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ABSTRACT 
 
The current study has investigated natural convection heat during pressurized conduction 
cooldown (PCC) accident scenario to understand the passive safety features of prismatic modular 
reactors (PMR) under different intensities of nonuniform center peaking step heat flux 
distributions (approximating cosine shape) using an advanced fast-response heat transfer 
technique. A scaled-down PMR module was designed and developed at Missouri S&T by the 
research team of the Multiphase Reactors Engineering and Applications Laboratory (mReal). The 
module consists of upper and lower plena connected by heated and cooled channels. Nonuniform 
heat flux distribution was applied to the heated channel under nonuniform heating center peaking 
step (approximating cosine shape), simulating nonuniform heat distribution within the core of 
PMR. Air was used as the coolant to study the effect of nonuniform heating under a range of heat 
flux intensity (four sets of nonuniform heat flux and one set of uniform heat flux were tested) at 
413.7 kPa (60 psi). At an axial position of Z/L = 0.409 along the heated channel, the heat transfer 
coefficient is increased by 35% for nonuniform heat flux distributions of  set 1 (0.25*2.579 
kW.m-2+0.50*3.152 kW.m-2+0.25*2.579 kW.m-2) and set 2 (0.25*2.292 kW.m-2+0.50*2.865 
kW.m-2+0.25*2.292 kW.m-2) with respect to the the uniform heat flux set 5(2.865 kW.m-2), and it 
is decreased by 56% for nonuniform heat flux distributions of set 3 (0.25*2.006 kW.m-

2+0.50*2.579 kW.m-2+0.25*2.006 kW.m-2) and set 4 (0.25*1.719 kW.m-2+0.50*2.292 kW.m-

2+0.25*1.719 kW.m-2) with respect to the uniform heat flux set (set 5). There is a significant 
reorder in the heat transfer coefficients distribution curves in descending order along the heated 
channel after the inflection point (after Z/L =0.773). 
 

KEYWORDS 
Natural convection; pressurized conduction cooldown accidents; prismatic modular reactors; nonuniform 
heat flux; heat transfer technique. 
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1. INTRODUCTION 
 
Among the promising candidates for the next generation nuclear plant (NGNP) is the prismatic modular 
reactor (PMR).  Reactor core of PMR is made up of hexagonal graphite blocks with channels for fuel rods 
and coolant flow. The removal of the post-shutdown decay heat relies on natural circulation.  Under off-
normal shutdown and accidental scenarios such as loss of forced cooling accident (LOFA), adequacy of 
natural convection must be evaluated to ensure passive safety. Pressurized conduction cooldown accidents 
(PCC) is a loss of flow accident, meaning the forced flow of working fluid to the reactor is suspended. 
During PCC, high working fluid pressure is maintained. In contrast to depressurized conduction 
cooldown (DCC) where working fluid pressure drops down immediately. Understanding how reactor 
properties affect natural convection during PCC is crucial to passive safety. It is important to understand 
how the coolant circulates to design reactors that safely shut down in the event of a loss of coolant flow 
accident. When pressurized conduction cooldown (PCC) accident takes place, the heat transfer 
characterization in the PMR is addressed by numerous computational studies in the open literature [1, 2, 
3, 4, 5]. Recent experimental studies used some sophisticated measurement techniques to advance the 
current knowledge of the PMR under natural circulation in a unique dual-channel facility [6, 7, 8, 9, 10, 
11, 12, 13]. However, the focus of the initial studies was on uniform heat flux conditions, which is not a 
typical scenario of the PMR during the LOFA scenarios. Due to the cosine nature power distribution of a 
typical cylindrical reactor, one would expect the decay heat to follow the same cosine shape.  Therefore, 
additional emphasis is placed on generated heat transfer data, in terms of field temperatures and heat 
transfer coefficients, for nonuniform heating center peaking step (approximating cosine shape). There is a 
real need to extend this investigation to include more realistic conditions of nonuniform axial heat flux 
distributions. In this study, experimental results and analysis are provided for natural circulation with air 
(working fluid) using advanced instrumentation detailing heat transfer data in terms of temperature fields 
(centerline air and inner wall surface temperatures) and heat transfer coefficients under natural 
circulation. The effect of the intensity of nonuniform heat flux at steady state is investigated for air at 
413.685 kPa. The collected data in this study can provide the necessary benchmark to validate thermal-
hydraulic codes such as; RELAP5-3D, CFD-STAR-CCM1, CFD-Fluent, and so forth. 
 
2. EXPERIMENTAL WORK 
 
Multiphase Reactors Engineering and Applications Laboratory (mReal) at Missouri S&T developed a 
dual-channel facility to imitate the coolant flow in PMR [7, 8, 9, 10].  The current facility is constructed 
with reference to OSU-HTTF with a scale ratio of ¼ axially and radially [4]. The development of the 
constant diameter’s (0.016 m) dual channel is for the upward and downward flows of the coolant at the 
center block and at an outer block, respectively, with the upper and lower plena as shown in Figure 1, and 
Table 1 shows the physical dimension of our facility with HTTF.  A cooling jacket around the upper 
plenum and helical coil heat exchanger around the cooled channel were connected to an automatic high 
capacity chiller (Applied Thermal Control Ltd, K4 chiller) to keep the outer surface temperature at the 
desired value (5 °C). A variable voltage regulator with a span of 0-130 volts and a digital power reader 
(0.2% precision) was attached to each of four electrical heaters to regulate and monitor the intensity of the 
power supplied to the heated channel. Each heater covers 25% of the length of the heated channel, and 
each heater is connected with a separate controller and power reader as shown in Figure 1. The heated 
channel external surface has been carefully insulated using a ceramic fiber blanket of 0.05m in thickness 
with a low thermal conductivity of 0.07 W/m K in order to reduce heat loss to the environment. The 
stimulation of the natural circulation takes place within the current setup by heating the heated channel 
and cooling the upper plenum and cooled channel.  In this study, a nonuniform heating center peaking 
step (approximating cosine shape as shown in Figure 2 and Table 2) heat flux was applied to investigate 
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the effect of heat flux nonuniformity (sets 1-4) and uniform heat flux equal to 2.865 kW/m2 for the entire 
length of the heated channel (set 5).  The current experiments have been performed  
using air as the coolant at 413.7 kPa (60 psi). An advanced heat transfer technique consisting of heat 
transfer foil sensor (with an uncertainty of 2.5% of the sensor reading) and T-thermocouples (with an 
uncertainty of 2.2 °C or 0.75% of the reading) is adapted and implemented along the channels. 
Simultaneous measurements of the inner local heat flux (qi) and the inner surface temperature (Ts,i) were 
carried out by utilizing the heat flux foil sensor. The implemented heat flux foil sensor can detect the 
direction of heat transfer between the surface sensor and the adjacent flowing air based on the sign of heat 
flux. Negative heat flux signals mean that heat transfers from the air to the surface, while positive heat 
flux signals imply that heat transfers from the surface of the foil sensor to the air. Centerline air 
temperature (Tb,i) in front of the sensor was measured using a T-thermocouple (1.6 mm in diameter). With 
this technique, instantaneous heat transfer coefficient (hi) and local time-averaged heat transfer coefficient 
(havg) can be calculated [14, 15]: 
 
                                      ℎ𝑖𝑖 = 𝑞𝑞𝑖𝑖

(𝑇𝑇𝑆𝑆,𝑖𝑖−𝑇𝑇𝑏𝑏,𝑖𝑖)
                                                                            (1) 

                                                              ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = 1
𝑁𝑁
∑ ℎ𝑖𝑖𝑖𝑖=𝑁𝑁
𝑖𝑖=1                                                                       (2) 

 
where N is the total data points; N= 2000 was selected to attain stable values. Data was measured for six 
non-dimensional axial positions along the heated channel (Z/L = 0.044, 0.279, 0.409, 0.591, 0.773, and 
0.956) and three non-dimensional axial positions along the cooled channel (Z/L = 0.044, 0.5, and 0.956). 
The present study calls for the measurement of the heat transfer coefficients along the heated channel for 
various flux distributions. 
 

 
 

Figure 1. The dual-channel facility. 
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Table.1 Dimensions of the current facility with reference to OSU-HTTF 

Parameter Current facility OSU-HTTF 
Tube diameter (m) 0.016 0.016 

Coolant channel length inside block (m) 1 2 
Core diameter (m) 0.3 1.2 

Upper plenum height (m) 0.239 0.956 
Outer vessel diameter (m) 0.381 1.524 

Number of channels 

Two channels 
(one upward flow 

and other downward 
flow) 

516 coolant channel 
210 Heater Rod 

Six inner gap channel 
36 outer gap channel 

 
 
The current study focused only on measuring the heat transfer coefficients along the heated channel due 
to the small temperature gradient along the cooled channel [9]. The steady-state condition was achieved 
when temperature readings did not vary by more than 0.5 K and the local heat transfer coefficient was 
within ±0.8 W/m2 K for a 30-minute observation. Each experiment is repeated three times with ±1.5% 
reproducibility 
 
3. RESULTS AND DISCUSSION 

The reversal of heat direction and reduction in temperature fields was earlier observed within the heated 
channel close to the exit (end effect) [6, 7, 8]. Similar thermal behavior was observed in the current study. 
At two different axial positions along the heated channel (Z/L = 0.773 and 0.956), negative heat fluxes 
were observed for uniform (Set 5, 50 W) as well as for all cases of nonuniform heating center peaking 
step (approximating cosine shape) . 
 

Table.2 Heat flux distribution around the heat channel. 
 

 Axial division  
0 - 0.25 (m) 0.25 - 0.50 (m)  0.50 - 0.75 (m) 0.75 - 1 (m) 

Set 1 2.579 kW/m2 3.152 kW/m2 3.152 kW/m2 2.579 kW/m2 
Set 2 2.292 kW/m2 2.865 kW/m2 2.865 kW/m2 2.292 kW/m2 
Set 3 2.006 kW/m2 2.579 kW/m2 2.579 kW/m2 2.006 kW/m2 
Set 4 1.719 kW/m2 2.292 kW/m2 2.292 kW/m2 1.719 kW/m2 
Set 5 2.865 kW/m2 2.865 kW/m2 2.865 kW/m2 2.865 kW/m2 
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Figure 2. Power distribution (nonuniform heating center peaking step (approximating cosine 
shape)) around the heated channel. 

 
This behavior could be attributed to nonuniform heating in terms of secondary flow [16], and the heat 
conduction between the two channels through the upper flange, which results in temperature variation 
along the heated channel. These negative heat flux signals confirm that there is a reversal in the direction 
of heat transfer from the flowing air to the inner surface of the heated channel. The heat flow reversal can 
be caused by axial cooling conduction through the solid wall of the heated channel (conjugate heat 
transfer) and the presence of the upper plenum as an adiabatic extension with large expansion ratio at the 
outlet. Figures 3 and 4 show the reversal in the heat direction (negative signals of heat fluxes) from the 
adjacent air to the inner wall for Z/L = 0.773 and 0.956. The negative signals of heat fluxes in Figures 3 
and 4 showed that the heat was transferred from air to the inner wall of the heated channel, while positive 
heat fluxes are observed for the remaining axial locations. Figure 5 shows all positive heat fluxes for Z/L 
=0.591. Negative heat fluxes are observed along the cooled channel for all operating conditions. This 
confirms the downward flow and establishment of natural circulation between upper and lower plena.  It 
is interesting to see the order of the negative heat flux.  For the highest heating case, the negative heat flux 
is also highest.  
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Figure 3. End effect at heated channel position Z/L = 0.773. 

 

 
Figure 4. End effect at heated channel position Z/L = 0.956. 
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Figure 5. End effect at heated channel position Z/L = 0.591. 

 
Figures 6 and 7 show the axial temperature profiles for the inner wall surface and air centerline 
temperatures along the heated channel. The maximum surface temperature is observed for uniform heat 
flux (set 5) at Z/L =0.773 and at Z/L =0.591 for all nonuniform heating center peaking step sets. A sharp 
reduction is observed for uniform heat flux (set 5) after Z/L = 0.773, but for nonuniform heating center 
peaking step cases from Z/L = 0.591 to Z/L = 0.773, there is a plateau for sets 1, 2, 3, and 4. This plateau 
is not seen for set 5 (uniform heating), where the temperature is still increasing after position Z/L = 0.591. 
For air centerline temperature, the temperature profile is slightly different from inner wall surface 
temperature profile: 1) The maximum temperature is observed at Z/L = 0.773 for all sets; 2) The plateau 
that exists in the inner wall surface temperature is not observed in the air centerline temperature profile. 
This thermal performance in terms of field temperatures could be attributed to an increase in the air 
thermal conductivity, which leads to lower resistance and an increase in the viscosity, causing the radial 
flow of the hotter layers of air to move nearer to the surface toward the tube center. Figure 8 shows the 
heat transfer coefficient along the heated channel, and the heat transfers from the adjacent air layer to the 
inner wall started after Z/L = 0.591. This heat transfer reversal could be attributed to the downward axial 
cooling conduction inside the solid wall of the heated channel from the upper plenum and co-circulation 
at the top section of the heated channel, as reported in the literature [7, 8, 9, 17, 18]. The heat transfer 
coefficients decrease from the inlet Z/L = 0.044 to Z/L = 0.279. This could be attributed to the developing 
of hydrodynamic and thermal boundary layers. Again in the values of the heat transfer coefficients is 
observed after Z/L = 0.279 to Z/L = 0.591 due to the laminarization effects [19, 20, 21]. At Z/L = 0.409, 
the heat transfer coefficient increases by 35% for nonuniform heating center peaking step (sets 1and 2) 
with respect to the uniform heating (set 5), and it decreases by 56% for nonuniform heating center 
peaking step (sets 3 and 4) with respect to the uniform heating (set 5).  
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Figure 6. Heated channel inner surface temperature. 
 

 
 

Figure 7. Heated channel centerline temperature. 
 
It is very clear in Figure 8; there is reorder in the distributions of the local heat transfer coefficients in 
descending order after the inflection point (after Z/L = 0.773). This could be attributed to the end effect 
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[6,7,8]. The influence of the end effect on values of the local heat transfer coefficients is very clear after 
Z/L = 0.591 in terms of a decreasing trend.  
 
 

 
 

Figure 8. Local heat transfer coefficient along the heated channel. 
 
Figures 9 and 10 show the temperature variations along the inner wall surface and air centerline of the 
cooled channel. A decreasing trend in the field temperatures from Z/L = 0.956 (inlet) to Z/L = 0.044 
(outlet) is observed, which confirms the establishment of natural circulation and downward flow. 
 

 
 

Figure 9. Temperature along the inner wall surface of the cooled channel 
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Figure 10. Temperature along air centerline of the cooled channel 
 
4. CONCLUSIONS  

Nonuniform heating center peaking step (approximating cosine shape) within a dual-channel circulation 
loop of upper and lower plena have been designed and developed to investigate the natural circulation 
heat transfer within the prismatic block nuclear reactor (PMR) under the PCC accident scenario. The most 
significant study variable is the nonuniform heating distribution along the heated channel that comes in 
the form of nonuniform heating center peaking step cases along the heated channel in dual-channel 
circulation by using an advanced fast-response heat transfer technique of flush-mounted heat flux foil 
sensors in conjunction with a series of T-thermocouples to measure the local heat transfer coefficients, 
inner wall surface temperature, and air centerline temperature along the flow channels simultaneously. 
Air is used as a coolant (working fluid) at a higher operating pressure of 413.7 kPa (60 psi). The impact of 
flux shape was observed.  In figure 7, one can notice that case 1 (center peaking case) and case 5 with 
uniform heat flux with the same total heat input produce different results,  The exit temperature of the 
center peaking case is higher than the uniform heating case.  Therefore, the heat flux profile is expected to 
play a significant role in the overall heating of the coolant.  Moreover, a reversal of heat direction and 
reduction in temperature fields is observed at two different axial positions along the heated channel (Z/L 
= 0.773 and 0.956). The maximum surface temperature is observed for uniform heat flux (set 5) at Z/L = 
0.773 and at Z/L = 0.591 for all nonuniform heating center peaking step sets. Negative heat transfer 
coefficients were observed for all experimental conditions from Z/L = 0.773 to Z/L = 0.956, and there is 
reorder in the curves in the descending order after the inflection point (after Z/L = 0.773). 
 
NOMENCLATURE 
 
havg = Time-averaged local heat-transfer coefficient (W/m2 K). 
hi = Local instantaneous heat-transfer coefficient (W/m2 K). 
N = Number of data points sampled. 
qi = Local instantaneous heat flux (W/m2). 
Ts,i = Instantaneous inner surface temperature (°C). 
Tb,i = Instantaneous gas centerline temperature (°C). 
Z/L = Dimensionless axial position. 
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