-continuous scheduling problems.

Keywords: scheduling, optimization, resource allocation, neighbourhood

Mathematics Subject Classification: 90B35

Revised: 25 August 2011

1. INTRODUCTION

Modern manufacturing and computer systems are so complicated that they cannot be
properly described by the classical scheduling theory. Thus, many models have been
introduced to scheduling area to reflect real world situations with increasing precision.
One of such models assumes that task processing or preprocessing can be described by
differential equation. This equation represents the dependance of the task processing
or preprocessing rate on the additional, continuously divisible resource available in

� Institute of Computer Engineering, Control and Robotics, Wrocław University of Technology,
Z. Janiszewskiego 11/17, 50-372 Wrocław, Poland. E-mail: {mateusz.gorczyca, adam.janiak,
wladyslaw.janiak}@pwr.wroc.pl

5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AGH (Akademia Górniczo-Hutnicza) University of Science and...

https://core.ac.uk/display/229296034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

6 M. Gorczyca, A. Janiak, W. Janiak

a system besides the processors. The problems based on this task model are called
discrete-continuous scheduling problems (Józefowska and Węglarz, 1998).
The discrete-continuous scheduling problems received a lot of attention in the lit-

erature since 1960’s. The mentioned model of task was introduced by Burkov (1966).
At first, problems with preemptive tasks were under consideration, mainly with iden-
tical and unrelated parallel processors, and an upper bound on the level of renew-
able resource. The analyzed objective functions contained: makespan (Węglarz, 1989,
1979, 1991), mean flow-time (Węglarz, 1979), and maximum lateness (Węglarz, 1989).
Some research was also devoted to problems with a doubly constrained resource
(with an additional upper bound on the total amount of the consumed resource)
with the makespan criterion (Węglarz, 1991) and the maximum lateness criterion
(Węglarz, 1989).
In the past two decades the research was devoted mainly to non-preemptive

task models. Among the others, the most frequently analyzed was the problem with
parallel processors and the makespan criterion, since methodology for this problem
states a framework for the other discrete-continuous scheduling problems (Józefowska
and Węglarz, 1998). Properties of this problem were analyzed for cases with ready
times (Janiak and Przysada, 1996a; Nowicki and Zdrzałka, 1984), and without them
(Józefowska and Węglarz, 1998; Węglarz, 1989, 1979, 1991; Waligóra, 2009). Many
methods were designed to solve the problem, from simple heuristics to sophisticated
metaheuristics (Józefowska et al., 1998, 2002). Also other problems with parallel pro-
cessors were analyzed, for objective functions such as: mean flow-time (Józefowska et
al., 1997b; Józefowska and Węglarz, 1996), weighted flow-time (Nowicki and Zdrzałka,
1984) and maximum lateness (Janiak and Przysada, 1996b; Józefowska et al., 1997a).
The reason for such a deep interest in the area of discrete-continuous scheduling

problems lies in their applicability. These problems are encountered in computer and
manufacturing systems. One of the situations is scheduling of tasks in multiproces-
sor computer systems with a virtual memory. Such a memory is usually divided into
frames and their number is large enough to effectively model memory as a continu-
ous resource. The speed of the task processing (program execution) depends on the
number of frames allotted to it. The dependence is usually given by the program’s
lifetime curve (Denning, 1980). This situation was modelled as a discrete-continuous
scheduling problem (Węglarz, 1980) and the algorithms were proposed for a memory
management in the supercomputer CRAY X-MP (Janiak and Przysada, 1997). The
other application is management of the scalable (SPP) and massively parallel (MPP)
computer systems, in which the number of processors amounts to hundreds or thou-
sands. Processors of the system can be treated as a continuous resource, whereas other
resources like disks or drives are represented as processors in the scheduling problem
(Józefowska and Węglarz, 1998).
In the paper we analyze the problem that appears in steel mills during the pro-

cess of hot rolling of ingots (Janiak, 1989). Before the ingots are hot rolled on the
blooming mill, they have to achieve the required temperature in the preheating pro-
cess in soaking pits. The preheating process is dynamic one and is described by some
differential equations, in which the rate of the change of the ingot temperature state
at each moment depends on the amount of gas flow intensity allotted to the soak-

Neighbourhood Properties in Some Single . . . 7

ing pit in which ingot is preheated. The ingot preheating time can be shortened by
increasing gas flow intensity (i.e. the more gas is consumed the shorter lasts the pre-
heating process). However, the efficiency of the resource utilization is decreasing with
gas flow intensity, i.e., longer, slower preheating consumes less resource. Therefore,
utilization of resource and the makespan is the trade-off in the described problem.
The preheating time can be treated as a ready time of ingot (task) for the main
(hot rolling) process on the blooming mill. This situation is described in terms of
discrete-continuous scheduling problem in Section 2.
The considered problem was already analyzed in the literature (Janiak and Ja-

niak, 2011). It was proved to be NP-hard and an optimal resource algorithm has been
constructed. Usually, the next step is to propose some metaheuristic algorithms, sim-
ilarly as it was done for other discrete-continuous scheduling problems (Józefowska et
al., 1998, 2002; Waligóra, 2009). However, there is an important issue that has not
been analyzed for existing metaheuristic algorithms for this class of problems.
As it is well known from the methodology for these problems, the solution consists

in two parts: the discrete one (schedule of tasks on processor or processors) and the
continuous one (the resource allocation to tasks). The optimal resource allocation can
be found for a given discrete part of a solution by solving nonlinear programming
problem – see Józefowska and Węglarz (1998). However, it is computationally very
demanding. Therefore, some heuristic methods of resource allocation were proposed
to make algorithms faster (Waligóra, 2009), but in such a case there is no guarantee
of the optimality.
The motivation of this paper is to propose a method that can provide an opti-

mal resource allocation, but strongly decreases the computational effort. The target
application of this method is construction and evaluation of neighbourhood in meta-
heuristic algorithms.
The neighbourhood of a given solution is defined as a set of all solutions that

can be obtained by particular (and often slight) change of the given solution. Solution
from the neighbourhood in the discrete-continuous scheduling problems is obtained in
two steps. First, the change in the discrete part of a given solution is made, and then
the optimal resource allocation for the changed discrete part is computed. The second
step is computationally very expensive. Thus, our idea is to use a given solution to
assess if the selected solution from the neighbourhood can be better than the given
one. This can avoid taking the computational effort for solutions that do not guarantee
improvement. To sum up, in the paper we present the concept of the neighbourhood
evaluation for the discrete-continuous scheduling problems.
In order to apply the idea described above, we prove some properties of the

neighbourhood of the considered problem – see Section 4. Before it can be done, some
already known properties of the problem needed to be recalled in Section 3. The
extensive example is provided in Section 4 to show how the proved properties can be
utilized for the evaluation purposes. The procedure of the neighbourhood evaluation
is presented in the same section. To examine the efficiency of the proposed procedure,
the computational experiment has been conducted. The description of the experiment
and the analysis of its results are presented in Section 5. Conclusion and directions
for further research are given in Section 6.

8 M. Gorczyca, A. Janiak, W. Janiak

2. PROBLEM FORMULATION

The set T = {1, . . . , i, . . . , n} of non-preemptive tasks is given to be processed on a
single processor. For each task i ∈ T time of processing pj is given in advance.
Each task i ∈ T needs some preprocessing before it can be processed on a pro-

cessor. The preprocessing is described with the following model:

dxi(t)
dt
= fi(ui(t)),

where:

– xi(t) is the state of preprocessing of task i at time t,
– ui(t) is the amount of continuous resource allotted to preprocessing of task i
at time t,
– fi(·) is a continuous, concave and increasing function that satisfies fi(0) = 0.

The initial state xi(0) = 0 and the final state x̂i > 0 of preprocessing are given for
each task i ∈ T . In order to ready task for processing on a processor, its final state of
preprocessing must be achieved, i.e., the ready time ri of task i is the first moment
in which its preprocessing is in the final state:

ri := min{t| xi(t) = x̂i}.

The continuously divisible resource that is available for preprocessing of all
tasks is renewable and its level Û > 0 is constant and known in advance. The
resource allocation is defined as a piece-wise continuous vector function u(t) :=
[u1(t), . . . , ui(t), . . . , un(t)].
The resource allocation u(t) is feasible if it satisfies the following condition:

n∑
i=1

ui(t) � Û .

By Si and Ci = Si+ pi we denote, respectively, the start and completion time of
task i. Moreover, by z and z(i) we denote, respectively, the sequence in which tasks
are processed (where z is a permutation of elements of the set T) and the task on i-th
position in the sequence z. Tasks are started without any delay, i.e.,

Sz(i) = max{rz(i), Cz(i−1)}, j = 1, . . . , n,

where Cz(0) = 0.
The problem is to find such a sequence z∗ and such a resource allocation u∗(t),

for which makespan Cmax(z,u(t)) = max{C1, . . . , Cn} is minimized. The considered
problem is strongly NP-hard (Janiak and Janiak, 2011).

Neighbourhood Properties in Some Single . . . 9

3. PROPERTIES OF THE OPTIMAL RESOURCE ALLOCATION

In this section we recall the form of optimal solution of the considered problem, which
was described by Janiak and Janiak (2011). The properties of solution of this form
are the starting point of our considerations and are further analyzed in Section 4.
Mostly, these properties concern an optimal resource allocation for a given sequence
of tasks. To simplify the notation, we assume in the sequel, without loss of generality,
that z = 1, 2, . . . , n, unless we state otherwise.
It has been proved by Janiak and Janiak (2011) that there exists the optimal

solution for the considered problem, in which tasks are processed one after another
without a break – see Figure 1. Thus, Cmax = S1 +

∑n
i=1 pi and to find an optimal

resource allocation for a given sequence of tasks it is enough to minimize the start
time of the first task in a sequence.

�

�

resource
allocation Intervals:

0 1 2 3 4 5 6

t

Û

u1,0

u2,0

u3,0

u5,0

u6,0

u2,1

u4,1

u5,1

u6,1

u3,2

u4,2

u5,2

u6,2

u4,3

u5,3

u6,3

u5,4

u6,4

u6,5

Tasks: 1 2 3 4 5 6

Fig. 1. The exemplary solution of the form described in Section 3 for a sequence of 6 tasks.

It has been also proved that in such an optimal solution the resource allocation
is constant in time intervals defined by 0 and starting times of consecutive tasks in
the sequence z – see Figure 1. Since tasks are processed without a break, the intervals
of constant resource allocation are [0, p0], where p0 := S1, and

(
k−1∑
i=0

pi,

k∑
i=0

pi

]
, k = 1. . . . , n− 1. (1)

In the sequel we consider only such resource allocations.

10 M. Gorczyca, A. Janiak, W. Janiak

We denote (constant) amount of resource allotted to the i-th task in the k-th
interval by uik (where [0, p0] is 0-th interval). From (1) we have:

uik = f−1i

(
xik
pk

)
, i = 1, . . . , n, k = i+ 1, . . . , n− 1, (2)

where xik is the part of the final state of task i processed in k-th interval using resource
amount uik. Notice, that this part cannot be negative, i.e.,

xik � 0, i = 1, . . . , n, k = 0, . . . i− 1. (3)

In order to finish the task, its parts (of the preprocessing state) have to sum up to
the final state:

n−1∑
k=0

xjk = x̂j , j = 1, . . . , n. (4)

Since the level of the resource available to process all the tasks is upper bounded, the
sum of amounts allotted in each interval cannot exceed the value of the bound:

n∑
j=1

f−1j

(
xjk
pk

)
� Û , k = 1, . . . , n− 1, (5)

The zeroth interval, i.e., the interval [0, S1], is obviously of length S1. It is easy to
prove the following property for the zeroth interval.

Property 1. The resource allocation is optimal for a given sequence of tasks if and
only if the total amount of the resource allotted in the zeroth interval is equal to the
resource level Û .

Proof. It is enough to prove that increasing the total amount of the resource allotted
in the zeroth interval we decrease the makespan. Notice, that since fi(·) is increasing
function, f−1i (·) is increasing as well. Thus, it follows from (2) that increasing the
resource amounts uik (until the total amount is equal to Û) we decrease p0 = S1 and
therefore we decrease Cmax = S1 +

∑n
i=1 pi.

As it follows from (2) and the above property, the length of the zeroth interval
can be found based on parts of states in this interval, i.e. S1 := G(x10, . . . , xn0), by
solving the following equation with respect to S1:

n∑
j=1

f−1j

(
xj0
S1

)
= Û . (6)

The above considerations can be summed up in the following corollary:

Corollary 1. The optimal resource allocation for a given sequence of tasks can be
found by solving the following optimization problem:
minimize S1 subject to (3)–(5),

which is denoted in the sequel by OP .

Neighbourhood Properties in Some Single . . . 11

In the sequel, we refer to the solution that consist in sequence z and the optimal
resource allocation for this sequence as to the solution based on sequence z.
The properties and form of the solution presented in this section are used in

the next one to prove the properties of the neighbourhood of a solution based on
sequence z.

4. PROPERTIES OF THE NEIGHBOURHOOD

In this section we prove another property of the optimal resource allocation. Using
this property we analyze the neighbourhood of a solution based on sequence z. Then,
the concept of evaluation of the neighbourhood is presented for a given example of
a solution based on sequence z. The section ends with the scheme of procedure of
neighbourhood evaluation.
First, we prove the following property.

Property 2. If for a given resource allocation u(t):

a) in some interval k, 0 � k < n− 1 not all of the resource is used, i.e.,
n∑

i=k+1

uik < Û, (7)

b) in all previous intervals all of the resource is used, i.e.,

n∑
i=l+1

uil = Û , l = 0, . . . , k − 1 (8)

c) in each previous interval l a positive part of one of the tasks l + 2, . . . , n is
processed,

then u(t) is not optimal.

Proof. Suppose that the resource allocation u(t) satisfies conditions a) - c) from the
thesis. We prove that there exists better resource allocation.
We use induction. As it follows from Property 1, the thesis is true for k = 0. We

prove that if it is true for k = j, then it is true for k = j + 1.
Suppose that condition a) is satisfied for the interval j + 1 and conditions b)

and c) are satisfied for intervals 0, . . . , j. Thus, from c) we know that some resource
amount is allotted in interval j to some task i ∈ {j+2, . . . , n}. However, as it follows
from a), not all of the resource is used in interval j + 1. Thus, we can allot some
resource amount to task i in the interval j + 1 and in the same time decrease the
resource amount allotted to this task in the interval j. Resource allocation obtained
in this way satisfies conditions a) – c) for k = j.

12 M. Gorczyca, A. Janiak, W. Janiak

�

Parts of
tasks

6

5

4

3

2

1

t

Intervals:

0 1 2 3 4 5 6

x̂1

x̂2

x̂3

x̂4

x̂5

x̂6

x1,0

x2,0

x3,0

x4,0

x5,0

x6,0

x2,1

x3,1

x4,1

x5,1

x6,1

x3,2

x4,2

x5,2

x6,2

x4,3

x5,3

x6,3

x5,4

x6,4 x6,5

Tasks: 1 2 3 4 5 6
Fig. 2. The parts of tasks (preprocessing states) corresponding to the resource allocation

from Figure 1.

Now we show how to use the above property to evaluate the neighbourhood of a
solution based on sequence z = (1, 2, 3, 4, 5, 6). This solution is presented in Figure 1.
As it follows from (2) and (6), the solution can be presented in the equivalent way –
as a sequence of tasks and the parts of tasks processed in the intervals. In Figure 2
the solution from Figure 1 is presented in such a way.
Now consider the sequence z′ = (1, 2, 4, 3, 5, 6) from the neighbourhood of se-

quence z, obtained by swapping tasks 3 and 4 in sequence z. To find out if solution
based on z′ is better we can simply solve OP for a sequence z′. However, it would be
computationally very demanding. Instead, we use the optimal resource allocation we
already have for sequence z.
Notice, that since tasks 3 and 4 are swapped, then the lengths of the intervals 3

and 4 are swapped as well. If we swap also parts of the tasks 5 and 6, then all the
constraints for tasks 5 and 6 remain satisfied – see Fig. 3.a). However, the part of task
4 cannot appear in interval 3, since task 4 starts earlier in z′ – see Fig. 3.b). On the
other hand, since task 3 starts later, its part can appear in interval 3 – see Fig. 3.c).
Thus, the part of this task processed in some other interval can be decreased,

e.g., in the interval 2 – see Fig. 3.d). Notice, that since we lost the part of task 4 in
interval 3 then at least one part of this task must be increased in one of the earlier
intervals, e.g., in interval 2 – see Fig. 3.e).
In this way we obtained the set of tasks parts that need to be recalculated to

find the feasible resource allocation for sequence z′ based on the optimal resource
allocation for sequence z. The tasks parts from this set are denoted by the double
question marks in Figure 3.e).

Neighbourhood Properties in Some Single . . . 13

a) The swap of tasks 3 and 4 and parts
of tasks 5 and 6 in intervals 3 and 4

�

Parts of
tasks

6
5
4
3
2
1

t

Intervals:
0 1 2 3 4 5 6

A
A
B
B

Tasks: 1 2 3 4 5 6
b) The part of task 4 cannot be
processed in interval 3 after swap.

�

Parts of
tasks

6
5
4
3
2
1

t

Intervals:
0 1 2 3 4 5 6

A
A
B
B

Tasks: 1 2 3 4 5 6

c) However, the part of task 3 can be
processed in interval 3 after swap.

�

Parts of
tasks

6
5
4
3
2
1

t

Intervals:
0 1 2 3 4 5 6

??

B
B
A
A

Tasks: 1 2 4 3 5 6
d) Thus, the part of task 3 can be
decreased in the other interval.

�

Parts of
tasks

6
5
4
3
2
1

t

Intervals:
0 1 2 3 4 5 6

?? ??

B
B
A
A

Tasks: 1 2 4 3 5 6

e) Since the part of task 4 from interval 3 is lost,
some other part of this task must be increased.

�

Parts of
tasks

6
5
4
3
2
1

t

Intervals:
0 1 2 3 4 5 6

??
??

??

B
B
A
A

Tasks: 1 2 4 3 5 6
f) All parts of tasks from intervals 3 and 4
can be recalculated to improve the evaluation.

�

Parts of
tasks

6
5
4
3
2
1

t

Intervals:
0 1 2 3 4 5 6

??
??
??
??

??

??
??
A
A

Tasks: 1 2 4 3 5 6

g) Another idea is to recalculate
all parts of tasks 3 and 4.

�

Parts of
tasks

6
5
4
3
2
1

t

Intervals:
0 1 2 3 4 5 6

??
??

??
??
??
??

??

B
B
A
A

Tasks: 1 2 4 3 5 6
h) Any subset of parts of tasks which includes
at least one part of task 4 can be recalculated.

�

Parts of
tasks

6
5
4
3
2
1

t

Intervals:
0 1 2 3 4 5 6

??
??
??
??

??
??
??
??

??
??
??
??

??

??
??
A
A

Tasks: 1 2 4 3 5 6

Fig. 3. The concept of a neighbourhood evaluation described in Section 4.

14 M. Gorczyca, A. Janiak, W. Janiak

Obviously, the feasible resource allocation in which only this three tasks parts
need to be changed may not exist. Thus, we can recalculate some larger set of tasks
parts. For example, we can recalculate all tasks parts in intervals 2 and 3 – see
Fig. 3.f), or all tasks parts of tasks 3 and 4 – see Fig. 3.g). In fact, any set of tasks
parts including at least one part of task 4, like for example set the set from Figure
3.h), can lead to the feasible resource allocation. The bigger is the set of recalculated
tasks parts, the higher are the chances to find the feasible resource allocation for
sequence z′, but also higher is the computational effort needed for recalculation.
Suppose that conditions b) and c) from Property 2 are satisfied for intervals 0,

1, 2, 3 and 4 of the optimal resource allocation for sequence z. Thus, it follows from
Property 2 that if through recalculation we obtain the feasible resource allocation
and in one of these intervals not all of the resource is used, then there exists solution
based on sequence z′ better than the considered solution for sequence z. To find
this better solution we need to solve OP. However, we can significantly decrease the
computational complexity of this operation by using the obtained feasible resource
allocation as a starting point in the nonlinear programming procedure.
To sum up, our concept of evaluation of the neighbourhood can be formalized as

the following procedure:

Input: The solution based on a given sequence z.
Output: The evaluation value for all and a feasible resource allocation for some

sequences from the neighbourhood of z.

0. Construct the set of all sequences from the neighbourhood of sequence z. For each
sequence from this set perform the following steps:

1. Select the set of recalculated tasks parts.
2. Recalculate the tasks parts from the set to obtain the feasible resource
allocation.
3. Based on the recalculation results, calculate the evaluation value for the
sequence.

Step 2 of the above procedure is very general and can be performed in many ways.
One of them is to solve the optimization problem similar to OP. The decision vari-
ables of this problem are tasks parts selected in Step 1. The constraints are calculated
based on the values of tasks parts that are not recalculated and equations (3)–(5).
The objective is the difference between resource level and the resource needed to pro-
cess (recalculated and not recalculated) tasks parts in the first interval that contains
recalculated variable.
Step 3 is also general. For the way of performing Step 2 described above, the

value of the evaluation can be value of the objective of the mentioned optimization
problem. Notice, that this value is negative if there is no feasible resource allocation.
Therefore, the sequence for which the value is the highest can be considered as the
most promising.
To examine the efficiency of the proposed procedure we have conducted compu-

tational experiment described in the next section.

Neighbourhood Properties in Some Single . . . 15

5. COMPUTATIONAL EXPERIMENT

The procedure has been examined for 100 instances of the problem with 8 tasks.
As function (1) we have used fi(ui) = ci · u1/αii , αi � 1, considered to be a good
benchmark function for discrete-continuous scheduling problems (Janiak and Janiak,
2011; Józefowska and Węglarz, 1998; Józefowska et al., 1998). Parameter αi has been
chosen randomly with uniform distribution from the set {1,2}, coefficient ci from the
interval [1, 50], and the final state x̂i and the task processing time from the interval
[1, 10]. Procedure has been also examined for the instances where the task processing
time has been chosen randomly from the intervals [1, 5] and [1, 50], but the results
have been similar as for the interval [1, 10].
Experiment has been performed for the neighbourhood based on a swap opera-

tion, i.e., the neighbourhood for a given sequence z consists in all sequences that can
be obtained by swapping two consecutive tasks in z.
We have examined improvement defined as a relative difference between objective

value for a given solution and the objective value computed for the most promising
sequence from the neighbourhood. As the objective value we have taken the start time
of the first task in the sequence, which, as it is shown in Section 3, can be considered as
equivalent to a criterion value. This start time has been given for the optimal resource
allocation obtained by solving OP. To solve OP we have used the Sequential Quadratic
Programming (SQP) method, which is reported as one of the best in constrained
nonlinear programming (Schittowski, 1985). We used the implementation of the SQP
method available in Optimization Toolbox 4.3 of the Matlab R2009b environment.
The procedure has been run with default settings. The starting values of task parts has
been generated by equal distribution of the final state of each task between all intervals
in which this task is preprocessed, i.e., xik = x̂i/i, i = 1, . . . , n, k = 0, . . . , i− 1.
The most promising sequence from the neighbourhood has been chosen by using

our evaluation procedure described in Section 3. Step 2 and 3 of the procedure have
been performed in a way described at the end of Section 4. To solve the optimization
problem in Step 2 of the procedure we have also used the SQP method with default
settings. The starting values of recalculated tasks parts have been set to 0. If the
feasible solution could not have been found by the procedure, the evaluation value for
the considered sequence from the neighbourhood has been set to −∞.
The improvement for the set of recalculated variables defined in a way similar

to the presented in Figure 3.e), 3.f), 3.g) and 3.h), has been equal to, respectively,
35.8%, 40.4% 40.9% and 49.5%. The time of performance of the evaluation procedure
was, respectively, 38.4, 16.6, 31.3 and 7.4 times shorter than the average time needed
to find the optimal resource allocation for the original sequence.
As it follows from the above results, the proposed procedure can quickly and

efficiently evaluate the neighbourhood for a given solution. Notice, that even for the
small set of recalculated tasks parts the better solution is frequently detected. How-
ever, the time of performance increases with the number of recalculated tasks parts
faster than the quality of improvement. The trade-off between these two values should
be subject of further investigation, since the presented experiment is undoubtedly only
preliminary research.

16 M. Gorczyca, A. Janiak, W. Janiak

6. CONCLUSION

In the paper we analyzed the single processor scheduling problem with variable effi-
ciency of preprocessors. The rate of the task preprocessing depends on the amount
of continuously divisible resource allotted to this task. The minimized criterion is the
makespan. The problem is known to be NP-hard.
The considered problem is one of many difficult discrete-continuous schedul-

ing problems. Our objective was to find out if the neighbourhood of the discrete-
continuous scheduling problem can be analyzed in terms of continuous part of the
solution. Until now, the neighbourhood was considered only for the discrete part of
the solution. To be more precise, we were interested if based on a continuous part of
a given solution we can evaluate solutions from the neighbourhood without computing
the optimal resource allocation for them.
We proved properties of the problem that allowed to construct the procedure for

evaluation of the neighbourhood. The procedure was examined in the computational
experiment. The results of the experiment shown that the presented idea leads to
efficient and fast method which can significantly improve the metaheuristic algorithms
for discrete-continuous scheduling problems.
Conducted research is only a preliminary step. More advanced experiments for

different types of neighbourhood are needed. Also problems with the discrete part
of the solution different than a sequence of tasks are potential application of the
proposed method. Another research is suggested to apply the presented idea in dif-
ferent metaheuristic algorithms and possibly other algorithms based on the concept
of neighbourhood.

REFERENCES

Burkov, V., 1966. Resource allocation as a time-optimal control problem. (in Russian).
Avtomat. i Telemeh., 27(2), 114–129.

Denning, P. J., 1980. Working sets past and present. IEEE Transactions on Software
Engineering, 6(1), 64–84.

Janiak, A., 1989. Minimization of the blooming mill standstills mathematical model – sub-
optimal algorithms. Zeszyty Naukowe Akademii Górniczo-Hutniczej s. Mechanika, 8(2),
37–49.

Janiak, A., Janiak, W., 2011. Single-processor scheduling problem with dynamic models
of task release dates. IEEE Transactions on Systems, Man and Cybernetics, Part A:
Systems and Humans, 41(2), 264–271.

Janiak, A., Przysada, J., 1996a. Czasowo-optymalne szeregowanie zadań z różnymi termi-
nami gotowości na równoległych maszynach. Zeszyty Naukowe Politechniki Śląskiej s.
Automatyka, 117, 99–109.

Janiak, A., Przysada, J., 1996b. Zastosowanie systemów wieloprocesorowych w zroboty-
zowanych systemach sterowania. In Materiały V Krajowej Konferencji Robotyki, vol. 2,
149–158.

Janiak, A., Przysada, J., 1997. Algorytmy szeregowania zadań i rozdziału zasobów na proce-
sorach równoległych - przykłady zastosowań. InMateriały III Konferencji Komputerowe
Systemy Wielodostępne, 101–107.

Neighbourhood Properties in Some Single . . . 17

Józefowska, J., Mika, M., Różycki, R., Waligóra, G., and Węglarz, J., 1997a. Discrete-
continuous scheduling to minimize maximum lateness. In Proceedings of the Fourth In-
ternational Symposium on Methods and Models in Automation and Robotics MMAR’97,
947–952.

Józefowska, J., Mika, M., Różycki, R., Waligóra, G., and Węglarz, J., 1997b. Discrete-
continuous scheduling to minimize the mean flow time – computational experiments.
Computational Methods in Science and Technology, 3, 25–37.

Józefowska, J., Mika, M., Różycki, R., Waligóra, G., and Węglarz, J., 1998. Local search
metaheuristics for discrete-continuous scheduling problems. European Journal of Oper-
ational Research, 107(2), 354–370.

Józefowska, J., Waligóra, G., and Węglarz, J., 2002. Tabu list management methods for
a discrete-continuous scheduling problem. European Journal of Operational Research,
137(2), 288–302.

Józefowska, J., Węglarz, J., 1996. Discrete-continuous scheduling problems - mean comple-
tion time results. European Journal of Operational Research, 94(2), 302–309.

Józefowska, J., Węglarz, J., 1998. On a methodology for discrete-continuous scheduling.
European Journal of Operational Research, 107(2), 338–353.

Nowicki, E., Zdrzałka, S., 1984. Optimal control policies for resource allocation in an activity
network. European Journal of Operational Research, 16(2), 198–214.

Schittowski, K., 1985. Nlqpl: A fortran-subroutine solving constrained nonlinear program-
ming problems. Annals of Operations Research, 5, 485–500.

Waligóra, G., 2009. Tabu search for discrete-continuous scheduling problems with heuristic
continuous resource allocation. European Journal of Operational Research, 193(3), 849–
856.

Węglarz, J., 1979. Project scheduling with discrete and continuous resources. IEEE Trans-
actions on Systems, Man and Cybernetics, 9(10), 644–650.

Węglarz, J., 1980. Multiprocessor scheduling with memory allocation – a deterministic ap-
proach. IEEE Transactions on Computers, 29(8), 703–709.

Węglarz, J., 1989. Scheduling under continuous performing speed vs. resource amount activ-
ity models. In Advances in Project Scheduling, Słowiński, R. and Węglarz, J., editors.
Elsevier Science Publishers, Amsterdam, 273–295.

Węglarz, J., 1991. Synthesis problems in allocating continuous, doubly constrained resources
among activities. In Proceedings of the XI Triennal International Conference on Oper-
ational Research IFORS’90, Pergamon Press, Oxford, 715–724.

