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ABSTRACT 

 

There is growing interest in developing unconventional oil and gas reserves in 

Libya, such as the tight portions of the Nubian sandstone. 

Well-X7 is a development well drilled to a TD of 13,005' penetrating the Upper 

Nubain Sandstone (UNSS) at 12,122'-12,207' and the Lower Nubain Sandstone (LNSS) at 

12,524'-12,880' KB.  Based on open hole logs, the UNSS has 71 ft of net pay and the LNSS 

was found to have 295 ft of net pay. Openhole logs also showed low permeabilities of 2.5 

and 3 md for the UNSS and LNSS, respectively.  The well was initially perforated in both 

zones and tested 385 bopd.  Hydraulic fracturing is to be applied to this well in the future. 

This study evaluated 13 different stimulation treatments for the X-7 well.  F300 

frac fluid was used with varying proppant type and size, including Ottawa sand, Brady sand 

and Carbo Lite ceramic.  20-40 Carbo Lite ceramic was used with four different frac fluids, 

including slickwater.  Results for all cases compared IP and 24-month cumulative recovery.  

Results show that a combination of F300 frac fluid and 20-40 Carbo Lite ceramic proppant 

give highest production rates.  However, cases evaluated had low FCD suggesting 

conductivity should be increased, and treatment size can be reduced in a final treatment 

design. 
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1. INTRODUCTION 

There is continuing controversy over the occurrence of worldwide ‘peak oil’, which 

is the point in time marking a continuous decline in worldwide oil production.  Although 

production for the Middle East is not always publically documented, there is speculation 

that the oil production from conventional reservoirs in the region has already ‘peaked’.  

This understanding is reinforced by Kerr (2011), who indicates that OPEC’s conventional 

oil production leveled off in 2011.  Such indicators have led to a growing interest in 

developing ‘unconventional’ reservoirs worldwide. 

The term ‘unconventional reservoir’ has become synonymous with shale play 

development in the United States, due to the successful production of oil and gas from 

reservoirs with permeability ~0.00001 mD.  However, the United States actually began 

developing what was considered to be ‘unconventional’ reservoirs in the 1980s, when 

industry began experimenting with stimulation treatments in ‘tight’ sands.  Tight 

formations were considered to be <0.1 mD for gas production and <10 mD for oil 

production. 

King (2012) provides an illustration of formation permeability along a scale ranging 

from shales (0.00001 mD) to conventional reservoirs, shown in the green highlighted areas 

of Figure 1.1. Hydraulic fracturing is required to establish commercial production or all 

‘tight gas’ to ‘unconventional’ permeability ranges shown in the figure.  Hydraulic 

fracturing may or may not be used to enhance production or stabilize sand production 

tendencies in higher permeability formations. 
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Figure 1.1. Permeability range of producing formations (King. 2012) 

 

In the past 10 years, industry found a solution for developing the shale plays by 

combining horizontal well orientation with the placement of multiple fractures along the 

lateral section of the well.   The success of this completion approach has further fueled 

worldwide interest in developing reservoirs considered to be ‘unconventional’.  China and 

Australia have already developed unconventional reservoirs and now count those resources 

as an important energy source. Recently, North Africa (particularly Libya) has increased 

its focus on enhancing oil and gas production from tight, unconventional, sandstone 

formations. 

1.1. SIGNIFICANCE OF THE PROBLEM   

Countries like Libya depend on oil and gas as the main source of their economy; 

the oil and gas sector is considered to be the main driver for the future economic growth. 

Production from conventional reservoirs in Libya has already started to decline. Thus, there 

is tremendous interest in discovering and developing new sources hydrocarbon reserves. 

Figure 1.2 depicts the four major onshore basins located in Libya. The potential to 

produce unconventional resources such as shale oil, shale gas and tight sand oil/gas was 

identified in three of the basins including the Sirte Basin (center), Murzuq Basin 
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(southwest), and Ghadames Basin (west).   A lack of data for Al Kufrah Basin made it hard 

to identify its unconventional reserve potential.  The most prospective formations include 

the upper Devonian Frasnian shale and lower Silurian Tannezuft basal (hot shale) which 

are predominant in the Ghadames Basin. The Murzuq Basin also contains hot shale 

throughout Tannezuft formation. The Etel and Rachmat formations are considered as the 

main shale resources in Sirte Basin.  

.  

 

Figure 1.2. The location of the onshore basins in Libya 

 

The National Oil Corporation (NOC) of Libya announced an estimation of 

unconventional hydrocarbon reserves after a study which was conducted by Advanced 

Resources International, Inc. (ARI) in 2013. The three basins were estimated to contain 

942 TCF of shale gas in place, with 122 TCF of predicted recoverable tight and shale gas. 

The basins were evaluated to have a potential oil and condensate in place of 613 billion 
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barrels, with 26.1 billion barrels of recoverable tight and shale oil. Hence Libya holds great 

potential for unconventional resource development in North Africa, which has been 

estimated to have total unconventional reserves almost as large as the United States.  

However, exploration and development of this resource in Libya, as well as throughout 

North Africa, is still very limited. (Melo et al., 2012)  

Table 1.1 presents a summary of the top 10 countries with the largest projected 

recoverable shale oil reserves.  Libya ranks 5th in this list.  This reserve potential is very 

significant.  In 2016, the National Oil Corporation (NOC) of Libya noted that the country 

is seeking to increase daily production rate by 3 billion cubic feet of gas per day and 3 

million barrels of oil per day, to become one of the leading oil and gas producers in the 

region.  Achieving this goal will require an increase in the application of hydraulic 

fracturing, horizontal well drilling and other technologies used to complete tight and 

unconventional reservoirs.  However, there are many challenges to overcome, including 

the absence of a strong government, and training personnel to apply new technologies that 

haven’t been used extensively.  Libya still has a significant recoverable reserve potential 

of more than 60 BBO and 120 TCF if both conventional and unconventional reserves are 

considered. 

This thesis provides an analysis of stimulating a vertical well in the Nubian 

sandstone, one of the unconventional (tight) oil-bearing formations of interest for future 

development.  The work provides an evaluation of various stimulation alternatives for the 

Nubain sandstone and compares results of those treatments based on 24 month cumulative 

recovery. 
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Table 1.1. Technically recoverable shale oil (EIA, 2015) 

Rank Country 
Unconventional 
oil (billion bbl) 

1 Russia 75 
2 U.S. 58 

3 China 32 

4 Argentina 27 

5 Libya 26 

6 Australia 18 

7 Venezuela 13 

8 Mexico 13 

9 Pakistan 9 

10 Canada 9 

Total World 345 
 

1.2.  OBJECTIVE 

The main objective of this work is to use field data acquired from Well-X7, a 

development well in North field-X, penetrating the UNSS (Upper Nubian Sandstone) at 

12,122'-12,207', NMS (Nubian Middle Sandstone) at 12,207'- 12,524' KB and the LNSS 

(Lower Nubian Sandstone) at 12,524'-12,880', to identify an optimum method of 

hydraulically fracturing this formation. Open hole logs indicate the upper Nubian and lower 

Nubian are productive, whereas the middle Nubian is not.  Hence, the objective first 

required identifying the overall perforating and stimulation approach, and then evaluating 

changes in fracturing fluid, proppant type and size, and other treatment parameters, to 

identify the optimum stimulation treatment based on 24-month cumulative production. 
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2. HYDRAULIC FRACTURE BACKGROUND 

Hydraulic fracturing has been deployed inthe oil and gas industry since 1947. The 

first announced application for the hydraulic fracture process for stimulation was in the 

Hugoton gas field in western Kansas, in 1947. The well was completed with four gas- 

producing intervals. The approved fluid used for the job was war-surplus napalm which is 

considered one of the most hazardous materials.  According to the Halliburton reports, 

3000 gallons were pumped in each formation. Hydraulic fracturing has become a standard 

treatment for stimulation of oil and gas wells. A large number of fields only produce 

because of the application of hydraulic fracturing technology. Figure 2.1 shows a picture 

from the first hydraulic fracturing treatment conducted in the Hugoton gas field in Kansas. 

 

    
      Figure 2.1. Hugoton gas field, Kansas (Michael J. Economides, T. M.2007) 

   

Mixing 
Tank 

Mixing 
Pump 

High pressure 
Displ Pump 
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In 1981 more than a million fracture treatments were performed all over the world 

mostly in low permeability tight formation gas (TFG) and tight oil reservoirs. In tight gas 

and oil formations, for example, reservoir permeability is in the micro-darcy range. In these 

low permeability reservoirs hydrocarbons do not flow to the wellbore without a propped 

and effective hydraulic fracture. In unconventional shale plays (gas and oil) where the 

permeability is in the nano-darcy range none of the hydrocarbons are recoverable without 

hydraulic fracturing. Currently, fifty five percent of the oil (6 MBOPD) and fifty three 

percent of the gas (50 BCFPD) being produced in the United States are produced from 

resources to low of permeability to produce without hydraulic fracturing. The expeditious 

development of unconventional sources of hydrocarbons which was donene by hydraulic 

fracturing had a positive effect on the oil and gas industry (Gandossi, L., 2013).Hydraulic 

fracturing treatments are even done in higher permeability reservoirs where hydrocarbons 

can be produce without fracturing. In these reservoirs, the hydraulic fracture can minimize 

the effects of wellbore damage, improve the production rate and rate of recovery, and 

extend the economic life of the well. 

Throughout the world between 1993 and 2005 nearly 40% of oil wells and 70% of 

gas wells were completed by hydraulic fracturing. In addition in some parts of North Africa 

such as Algeria nearly 20 hydraulic fracturing operations were done in Hessy Masoud field 

between 1970 and 1980 and then 150 wells were completed between 1980 and 2005. In 

Libya, 9 wells in the Raguba field between 1988 and 1995 with another 134 wells 

completed by 2005. 
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2.1. HYDRAULIC FRACTURING PROCESS 

Hydraulic fracturing or “fracking” is described as a technique utilized in 

unconventional hydrocarbon resources to access previously unaccessable hydrocarbon 

reserves. In the mid-1990s and early 2000s, many energy companies’ started integrating 

hydraulic fracturing with horizontal drilling to enhance the reserve recovery (Armstrong et 

al., 1995).  Fracture treatments are carried out at the well site, using heavy equipment 

including pump trucks, blenders, proppant tanks, and fluid tanks. A fracture treatment can 

be divided into stages: the pad stage, the slurry stage, and the displacement or flush stage. 

In the pad stage a fracturing fluid (water, gel, etc...) is injected to break down the target 

formation, create and propagate a fracture, and to act as sacrificial fluid for leak-off during 

the rest of the treatment. Following the pad stage the proppant slurry is pumped which 

includes. Fracture fluid mixed with proppant (sand, resin coated sand, ceramic...etc.) in 

ever increasing concentrations depending on the desired/planned fracture conductivity. 

Lastly, as the proppant in the slurry nears the fracture tip and the pad fluid is nearly all 

leaked-off the slurry stage is displaced to the perforations to clean the wellbore and make 

it suitable for flow-back.  As the flush reaches the perforations, to the pumps are shut down 

and the fracturing equipment is removed. The main purpose for injecting the proppant 

(slurry) is to hold the fracture open so that hydrocarbons can be produced through the 

fracture back to the wellbore. Figure 2.2 shows a schematic diagram of the pad and slurry 

stages (Boyun Guo, 2017). 
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Figure 2.2. Pad stage and slurry stage process 

 

Sand (proppant) and other chemicals have the potential to create and prop cracks in 

the formation and facilitate a pathways for the hydrocarbons (oil and gas) entering the 

wellbore (Pye and Pye, 1973).  In fact, these cracks which are made by fracturing 

operations, can be a valuable technology for enhancing the productivity of oil and gas 

wells. Looking to the field of environmental engineering, hydraulic fracturing is an 

effective method in increasing the efficiency of the soil in-situ remediation technique. This 

method can illustrate the residual stress field that are widely used because its simplicity. 

Beside, underground disposal of waste and toxic fluids, stimulation of water wells to 

produce water and in mining industries as backup system specially in large scale excavation 

of ores. According to the U.S. Department of Energy and Ground water production 

Council, 99.5 percent of the fracturing operations used to develop shale formations is fresh 

water and sand. The other 0.5 percent are small amounts of chemical additives which are 

specially designed from site engineers and generally depends on the formation type and 

usually these additives are environmentally friendly (green). 
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2.2. HYDRAULIC FRACTURE TECHNOLOGIES 

Many technologies are used today in the oil and gas industry for formation 

stimulation, hydraulic fracturing is just one of them. However, low quality fracturing 

operations can cause a risk to the environment. For example, a massive fracture treatment 

conducted on a shallow formation near the water table can cause methane infiltration in the 

aquifer or aquifer contamination. Further, underground disposal of drilling, completion, 

and fracturing fluids can cause induced local seismicity and earthquakes. Fortunately, most 

hydrocarbon producing formations are at much greater depths than the water table making 

communication unlikely and clean-up and reuse of fracturing fluids can limit the induced 

seismicity by minimizing the disposal. Additionally, research is being done in many 

universities, institutes, and companies focusing on the development of new technologies 

which can reduce the impact of well stimulation on the environment.  

As an example, some of the research has been done on fracturing fluids over the years. As 

previously mentioned one of the early fluids used in fracturing was napalm but it was 

deemed unsafe and quit being used. Oil was used as a fracturing fluid but it didn’t make 

much economic sense, unless in an artic environment (Canada and Russia), to pump oil to 

stimulate the well when that was what you wanted to produce and sell in the first place. 

Water, linear gel, and cross-linked fracturing fluids have been the main fluids used by the 

industry but there have been variations developed and used over the years like the use of 

foam technology. Nitrogen and carbon dioxide foams have been used to fracture stimulate 

wells and though it can limit the water usage it quite expensive. Also, pre-fracture handling 

of the nitrogen or carbon dioxide and post fracture back production of either gas can result 

in some environmental concerns (leaks, excessive gas flaring, and clean-up). As a result, 
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the use of foamed fluids in hydraulic fracturing has waned in recent years. Although, there 

is no universal stimulation technique that can be applied throughout the world whenever 

you want the stimulation technology to be used heavily depends upon the location, 

formation type, environmental regulations, stress regime, etc. Figure 2.3 shows the lab 

preparation of a foam fluid that will be used in hydraulic fracture operation. 

 

 
Figure 2.3. Foam technology (Haliburton, 2013) 

 

Different considerations should be takeninto account for more efficient hydraulic 

fracture operations. Some of them are major such as geologic and petrophysial 

considerations; others are miner considerations such as well testing, well logging and core 

analysis considerations. The combination of these considerations can illustrate a full 

picture of the reservoir behavior prior to and following the fracture treatment. 
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2.3.  GEOLOGIC STUDY 

Several parameters should be considered while doing the geologic study such as: 

 Drainage Area. Represents the area from which hydrocarbons are 

recovered such that the size and shape. 

Which is a function of geology (formation thickness, pinchouts, faults, channels, 

permeability, etc.) and the fracture dimensions (the fracture length, height, and 

conductivity). For example, in a low permeability reservoir with a long and highly 

conductive fracture the shape of the drainage area will be “cigar shaped” even if the 

geologic considerations are benign. In permeable reservoirs, however, the size and 

conductivity of the propped fracture has little to do with the size and shape of the drainage 

area.In other words the drainage area represents the ration of the fracture length (LF) to the 

drainage radius (re), these have to be optimized to optimize the hydraulic fracture 

treatment. It is possible to determine optimum fracture length and drainage radius by 

constructing a relationship between flow rate and time as function of fracture length and 

drainage radius. In contrast, lenticular reservoir drainage radius is a fixed parameter and 

not a function of the fracture treatment. Most engineers can optimize the propped fracture 

length by optimizing (LF/re) ratio. Understanding the geologic deposition pattern is 

important before designing a specific fracture treatment to get the probable size of the 

reservoir for design and stimulation treatment.  

2.3.2. Lithology. It is important to study the reservoir lithology before designing a 

fracture treatment. For example, in sandstone reservoirs, a water or oil based fracturing 

fluid will probably be selected. In shallow carbonate reservoirs, acid based fluid is probably 

can be applied. The lithology of a reservoir is an important factor for analysis of open-hole 
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geophysical logs as well. Furthermore, lithology can be important depending upon certain 

geologic environment. For instance, cementing material might be crucial importance in 

cases where cement is holding together a fairly soft rock, acid should not be used then to 

break down the perforations or stimulate the reservoir.   

2.3.3. Clay Content.  Knowing the type and distribution of the materials that fills 

the pores is very important. Many low permeability reservoirs contain a large quantity of 

clay minerals in the rock fabric and pore space.  

Scanning electron microscope (SEM’s) and X-ray diffraction analysis can be useful 

to understand the type of clay and its distribution in a particular formation.Different types 

of clayscan affect and reduce the permeability of a sandstone reservoir. It is a fact that 

different types of clay can affect the permeability of a sandstone formation as shown in 

Figure 2.4. 

 

 
Figure 2.4. Permeability relationship of clay sandstones (John Gidley, 1990) 
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2.3.4. Fault Patterns. Any geological study must consider the knowledge of 

regional and local stress pattern in the study area.  In-situ stresses are very important in the 

design of a hydraulic fracture treatment. Hubbert and Willis explained that localized and 

regional stress pattern in an area are controlling factors in determining to orientation of the 

hydraulic fracture and that state of stress underground is not hydrostatic but depends on 

tectonic conditions. (Willis, 1957).We also should consider other aspects to get better 

results, such as well logging, mechanical properties, and stress profile.  

Well logging is used to obtain geomechanical logs of a particular formation by 

using well logs. A conventional log analysis usually provides values of porosity, water 

saturation and net thickness of the pay zone formation. These results from well logging 

plus PVT properties which has obtained from the laboratory measurement of the reservoir 

fluid, can be used to estimate oil and gas in place by the volumetric method as shown 

below. 

 

Where: 

𝐴 = The drainage area of the reservoir, (acer) 

ℎ = net pay thickness, (ft) 

∅ = reservoir porosity, (friction) 

𝑆%& = reservoir water saturation, (friction) 

𝛽(& = oil formation volume factor, (bbl/stb) 

 𝐴 = 𝜋𝑟, (2.1) 

 
				𝑂𝑂𝐼𝑃 =

𝐴×ℎ×∅× 1 − 𝑠𝑤𝑖
𝛽(&

 
(2.2) 
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Recognize, that a small error in porosity or water saturation can led to a  difference 

in the estimation of reserves. So, it’s important to get good quality logs and analysis results 

to avoid any issues determining resource size estimation. 

 

2.4.  MECHANICAL PROPERTIES  

Knowledge of a hydrocarbon producing formation and its surrounding formations 

is very important to predict the hydraulic fracture dimensions. These mechanical properties 

include Young’s modulus, shear modulus, Poisson’s ratio, and compressibility. The best 

value of compressional wave velocity and shear wave velocity are obtained by recording a 

full wave form sonic signal from a long spaced dipole sonic log or sonic scanner as shown 

in the Figure 2.5. 

 

 
               Figure 2.5. Sonic wave form in borehole ( John L. Gidley, 1990) 

 

The determination of mechanical properties requires obtaining both compressional 

and shear wave travel times for the formations. It was first recommended by Pickett that 

the ratio of shear wave travel time and compressional wave travel time was a function of 

lithology. With that being said, the relation between compressional wave and shear wave 
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travel time for a number of different lithologies and fluid saturation can be demonstrate in 

Figure 2.6 as  shown. 

 

 
                 Figure 2.6. Well log example cross plot (John L. Gidley, 1990) 

 

Where the velocity ratio has been summarized in a table as shown: 

 

Table 2.1. Velocity ratio from cross plot 

Lithology Δts/Δtc 

Sandstone/water 1.78 

Sandstone/Gas 1.6 

Dolomite 1.8 

Limestone 1.9 
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Fromthe above relationship we can determine the amount of dolomite, limestone, 

shale and probable fluid content then an estimation of shear wave travel time. Once velocity 

ratio is estimated then the value of Poisson’s ratio and Young’s modulus can be calculated. 

 

2.5. IN-SITU STRESSES AND STRESS PROFILE 

In-situ stresses and the stress profile is decisive in designing a fracture treatment that 

is confined within the productive interval. Figure 2.7 shows the effect of the stress field on 

fracture propagation. The in-situ stresses control fracture azimuth and orientation (Vertical 

and horizontal), fracture height growth, fracture width, treatment pressure and fracture 

conductivity. Fractures grow perpendicular to the minimum in-situ stress direction, thus, 

stress direction can affect well-placement and spacing decisions (Willis, 1957). 

 

 
Figure 2.7. Effect of stress field on fracture propagation (John L. Gidley, 1990) 

 

There are many techniques available today for estimating stress orientation, 

including tiltmeters, microseismic surveys, fracture image logs, and core-based 

measurements. Fracture height growth and fracture width affect the propped fracture half-
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length for a particular treatment size. As a result, understanding the in-situ stress is critical 

to fracture design. Figure 2.8 illustrates the effect of stress contrast on the hydraulic fracture 

propagation.  

Parameters in fracture modeling include, treatment design and optimization. In 

addition, Conductivity of the proppant pack is greatly influenced by the in-situ stress 

profile. For example, under a high-stress condition (which typically is 4000 psi or greater), 

20/40-mesh Ottawa sand will be crushed resulting in a loss of conductivity; consequently, 

higher cost resin coated or manmade proppant are needed to provide suitable conductivity 

to improve the stimulation as shown in Figure 2.8. 

 

 

Figure 2.8. The hydraulic fracture stresses application (Michael J. Economides K. G., 
2000) 

 

Once the we know for sure that hydrocarbons are present in commercial quantities 

in the reservoir depending upon the analysis of geological, log and core data, a series of 

pre-fracture well tests should be designed,  conducted, and analyzed to  evaluate the 

formation. The purpose of a well test is to estimate the reservoir permeability, skin factor, 



19 

and initial reservoir pressure along with geomechanical properties such as in-situ stress and 

the fluid loss coefficient. The skin factor is a quantitative measure of the formation damage. 

If we have damage then the value of skin is positive but if the formation is stimulated the 

skin value will be negative. It isn’t easy to analyses post fracture well tests, optimize 

fracture length and to design the optimum proppant for fracture treatment if the value of 

in-situ permeability is not known are determined from pre-fracture well tests.  

 

2.6. HYDRAULIC FRACTURE SOFTWARE  

There are principally five commercial software packages that are available in the 

oil and gas industry, which utilize a 3-D (three dimensional) model of the hydraulic fracture 

treatment. These software systems include FracPRO, FracCADE, MFRAC, GOPHER, and 

STIMPLAN. While the first three of these models are pseudo-3D models GOPHER and 

STIMPLAN are truly fully 3D models. GOPHER is a three dimensional finite difference 

model while STIMPLAN is a fully three dimensional finite element model. Due to a lack 

of software availability a complete comparison of these software systems is beyond this 

study. However, the study will focus constructing a fracture model to determine the 

optimum fracture design. (Carter J. et al, 2000). STIMPLAN was used for this purpose. 

STIMPLAN (NSI Technologies, Inc.) is a software package that contains both 

pseudo 3-D and true fully 3-D finite element numerical model. STIMPLAN finds implicit 

finite difference solutions to basic equations of mass balance, fluid flow, height growth, 

and elasticity. The software provides modeling capability for complex hydraulic fracture 

situations; for instance, fracture height growth, foam fluids, tip screen-out, and proppant 

settling. 
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STIMPLAN has the ability to allow the user to import log data, which helps in 

developing a geomechanical description of the reservoir. Based on an input pumping 

schedule, the software provides a predicted fracture height, width, and length, based on 

fracture fluid, pump rate and proppant concentrations. The model can run in real time to 

track the treatment as it is performed in the field. STIMPLAN also can provide a prediction 

or history match of the production data from a fractured well (using a single phase 

numerical simulator), and use an economic routine for determining the net present value of 

the particular treatments production profile. The software also generates hydraulic fracture 

optimization, design, and stimulation post appraisal reports for the user. 

Hydrocarbon production from low permeability formations has been appealing in 

the last 20 years across the globe as part of the economic developments more precisely in 

the Middle-East. With that being said, such reservoir formations require a special technique 

for stimulating this kind of rock. The most commonly used technique to recover 

hydrocarbons from these resources economically is hydraulic fracturing. Hydraulic 

fracturing is considered one of the most valuable stimulation techniques for enhancing the 

rate of recovery of hydrocarbons (oil & gas). 

Hydraulic fracturing can also extendhydrocarbon production from older fields. It is 

the best technique so far that challenges geologists who believed that it is impossible to 

produce oil and gas from a formation such as shale gas, coalbed methane, and/or tight sand. 

Hydraulic fracturing also has long term economic effectiveness that is too obvious to 

ignore. The laboratory testing and mathematical simulation of fracture geometry work 

effectively to mitigate any risk that might appear during the operation (Economidos et al., 

2010). 
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Many factors have led to rapid growth of the use of hydraulic fracture technology for 

most of the unconventional formations. One of the most positive impacts is combining of 

horizontal drilling with hydraulic fracturing to extract the natural resources economically 

with faster return. At the starting of the rapid development of the industry, gas prices were 

significantly increased causing this profitable industry to associate. The industry has 

moreover been exempted totally or mostly  from the Safe Drinking Water Act, Clean Water 

Act, Clean Air Act, Comprehensive Environment Response Compensation and Liability 

Act, Emergency Planning and Community Right  to Know Act, Endangered Species Act 

and the Resource Conservation and Recovery Act. These exemptions mean that gas 

producers’ openings contribute intensely in hydraulic fracturing with few regulations 

(Biello, 2010; Trotta, 2011. U.S. EIA 2012). 

The expanding amount of the hydraulic fracture operations all over the world can 

give us a great indication of how helpful and useful such a technique is to perform more 

on tight sand formation, especially in the Middle East and North Africa.  This research tries 

to approach with realistic fracture design at in-situ condition, fluid and proppant selection, 

pump rate, and pad size. The theory behind this concept has been illustrated and supported 

with case studies where it took place from oil and gas field in Libya with tight sandstone 

formation. 
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3. LITERATURE REVIEW 

This literature review covers studies related to previous work conducted in tight 

sand formations and previous work of interest to hydraulic fracture design. This literature 

review helps provide an understanding of hydraulic fracture optimization design process.  

 

3.1.  IN-SITU STRESSES   

In the past ten years, the growth of producing hydrocarbon from unconventional 

resources such as shale and tight sandstone formations has attracted the attention of 

companies across the globe. The optimum fracture treatment depends on dimensions of the 

hydraulic fracture; therefore, any change in the in-situ stresses will greatly impact on the 

fracture dimensions. Microseismic devices provide field engineers with ideas about 

fracture dimensions. In the field, focusing on programs including downhole arrays or 

surface sensors is mainly used for calibration.  

Chitrala et al. (2011) performed a laboratory experiment to study different applied 

stresses for tight sandstone formations. In their experiment, proper fracture azimuth was 

determined with arrays. Furthermore, they duplicated the principle stresses, which are the 

main controller of the hydraulic fracture orientation, by applying horizontal stress. Their 

theory is that it is possible to understand the orientation and dimension of the fracture by 

only applying a different magnitude of horizontal stress. They used sixteen transducers 

with a frequency range from 50 KHz to 1.5 MHz to translate the seismic waveforms. The 

sample used in this experiment has been taken from the Lyons sandstone, Oklahoma. The 

determination of azimuth velocity was performed via circumferential velocity analysis 
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(CVA). The CVA is a pulse transmission technique where the velocity is a function of 

azimuth. The experimental results showed a very thin symmetric fracture when high 

external stress values reaching 4000 psi were applied and shear failure was shown to be 

responsible for most of the failure mechanisms in the experiment. 

Hagemann and Ganzer (2012) conducted a study about the reorientation of the 

hydraulic fracture in tight sandstone formations. Their research claimed that hydraulic 

fracture orientation mainly depends on the stress state of the target formation. Hagemann 

and Ganzer built their model to investigate the poroelastic effect, which is a theory created 

by Biot in 1935. The concept of poroelasticity is when porous media allows fluid in solid 

rock to move freely in the pores and rock framework. These two will interact in one system 

and can help increase the pore pressure in case the fluid is still inside the rock. By 

generating a model, this investigation showed the physics of the interface’s poroelasticity. 

Hagemann and Ganzer also provided input to this study that included an isothermal 

formation, constant wellbore flowing pressure, no flow boundary, single-phase Darcy’s 

law flow behavior, and uniform initial stress state. The model was performed in two 

dimensions, emulating a reservoir with infinite thickness. These dimensions were 1600 m 

in x-direction and 1200 m in y-direction. The reservoir was saturated 100% with gas, and 

the temperature was constant at 110 °F.  The conclusion of their study showed that if there 

is a small difference between the minimum and maximum horizontal stress, then the 

reservoir characteristics will be influenced and the propagation and the direction of the 

fracture will have a significant height growth.  

Ohati and Mikada (2017) examined the differential stresses and anisotropy of 

different kinds of formations. They claimed that it is common knowledge that hydraulic 



24 

fractures propagate in the direction of maximum stress. However, some types of rocks have 

strength anisotropy that can form a failure plane over the weak plane. In their experiment, 

they used a numerical model called DEM (discrete element method) to show the brittle 

condition of rock. At the beginning, they performed a calibration process to avoid any error 

when measuring the anisotropic properties via DEM. Following the calibration, the 

propagating direction of the hydraulic fracture was illustrated based on both the anisotropic 

properties and differential stress magnitude. The results showed that when the anisotropy 

is in medium range, the propagation of the hydraulic fracture will be in the direction of 

maximum principal stress. In contrast, the strong anisotropy will show a failure along a 

weak plane and the fracture will propagate in the direction of the minimum horizontal 

stress. 

Baig and Urbancic (2015) made an evaluation regarding stress and strain during the 

fracture operation. The evaluation was based on multiple well records of microseismic 

reading in order to observe the strain and stress in the reservoir. Geomechanical models 

were also used in the evaluation to assign the dynamic stress regime, which controls the 

propagation of the hydraulic fracture. The authors started by examining the mechanism 

that activates several fracture sets in the reservoir, which can create a damage zone. They 

then analyzed and measured the clustering methodology around the wellbore. The 

evaluation showed how directly the dynamic strain is important during the treatment 

because it affects deformation. This information is especially important in calibrations of 

the geomechanical models because it shows that propagation and fracture geometry are 

controlled by stress and strain.  
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3.2. TREATMENT AND CHARACTERIZATION DESIGN OF FRACTURING 
FLUID  

The selection of hydraulic fracture fluid is very important for better proppant 

transport in the fracture. Many companies these days have put a lot of effort into developing 

different kinds of hydraulic fracture fluid that are cheaper and not harmful to the 

environment. Fracture fluid relies on reservoir properties such as reservoir fluid properties, 

bottomhole static temperature, rock mechanical properties, and formation permeability. 

The development of hydraulic fracture fluid over the years has encouraged many operation 

companies to use fluids that are more viscous in order to carry higher concentrations of 

proppant to create conductive fractures in higher permeability formations. In the early 

1960s, the main fracture fluid was water, which carried a low proppant concentration. This 

was called slickwater fracture treatment. By the 1970s, viscous fluids such as cross-linked 

polymer fluids had been introduced to the industry,. The new fluids had the ability to carry 

more proppant than water (Sharma et al., 2004). In recent years, as the fracturing activity  

in the low permeability unconventional shale market has dramatically increased the need 

for higher proppant concentrations has been reduced and slickwater fracturing has had a 

resurgence. 

Holditch and Ely (1973) performed a comparison between wells stimulated with 

high viscous fluid and high proppant concentrations and wells with low viscosity fluid and 

low proppant concentrations. The study was applied to compare the long-term productivity 

of gas wells and the fluid carrying the proppant with different concentrations in a sandstone 

formation in South Texas. The average depth for the wells was 11,000 ft, and the average 

bottomhole temperature was 275 °F. All the wells had low permeability and porosity. The 

authors noticed that the change in the productivity index before and after the treatment in 



26 

high viscous fluid carrying a higher proppant concentration was 5.2, while the productivity 

index for the low viscous fluid carrying a low proppant concentration was 10. However, 

most wells stimulated with high viscous fluid sustained higher productivity over time than 

the wells stimulated with lower viscous fluid. The study was performed again for the same 

wells after two years, where the average productivity index for high viscous fluid wells 

was three times higher than the wells with low viscosity fluid. The conclusion of their study 

was that the reservoir temperature enhanced the gel fluid, which allowed it to break and 

clean-up the fracture fluid in the fracture.  In summary, when the temperature of the 

formation is high and there is low permeability covering the whole formation, it is better 

to pump higher proppant concentration and use a highly viscous fluid in order to increase 

the productivity index of the well. 

Wenjun (2010) conducted a laboratory study of a new type of fracturing fluid that 

is suitable for a low-pressure and low temperature formation. The study was performed for 

eight wells in Daqing oil field in China.  Dealing with a shallow reservoir with low 

temperature made Wenjun choose organic titanium and organic zirconium as cross-linked 

base fluids in the hydraulic fracture application for all the wells. The fluids had strong 

intermolecular bonding force that is recommended in low temperature formation, and it is 

easy to flow back. According to the laboratory study, the cross-linked fluid was broken and 

the viscosity of the fracture fluid remained almost constant after four hours from first 

pumping. The ratio of flow-back fluid improved by 35% more than any other fluid 

before.ohnson and Wright (1993) performed on-site analysis of hydraulic fracture fluid 

injection by using a foam technology. They tried to study the responses of the reservoir 

toward foam that would be used as carrying fluid for the proppant. Around 75 gal of foam 
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was pumped into the well. Fortunately, the leakoff was below 2%, and net pressure showed 

no reaction of stresses that might resist the fracture growth. However, initial pressure 

rapidly declined, and closure pressure occurred after 20 minutes, which reduced the 

convection. By the end of pumping the foam, the researchers concluded that installing the 

foam technology in the sandstone formation made it very difficult to gain the fracture pack 

due to the high value of fluid efficiency and lower proppant concentration that would be 

pumped with such technology.  

Smith (1965) conducted a study to determine the most stable treatment fluid that 

should be used in hydraulic fracture applications. Smith explained in his paper that 

hydraulic fracture treatments depend on factors such as orientation of induced fracture 

because it dictates that the suitable procedure should be employed in designing the fracture 

fluid. He classified the fracture fluid to two categories: The first is Newtonian fluids, which 

are defined as fluids with constant viscosities, such as crude oil, fresh water, salt water, and 

some acids. The second is non-Newtonian fluids, which are defined as the fluids with 

viscosities that are not constant, normally a Newtonian fluid converted to a non-Newtonian 

fluid when additives are introduced to the fluid, such as gelling agents, emulsifiers, friction 

reducers, water-based gel, and hydrocarbon gel. In the study, he applied a vertical fracture 

treatment design in laboratory to detect the best fluid that can be used in the fracture 

application. After he tried thirteen types of fluids, he concluded that gel has the ability to 

adopt a higher proppant concentration than any other fluid he used in the experiment (i.e., 

a large amount of viscous gel can create a vertical fracture very easily). 

Friehauf and Sharma (2005) performed an evaluation study for different designs to 

add more energy to the fracture fluid. Enhancing or energizing the fracture fluid creates a 
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high gas saturation around the wellbore, more precisely, in the invaded zone, which makes 

the gas more functional for flow back. One third of the fracture operations in North 

America perform by energized gaseous phase. Most of the energized fluid is used in 

reservoirs with very low pore pressure, low permeability, and water-sensitive formation 

(Gabris, 1986; Mazza, 2001). Friehauf and Sharma presented a sensitivity analysis study 

to address the effective parameter that can be modified for optimum fracture design without 

any field trails. Their model showed that gases with high solubility perform better than 

gases that are not soluble. For example, co2 has higher solubility range than n2, so they 

eliminated n2 from the study and focused more on co2, where they started with adding 

methanol in liquid phase in order to increase the solubility of CO2 which will reduce 

swelling of the clay in the formation.  

They concluded that before energizing the fracture fluid, the phase behavior must 

first be used to control leakoff of the fluid. If the drawdown pressure is more than capillary 

pressure, we can remove the damage in the fracture face generated by loss of water-based 

fracturing fluid. The energized technique is most likely applied to formations in case the 

drawdown pressure is not enough to remove the liquid. High solubility will promote the 

fluid’s ability to avoid any damage near the wellbore.  

 

3.3. PROPPANT SELECTION  

 The first hydraulic fracture treatment was performed without proppant in 1946, but 

the fracture did not remain open for long. In 1947, sand from the Arkansas River was 

introduced to the industry and used to prop the first fracture. The development of the 

proppedt fracture expanded in the early 1960s with the use of resin-coated sands and 
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bauxite, which can keep the fracture open for long time. The main role of the proppant is 

to keep the hydraulic fracture open in order to preserve the well conductivity, which can 

make the well operate in an economical way. Nowadays, choosing the proper proppant for 

the specific hydraulic fracture application has become very important for cost-effective 

reservoir conditions and long term well stability.  

Leshchyshyn (2003) performed a field study about the effect of proppant selection 

on well productivity for a sandstone formation in Alberta, Canada. He used nine fractured 

wells with ceramic proppant and compared with three wells fractured with sand proppant. 

Leshchyshyn additionally examined the hydraulic fracture productivity. The wells in this 

study were stimulated with 185 tons of proppant for each well from one to five stages. 

After the first year, the production of fracture sand wells was 302 MMscf of gas, while the 

production of the fracture ceramic wells was 402 MMscf. He noticed that the returned cost 

of ceramic proppant was recovered after 31 days, which is considered a profitable increase. 

He recommended using ceramic proppant, which is rounder and more spherical with afiner 

size distribution to improve the fracture conductivity over sand. The higher the fracture 

conductivity is, the higher the production rate is during transient flow.  

Rixe et al. (1963) presented a procedure to estimate the embedment pressure of the 

target formation, which can give a great indication of the rock resistance to embedment 

throughout a proppant agent life. Rixe and his colleagues performed an experiment to 

obtain the hydraulic fracture capacity in order to select the best propping agent. They built 

correlations based on the long-term and short-term hydraulic fracture capacity just to 

eliminate the nonfunctional proppant agent. The types of samples used in the experiment 

were taken from formations in different zones starting with carbonate from Louisiana, sand 
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from Oklahoma, sand from Canada, lime from Texas, and sand from Wyoming. To 

estimate the embedment pressure of the formation, they used a steel ball with 0.05 in. 

diameter located on the top part of the platen of the hydraulic compression machine. The 

samples were placed on the lower part of the platen of the machine. The purpose of the 

steel ball was to embed to a certain depth; for instance, the ball in the experiment was 

embedded to a depth of 0.00625 in. The load required to reach this depth was recorded. 

The results showed that the diameter of pore space increased as the embedment pressure 

decreased. The form of pore space was normally made by the mechanical properties of the 

formation. The formation embedment-pressure test can measure the resistance of the rock 

inside the formation to embedment by using proppant agent. The correlation of Rixe can 

be used to aid in the selection of the proppant_agent for the desirable hydraulic fracture 

capacity.  

Anderson and Seccombe (1982) applied a study to evaluate the performance of 

bauxite as a proppant agent in hydraulic fracture application for a tight sandstone formation 

in Wyoming. Generally, bauxite proppant is used when the fracture pressure or closure 

pressure is above 8000 psi. When the pressure exceeds 8000 psi, sand tolerates 

considerable crushing, generating a large reduction in permeability. On the other hand, the 

areas where the closure pressure ranges between 6000 to 8000 psi, it is difficult to assume 

which kind of proppant to use: either sand or bauxite, depending on the reservoir condition.  

In addition, an economical model and simulation study were used for the optimization of 

the proppant fracture and fracture length. These two models can help to ensure that bauxite 

is the best choice for this reservoir in Wyoming. At the end of the evaluation, Anderson 

and Seccombe recommended that bauxite should be assigned as fracture proppant in this 
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reservoir because economically it is greater than sand as a proppant agent at high reservoir 

permeability. The fracture half-length increases with decrease in the permeability.  

David (1985) performed an experiment to evaluate the optimum proppant that can 

be used in deep wells with high closure pressure. Different kinds of proppants were used 

in the experiment, such as sintered bauxite, ceramic, and resin-coated sand.  David used 15 

lbs. of 20/40 mesh sand after it was heated in the oven to reach 450 °F. The sand was 

steamed inside the muller and the temperature was monitored as it declined. These 

procedures were performed for the resin-coated sand because the phenol-formaldehyde in 

resin-coated sand is a function of temperature and time. Based on his results, David 

concluded that resin-coated sand can provide a high conductivity fracture in deep wells at 

closure pressures less than 6000 psi. 

 In the last twenty years, many companies have started to perform site tests for the 

proppant that will be used in fracture treatments. The idea of verifying proppant capability 

before and after the hydraulic fracture treatment can add an important value to the fracture 

stimulation. For instance, Freeman et al. (2009) developed a field test protocol for use by 

an operating company to ensure that a proppant can meet the job expectation. The company 

established new technology that created quality-control data at the wellsite to use for 

comparison with public domain data. These data give the site engineers insight into how 

the chosen proppant will perform, and help to avoid running an expensive conductivity test 

on every job. This technology can easily sample the proppant at a well site before the 

fracture treatment. However, this technology requires that the proppant follow the 

American Petroleum Institute (API) and the International Organization for Standardization 

(ISO) regulations. In 2005, Freeman and his team introduced their technology in Zapata 
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County of south Texas, USA, in order to apply it to a multi-stage fracture job for tight 

sandstone formation. Twenty fracture treatments were sampled, and the proppants that 

were used are listed below: 

1. Premium-resin-coated curable sand 

2. Resin-coated economy ceramic 

3. Resin-coated lightweight ceramic 

4. Intermediate-strength ceramic  

The results showed that resin-coated sand had a negative effect on conductivity 

when it was compared to the public domain database. Resin-coated economy ceramic has 

a high chance to be crushed in about 10 months compared with the public domain database. 

Resin-coated lightweight ceramic and intermediate-strength ceramic showed great 

conductivity and resistance to crushing inside the fracture compared with the public 

domain data.  

 

3.4. GEOLOGY 

Reservoir characteristics are very important to understand the geological 

description which can reduce the time spent on history matching with a reservoir model. A 

few studies were conducted of the Nubain Sandstone Formation. Patrick and Noreddin 

(2010) studied the geology and petrophysical approach in regard to the Nubain Sandstone 

Formation. The study was based on the laboratory measurement of different cores that had 

been taken from six oil wells in the Sirte Basin, Libya. They used the petrophysical element 

approach in order to improve the reservoir description and identify geological and 

petrophysical rock types for the formation. Based on the cores in the experiment and 
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petrophysical element analysis, a significant distinct trend in texture contrast where the 

finger grained in the middle of the core samples were associated with low porosity and 

permeability. in addition Nuban sandstone is considered as one of the worst quality rock 

formations in the  Sirte Basin.  Figure 3.1 shows the lack of porosity and permeability in 

Nubain Sandstone formation. 

 

      

Figure 3.1. Nubain sandstone Sirte Basin 

 

Le Calvez et al. (2016) discussed the important role of the geological consideration 

in unconventional and conventional formations, predicting the production performance, as 

well as developing and evaluating stimulation design. This may simplify the study of rock 

properties of the reservoir and surrounding formations. The observation of the natural 

fracture network and structure history of a region of interest is the key to performing an 

optimum fracture model (Miller et al., 2013) Le Calvez’s study was based on micro-seismic 

monitoring, 3D seismic surveys, acoustic impedance (AI), and calculated properties such 

as Young’s modulus and Poisson’s ratio, as well as sonic log burial history, micro-seismic 
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surveys, and petrophysical measurements from well logging. He concluded that it is not 

possible to build a hydraulic fracture model without integration of the fracturing model 

with a geologic and structure model to estimate the different completion strategies and the 

optimum stimulation plan. 

Van Dam (2000) performed a laboratory experiment on artificial soft rock, which 

has properties more than 90% similar to sandstone, to study the behavior of closure and 

fracture propagation. In addition, he developed a simulation model that can help in 

interpreting and extrapolating the measurement results to field scale. He focused more on 

rock plasticity regarding the hydraulic fracture. He claimed that such plastic behavior may 

persuade high tip pressure and will consequently increase wellbore pressure and make the 

fracture wider and shorter. Then, he used the simulation model for comparison with the 

experimental results, where he concluded that rock behavior at the fracture tip can be 

obtained with a consistent zone over which the rock loses its bearing capacity. The 

experiment results showed that interpreting fracture geometry by relying only on pressure 

measurement is insufficient. Closure pressure in the experimental rock showed a stress 

section lower than field stress on the fracture plane.  

Zhang and Jeffrey (2007) applied a study about the effect of frictional geological 

discontinuities. The study was based on sedimentary rock and the affects that fluid flow 

and frictional slippages will have on the interaction of elastic deformation. This kind of 

interaction can be generated in fracture blunting crossing the stress contrasts, and 

sometimes shear strength of discontinuity. Zhang and Jeffrey made a comparison between 

the results obtained from the simulation study and field observations. They noticed that 

when the fracture interacts with long geological discontinuities, the fracture growth can be 
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eliminated by the process, while treating pressure increases significantly by high-pressure 

gradient, which has been made at offsets in fracture channels. The study also revealed that 

proppant transport may be encumbered due to association with this offset, narrowing 

fracture width. At the end of the study, they concluded that the increase of vertical stress 

might lead to decent widths across the interface of different layers.  

The importance of hydraulic toughness in hydraulic fracturing is not easy to 

understand because of the effect of some factors, such as in-situ stress, containment, and 

the dominate fracture geometry. After his laboratory experiment on sandstone core taken 

from different wells in Colorado, Rubian (1983) found that fracture toughness has to be 

included in any design and numerical model for hydraulic fracturing. However, some 

researchers claimed that stress intensity at the front the tip of the fracture is more likely to 

be greater than fracture toughness of the rock. Therefore, toughness may not be important 

in fracture design.  Barker (1977) performed an experiment to measure the fracture 

toughness of sandstone, shale, and siltstones. From the experiment, Barker was able to find 

the toughness of each type of rock; for example, fracture toughness for sandstone had an 

average of 1.27 MPa.m^1/2, while shale had an average of 1.46 MPa.m^1/2. He concluded 

that the toughness of sandstone is 15% less than shale, which can provide great 

understanding of fracture toughness in the determination of fracture containment and 

geometry.  

 

3.5.  SIMULATIONS OF HYDRAULIC FRACTURE 

As hydraulic fracturing has become a significant stimulation technique for 

development of the tightest formations and low permeability reservoirs, the use of 
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computing models has also become very important. Simulators have the ability to predict 

treatment designs, additives, pump schedule, injection rate, proppant selection, and fracture 

propagation. Hydraulic fracture simulators are performed based on realistic values in order 

to investigate fracture width and geometry, volumetric injection rate of the proppant, 

optimum pump rate, and the number of stages that can be assigned. Most hydraulic fracture 

simulators contain three physical processes: fluid flow in the porous media, fracture 

propagation for both existing fractures and the new fracture, and the deformity of the matrix 

throughout the formation (Shlyapobersky, 1985; Adachi et al., 2007). 

 Producing hydrocarbon from tight sandstone formations is growing rapidly, and 

the use of hydraulic fracturing is the optimum application for that. Sarmadivaleh and 

Ramses (2012) performed a numerical simulation model by using PFC2D (Particle Flow 

Code) software to examine the differences and their effectiveness on the interaction 

mechanism. The model results were conducted from a lab experiment of a sample of 

sandstone to determine bond strength and friction, which are inputs of the PFC. They 

initiated the fracture in the center of the sample, and the magnitude and direction of all the 

stresses were calculated as follows: 

 σv =2500 psi, σH =2000 psi, and σh =500 psi, where  

σv = overburden pressure, psi 

σH = Maximum horizontal stress, psi 

σh = Minimum horizontal stress, psi 

The sample was tested in lab by using the PFC simulator. The results that appeared 

on the PFC showed that fracture propagation is a function of rock properties in which the 



37 

fracture starts its direction. Friction coefficient was also a very important property that can 

play a big role in changing interaction mechanisms. 

  In the past ten years, many offshore fields in southern Asia have been producing 

with a high rate; but recently, their production has been decreasing. Nguyen and Bae (2013) 

applied a simulation study on one of the Vietnamese fields. They used real reservoir data 

to approach the optimum fracture design technically and economically. The MFrac 

simulator was used in this study for estimating the best fracture design.  

The type of the formation is tight sandstone with a permeability range of 0.1 md to 

2 md and porosity from 12% to 16% with natural fracture all over the field. They built a 

strategy based on the optimum fracture procedure that guarantees actual results based on 

perforation design, fracture fluid, optimum proppant type, and the reservoir parameters. 

Based on the software results, the fracture half-length should be between 90-200 m to 

maximize the net pressure value, and 150,000 lbs of intermediate strength proppant is 

needed to create this fracture length. The MFrac software used the steady-state fracture 

model for primary prediction of production rate from the well. Tables 1a and 1b show the 

input data of the software and an estimation of the production rate.  

 In some cases, a hydraulic fracture may propagate into different layers. This is a 

common scenario that occurs in multiple layered formations depending on the magnitude 

of the fracture stimulation net pressure and the in-situ stress profile and formation 

thickness. Therefore, it is important to know whether one treatment design or multiple 

treatment designs should be used. Desroches and Elbel (2000) applied a simulation model 

for a multi-layer hydraulic fracture design for field X. 
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 Table 1.3 and 3.2 shows all the inputs for Mfrac software for this model and the 

predict flow rate for this design. It showed how dramatically the flow will increase as the 

fracture length increase as the researchers expected.  
 
 
 
 
 
 
 
 
 
 
 

Table 3.1. M-Frac hydraulic fracture inputs 

property Value Unit 

Fluid Type LN 35  

Proppant Type C003  

Fracture Length 300 m 

Pump Rate 18 bpm 

Initial and Incremental Proppant 
Concentration 

1 lbm/gal 

Final Proppant Concentration 10 lbm/gal 

Maximum Proppant Concentration (at tip) 10 lbm/gal 

Target Dimensional Conductivity 30  

Proppant Damage Factor 0.65  

 
 
 
 
 
 
 
 
 

Table 3.2. Flow rate versus fracture length 

Solution Point Flow Rates 

Fracture half length (m) Flow (bbl/d) 

Inflow (1)        50 1329 

Inflow (2)        75 1501 

 Inflow (3)        100 1593 

 Inflow (4)        125 1640 
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The computer simulator calculates the flow rate through multiple layers and 

multiple fractures based on the material balance equation (mass conservation and pressure 

continuity). The simulator treats the fracture in each layer as a pseudo-three-dimensional 

(P3D) fracture model, which can allow fracture height growth into the closet layer. In 

addition, the simulator consists of two parts, the rate distribution through multiple layers, 

and a model for a single fracture layer. The inputs of the simulator are pay zone gross 

height, in-situ stress pay zone, in-situ stress above, in-situ stress below, Poisson’s ratio, 

Young’s modulus, and leak-off fluid coefficient. Desroches and Elbel (2000) showed in 

their results that near-wellbore screen-out will turn the flow rate into other fractures. 

Furthermore, due to the increase of the pressure during the screen-out, it will be difficult 

to carry out the fracture fluid from the wellbore. They recommended a “limited entry 

treatment technique” to achieve an optimum design for higher flow rate. 

Nowadays, simulation engineers have the ability to use a different kind of grid 

technique, but they have to choose which grid is capable of solving the problem they have.  

Bhore (2017) conducted a simulation study of hydraulic fracture performance and 

production rate of tight sand and shale formation. The idea of his study is basically built 

on two types of grid techniques under the dynamic model of the reservoir: locally 

orthogonal gridding (PeBi) and hybrid Cartesian gridding. Saphir software was utilized to 

build a 2D PEBi model in order to perform a horizontal fracture with an optimum rate of 

100 bbl/D for 100 hr. Bhore (2017) started with a three-layered homogenous tight reservoir 

model with multiple thicknesses. In addition, a single horizontal well was multi-fractured 

in the model to estimate the rate profile and pressure transient for 11 months. The materials 

used in this model were sandstone, shale, and carbonate. The horizontal well had a length 
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of 1000 ft and total vertical depth of 6114 ft with infinite fracture conductivity. After 

running the simulator, the results showed that the PeBi grid has detailed information about 

the near-wellbore geometry, and this grid technique becomes accurate in early time 

transient pressure models. Bhore compared the numerical results and analytical results that 

had been made prior to the simulation model, which were almost identical. The Pebi grid 

helped to perform an evaluation of the transverse fracture for the horizontal wells. PeBi 

has more of an advantage to offer a solution for inflow performance than the analytical 

solution, which can save more time.  

Chen et al. (2015) discussed the effect of hydraulic fracture interaction with natural 

fractures that already existed on the pay zone formation via a finite element model. They 

investigated fluid flow inside the hydraulic fracture, elastic deformation, and fracture 

propagation. They focused in their study on reservoir conditions such as geomechanical 

and geometrical properties, intersection angle, in-situ stresses, and treatment parameters 

which include fracture fluid viscosity and injection rate. The finite element software 

allowed them to study the effect of the leak-off fluid and height growth in nonhomogeneous 

formation. The study was built based on tight sandstone, with constant injection rate 

through a homogenous formation. The distance between the injection point (wellbore) and 

the natural fracture is 10.3 m. The left side of the injection point is 1.7 m long. Other 

properties were also determined in the study, such as fracture energy (Gc) = 100J/m^2, 

tensile strength (To) = 1 MPa, and the natural fracture, which has a 10 m height in the Y 

direction.  The authors concluded that the hydraulic fracture tends to intersect with the 

natural fracture faster when injected with high fluid viscosity and rate. In low stress, the 

initial conductivity of the natural fracture may affect the intersection between the hydraulic 
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fracture and natural fracture. Figure 3.2 shows the estimated angle that will reach the 

natural fracture. 

 

 

Figure 3.2.  The hydraulic fracture propagation toward the natural fracture 
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4. HYDRAULIC FRACTURE OPTIMIZATION DESIGN 

 

This section discusses the methods used to determine the optimum fracture design 

for the Nubain sandstone formation in vertical well X-7, field-H, in Libya.  This section 

also details how all available data were used in the study. The calibration data needed for 

the software were provided from an operating company, which will be called Company-M 

for confidential purposes. STIMPLAN software was used to build an optimum hydraulic 

fracture model. 

In order to investigate fracturing alternatives for any well in field-H, it is necessary 

for the model to first match known performance of a vertical fractured well. Well X-7 was 

selected for this purpose and calibrated using STIMPLAN. The average permeability 

values for the reservoir were lower than expected for the sandstone formation in the area. 

Well X-7 was selected mainly because it was noticed that the production rate declined 

suddenly even though the reservoir properties did not change. Also it was one of the wells 

recently planned to be fractured, and data were available in a digital format. Due to the 

political situation in the country, the company could not yet perform a fracturing 

stimulation on this well.   

4.1. WELL BACKGROUND AND FIELD HISTORY 

The producing reservoirs in Sirte Basin mostly start from Precambrian basement 

(igneous rocks) to Olgocene sand, which are considered the main precursor to form fracture 

porosity in Sirte Basin. Amal, Messlah, Bu Attifel, Masrab, and Gialo fields are the most 

famous fields in Sirte Basin. Many studies were performed to address the types of the 
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formation in Sirte Basin. However, to date there are some areas still undeveloped. A recent 

study by Rusk (2017) indicates a presence of outstanding source rock called (Cretaceous 

Sirte Rachmat Shale). 

Field-H was discovered in 1974 with the drilling of the X-1 well. The discovery 

was appraised in 1982 with the X-2 well, and finally put on production in July 1996 during 

the drilling of X-3 deviated well. Wells X-4, X-5, X-6  were drilled in the west during 

1996, followed by X-7 which was temporarily abandoned despite showing oil due to some 

mechanical problems after encountering a fault zone. Activity level changed significantly 

in late 2000, when it was decided to drill the X-8 deviated well. The X-9 and X-10 wells 

were both vertical and drilled in 2002 to test the easternmost portion of the field and results 

of the first seismic reservoir characterization study, which were incorporated with positive 

results. The X-11 well was drilled in late 2002 in the far south of the field. Seismic results 

of this well showed thick sand in the area, and it was presumed to have undepleted pressure.  

Well X-7 is a development well drilled to a TD of 13,005 ft., penetrating the UNSS 

(Upper Nubian Sand-Stone) at 12,122'-12,207' KB, NMS (Nubian Middle Shale) at 

12,207- 12,524 ft and the LNSS (Lower Nubian Sand-Stone) at 12,524-12,880 ft. Based 

on open hole logs conducted in July-2013. The UNSS and LNSS are the targeted reservoirs 

with pay zones of 61 ft and 286 ft, respectively, whereas the NMS is considered non-

reservoir. Open hole (OH) logs showed low porosities of 7.4% and 7.9% and poor (tight) 

permeabilities of 2.5 md and 3 md for the UNSS and LNSS, respectively. The operator 

initially planned to perforate, fracture and test these two formations separately. Figure 4.1 

shows the location of the well X-7. 
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          Figure 4.1 Location map of the study area in Sirte Basin, Libya 

 

4.2. X-7 WELL CONFIGURATION AND HISTORY 

 There are three productive interval sections in well X-7, two layers in the Lower 

Nubian Sandstone and one in the Upper Nubian Sandstone. The Upper Nubian Sandstone 

is found from 12,132 ft to 12,208 ft, and the Lower Nubian Sandstone layers occur from 

12,562 ft to 12,670 ft, and from 12,700 ft  to 12,810 ft. Figure 4.2 provides the wellbore 

schematic for well X-7. Data from well X-7 was used to create a STIMPLAN fracture 

simulation model that would match aspects of the fracture treatment of this well and be 

able to match results from STIMPLAN fracture simulation production forecase with actual 

post-frac production found in well X-7. This match is important because it allows for a 

calibration of STIMPLAN prior to evaluating fracture optimum design for future wells. 
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                                        Figure 4.2. Well X-7 schematic 

 

4.3. LOG ANALYSIS 

This section discusses log analysis, and how logs are used to determine formation 

lithology, layering, geomechanical profile, and ultimately define a stress profile for the 

formations the stress profile determines stress contrasts, which can control fracture height 

growth. 

The most common types of logs include gamma-ray, resistivity, caliper, neutron 

porosity, and density porosity. The gamma-ray has the ability to read natural gamma-ray 
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radiation emitted by fluid-filled rocks. Some types of shale can release significant natural 

gamma-rays, and consequently read high on a gamma-ray log, while sandstone and 

carbonate rock do not release many gamma-rays, so they produce low gamma responses.  

The resistivity curve measures the resistance or inversely the conductance of the 

fluid-filled rock when an electric impulse is measured across the formation. Normally, 

there will be three curves in the resistivity log record, each providing information on the 

electric response at increasing penetration depths into the formation. The reading is made 

in ohm, a measurement of the rock formation resistance to the flow of the electricity. 

Typically, deep resistivity is of greatest significance for calculating formation saturation 

and potential hydrocarbon reserve.  

There are two types of porosity measurements: density porosity and neutron 

porosity. Density log consist of a highly radioactive gamma-ray source emitted to the 

formation. The neutron log refers to a log of porosity based on the effect of the formation 

on fast neutrons emitted by a source. The Neutron porosity log responds principally to 

porosity and it is strongly affected by clay and gas. Therefore, the gas zones have a very 

low apparent porosity. 

The sonic log can be identified as measurement of the interval transit time of a 

compressional sound wave, which is traveling through the rock along the axis of the well 

borehole. The transit time calculated from the sonic log is a function of lithology and 

porosity. It is usually displayed in track 2 or 3 of a log, and the units are µsec/m and µsec/ft.  

.  
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 X-7 Log Data.  A digital LAS file contains gamma-ray log, neutron 

porosity log, density porosity log, sonic compression log, and resistivity log. These files 

were imported to the STIMPLAN for the analysis. Figure 4.3, 4.4 and 4.5 show combined 

log responses for the X-7 well. In Figure 4.4, the upper Nubain sandstone formation is 

identified from 12,122 ft to 12208 ft. The reservoir is comprised of mainly sandstone with 

some shale beds in different formations. Figure 4.5 shows the log section through the lower 

Nubian sandstone from 12,550 ft to 12,880 ft. These log data were provided by Company-

M.  

 

                             Figure 4.3. X-7 Well log response to 10,700 ft 
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Figure 4.4. X-7 Well log response Middle and Upper Nubain sandstone 
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    Figure 4.5. X-7 Well log response through Lower Nubain sandstone 
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Techlog software was used to analyze the well log data.  Table 4.1 summarizes the 

formation top and bottom depths, net pay, average porosity, average permeability, and 

average water saturation for each zone. 

 
                          Table 4.1.  Reservoir summary of the well X-7 

 

 

 

As shown in Table 4.1, the Lower Nubian sandstone has a reservoir pay section 

much thicker than the upper Nubian sandstone.  Therefore, the Lower Nubian sandstone 

was the focus for determining an optimum hydraulic fracturing treatment. 

 Identification of Lithology and Layers.  It is important to create a stress 

profile and geomechanical model for the formation and surrounding lithology, to determine 

fracture height growth or containment for the stimulation treatment. The available data of 

the LAS file were imported to STIMPLAN to identify geological layers.  

Figure 4.6 shows the results of importing gamma-ray, density, resistivity, and sonic 

files, and the resultant layering.  Three distinct layers were identified within the Lower 

Zone  Top ft Bottom 

ft 

Net ft Avg Phi Avg K 

md 

Avg 

SW 

Phi*

H ft 

Upper 

Nubian ss 

12,122 12,207 70.75 0.087 2.5 0.183 6.13 

Middle 

Shale 

12,207 12,524 22.25 0.073 0.38 0.475 2.96 

Lower 

Nubian ss 

12,524 13,000 295.25 0.87 3.1 0.204 25.65 

All Zones 12,122 13,000 371.5 0.087 2.6 0.194 32.41 
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Nubian sandstone as shown in Figure 4.6.   Layers were first selected according to the 

gamma-ray response. If the gamma-ray is below 60 GAPI, then the formation will be 

considered sand. If the gamma-ray reading is above 100 GAPI, the formation will be 

considered shale. Between the 65-100 GAPI will be considered silt.  

The layers selected were highlighted within STIMPLAN as shown in Figure 4.6. 

Different colors shown on the far left side of Figure 4.6 represent each formation; green 

denotes sand layers, yellow denotes silt layers, and the light purple denotes shale. There 

were 66 layers identified in total for the X-7 well. All results from this analysis were 

transferred to the geological layering module to create a stress profile in STIMPLAN.   

 

 

Figure 4.6. STIMPLAN layering identified based on LAS file 
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After transferring all the log data, a geomechnical profile was developed by adding 

Young’s modulus (dynamic and static), Poisson’s ratio, log stress, and the overburden 

stress. The stress profile is generated by importing bulk density readings from the density 

log (RHOZ g/cc), compression travel time (DTCO us/ft), and shear travel time (DTSH 

us/ft) from the acoustic sonic log. These values were entered in STIMPLAN as shown in 

Figure 4.7.  

 

 

                 Figure 4.7. STIMPLAN input for determining log stresses 

 

A single value of overburden is required in the calculation of stress. This value must 

be entered as a gradient. For sandstone, the common value was determined to be 1.12 psi/ft. 

For the calculation of stress profile, it is necessary to define reservoir pressure and 

overburden for the type of formation (sand, shale, silt). In the analysis, an initial reservoir 
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pressure of 6000 psi was used, and the gradient was calculated using this pressure and 

divided by the depth of the target layer. 

A stress profile was determined from 10360 ft to 12925 ft, as shown in the right 

hand track of Figure 4.6. This geomechanical profile is used in the fracture design. 

It was assumed that a single hydraulic fracturing treatment, stimulating the most 

net pay, would provide the greatest economic benefit. Given three distinct layers (one layer 

in UNSS, two layers in LNSS), the question was how to effectively perforate and stimulate 

three layers in one treatment. To investigate this, STIMPLAN was used to simulate 

perforating the UNSS only, the bottom layer of LNSS only, and then the middle LNSS 

layer only (using existing LNSS perforation depths in well X-7), to model the fracture 

growth in each case.   This analysis showed that perforating the middle layer through 

existing well X-7 perforations resulted in the greatest amount of stimulated net pay.  These 

perforations are 75 ft above the original oil water contact.  The perforations and layer 

selected for injection are highlighted in red in Figure 4.6 and Figure 4.8 shows fracture 

height growth through these perforations. 

In all cases the fracture initiation from the lower Nubian sandstone formation grew 

beyond the oil-water contact regardless of whether water, linear gel, or cross-linked fluid 

was used. The implication of perforating the upper Nubian sandstone is that whether a 

vertical well completion or horizontal well completion the Upper Nubian sandstone is 

landing interval. If the upper Nubian sandstone was perforated the fracture growth could 

be limited to above the oil-water contact. 
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Figure 4.8. Fracture height growth in Middle Nubian sandstone 

 

 Pressure and Production Rate Analysis.  STIMPLAN’S pressure analysis 

allows fracture pressure and post-production appraisal from fall off and buildup pressure 

data provided by the operating company. The pressure decline analysis function allows the 

user to interpret mini-frac pressure decline data using fracture diagnostics to determine 

fluid efficiency and leak-off coefficient. In addition, STIMPLAN has the ability to support 

production history matching with a 3-D numerical reservoir simulator to appraise effects 

of simulation and provide insights for any upcoming design. Production type curve analysis 

also provides for quick user-friendly post. (http://www.nsitech.com/software/index.htm) 

At the outset of the study, it was expected that full well performance data from well 

X-7 would be available to match and to calibrate the STIMPLAN model. However, only 

production data and injection data from the main fracture treatment were available for 

analysis. The step-rate test and pressure fall off were not available for this study. This is 

X
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somewhat limiting because without fall off data, it is difficult to completely verify the well 

performance match. 

Production data analysis for Well X-7 were used to match predicted well 

performance with the fracture design parameters. Five months of production data were 

available for analysis. The data were provided in an excel spreadsheet which included 

flowing time (min), bottomhole pressure (psi), and oil production rate (BOPD). Due to 

confidentiality, a complete copy of the excel spreadsheet of production data is not included 

in this report.  

Since the GOR and the water cut are at acceptable range with 1200 scf/bbl and 11% 

respectively, only the production rate was used to match well performance with predicted 

fracture performance. Figure 4.9 shows a screenshot of how the wellbore pressure and rate 

are imported to STIMPLAN. A production data plot of rate (BOPD) versus time (min) is 

shown in Figure 4.10. The production test was performed on fixed choke size 32/64” to 

control the water production from the formation. The production test continued for 28 hrs 

and was monitored by the service company and the other parties.   

This step was made to get a prediction about the efficiency, fluid coefficient, and 

closure pressure. Due to the lack of data on the lAS file we could not make a full 

performance of mini frac, but the research instead used the two days production test to 

study to efficiency of the treatment that will be use on this research.  

This study utilized reservoir, fluid, pressure and production data to build a 

STIMPLAN model for well X-7 in the Nubian sandstone, from which various hydraulic 

fracturing alternatives are evaluated. Production rate data for two days, (January 4-5, 2014) 
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were used for analysis. The highest flowing rate period, shown in Figure 4.10, is used for 

the match within STIMPLAN.  

 

 

            Figure 4.9. Import of production and injection data to STIMPLAN 

 

 Hydraulic Fracture Design. Well X-7, which is currently temporarily 

abandoned is expected to ultimately be hydraulically fractured, or an offset well drilled 

and stimulated as a replacement for well X-7. In either case, the purpose of this study is 

to determine and optimum stimulation treatment using the data provided by the operator.   
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Figure 4.10. Production test data for Well X-7 

 

Figure 4.11 summarizes reservoir data used in this study and Figure 4.12 

summarizes reservoir fluid data.  Data shown in Figure 4.11 represent the average reservoir 

properties for the perforated interval, and are similar to the upper and lower layers of the 

Lowers Nubian sandstone.  The values were verified with Sapphire software using the 

pressure data for well X-7.   Reservoir and fluid data were inserted into STIMPLAN as 

shown in Figures 4.11 and 4.12, in order to predict future production rate and fracture 

geometry for each simulation case. All the data was provided from company in excel file 

and they were also verified by Sapphire software. All reservoir data provided matched the 

values from Sapphire and were deemed correct for use. 
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Figure 4.11. Reservoir data 

 

 

Figure 4.12. Fluid data 

 

STIMPLAN software was used to evaluate thirteen different hydraulic fracturing 

cases, varying frac fluid type, proppant type, or proppant size.  Most cases use an injection 

rate of 25 bbl/min, although some cases vary this injection rate, as well as the end of job 
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proppant concentration or number of stages pumped.  In all but one case (case 12) proppant 

concentration starts from 1 ppg and increases at a constant rate until the end of job 

concentration.  Case 12 is slickwater which starts with a proppant concentration of 0.5 ppg. 

Table 4.2 presents a summary of the cases evaluated in this study.  These data are combined 

with all previous information to predict the future production rate, cumulative recover and 

fracture geometry for each fracturing alternative.   

 

Table 4.2. Summary of cases evaluation in this study 

Case# Fluid type Proppant 
type 

Proppant 
size 

Inj. 
Rate EOJ 

1 F-300 Linear gel Ottawa Sand  20-40 25 7 
2 F-300 Linear gel Ottawa Sand  16-30 25 7 
3 F-300 Linear gel Ottawa Sand  12-20 25 7 
4 F-300 Linear gel Brady Sand  20-40 25 7 
5 F-300 Linear gel Brady Sand 16-30 25 7 
6 F-300 Linear gel Brady Sand  12-20 25 7 

7 F-300 Linear gel Carbo 
Ceramic  20-40 25 7 

8 F-300 Linear gel Carbo 
Ceramic  16-20 25 7 

9 F-300 Linear gel Carbo 
Ceramic  12-18 25 7 

10 XL-#30 Gaure Carbo 
Ceramic 20-40 25 7 

11 F-160 Linear gel Carbo 
Ceramic 20-40 20 6 

12 Slickwater Carbo 
Ceramic 20-40 40 4 

13 F-300 Linear gel Carbo 
Ceramic 20-40 25 8 
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 Linear Gel (F300) Cases 1-9. The first nine cases use a constant frac fluid 

type.  In all of these cases it was decided to apply a linear gel, noted as F300 in STIMPLAN. 

The injection rate and end of job proppant concentrations are also held constant for each 

case, but the type of proppant and proppant size are varied.  Three types of proppant were 

investigated.  

4.3.5.1.  Ottawa sand cases 1-3.   The first case study for hydraulic fracture 

design will be with Ottawa sand, where the different sizes will be performed to examine 

the fracture conductivity. Table 4.3 shows three proppant sizes (20-40, 16-30, and 12-20) 

with fixed pump rate of 25 BPM, which is considered an efficient rate to carry the 

proppant in a linear gel fluid. Eight stages were assigned for this case and proppant 

concentration will end at 7 ppg.  Total pump time are also given for each case.  Figure 

4.13 illustrates the STIMPLAN prediction of fracture conductivity versus fracture 

penetration for each case. 

Figure 4.13 Proppants conductivity and fracture penetration for the Ottawa sand. 

 

Table 4.3. Fracture design with different sizes of Ottawa sand 

 

 
 

Case# 
Proppant 

Name Fluid Name Pump 
Rate(BPM) 

Slurry 
Volume 
(BBl) 

Pump 
Stages 

Proppant 
Conc Total 

time 
(min) (PPg) 

1 Ottawa 
20-40 F300 Gel 25 1354.7 8 7 54.2 

2 Ottawa 
16-30 F300 Gel 25 1352 8 7 52.6 

3 Ottawa 
12-20 F300 Gel 25 2046 9 7 81.8 
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                       Figure 4.13. Proppant conductivity of Ottawa sand 

 

4.3.5.2. Brady sand cases 4-6.  Brady sand is considered one of the best proppants 

in the industry that can handle stress up to 8500 psi. Brady sand will be used in the fracture 

design of this study to see its effect on the fracture propagation and to test the proppant 

conductivity in different sizes. Table 4.4 summarizes these cases and provides the total 

pump time for each case.  End of job proppant concentration remains the same, although 

pump stages vary slightly. 

 

Table 4.4. Hydraulic fracture design with Brady sand 
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Cases# Proppant 

Name Fluid Name Pump 
Rate(BPM) 

Slurry 
Volume 
(BBl) 

Pump 
Stages 

Proppant 
Conc 

Total 
time 
(min) (PPg) 

4 Brady 20-40 F300 Gel 25 1466 7 7 58.7 
5 Brady 16-30 F300 Gel 25 1220 9 7 48.8 
6 Brady 12-20 F300 Gel 25 992 7 7 39.7 
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Figure 4.14 illustrates the STIMPLAN prediction of fracture conductivity versus 

fracture penetration for each case.  

 

 

Figure 4.14 Proppants conductivity of Brady sand 

 

4.3.5.3. Carbo lite ceramic cases 7-9.  Ceramic proppant is a man-made, 

commonly using a bauxite material.  It is the most expensive type of proppant.  However, 

because it is manufactured (not mined), companies have the ability control to control it’s 

physical properties such as roundness and sphericity, thus increasing fracture conductivity.  

In addition, ceramic proppant has high strength, which provides the ability to 

handle the high stress encountered at deeper depths (> 6000 ft). Presently, many companies 
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in the Middle East recommend using ceramic in deep sandstone formations with 

permeability below 10 md. Therefore, the research examined one type of ceramic called 

carbo lite in different sizes. Table 4.5 shows the different cases, estimated slurry volume 

and pump time. The fluid type and pump rate remain the same as in previous cases. 

 

Table 4.5. Hydraulic fracture design of Carbo Lite ceramic 

 

Figure 4.15 illustrates the STIMPLAN prediction of fracture conductivity versus 

fracture penetration for each case using Caro Lite ceramic proppant.  

Comparing Figure 4.15 fracture conductivity with that shown for sand (Figures 

4.13 and 4.14) it is evident the Carbo Lite ceramic provides far greater fracture 

conductivity.  The Nubian sandstone is found at depths exceeding 12,000 ft, and the 

ceramic proppant is preferred in this high stress situation. Based on these considerations 

three hydraulic fracture design cases were evaluated for ceramic proppant as a constant, 

but varying types of frac fluids. 

 

 
Cases # Proppant 

Name 
Fluid 
Name 

Pump 
Rate(BPM) 

Slurry 
Volume 
(BBl) 

 Pump 
Stages 

Proppant 
Conc 

Total 
time 
(min) (PPg) 

7 Carbo L 
20-40 F300 Gel 25 1357 11 7 55 

8 Carbo L 
16-20 F300 Gel 25 1350 8 7 54 

9 Carbo L 
12-18 F300 Gel 25 2046 10 7 82 
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Figure 4.15. Proppant conductivity of Carbo Lite ceramic 

 

 Carbo Lite Ceramic Cases 10-13.  Cases 10-13 all use 20-40 Carbo Lite 

ceramic proppant, but vary the type of frac fluid. Four fracture fluids types were selected 

for this evaluation based on formation properties and cost.  Each frac fluid type has a 

different pump rate because the fluid viscosity and proppant carrying capacity are 

significantly different.  

In considering these different frac fluids it was important to evaluate fluid loss and 

fluid efficiency.  Fluid loss and fluid efficiency have a significant impact on fracture 

morphology, even in tight sandstones such as the Nubian.  
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4.3.6.1. X-Link#30, case 10. In this design, a crosslinked 30 lb/gal gel frac fluid is 

used (noted X-link#30) and 20-40 Carbo Lite ceramic is the fixed proppant. Pump rate of 

25 bbl/min was used, as X-link fluids functionally can be applied in pump rates between 

25 and 35 BPM. Slurry volume was estimated, and the number of stages in this design was 

assigned. Table 4.6 shows the X-link#30 design schedule. 

 

Table 4.6. X-Link#30 Fracture design 

 

4.3.6.2.  Gel F160, case 11. Case 11 evaluated a liner gel, noted as F160 in 

STIMPLAN.  This linear which is well known with its ability to hold a high concentration 

of the proppant and low fluid loss inside the formation. The model was run with pump rate 

20 BPM, slurry volume below 1600 bbl and proppant concentration of 6 ppg.  Carbo lite 

ceramic will remain as hydraulic fracture proppant. Table 4.7 shows the estimated fracture 

design for gel F160. 

 

Table 4.7. Gel F160 hydraulic fracture design 

 

 
Case # Fluid Name Proppant 

Name 
Pump 

Rate(BPM) 

Slurry 
Volume 
(BBl) 

Pump 
Stages 

Proppant 
Conc 

Total 
time 
(min) (PPg) 

10 X-Link #30 Carbo L 
20-40 25 1357 11 7 55 

 
Case # Fluid 

Name 
Proppant 

Name 
Pump 

Rate(BPM) 

Slurry 
Volume 
(BBl) 

Pump 
Stages 

Proppant 
Conc 

Total 
time 
(min) (PPg) 

11 Gel F160 Carbo L 
20-40 20 1500 10 6 75 
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4.3.6.3. Slickwater, case 12.  Slickwater is a frac fluid commonly used in 

unconventional formations such as shale. Most companies in North America use slickwater 

in their hydraulic fracture application due to its low cost, quick recovery, and simplicity in 

the operation.  

Despite slickwater having low proppant transport capability, it was decided to 

examine this fluid to see its effect in the Nubian sandstone formation. Table 4.8 shows 

the schedule design for slickwater fluid with different stages, higher pump rate, and 

slurry volume.   

 

Table 4.8. Slickwater hydraulic fracture design 

4.3.6.4. Gel F300, case 13. Gel F300 fluid can handle high formation temperature, 

especially in deep onshore reservoirs. Also, F300 has high proppant transport properties 

that can help reduce the fluid loss. In this design, gel F300 is used to test the fluid loss with 

a different slurry volume and number of stages. Previously, Case 7 evaluated the same 

proppant fluid combination, but at different end of job concentration, stages and slurry 

volume.  Table 4.9 illustrates the predicted hydraulic fracture design for Well X-7. 

The fluid loss for the four types of fluids and the duration time will take to reach 

the stabilization condition were estimated via STIMPLAN. Figure 4.16 shows a plot of 

Case 
# Fluid 

Name 
Proppant 

Name 
Pump 

Rate(BPM) 

Slurry 
Volume 
(BBl) 

Pump 
Stages 

Proppant 
Conc 

Total 
time 
(min) (PPg) 

12 Slickwater Carbo L   
20-40 40 1369 9 4 39 



67 

fluid loss versus time for the four frac fluids evaluated in cases 10-13.  As shown, 

slickwater has high fluid loss compared to the gel frac fluids. 

 

Table 4.9. Gel 300F hydraulic fracture design 

 

 

The erratic pressure response of slickwater shown in Figure 4.16 is of an indication 

that the fracture was refusing higher proppant concentration. This might have been due to 

near wellbore tortuosity. Spontaneous pressure drops were interpreted to correlate to 

sudden height growth that occurs when the fracture breaks another stress barrier such as 

shale beds. 

In the slickwater case, proppant concentration during pumping was kept between 5 

to 8 lb/gal in order to place the maximum amount of proppant in the fracture. There was 

some indication of tip screenout action, which might occur late during in the pumping 

schedule. 

Most of the pressure data provided were also imported to STIMPLAN for analysis. 

During the treatment, there were no bottomhole gauges in the well and bottomhole pressure 

can only be estimated with approximated friction losses. Friction losses may be significant 

as the treatment is pumped down the casing. 

Closure stress was estimated by company-M from their software analysis of the 

pressure fall off data. Their estimation of closure stress was approximately 7,188 psi. A 

Case 
# Fluid 

Name 
Proppant 
Name 

Pump 
Rate(BPM) 

Slurry 
Volume 
(BBl) 

stages 
Proppant 
Conc 

Total 
time 
(min) (PPg) 

13 Gel F300 Carbo L 20-40 25 2116 13 8 124.7 
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mathematical estimation of the closure stress was performed for comparison, using Eaton’s 

equation, which was 7,095 psi: 

       (3) 

Figure 4.16. Fluid loss for different kinds of fracture fluid 

 

where, 

   = minimum horizontal stress 

  n =  Poisson’s ratio 
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According to net pressure theory (Nolte- Smith Log- Log Interpretation), the slope 

of the net pressure plot will be 1 when a screenout occurs. Using the closure stress 7,188 

psi and drawing a best-fit line through the late-time data, the slope found was 1.72. To 

match the net pressure plot with a slope 1 requires a closure pressure of 6,043 psi which is 

essentially equal to the reservoir pressure value. Since closure pressure should be higher 

than static reservoir pressure, it is doubtful that a tip screenout was achieved. Figure 4.17 

shows a net pressure plot from the treatment. As shown, there is significant scatter in the 

data and only late time trend is evident. 

 

 
                                     Figure 4.17.

 
The net pressure plot for treatment
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5. RESULTS 

The following section presents results of the STIMPLAN simulations for all 

hydraulic fracturing cases described in section 4.0.  Results for 30-day flowrate (IP) and 

24-month cumulative recovery are given for each case.  In addition, flowrate as a function 

of time is examined.  

5.1. RESULTS FOR PROPPANT CASES 

Results for cases with a constant fluid type, but varying proppant type and size are 

summarized in the following sections. F300 linear gel was used for all of the proppant 

cases.  

 Ottawa Sand Cases 1-3. Cases 1-3 are simulations using Ottawa sand, with 

the same injection rate, similar end of job concentrations, the same frac fluid (F300) and 

slightly different pump schedules.  Proppant sizes vary between each case.   The fracture 

design require additional conductivity and less fracture length to achieve an optimal FCD 

of 2 (Prats 1960).   

 

     Table 5.1. Presents a summary of the resulting fracture geometry for these cases 

Proppant 
# 

Case 
# Proppant 

Size 

Proppant 
length 

(ft) 

Fracture 
length 

(ft) 

Fracture 
Height 

(ft) 

Fracture 
width 

(ft) 
Net 

Pressure FCD 

Ottawa 
sand 

1 
20-40 475.1 476.4 457 0.017 633.2 0.18 

2 
16-30 474.7 476.2 455 0.0174 635.6 0.21 

3 
12-20 696.9 730.3 419.3 0.0165 606.3 0.34 
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Table 5.1 STIMPLAN fracture dimensions created for Cases 1-3 Figure 5.1 

presents plots of flowrate versus time and Figure 5.2 presents a summary of 24-month 

cumulative production for the Cases 1-3.   

 

 

Figure 5.1. Cases 1-3 production rate versus time for 24 months 

 

The IP for the three proppant sizes were 2844 BOPD for Ottawa 20-40, 2292 BOPD 

for Ottawa 16-30 and 3705 BOPD for Ottawa 12-20.  

The 24 month cumulative production was found to be 478.2 MBO for Ottawa 20-

40, 457.3 MBO for Ottawa 16-30 and 474.3 MBO for Ottawa 12-20. 

 F300 Fluid, Brady Sand Cases 4-6.   Cases 4-6 are simulations using 

Brady sand, with the same injection rate, similar end of job concentrations, the same frac 

fluid (F300) and slightly different pump schedules.  Proppant sizes vary between each case.  

The fracture design require additional conductivity and less fracture length to achieve an 

optimal FCD of 2 (Prats 1960). 
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         Figure 5.2. Cases 1-3 cumulative production versus time for 24 months 

   

     Table 5.2. Presents a summary of the resulting fracture geometry for these cases 

Proppant 
# 

Case 
# Proppant 

Size 

Proppant 
length 

(ft) 

Fracture 
length 

(ft) 

Fracture 
Height 

(ft) 

Fracture 
width 

(ft) 
Net 

Pressure FCD 

Brady 
sand 

4 
20-40 531 555.8 476.1 0.0157 623.5 0.13 

5 
16-30 473.6 475.8 448.2 0.0165 623.8 0.24 

6 
12-20 413 436.5 456.8 0.0141 629.7 0.39 

 

 

Table 5.2 STIMPLAN fracture dimensions created for Cases 4-6 Figure 5.3 

presents plots of flowrate versus time and Figure 5.4 presents a summary of 24-month 

cumulative production for the Cases 4-6. 

The IP for the three proppant sizes were 3,705 BOPD for Ottawa 20-40, 3,706 

BOPD for Ottawa 16-30 and 3,455 BOPD for Ottawa 12-20 

The 24 month cumulative production was found to be   474.41 MBO for Ottawa 

20-40, 474.79 MBO for Ottawa 16-30 and 471.59 MBO for Ottawa 12-20 
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Figure 5.3. Cases 4-6 production rate versus time for 24 months 

 

 

 

          Figure 5.4. Cases 4-6 cumulative production versus time for 24 months 
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 F300 Fluid, Carbo Lite Ceramic Cases 7-9.  Cases 7-9 are simulations 

using Carbo lite ceramic, with the same injection rate, similar end of job concentrations, 

the same frac fluid (F300) and slightly different pump schedules.  Proppant sizes vary 

between each case.  The fracture design require additional conductivity and less fracture 

length to achieve an optimal FCD of 2 (Prats 1960).   

 

Table 5.3. Presents a summary of the resulting fracture geometry for these cases 

Proppant 
# 

Case 
# Proppant 

Size 

Proppant 
length 

(ft) 

Fracture 
length 

(ft) 

Fracture 
Height 

(ft) 

Fracture 
width 

(ft) 
Net 

Pressure FCD 

Carbo L 
ceramic 

7 
20-40 487.3 487.3 453.6 0.0177 645.8 0.7 

8 
16-20 498 519.9 480.7 0.016 635.1 1.55 

9 
12-18 722 808.8 473.4 0.0164 563.6 0.75 

 
 

Table 5.3 STIMPLAN fracture dimensions created for Cases 4-6  Figure 5.5 

presents plots of flowrate versus time and Figure 5.6 presents a summary of 24-month 

cumulative production for the Cases 7-9. 

The IP for the three proppant sizes were 4,268 BOPD for Ottawa 20-40, 5,050 

BOPD for Ottawa 16-20 and 4,914 BOPD for Ottawa 12-18. 

The 24 month cumulative production was found to be 494.2MBO for Ottawa 20-

40, 479.29 MBO for Ottawa 16-20 and 478.41 MBO for Ottawa 12-18. 
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5.2. RESULTS FOR FLUID CASES  

Results for cases with a constant proppant type and size, but varying fluid types are 

summarized in the following sections. Carbo lite ceramic 20-40 proppant have been used 

in all cases. 

 

 

Figure 5.5. Cases 7-9 production rate versus time for 24 months 

 

 Carbo L Ceramic, XL-30#, Case 10.  Figure 5.7 shows a 2-D prediction 

of fracture growth if cross linked 30 lb/gal frac fluid and carbo lite ceramic 20-40. The 

injection rate is 25 bpm, end of job concentration is 7 lb/gal and 11 pump stages were used.   

Cross linked frac fluids provide high viscosity and the capacity to carry higher proppant 

concentrations 

 

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30

R
at

e 
B

O
PD

 

Time (months)

20-40 

16-20 

12-18* 



76 

 

Figure 5.6. Cases 7-9 cumulative production versus time for 24 months 

 

.  This results in a high portion of propped fracture area, which can be seen in the green 

shaded area of Figure 5.7.  Using a cross linked fluid, the total fracture length is 523 ft with 

a fracture height of 413 ft 

At the time the flow rate was maintained at constant rate, the bottomhole injection 

pressure started to increase over time till it reaches a breakdown pressure.  

 Carbo L Ceramic, F160 Linear Gel, Case 11. Figure 5.9 shows a 2-D 

prediction of fracture growth if F160 linear gel fluid and carbo lite ceramic 20-40 proppant 

is pumped.  The injection rate is 20 bpm, end of job concentration is 6 lb/gal and 10 pump 

stages were used.   
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Figure 5.7. 2-D fracture morphology summary plot of the X-link #30 design 

   

Linear gels have less viscosity than cross linked fluids, and less capacity to carry 

higher proppant concentrations.  Despite this, there is a high portion of propped fracture 

area over a majority of the total fracture area, which can be seen in the green shaded area 

of Figure 5.7.  Using a F160 linear gel fluid, the total fracture length is 596 ft with a fracture 

height of 500 ft. 

 Carbo L Ceramic, Slickwater, Case 12.  Figure 5.11 shows a 2-D 

prediction of fracture growth if slickwater frac fluid pumped with carbo lite ceramic 20-40 

proppant.   
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Figure 5.8. 2-D fracture morphology summary plot of the F160 gel design 

 

The injection rate is 40 bpm, end of job concentration is 4 lb/gal and 9 pump stages were 

used.  Slickwater frac fluids has low viscosity and the low capacity to carry higher proppant 

concentrations.  This results in a very low propped fracture area, which can be seen in the 

green shaded area of Figure 5.11.  Using a cross linked fluid, the total fracture length is 

771 ft with a fracture height of 250 ft. 

5.2.4. Carbo L Ceramic, F300 Linear Gel, Case 12. Figure 5.13 shows a 2-D 

prediction of fracture growth if F300 linear gel fluid and carbo lite ceramic 20-40 proppant 

is pumped.  The injection rate is 25 bpm, end of job concentration is 8 lb/gal and 13 pump 

stages were used.   
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Figure 5.9. 2-D fracture morphology summary plot of the slickwater 

 

F300 gel is expected to have high performance in deeper, hotter formations with a 

good proppant carrying capacity.  This results in a high portion of propped fracture area, 

which can be seen in the green shaded area of Figure 5.13.  Using a F300 linear gel fluid, 

the total fracture length is 478 ft with a fracture height of 478 ft.  

The IP for the four fluids types were 28443,038 BOPD for slickwater 3,739 BOPD 

for linear gel F160, 4,438 BOPD for X-link#30, and 5,004 for linear gel which match 

with same value of case 11. 
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Figure 5.10. 2-D fracture morphology summary plot of the F300 linear gel design 

 

     

Figure 5.11. Cases 10-12 production rate versus time for 24 months 
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Figure 5.12. Cases 10-12 cumulative production versus time for 24 months 

 

The 24 month cumulative production was found to be 24.25 MBO for slickwater, 

30.07 MBO for linear gel F160, 35.58 MBO for X-link#30, and 40.07 MBO for linear gel 

F300. 
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6. DISCUSSION  

 

Thirteen different cases were evaluated in this study to determine an optimum 

hydraulic fracture design for the Nubian sandstone in Libya.  These cases focused on 

stimulating only the Lower Nubian sandstone in a single treatment.  Results of these 

cases compare IP and 24 month cumulative recovery for these cases. 

This analysis indicates that while many fracturing alternatives produce similar 

fracture geometry, the combination of F300 gel with 20-40 Carbo Lite proppant suggests 

the highest fracture conductivity and production performance. All cases evaluated have 

low values of FCD suggesting that conductivity could be increased. 

It should be noted that economics have not been considered in this study.  Ideally 

the highest production at lowest cost will produce the greatest economic benefit.  

However, in this study, only cumulative production has been considered. 

 The Nubian sandstone is found at significant depths of greater than 12,000 ft.  It 

should be noted that regardless of the fluid selected for treatment, ceramic proppant will 

provide a greater strength and resistance to crushing than sand.  Given the fracture 

conductivity of ceramic proppant is three times that of all cases using sand, it is likely 

this will be of greatest benefit even if economic analysis is included. 
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7. CONCLUSIONS AND FUTURE WORK 

The following conclusions can be made from this research and evaluation: 

1. Libya contains significant ‘unconventional’ oil and gas reserves found in mid-range 

permeability such as the Nubian sandstone, to ultra-tight shale formations. 

2. The H-field demonstrated potential for development of the Nubian sandstone, although 

well stimulation has been delayed for various reasons 

3. Log analysis indicates 71 feet of pay in the Upper Nubian sandstone and 295 feet in the 

Lower Nubian.  This mean lower Nubian formation is almost four times thicker than 

upper Nubian formation and was selected as the focus of the stimulation design. 

4. This study utilized reservoir, fluid, pressure and production data to build a STIMPLAN 

model for well X-7 in the Nubian sandstone, from which various hydraulic fracturing 

alternatives are evaluated. 

5. Thirteen cases evaluated hydraulic fracturing alternatives for different frac fluids, 

proppant type and proppant sizes.  All cases evaluated had low FCD and could benefit 

from increased conductivity. 

6. Ceramic proppant provides the best fracture conductivity regardless of the type of 

fracturing fluid used.  However, slickwater showed a poor propped fracture area with 

slickwater. 

7. F300 linear gel and 20-40 Carbo Lite proppant provide an excellent recovery for the 

perforations assumed in the middle layer of the Lower Nubian sandstone. 

8. This study has evaluated fracturing alternatives based on well production and 24-month 

cumulative recovery.  Economics have not been considered. 
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• FUTURE WORK 

The following additional work is suggested to further advance the current 

study of hydraulic fracturing in the Nubian sandstone in Libya: 

• It is suggested that an economic analysis be performed in addition to the hydraulic 

fracture modeling. This would provide a more complete comparison of the cases. 

• This study includes 13 cases which combine different types of fracture fluids, 

proppant type and size.  Future work could consider a wider range of choices in the 

many variables of hydraulic fracture design, and particularly investigate higher 

conductivity with resulting FCD closer to 2.0. 

• Future designs should consider an approach for stimulating both the Upper and 

Nubian sandstone formations, even if in separate treatments. 

• Other fields in Libya which have unconventional reservoirs should be considered for 

analysis in the future. 
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