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ABSTRACT

Switched systems are encountered throughout many engineering disciplines, but

confirming their stability is a challenging task. Even if each subsystem is asymptotically

stable, certain switching sequences may exist that drive the overall system states into

unacceptable regions. This thesis contains a process that grants stability under switching

to switched systems with multiple operating points. The method linearizes a switched

system about its distinct operating points, and employs multiple Lyapunov functions to

produce modal dwell times that yield stability. This approach prioritizes practicality and

is designed to be useful for large systems with many states and subsystems due to its ease

of algorithmic implementation. Power applications are particularly targeted, and several

examples are provided in the included papers that apply the technique to boost converters,

electric machines, and smart grid architectures.
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SECTION

1. INTRODUCTION

A switched system is a system with dynamics drawn from one of many poten-

tial subsystems and a switching signal that discretely switches between these continuous

subsystems in selecting the active dynamics at every time instant. This switching nature

complicates the question of stability because even if all subsystems are exponentially stable,

the overall system states can often be driven arbitrarily distant from equilibria by certain

switching signals. To ensure stability, one must either demonstrate system stability for a

particular switching sequence or identify a set of switching sequences under which the

system is stable.

This theoretical problem is relevant in many applied fields, especially in power

systems. The advent and ongoing development of the Smart Grid has been distinguished by

an increase in distributed energy resources and the synthesis of microgrids into the overall

grid. A defining characteristic of microgrid systems is their ability to operate in either

islanded or grid-connected configurations, with a switching action present in the transition

between these modes.

Also integral to the Smart Grid is its enhanced cyber component, which qualifies

the Smart Grid as a cyber-physical system. While the cyber component enables greater

monitoring and control of power production, it also opens up the grid to new security threats.

In one possible cyber-enabled physical attack, an attacker could gain online control of a

microgrid islanding command, and use it to physically switch the system into instability,

potentially causing power failure. By modelling and evaluating the grid as a switched
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system, stability standards can be produced, and switching actions can be monitored to

ensure compliance. In this way, malicious switching attacks or inadvertent uncontrolled

switching can be identified and avoided to maintain stability.

With such motivation, this thesis develops a practical method for switched system

analysis, which results in restrictions on the elapsed time between switching events. Ob-

serving these switching rules will guarantee sustained stability. The approach is designed

to be easily implementable and attractive to the working power systems engineer. To em-

phasize the underlying inspiration, many examples are drawn from power applications and

processed via the created algorithm.
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2. LITERATURE REVIEW

The stability of switched systems has been studied extensively. Two broad problems

have received the most attention: stability and stabilizability. Solutions to the stability

problem seek to uncover switching signals that achieve system stability, while stabilizability

results reveal which switched systems are possible to stabilize with some switching signal.

This thesis is concerned with the stability problem. Several general techniques exist for

solving this problem, but the two most prominent among these are those using dwell times

and those using Lyapunov function values.

2.1. DWELL TIME TECHNIQUES

In the first approach, restrictions are placed on the elapsed time between switching

events, known as the dwell time. If a switching signal satisfies these conditions, it is shown

that the systemwill remain stable. Several variations on this theme exist, such as the notions

of minimum dwell time, average dwell time, and modal dwell times.

Minimum dwell time methods require that each dwell time be greater than a mini-

mum threshold over the entire switching sequence. For example, (1) presents a minimum

dwell time formulation that will guarantee system stability as long as the proper dwell time

is observed. However, this technique was created for systems in which all subsystems share

an operating point and is not immediately extendable to the multiple equilibria case.

In a more relaxed style, average dwell time laws require that the dwell times maintain

a sufficiently large average. These were first introduced in (2), and several methods of

calculating average dwell times exist, such as in (3). Recently, (4) generalized results for

slowly time-varying systems to attain average dwell times for switched linear systems. Once

again, these works do not confront the issue of switched systems with multiple operating

points.
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Finally, modal dwell times assign a uniqueminimumdwell time to each systemmode

so that the required switching time elapsed depends on the current mode of the system. One

procedure developed in (5; 6) merges the concepts of modal and average dwell times and

shows that linear switched system stability can be achieved if the total number of switches

to a particular mode is limited on the average of its total active time in the system history.

2.2. MULTIPLE LYAPUNOV FUNCTIONS

Strategies that monitor Lyapunov function values typically seek either one Lyapunov

function that applies to all system modes (which is only obtainable if all modes share an

operating point) or a distinct Lyapunov function for each subsystem. These tactics usually

consider the values of the Lyapunov functions at each switching moment and then draw

conclusions on the pattern. For example, (7) extends traditional Lyapunov theory to switched

systems with multiple Lyapunov functions. The authors show that if all Lyapunov functions

are nonincreasing over all time instants that their respective modes are activated, then the

system is stable in the sense of Lyapunov.

Although this is suited only to switched systems with a single operating point, (7)

briefly remarks that it could be extended tomultiple operating pointswhen certain conditions

are met. Interestingly, existing techniques for such systems (including those in this thesis)

usually work because they indirectly verify this principle. In fact, traditional dwell time

approaches often limit switching signals to those that produce Lyapunov behavior satisfying

conditions like those in (7), so multiple Lyapunov functions are almost always relevant.

Other analyses using multiple Lyapunov functions exist as well, but they are once

again typically limited to switched systems with a single operating point. The nonincreasing

Lyapunov values condition is relaxed in (8), and multiple Lyapunov functions are used to

prove an upper bound on the minimum dwell time. In (9), multiple Lyapunov functions

are used to expand the set of known stabilizing switching signals beyond those revealed

by minimum or average dwell times. Similarly, (10) develops Lyapunov methods for
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identifying sets of switching signals that grant uniform stability. More Lyapunov solutions

are described in (11), and many more methods for switched systems with a single operating

point are surveyed in (12; 13).

2.3. MULTIPLE EQUILIBRIA

Most real-world switched systems are nonlinear, and their subsystems rarely share an

equilibrium. Stability techniques aremademore practical when adapted to this case. Several

works have attempted this, and they essentially attain the practical stability introduced in

(14; 15). A system is practically stable under a given switching signal if initial states in a

predefined set result in a trajectory that remains in a closed superset for all time. When the

switching signal is controlled, (14) formulates two switching sequences that can be used for

practical stability.

In many cases, including the Smart Grid, switching is uncontrolled or subject to

uncontrolled phenomena. Switching signals cannot be designed here, but they can be

watched for behavior that disregards imposed restrictions. Several papers pursue this, and

each has some overlap with the ideas in this thesis.

2.3.1. Lyapunov Analysis. First, (16) demonstrates practical stability using mul-

tiple Lyapunov functions for each mode. From these, several sets are constructed that

ultimately render a minimum dwell time. The sets are similar to those in this thesis, but

some differences exist in the derivations which pose practical challenges. First, for N

subsystems, (16) requires solving N2 many constrained optimization problems. This is

computationally expensive for systems with large numbers of modes, like the Smart Grid.

This thesis requires only one constrained optimization for any number of modes. Also,

the dwell time in (16) can be rather conservative, which is detailed in Paper II. Being a

minimum dwell time makes it even more conservative, but the introduction of modal dwell

times can allay this.
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2.3.2. Modal Dwell Times from Set Theory. In another procedure, (17) introduces

maximally invariant sets as the largest sets of possible initial state values for which states

remain in a predefined superset X. The process suggests computing a maximally invariant

set for each system mode and using modal dwell times that guarantee all switching actions

occur within the intersection of the invariant sets. In this way, states are restricted to X for

all time, which is a practical stability.

Maximally invariant sets can be difficult to compute, so the authors set forth methods

for specific cases. For affine systems with different equilibria, the authors show how to

compute maximally invariant sets that are polytopes as long as X is a polytope. While this

can produce non-conservative dwell times, the polytopes become very complex and difficult

to analyze in high dimensions. As an alternative, (17) recommends using Lyapunov level

sets as suboptimal invariant sets. The recommendation is to select two level sets for each

mode: a larger one that is a subset of X and another that is contained in the intersection of

the larger Lyapunov sets over all modes. Using bounds on the Lyapunov derivatives, modal

dwell times can be computed that restrict the state to the union of larger Lyapunov sets.

The challenge in this strategy is selecting the Lyapunov sets so that they satisfy

their subset requirements. This is not a trivial problem when working with numerous

ellipsoidal level sets in high dimensions. The approach developed in this thesis relies on

a similar intuition as (17), but proposes a more natural and easily implementable way to

select Lyapunov level sets.

2.3.3. Practical Stability for Power Systems. Finally, a practically-focused pro-

cess for accomplishing practical stability is presented in (18). The author’s applications are

similar to those in this thesis, as shown by the grid example in (19). The method drafts

a minimum dwell time that achieves desired behavior in the multiple Lyapunov functions,

and proves practical stability. The technique is for finite, predetermined time frames, and

does not easily extend to the infinite horizon case. This is a practical obstacle because many

systems require perpetual monitoring.
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The ideal practical method for switched system stability is computationally efficient,

robust in implementation, and perpetual in operation. The following publications develop

a method that targets these qualities.
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PAPER

I. MINIMUM DWELL TIMES FOR THE STABILITY OF SWITCHED SYSTEMS
WITH MULTIPLE STABLE OPERATING POINTS

W. R. St. Pierre and J. W. Kimball

% Department of Electrical Engineering

Missouri University of Science and Technology

Rolla, Missouri 65409–0050

Tel: 573–341–6622, Fax: 573–341–4115
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ABSTRACT

This work outlines a practical process, based on dwell times, for ensuring the

stability of non-linear switched systems with a different stable equilibrium for each mode.

Relevant Lyapunov theorems are discussed, followed by a derivation of an algorithm that

determines dwell times for each system mode for guaranteeing stability. An analysis of

algorithm parameters and potentially troublesome systems is then included. Finally, two

examples are drawn from power electronics and electric machinery and processed by the

proposed method. Application of this approach will both grant confidence in switched

system stability and warn of possible unstable system behavior when appropriate.
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1. INTRODUCTION

The ubiquity of switched systems has inspired a considerable volume of research

into their stability. Much of this work explores switched systems whose discrete modes

all produce the same stable operating point. However, many switched systems contain

a different stable operating point for each discrete mode, and these warrant their own

methods of stability assurance. Lyapunov stability techniques can ensure that each of a

system’s individual operating points are stable, but a particular sequence of switching could

still drive the states into an unstable region. This paper presents a method for detecting

potentially unstable behavior due to switching in non-linear switched systems with multiple

stable equilibria.

For systems in which all modes share a common equilibrium point, switching

stability has been explored extensively. Much of the literature on this subject involves

the concept of dwell time, which is the amount of time that passes between consecutive

switching events. If all subsystems are individually stable, then there exists aminimumdwell

time that guarantees stability under switching if observed between all consecutive switching

events. Several Lyapunov based methods of calculating this dwell time are available (1; 20).

Also, stability can be achieved when the time between consecutive switches is limited on the

average, which is known as the average dwell time (2; 3). In yet another approach, multiple

Lyapunov functions are used to ascertain system stability (7). More stability results of this

kind are surveyed in (12).

Unfortunately, these methods do not apply to systems with multiple equilibria,

for which stability results are more rare. On this topic, (16) outlines a way to obtain a

minimum dwell time which, if enforced after every switching action, guarantees that the

states will converge to a superset of the stable equilibria. However, this process is difficult

to implement algorithmically for a general system as it relies on analytical processing of

multiple Lyapunov functions.
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Alternatively, a set-theoretic method of determining modal dwell times (dwell times

that depend on the currently active subsystem) for nonlinear switched systems is developed

in (17). This strategy is created for the case in which a region of admissible trajectories

is known, and it is necessary to restrict states to this region. However, the sets involved

in the process can be very difficult to compute, especially for high order systems. As

a practical concession, (17) recommends the use of suboptimal Lyapunov level sets to

achieve the result, but an implementable algorithm for selecting these sets is not detailed,

and confirming that they lie within the region of admissible states can be difficult.

This paper presents a practical process that produces dwell times from multiple

Lyapunov functions, and ensures stability for switched systems with multiple equilibria. It

is designed for easy implementation. The dwell times discussed in this paper are modal,

as found in (17), so the required dwell time in a particular switching interval is determined

by the active mode in that interval. The type of stability is also in the spirit of (16), (17):

observing the determined dwell times will restrict the state trajectory to a finite region about

the operating points.

2. BACKGROUND ON LYAPUNOV STABILITY

An equilibrium point of a time invariant system is asymptotically stable if there exists

a continuously differentiable, positive-definite, scalar functionV(x) such that ÛV(x) < 0. This

function V(x) is known as a Lyapunov function. The Lyapunov Equation for a linear system

x = Ax is:

ATP + PA = −Q (1)

Here, Q is any positive definite matrix. If there exists a positive-definite and

symmetric matrix P that satisfies the Lyapunov equation, then the system x = Ax is

asymptotically stable at the origin, and V(x) = xTPx is a valid Lyapunov function for the

linear system.
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For a non-linear system, Lyapunov functions of a linearization of the system can

show local stability of the original system. Let x = f(x, u) be a non-linear system. Suppose

the system is in mode 1 with constant input U1 that produces equilibrium X1. Then

x̃1 = A1x̃1 is a linearization of the system, where A1 is the Jacobian of the system evaluated

at X1 and U1 and x̃1 = x − X1 exists to shift to a coordinate system where X1 is at the origin.

If a Lyapunov functionV(x) = x̃TPx̃ is found from the Lyapunov equation for this linearized

system, then the non-linear system is locally stable about X1.

The most conservative decay rates to each system equilibrium may be found from

the upper bound on ÛV(x):

ÛV(x) ≤ −
λmin(Q)
λmax(P)

V(x) (2)

where λmax(P) is the greatest eigenvalue of the matrix P and λmin(Q) is the smallest

eigenvalue of Q, as shown in (21). Setting these two terms strictly equal to each other and

solving the resulting differential equation gives

V(x) = V0 exp
(
−
λmin(Q)
λmax(P)

t
)

(3)

where V0 is some initial level set value of V(x). This shows that a worst-case scenario time

constant for mode n is

λn =
λmax(Pn)

λmin(Qn)
(4)

which is the slowest possible rate at which the system states could decay from the level set

V(x) = V0.
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3. LYAPUNOV LEVEL SETS FOR STABILITY ANALYSIS

3.1. LEVEL SETS AND MOTIVATION

This section introduces the proposedmethod for stability analysis. Suppose that each

mode n ∈ {1, 2, ..., N} of a non-linear switched system is asymptotically stable. For each

subsystem n, a linearization may be obtained and a Lyapunov function Vn(x) may be found

from the Lyapunov equation, with Q as the appropriately dimensioned identity matrix.

As long as the states are sufficiently close to Xn, they will converge no slower than the

exponential rate λn set by the Lyapunov function. However, if the states are not sufficiently

close, they may never converge to Xn because the linearization may be inaccurate.

A level set of Vn(x) is defined as {x : Vn(x) = C} for a constant C, which is the

size of the level set. These level sets are ellipsoids centered on their respective operating

points and, for each system mode, two different level sets of the corresponding Lyapunov

function will be chosen in a manner soon to be introduced. Call the larger of the two H

and the smaller h. Let the ball inscribed in H be called B with radius R, and let the ball

circumscribed about h be called b with radius r . This is done to simplify future operations.

Figure 1. An illustration of a mode with associated objects.

The condition is also imposed that ∪N
n=1bn ⊆ ∩

N
n=1Bn. With this structure in mind,

suppose that the system states initially rest at equilibrium X1 corresponding to mode 1

before the system is switched to X2. Since b1 is within B2 which is within H2, the states

will decay to b2 after an amount of time given by the time constant for mode 2, because
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they will decay to h2 by the Lyapunov local asymptotic stability, and h2 ⊆ b2. If, after this

time, the system is switched to X3, the same reasoning again ensures that the states will

successfully decay to be within b3 in a known length of time.

Figure 2. Depiction of two mode system with possible balls

With this established, and since the time constants for each mode are known, the

system will remain in ∪N
i=1Hi as long as the appropriate amount of time passes between each

switching action. This dwell time is denoted τn for mode n. Whenever the system switches

to mode n, at least τn should pass before another switching action occurs. Switching

behavior that consistently does not wait for the dwell times to pass might indicate a threat

to system stability.

3.2. DEFINING LEVEL SETS

Before calculating these dwell times, the procedure for selecting Lyapunov level sets

for each mode must be discussed. There are two criteria that influence this process. First,

as mentioned, the linear approximations used are not globally valid, which means Hn needs

to be “sufficiently close” to Xn for this approach to work. Second, the necessary dwell

time between switching actions should be as small as possible. The dwell time for a mode

depends on its time constant and the size of Hn relative to hn. As Hn and hn approach the

same size, the time required for states to decay between them is decreased. Thus, both the
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size of Hn and the size ratio of Hn to hn should be reduced, which corresponds to reducing

Rn and Rn

rn
. This must be done while satisfying the original constraint ∪N

n=1bn ⊆ ∩
N
n=1Bn.

This is a multi-objective constrained optimization problem, which in general has no absolute

solution. However, defining a function whose minimization accomplishes all objectives to

varying degrees yields a Pareto optimal solution (22).

Consider the following function.

F =
N∑

i=1
(αi)(

Ri

ri
) + γi Ri (5)

The α and γ terms above are the assigned weights of each objective. Minimizing

this function is known as scalarization, which results in a Pareto optimal solution. Adjusting

the α and γ weights adjusts the Pareto optimum. Thus, the weights are typically chosen

according to the relative importance of minimizing each term (22). This will be discussed

shortly.

3.3. DETERMINING DWELL TIMES

Computing the dwell times for each mode first requires finding the magnitudes of

Hi and hi for all i ∈ {1, 2, ..., N} using Ri and ri. For a positive-definite symmetric matrix

P in V(x) = xTPx, there exists a coordinate rotation y =Wx such that V(y) = yTEy, where

E is the diagonal matrix of eigenvalues of P. Then for level set V(y) = C, the largest and

smallest semi-principal axis lengths of the corresponding ellipsoid are, respectively,

Z =

√
C

λmin(P)
; z =

√
C

λmax(P)
. (6)

For mode n, because Bn is inscribed in Hn and bn is circumscribed about hn, Rn = z

for Hn and rn = Z for hn. If Cn is the magnitude of Hn and cn is that of hn, then

Cn = R2
nλmax(Pn); cn = r2

nλmin(Pn) (7)
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Figure 3. Ellipsoid with axis lengths

In the present case, Bn is inscribed in the larger level set chosen for mode n, and

bn is circumscribed about the smaller one. Therefore the maximum possible time to decay

from Bn to bn is the time to decay from Hn to hn given λn. Combining (3) and (7), the

maximum time τn is

τn = −λn ln
(

r2
nλmin(Pn)

R2
nλmax(Pn)

)
(8)

In this way, the dwell times for each mode can be found and considered for practi-

cality.

3.4. CHOOSING α AND γ TERMS

In order to select level sets and calculate dwell times, the α and γ terms in (5) must

be chosen. In general there is no known way to predict how the weights in a scalarization

problem will affect the Pareto optimum, and the relative "importance" of minimizing each

term may not scale evenly to the weights. In this case there are only two types of terms to

be minimized (Of the Rn and Rn

rn
forms), so αn will scale well to the relative importance of

Rn

rn
compared to similar terms, and γn will do likewise for terms of the Rn form.
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For mode n, αn is assigned according to the importance of minimizing the ratio of

Rn to rn, with the goal of minimizing τn. If mode 1 has a very large time constant, then

priority should be given to minimizing its dwell time over that of mode 2 with a small time

constant, since the system states decay much more slowly between the level sets of X1 than

for those of X2. Therefore, α1 should be bigger than α2. As such, it is natural to choose

αn = λn for mode n.

Selecting γn presents a different challenge. The reason Rn must be limited is that Xn

is not necessarily globally stable in the non-linear system. The exact region of attraction of

an equilibrium point can be difficult to determine (21), but assessing the accuracy of mode

n’s globally stable linear approximation would provide a measure of how far the non-linear

region of attraction might be trusted to extend, and this would motivate a choice of γn. If

Anx̃ is a close approximation to fn(x), then mode n is more likely to be stable for states

contained anywhere in Bn, and a larger Rn can be tolerated.

To evaluate the accuracy of the linear approximation at mode n, consider the ex-

pression for the error in the linear approximation of f(x), written

Ln(x) = Anx̃ − f(x) (9)

The quality of the approximation relates to how quickly this term expands as ‖x̃‖

increases. One way to assess this is to pick a maximum bound M for the error and attempt

to find the smallest ball centered on Xn such that, for some point x∗ on the surface of the

ball, Ln,i(x∗) = M for some ith row of Ln(x).

This can be computationally expensive, so a more efficient algorithm is needed.

This study implements a gradient ascent algorithm that, for each i, begins at Xn, evaluates

the gradient of Ln,i(x), moves in the direction of maximum increase of Ln,i(x), and evaluates

Ln,i(x) for the new point. Once a point x∗ is found such that Ln,i(x∗) ≥ M , the algorithm

returns the Euclidean distance from this point to Xn. The minimum of these distances over

i is chosen, and the inverse of this value is used as γn. Thus, both αi and γi are obtained for
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each i ∈ {1, 2, ..., N} and (5) is well defined for minimization. If these weights ultimately

produce undesirable dwell times, they can be adjusted. Example 2 demonstrates this. Figure

4 below presents the general proposed process in its entirety.

Figure 4. Algorithm flowchart

3.5. ILL-CONDITIONED SYSTEMS

Equation (6) shows that the semi-principal axes of the ellipsoids relate to the eigen-

values of P, which highlights a particular type of system as concerning. Consider a system

in which the Lyapunov function for a mode contains a P matrix with extreme variation in its

eigenvalues. In this case, the corresponding ellipsoid has some semi-principal axis lengths

that are extremely long compared to others. Then the volume of the ball inscribed in this

ellipsoid is small compared to the ellipsoid’s volume, and the volume of the circumscribed

ball is comparatively large. Such systems are common in areas such as electric machinery,

in which there are both electrical and mechanical states.

Figure 5. An ill-conditioned mode
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To demonstrate the issue, suppose that the continuous system states exist somewhere

on the surface of Bn when the system is switched to mode n. Then the system states either

intersect Hn, or they intersect some ellipsoid corresponding to a smaller level set of V(x).

The smallest level set that they might intersect is that which is inscribed in Bn, denoted Tn.

Figure 6. Ill-conditioned system with possible state locations and the T ellipsoid shown

Depending on where the states lie, then, they may need to travel all the way from

Hn to hn, or only from Tn to hn. If the minimum dwell time is found by (8) and the states

only have to travel from Tn to hn, then τn could be much greater than the actual transition

time. In this case, much time is wasted waiting on τn to pass. The level set corresponding

to Tn can be found using (7) as

R2
nλmin(Pn) (10)

This can be used to calculate the maximum possible time to decay from Tn to hn as

−λn ln
(

r2
nλmin(Pn)

R2
nλmin(Pn)

)
= −λn ln

(
r2

n

R2
n

)
(11)
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Knowing the maximum possible time to decay from Hn to hn from (8), these two

transition times can be compared. A good measure of how ill-conditioned a system is given

from the ratio of these two transition times:

Kn =
ln

(
r2
nλmin(Pn)

R2
nλmax(Pn)

)
ln

(
r2
n

R2
n

) = 1 +
ln

(
λmin(Pn)
λmax(Pn)

)
ln

(
r2
n

R2
n

) (12)

The closer Kn is to 1, the better suited the system is to analysis in the present manner.

The larger Kn is above 1 indicates the degree to which the system is ill-conditioned. For

example, if Kn = 2, then in the worst-case scenario, twice as much time as necessary is

waited when the system switches to mode n.

Analysis of (12) reveals something interesting: as rn and Rn separate and r2
n

R2
n
→ 0,

Kn → 1 even though τn → ∞. Similarly, as r2
n

R2
n
→ 1, Kn → ∞ while τn approaches its

minimum value, given by

τn,min = −λn ln
(
λmin(Pn)

λmax(Pn)

)
(13)

This shows that τ and K have an inverse relationship, which can be explicitly found:

Kn =
τn

τn + λn ln
(
λmin(Pn)
λmax(Pn)

) (14)

This helps to ease the concern that ill-conditioned systems raise. If K is very large,

then τ should be small. Therefore, even if much time is wasted waiting relative to τ, this is

likely small since τ is small. On the other hand, if τ is large, K should be small, so not very

much time is comparatively wasted by waiting for τ to pass. In practice, one must consider

both the τ and K values produced and decide whether or not they are feasible for the system

in question.
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4. EXAMPLES

4.1. BOOST CONVERTER

The procedure outlined in this study has been implemented in MATLAB. As an

example, consider the boost converter below.

Figure 7. Diagram of boost converter

Suppose that S1 switches with a duty cycle d, and that S2 switches between RL1 and

RL2. The state space averaged model of this system is given below, where u ∈ {RL1, RL2}

and depends on the configuration of S2.

©«
ÛIL

ÛVC

ª®®¬ =
©«
−

(
RcR+u(dRc+R)

L(u+Rc)

)
IL −

(
du

L(u+Rc)

)
VC

(
du

C(u+Rc)

)
IL −

(
1

C(u+Rc)

)
VC

ª®®®®®¬
(15)

Suppose that d = 0.5, R = Rc = 0.01Ω, C = 0.12mF, L = 0.95mH, RL1 = 30Ω,

and RL2 = 500Ω. Let mode 1 be given by u = RL1 and mode 2 by u = RL2. Then the

equilibrium points of the system are

X1 =
©«

26.6223A

399.3345V

ª®®¬ ; X2 =
©«

1.5998A

399.9600V

ª®®¬
The code also computes the ball sizes and minimum dwell times for each mode,

respectively.
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©«

R1

r1

R2

r2

ª®®®®®®®®¬
=

©«

26.8845

0.6173

25.6476

1.8542

ª®®®®®®®®¬
;
©«
τ1

τ2

ª®®¬ =
©«
0.1465s

1.0058s

ª®®¬
An illustration of the operating points and balls for this system is given below.
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380
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420

Figure 8. Stable operating points and balls for the boost converter system

4.2. INDUCTION MACHINE

As a non-linear example, consider a 4-pole, squirrel-cage induction motor driven by

a variable frequency drive (VFD). The state space model in the dq reference frame has five

states, which are the stator dq currents, rotor dq currents, and rotor electrical speed. The

state vector is

X =

©«

Iqs

Ids

Iqr

Idr

ωr

ª®®®®®®®®®®®®¬
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©«

ÛIqs

ÛIds

ÛIqr

ÛIdr

Ûωr

ª®®®®®®®®®®®®®¬
=

©«

−Rs Iqs−2π f Lss Ids−2π f LmIdr
Lss

−
Lm(

2π f L2
mIdr+LmRs Iqs−Lm

Lss
+Idsωr Lm−Rr Iqr−2π f Lrr Idr+Idrωr Lrr )

Lrr−L2
m

Vds+2π f Lss Iqs−Rs Ids+2π f LmIqr
Lss

−
Lm(−Iqsωr Lm+

LmRs Ids−LmVds−2π f L2
mIqr

Lss
+Lrr Iqr2π f−Iqrωr Lrr−Rr Idr )

Lrr−L2
m

Lm(
2π f L2

mIdr+LmRs Iqs−Lm
Lss

+Idsωr Lm−Rr Iqr−2π f Lrr Idr+Idrωr Lrr )

Lrr−L2
m

Lm(−Iqsωr Lm+
LmRs Ids−LmVds−2π f L2

mIqr
Lss

+Lrr Iqr2π f−Iqrωr Lrr−Rr Idr )

Lrr−L2
m

6Lm

J (Iqs Idr − Ids Iqr) −
2TL

J −
ωr B

J

ª®®®®®®®®®®®®®®®®®®®®®®®®®®¬

(16)

The inputs to the system are the line-to-neutral source voltage Vds and source frequency f ,

which are switched by the VFD. Since the rotor windings are shorted, the rotor direct and

quadrature voltages are both zero. Also, the stator quadrature voltage is assumed zero to

simplify the model. So the input vector is

U =
©«
Vds

f

ª®®¬
The state-space model of this system can be seen in (16) and has been adapted from

(23; 24). Table 1 defines each term and provides the numerical values used in this example.

These values are taken from a Baldor M3115T, 1 hp, 230 V, 60 Hz, 4-pole induction motor.

Consider three different VFD inputs:

U1 =
©«
100V

50Hz

ª®®¬ ; U2 =
©«
110V

55Hz

ª®®¬ ; U3 =
©«
120V

60Hz

ª®®¬
These inputs result in the stable operating points
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Table 1. Induction motor model symbols and values

Term Quantity Represented Numerical Value
Rs Steinmetz stator resis-

tance
5.18 Ω

Rr Referred rotor resis-
tance

4.3 Ω

Lm Magnetizing reactance 239 mH
Lss Sum of stator reactance

and Lm

251 mH

Lrr Sum of rotor reactance
and Lm

257 mH

TL Load torque onmachine 1 N·m
J Moment of inertia of ro-

tor and load
0.1 kg·m2

B Coefficient of kinetic
friction of rotor

0.001

X1 =

©«

−1.3032A

1.3902A

0.1167A

−1.3851A

355.83rad/s

ª®®®®®®®®®®®®¬
; X2 =

©«

−1.2885A

1.3857A

0.1082A

−1.3745A

324.48rad/s

ª®®®®®®®®®®®®¬

X3 =

©«

−1.2716A

1.3836A

0.0991A

−1.3653A

293.08rad/s

ª®®®®®®®®®®®®¬
,

and the resulting ball radii and dwell times are
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©«

R1

r1

R2

r2

R3

r3

ª®®®®®®®®®®®®®®®¬

=

©«

63.3775

0.5579

32.0243

31.9111

63.3129

0.6225

ª®®®®®®®®®®®®®®®¬

;

©«
τ1

τ2

τ3

ª®®®®®¬
=

©«
25.4957s

10.5922s

24.2170s

ª®®®®®¬
.

In this case, the ratio of Rn to rn is typically large, and this results in somewhat large

dwell times. If desired, the α weights of section 3.4 can be increased to reduce the dwell

times. Increasing each α weight by a factor of 10,000 gives

©«

R1

r1

R2

r2

R3

r3

ª®®®®®®®®®®®®®®®¬

=

©«

121.4222

58.7157

90.0689

90.0689

121.4707

58.6672

ª®®®®®®®®®®®®®®®¬

;

©«
τ1

τ2

τ3

ª®®®®®¬
=

©«
13.0303s

10.5814s

12.5241s

ª®®®®®¬
.

Though the radii are larger, they are not unreasonably so, and the dwell times are

roughly halved by this procedure. This demonstrates how experimenting with the α and γ

weights can help accommodate the system at hand.
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ABSTRACT

This paper presents a practical algorithm for obtaining dwell times that guarantee

the stability of switched systems with multiple stable operating points. This method is

implementable for an arbitrary switched system with potentially large numbers of states and

subsystems. After a brief relevant background, the approach is developed and its stability

shown. An analysis of the process is included, and simulations are performed on a boost

converter, microgrid system, and seven bus grid model to demonstrate its effectiveness.

Keywords: Switched systems, nonlinear systems, Lyapunov

1. INTRODUCTION

Switched systems are pervasive in engineering applications, inspiring much inves-

tigation into their stability. These systems switch their dynamics over time within a finite

set of discrete modes. Traditional techniques can assess the stability of each individual

subsystem, but they do not assure stability of the overall system under switching, because

certain switching signals may force the state trajectories into unacceptable regions.
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Many results exist to show stability under switching for systems whose modes all

converge to a shared stable operating point, as might occur when several controllers are

needed to produce a single desired behavior. In this vein, (1) presents the calculation for

a single minimum dwell time which, if elapsed between all consecutive switching actions,

guarantees stability under switching.

Also relevant is the concept of average dwell time, which ensures stability when

switching is limited on the average (2; 3). One technique produces mode-dependent average

dwell times, which require that the number of switches to a particular mode is limited on

the average of its total active time, and these are used to show global uniform exponential

stability of linear switched systems (5; 6). More recently, (4) generalized results on the

stability of slowly time-varying systems to produce average dwell times for switched linear

systems.

Other approaches to switched system stability exist as well, such as the Lyapunov

techniques discussed in (7; 11). Stability can be deduced if a Lyapunov function is found

that is common to all subsystems. When this not possible, multiple Lyapunov functions

can be used to show asymptotic stability for certain switching signals. Also, (10) develops

processes to identify the set of all switching signals that grant uniform stability. Likewise,

(9) uses multiple Lyapunov-like functions and switching frequency notions to expand the

set of known stabilizing switching signals beyond those rendered by minimum or average

dwell time methods. However, all above approaches are applicable only to systems with a

single operating point. More methods for such systems are surveyed in (12; 13).

In practice, many switched systems contain modes with their own distinct operating

points. Some work has been done to generalize the above results to such systems. One

useful concept is that of practical stability, as introduced in (14; 15). Informally, a switched

system is practically stable under a given switching signal if its states remain in a predefined

bounded set as long as the initial states are within a subset of this set. Most results

for switched systems with multiple operating points achieve something similar to practical
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stability. Theorems are derived in (14) for assessingwhether a switched system is practically

stabilizable, and the designs of two switching laws that can practically stabilize a system

are provided. This contribution is for the case in which the switching signal is controlled.

When control of the switching sequence does not exist, switching actions can be

monitored to ensure compliance with stabilizing conditions, such as dwell times. For

example, (16) outlines a method to procure a universal minimum dwell time that guarantees

trajectory convergence to a superset of the multiple system equilibria. However, the result is

somewhat analytical and difficult to apply to real world systems that may contain hundreds

of modes and equilibria, as is common in power systems. Global exponential stability of

each operating point is also assumed, which limits the reach of the result.

Another method uses set theory to find modal dwell times (where the necessary

dwell time depends on the active subsystem) that ensure that states remain restricted to a

finite region about the equilibria (17). These dwell times can limit the states to a known

admissible region (if this region is large enough). However, the sets involved can be hard to

compute, especially for high order systems. Because of this, the authors suggest computing

less ideal Lyapunov level sets for each mode that lie within the admissible region, and using

these for more conservative dwell times. However, it can be difficult to find these functions,

and yet more difficult to verify that they are contained in an arbitrary region.

An application focused method is presented in (18), which formulates a minimum

dwell time for practical stability over finite time intervals. One major drawback is that the

process is not applied to the perpetual time interval case, which is necessary for guaranteeing

sustained stability. It is also not always possible to meet the conditions of the relevant

theorems. The authors extend the results to a small power grid example in (19), which

emphasizes the applied intention.

This paper presents an algorithm for determining modal dwell times for switched

system stability that is similar in spirit to the work in (16) and (17), but is more practical

for complex systems. The achieved stability is very similar to the practical stability of
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(18), and will show that states are bounded to a finite set about the equilibria if certain

initial conditions are met. However, the stability will be granted perpetually, and the dwell

times will not depend on a considered finite time interval. This procedure is intended to be

easily applicable to many physical switched systems, and is especially developed for power

systems as in (19). Several examples are drawn from power applications.

2. BACKGROUND AND MOTIVATION

2.1. PRELIMINARIES

Consider a family of nonlinear functions F = { f j(x, u) : j ∈ J} where J is an

indexing set. Define the switched system S as

Ûx = fσ(t)(x, u), (1)

where x ∈ Rn and switching signal σ(t) is a piecewise constant function defined on (t0,∞)

that takes its values from J and indicates the system dynamics (or mode) at time t. This

structure characterizes a switched system, and each discrete jump in σ(t) between two

elements of j is known as a switching event.

For two switching events occuring at ti and ti+1, the dwell time between these events

is ti+1 − ti. This paper imposes modal dwell time restrictions on σ(t) for each mode of S.

If τj is a modal dwell time for mode j, then ti+1 − ti ≥ τj for every ti such that σ(t+i ) = j.

In other words, τj is the minimum amount of time that must pass after switching to mode j

before switching to another mode.

The type of stability achieved will be similar to the practical stability defined in (15),

so it is worth restating the formal definition here. The below definition differs only in that

it is formulated for an infinite time interval.
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Definition 1

The switched system (1) is practically stable with respect to (Ω1, Ω2, σ(t)), where Ω1,

Ω2 ⊂ R
n, Ω1 ⊂ Ω2, if x(t0) ∈ Ω1 implies x(t) ∈ Ω2 for all t ∈ [t0,∞).

This paper also makes use of an upper bound on convergence rates of Lyapunov

functions for linear systems. If

Ûx = Ax (2)

is a stable linear system, then a Lyapunov function for the system can be obtained as V(x) =

xTPx using the Lyapunov equation ATP + PA = −Q where P and Q are symmetric and

positive definite matrices. This also grants that ÛV(x) = −xTQx. Since V(x) ≤ λmax(P)‖x‖2

where λmax(P) is the largest eigenvalue of P, it can be shown that

ÛV(x) = −xTQx ≤ −λmin(Q)‖x‖2 ≤ −
λmin(Q)
λmax(P)

V(x). (3)

The solution to this ordinary differential equation is

V(x) ≤ V0 exp
(
−
λmin(Q)
λmax(P)

t
)
, (4)

which gives λ = λmax(P)
λmin(Q) as a worst-case scenario time constant for the decay of the Lyapunov

expression.

2.2. MOTIVATING ANALYSIS OF UNSTABLE SWITCHING

As both motivation and a useful analysis tool, a switching law is described here that

can cause instability in a switched system. This can indicate the susceptibility of the system

to a switching attack.
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Consider two arbitrary linear modes i and j, with Lyapunov functions Vi and Vj .

To target instability, the system can be switched between these two modes whenever one

subsystem’s Lyapunov function is maximized while the dynamics are governed by the other.

Suppose the currently active subsystem is j. The system should be switched from j to i

when

dVi

dt
=

dVi

dx̃ j

dx̃ j

dt
= (x̃T

i Pi)(A j x̃ j) = 0, (5)

so that Vi is at a critical point. To ensure this is a maximum, the second time derivative

must be negative. This condition is

d(x̃T
i Pi)(A j x̃ j)

dt
= (x̃T

i PiA j + x̃T
j AT

j PT
i )A j x̃ j < 0. (6)

The system can be switched back to mode j by the same rule, and so on. This is not

guaranteed to cause instability, but it is often effective, as Example 6.1 shows.

3. MAIN RESULT

The proposed method for obtaining dwell times that ensure system stability is

described in this section. As mentioned, it has some similarities to (16) and (17), but is

designed to be more computationally feasible as an algorithm. A thorough comparison is

made in Section 4.4.

Consider a system of the form (1). To enable a practical analysis, each subsystem is

linearized about its stable operating point. Let Xj denote the equilibrium of mode j. Then

a linear approximation of the mode is given by

Û̃x = Ajx̃j, (7)



33

where x̃j = x − Xj shifts the equilibrium point of the linearized system to the origin, and

Aj is the Jacobian of the subsystem evaluated at Xj and u. Suppose that each linearized

subsystem is stable. Then Lyapunov’s Indirect Method grants that each nonlinear subsystem

is stable for some (possibly small) neighborhood about its equilibrium. Next, a Lyapunov

function Vj is determined for each j ∈ J as outlined in section 2 with corresponding time

constant λ j . As long as x is sufficiently close to Xj in mode j, it will converge at a rate

bounded above by the slowest possible decay rate of Vj , which is λ j . If an η is known such

that ÛVj(x) ≤ −ηV(x) and η > λmin(Q)
λmax(P) , λ j can be taken as 1

η instead.

A level set of V(x) of size C is {x : V(x) = C}. For Lyapunov functions of the form

V(x) = xTPx, these level sets are ellipsoids centered on their respective operating points.

The algorithm proposed here selects two such level sets for each system mode in a manner

soon to be introduced. Call the larger of these H of size C and the smaller h of size c. Let

the ball inscribed in H be called B with radius R, and let the ball circumscribed about h be

called b with radius r . This will simplify future operations.

Figure 1. Depiction of a mode with associated objects

For modes j1 and j2, it is required that b j1 ⊆ B j2 for all j1, j2 ∈ J. This provides the

structure to prove the critical result, which states that (1) is practically stable forΩ1 = ∪ j b j ,

Ω2 = ∪ j Hj , and σ(t) satisfying a modal dwell time constraint.

Theorem 3.1. Consider the switched system (1) with σ(t) obeying modal dwell times

τj = −λ j ln
(

c j

Cj

)
(8)
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for each j ∈ J. Let ti denote a switching time for i ∈ N. If x(t0) ∈ bσ(t−0 ), then x(t) ∈ ∪ j Hj

for all t ≥ t0.

Proof. If x(t0) ∈ bσ(t−0 ), then x(t0) ∈ Hσ(t+0 )
because bσ(t−0 ) ⊆ Bσ(t+0 ) ⊆ Hσ(t+0 )

. SoVσ(t+0 )(t0) ≤

Cσ(t+0 )
, and x(t) ∈ Hσ(t+0 )

for all t ∈ [t0, t1), since ÛVσ(t+0 ) is negative definite. Thus x(t) ∈ ∪J Hj

for t ∈ (t0, t1). Also,

Vσ(t+0 )(t1) ≤ Vσ(t+0 )(t0)e
−

t1−t0
λ
σ(t+0 )

≤ Vσ(t+0 )(t0)e
−

τ
σ(t+0 )
λ
σ(t+0 ) = Vσ(t+0 )(t0)

cσ(t+0 )
Cσ(t+0 )

≤ cσ(t+0 ),

so x(t1) ∈ hσ(t−1 ), which implies that x(t1) ∈ ∪J Hj and x(t1) ∈ bσ(t−1 ). By induction,

x(t) ∈ ∪ j Hj for all t ≥ t0. �

Remark 1. If certain transitions between system modes are not possible, then the require-

ment that b j1 ⊆ B j2 for all j1, j2 ∈ J can be relaxed. If the system cannot switch from j1 to

j2, then B j2 needn’t contain b j1 and the above proof will still hold because of the transition

restriction. Examples 6.1 and 6.3 explore relaxation of this requirement.

4. PRACTICAL APPLICATION

Stability has been validated, but many aspects of the procedure remain open to

choice. The next sections describe how to practically select balls B j and b j for all j ∈ J

and calculate the values of Cj and c j from Rj and r j in order to obtain τj by the formula in

equation 8.

4.1. SELECTING BALL SIZES

Fig. 2 illustrates a scenario with four modes and one set of choices for their corre-

sponding balls. Two considerations should influence the selection of B j and b j for mode j.

First, the nonlinear subsystems are only guaranteed locally stable by the Lyapunov analysis.
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Therefore the size of B j should be as small as possible so that states are contained as close

as possible to Xj. Also, the dwell time τj is dependent on the ratio cj
Cj
, which is directly

proportional to rj
Rj
. Minimizing Rj

rj
makes this dwell time as small as possible.

Therefore, it is desirable to minimize both Rj

rj
and Rj for all j ∈ J while maintaining

the original condition that b j1 ⊆ B j2 for all j1, j2 ∈ J. This is a constrained multi-objective

optimization problem, and a Pareto optimal solution can be obtained by minimizing a

weighted sum of the objectives, written

F =
N∑

i=1
αi

Ri

ri
+ γi Ri (9)

for a system with N modes. The αi and γi weight coefficients have some flexibility and can

be tuned to achieve desired dwell times or ball sizes, but one way to initially select them is

to scale them to the relative importance of minimizing their terms over the others.

Figure 2. Example collection of four modes with balls

Increasing α j is related to reducing τj , which is directly proportional to time constant

λ j . Modes with large time constants will likely have large dwell times, so reducing these is

prioritized over reducing the comparatively small dwell times of other modes. This gives

α j = λ j as a natural choice, since a greater λ implies a greater minimization priority.
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The role of γ j is to limit Rj so that B j is contained in the region about Xj for

which local stability holds. In application, any practical knowledge of system behavior can

help an engineer to evaluate whether B j is in a stable region for each j, but this cannot be

guaranteed in general. However, confidence increases if the tolerance in Rj depends on

the accuracy of the linear approximation of about Xj. For a highly nonlinear mode with a

poor approximation, Rj should be restricted as much as possible, as local stability cannot

be trusted to extend very far.

One way to evaluate the quality of the approximation about Xj is to consider its

error, written

Ej(x) = Ajx̃j − fj(x). (10)

The accuracy of the approximation is determined by how quickly Ej increases with ‖x̃j‖.

For an arbitrary bound EM , determining the smallest ‖x̃j‖ such that Ej(x) = EM (call this

x̃M, j) provides a serviceable measure of the quality of the linear approximation of subsystem

j compared to the others. This value can be expensive to compute exactly, but a gradient

descent algorithm performs well enough while offering an efficient solution. Since a small

x̃M, j implies a poor approximation and thus a high minimization priority, γ j =
1

x̃M, j
is a

suitable choice.

4.2. CALCULATION OF DWELL TIMES

Determining τj from equation 8 requires knowledge of Cj and c j . To find these, see

that for Vj(x̃) = x̃TPjx̃ there exists a coordinate rotation y =Mjx̃ for an orthogonal Mj such

that Vj(y) = yTLjy where Lj is diagonal, since Pj is symmetric. This gives the largest and

smallest semi-principal axis lengths of the ellipsoid V(y) = C as

Z =

√
C

λmin(P)
(11)
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Figure 3. Illustration of procedure

and

z =

√
C

λmax(P)
(12)

respectively. Since B j is inscribed in Hj and b j is circumscribed about h j , Rj = zHj and

r j = Zhj . Equations 11 and 12 then give Cj and c j as

Cj = R2
j λmax(Pj), (13)

c j = r2
j λmin(Pj), (14)

and τj can be found from equation (8). If unfavorable dwell times are produced after running

this procedure for each j ∈ J, the α weights may be adjusted in an effort to improve them.

Figure 3 graphically depicts the algorithm developed in this paper.
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4.3. ILL-CONDITIONED SYSTEMS

In some systems, certain states converge much faster than others. This is commonly

the case in electric machinery, as mechanical states are much slower than electrical.When

this occurs, Lyapunov functions of the linearized system have more extreme variation in the

eigenvalues of theirPmatrices, which causes greater skew in their elliptical level sets. These

are called ill-conditioned systems, and they can yield dwell times that are too conservative.

Figure 4. An ill-conditioned mode

Consider the two dimensional ill-conditioned switched system illustrated in Figure

4 and suppose it is switched to mode j at t = 0. Assuming the worst case, x̃j(0) is on the

surface of B j . In this case, if x̃j(0) is in the direction along the minor axis of Hj , then it is on

the surface of Hj , and the dwell time given by (8) is appropriate. If, however, it is along the

major axis of Hj , it is on the surface of a much smaller level set of Vj , which is labeled Tj in

the figure. In this case the required dwell time would be much smaller, because the Cj term

in (8) could be replaced by the much smaller magnitude of Tj . The more ill-conditioned the

system, the greater this difference will be, and the dwell time given by (8) may be far too

conservative in these cases.

Mathematically, the magnitude of Tj can be found by techniques in section 4.2 to be

R2
j λmin(Pj). Substitution into (8) gives the minimum necessary dwell time as

τj,min = −λ j ln

(
r2

j λmin(Pj)

R2
j λmin(Pj)

)
= −λ j ln

(
r2

j

R2
j

)
. (15)

The ratio of τj,min to the dwell time by (8) provides a measure of how ill-conditioned

a subsystem is, which can be written
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K j =

ln
(

r2
j λmin(Pj)

R2
j λmax(Pj)

)
ln

(
r2
j

R2
j

) = 1 +
ln

(
λmin(Pj)
λmax(Pj)

)
ln

(
r2
j

R2
j

) . (16)

A greater K j implies a greater degree of ill-condition in subsystem j. For example,

if K j = 2 and system is switches to mode j when x̃j(0) is on the surface of Tj , the dwell time

by (8) causes twice as much time than necessary to pass before more switching can occur.

Despite this, (16) allays concern to some extent, because as
r2
j

R2
j

→ 0, K j → 1 (even

though τj →∞), and as
r2
j

R2
j

→ 1, K j →∞, but τj approaches its lower bound of

τj = −λ j ln
(
λmin(Pj)

λmax(Pj)

)
. (17)

So K j and τj are inversely related. In fact,

K j =
τj

τj + λ j ln
(
λmin(Pj)
λmax(Pj)

) (18)

by (8) and (16). Thus, as K j increases, τj decreases, and even though more time might

be wasted relative to τj , this dwell time may be small enough that the wasted time is

insignificant. On the other hand, as τj increases, K j decreases even for ill-conditioned

systems, implying that even though dwell time may be unavoidably long, little time will be

wasted relative to this. This tempers the severity of the issue engendered by ill-conditioned

systems.

4.4. DISSCUSSION AND COMPARISON

An evaluation of the strengths and weaknesses of the proposed method is now

presented, along with a comparison to the existing approach of (16).

To begin, there are several underlying assumptions required for the success of the

proposed method:
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1. It is assumed that the linear model of the nonlinear switched system is “close enough,"

so that each ball B j is contained in the locally stable region of the nonlinear mode j.

2. The dwell times were developed with the worst-case convergence rates of the Lya-

punov functions for the linear system approximations, so it is assumed that the decay

rates of these functions effectively approximate actual state convergence rates in the

true nonlinear system.

In practice, engineers can attempt to analyze whether states in B j will converge to

Xj to generate confidence in the validity of the first assumption. Also, for many realistic and

highly complex nonlinear systems, these assumptions are essentially necessary, as direct

nonlinear stability proofs are nearly unattainable. The assumptions make obtaining dwell

times practical.

This implementation advantage is highlighted by analysis of (16), which develops a

method for procuring dwell times that does not rely on these assumptions but has similar

structure to what has been proposed here. While it is failsafe, it is not always practical for

high order systems.

The method of (16) constructs a connected set L which is the union of Lyapunov

level sets over all subsystems, just like ∪J Hj in this paper. It then calculates a universal

minimum dwell time σ which guarantees that the states will remain in L after finite time,

regardless of the initial location of states. While this is an advantage, it requires assuming

that each subsystem is globally exponentially stable. This is a luxury that is rarely present

in real world systems. To obtain σ, (16) creates a set N that is analogous to ∪J b j in this

paper. There are then two intermediate quantities that must be determined:

ξ j = max
x∈N

Vj(x) (19)

µ = max
x<N

Vi(x)
Vj(x)

; i, j ∈ J (20)
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The former term is analogous to Cj , because Vj(x) < Cj for all x ∈ ∪J b j . The latter

is used to ensure that any initial state values will converge to L under σ. In the absence

of analytical insight, computing (19) requires solving N many constrained optimization

problems, and computing (20) requires N(N − 1) many more for a system with N modes.

By contrast, the presented approach requires solving only one such problem to select

ball sizes. The computational advantage is clear, especially in higher order systems with

numerous modes. Once all quantities have been calculated in (16), σ is found as

σ =
log(µ)
ε

, (21)

where ε is a positive number such that ÛVj ≤ −εVj for all j. It can be considered that

1
ε
= max

j∈J
λ j (22)

since λ j is the smallest value such that ÛVj ≤ −
Vj

λj
. Therefore, σ ≥ τj for all j, unless µ

compensates for the conservatism introduced by ε .

As one final point of analysis, because the convergence rate in (4) was selected in

a worst-case manner, it can sometimes be too conservative to be practical for minimum

dwell times. In reality, the system states and Lyapunov functions sometimes converge much

faster than this upper bound. When this occurs, an alternative method that obtains shorter

dwell times may be necessary. Such a method is presented in the next section. It relies on

one further assumption, which weakens its mathematical certainty, but this sacrifice may

be required for practicality.
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5. DWELL TIMES FROM SETTLING TIMES

If the rate of convergence in (4) is impractically conservative for a particular system,

more practical dwell times can be obtained by a slight alteration of the outlined approach.

Instead of computing dwell times from the worst-case Lyapunov convergence rates, they

can be procured from the system settling time approximations. For a linearized mode of

the form (7), this approximation is given by

ts =
log(ρ)
|ζ j |

, (23)

where ζ j is the real part of the dominant eigenvalue of Aj, and ρ is the settling percent. This

approximates the time that is required for ‖x̃ j ‖ to converge such that ‖x̃ j(t0+ts)‖ ≤ ρ‖x̃ j(t0)‖,

where x̃ j(t0) is an initial state location.

With this in mind, B j and b j for each mode can be determined almost exactly as

before, except that each weight α j can be chosen as 1
|ζj |

, because dwell times will be found

from settling times which are made larger as 1
|ζj |

increases. Then, assuming the system

states are within B j upon switching to mode j, the worst-case initial value of ‖x̃ j ‖ is Rj .

Thus, ρ j =
rj
Rj

ensures that the time given by (23) can be used as a minimum dwell time for

‖x̃ j ‖ to converge within r j of X j . From this the result of Theorem 3.1 can be proven just as

before. So, alternative dwell times can be computed as

τj =
log

(
rj
Rj

)
|ζ j |

. (24)

This approach may dramatically reduce dwell times, but its disadvantage is that

an additional approximation is necessary, granting less mathematical certainty that the

system will always be stable under the resulting dwell times. However, if the settling time
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approximation is close enough, then the results of Theorem 3.1 can still be expected to hold.

To maximize confidence, it is best to use equation (8) as much as practical, and then to use

(24) for any remaining modes.

6. SIMULATIONS

6.1. BOOST CONVERTER

A MATLAB script was created to simulate the proposed methods for various

switched systems. As an initial example, consider a boost converter as a switched sys-

tem, where switching takes place in the load. The equivalent circuit is pictured in Figure

5.

Figure 5. Boost converter circuit

The state-space model for this system can be derived as

©«
ÛIL

ÛVC

ª®®¬ =
©«
−

(
RcR+u(DRc+R)

L(u+Rc)

)
IL −

(
Du

L(u+Rc)

)
VC

(
Du

C(u+Rc)

)
IL −

(
1

C(u+Rc)

)
VC

ª®®®®®¬
, (25)

where D is the duty cycle and u is the input that is discretely switched between RL1 and

RL2. In this simulation, system parameters are chosen as D = 0.5, R = Rc = 0.01Ω,

C = 0.12mF, L = 0.95mH, RL1 = 30Ω, and RL2 = 500Ω. If u = RL1 corresponds to mode

1 and u = RL2 corresponds to mode 2, the equilibrium points are computed as



44

X1 =
©«

21.6223 A

399.3345 V

ª®®¬ ; X2 =
©«

1.5998 A

399.9600 V

ª®®¬ ,
and the ball sizes and minimum dwell times by Lyapunov convergence rates are

©«

R1

r1

R2

r2

ª®®®®®®®®¬
=

©«

26.8845

0.6173

25.6476

1.8542

ª®®®®®®®®¬
;
©«
τ1

τ2

ª®®¬ =
©«
0.1465 s

1.0058 s

ª®®¬ .
Figure 6 shows the behavior of the system over 10 seconds if it is switched as quickly

as possible (as soon as each minimum dwell time passes). The black circles depicted are

b1 and b2. In addition to overall system stability, it can be seen that the system states are in

their appropriate ball whenever the system switches.

Figure 6. Switched boost converter under minimum dwell times

While the system is stable under its minimum dwell times, it is certainly not so for all

switched signals. Figure 7 shows system behavior under the state-dependent “worst-case”

switching of section 2.2. Though it is somewhat difficult to tell, the voltage in Figure 7

becomes as low as Vc = −8.0006V . In an actual boost converter, this negative voltage
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would destroy the converter, effectively rendering such behavior unstable. The largest time

delay between any two switching actions causing this instability was 0.0021s, which greatly

violates the minimum dwell times found for the system.

Figure 7. Unstable behavior without minimum dwell times

To demonstrate the effective application of Remark (1), consider the introduction of

a third mode, with RL1 = 10Ω, RL2 = 100Ω, and RL3 = 1000Ω. Direct implementation of

the stability result yields

©«

R1

r1

R2

r2

R3

r3

ª®®®®®®®®®®®®®®®¬

=

©«

82.6838

0.4671

72.0956

11.0553

79.2939

3.8570

ª®®®®®®®®®®®®®®®¬

;

©«
τ1

τ2

τ3

ª®®®®®¬
=

©«
0.0674 s

1.4998 s

0.2617 s

ª®®®®®¬
.

However, if it is imposed that RL1 cannot switch directly to RL3 and vice versa,

conditions can be relaxed according to Remark (1) to yield
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©«

R1

r1

R2

r2

R3

r3

ª®®®®®®®®®®®®®®®¬

=

©«

72.9002

0.6175

72.2459

1.2718

8.4701

8.4701

ª®®®®®®®®®®®®®®®¬

;

©«
τ1

τ2

τ3

ª®®®®®¬
=

©«
0.0631 s

0.4564 s

0.3824 s

ª®®®®®¬
.

The average of the dwell times in the first case was 0.6097s compared to 0.3006s

in the second. Also, the average large ball size was 78.0244 in the first case compared to

51.2054 in the second. This is a 50.7% decrease in the average of the dwell times and a

34.37% reduction in average large ball size, so Remark (1) grants considerable gains in this

system.

6.2. MICROGRID

As a more complex but practical example, consider the two-inverter microgrid

system from (25). This system has 35 states, and switching is governed by the load on the

microgrid. All parameter values used in this simulation are the same as in (25). The load

consists of two parallel impedances, one of which is held constant at 25Ω and 7.5 mHwhile

the other switches between the following inputs:

©«
u1

u2

u3

ª®®®®®¬
=

©«
25Ω, 15 mH

12.5Ω, 5.6 mH

50Ω, 25 mH

ª®®®®®¬
. (26)

Computing the dwell times by (8) produces
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©«
τ1

τ2

τ3

ª®®®®®¬
=

©«
2.6054 × 108 s

2.6293 × 108 s

2.5981 × 108 s

ª®®®®®¬
, (27)

and these are completely impractical. Therefore, the dwell times are alternatively calculated

by (24), resulting in

©«

R1

r1

R2

r2

R3

r3

ª®®®®®®®®®®®®®®®¬

=

©«

317.7769

168.3885

471.4169

9.7486

467.6587

13.5068

ª®®®®®®®®®®®®®®®¬

;

©«
τ1

τ2

τ3

ª®®®®®¬
=

©«
0.2701 s

1.5892 s

1.4342 s

ª®®®®®¬
.

These dwell times are easily implementable. A simulation was run that switches to

a randomly selected destination mode immediately once the current minimum dwell time

passes. The state norms are shown in Figure 4. Each switching instance is marked by a

dotted vertical line, while the dotted horizontal lines represent the thresholds r j that ‖x̃ j ‖

must reach before the next switching instance. The figure shows that ‖x̃ j ‖ reaches this goal

each time, and the system is thus stable for the duration of the simulation.

6.3. POWER GRID

This example will apply the settling time method to a larger scale grid model. Con-

sider a power system with seven buses connected to an isochronous generator, droop gen-

erator, and five microgrids (SST’s). All nodes are interconnected by lines with impedances

as shown in Figure 9. Each bus is also connected to a load, and a change in any of the loads

constitutes a system switching event.
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Figure 8. Microgrid under minimum dwell times

Figure 9. Seven node power grid

The five SST’s are each modeled by the equations in (25), and the isochronous and

droop generator equations were developed from models in (23) and (24). These together

with Kirchhoff equations for the loads and lines total 115 equations that comprise the state

space system model.

In this simulation, each load was given a default value of 10 Ω and 1.5 mH. Three

buses could switch to different loads: the load on bus SST 1 could switch to 20 Ω and 0.75

mH, bus SST 2 could switch to 100Ω and 1.5 mH, and the droop generator bus could switch

to 50 Ω and 2.5 mH. All eight resulting combinations were considered as valid switching

configurations.
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In practice, two loads could not switch at the same time, so a switch could not

occur between modes with more than one load discrepancy. Therefore, Remark (1) can be

applied to relax the requirements on ball sizes. This example was run with and without this

constraint relaxation. In the first case, large ball sizes and dwell times were found as

©«

R1

R2

R3

R4

R5

R6

R7

R8

ª®®®®®®®®®®®®®®®®®®®®®®¬

=

©«

212.9615

176.2163

212.8434

179.574

176.1039

211.1805

179.6849

211.3002

ª®®®®®®®®®®®®®®®®®®®®®®¬

;

©«

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8

ª®®®®®®®®®®®®®®®®®®®®®®¬

=

©«

8.6924 s

4.2189 s

8.6902 s

4.7178 s

4.2177 s

8.4272 s

4.7184 s

8.4298 s

ª®®®®®®®®®®®®®®®®®®®®®®¬

.

After relaxing restrictions, these became

©«

R1

R2

R3

R4

R5

R6

R7

R8

ª®®®®®®®®®®®®®®®®®®®®®®¬

=

©«

211.4528

174.7076

210.8302

191.1791

174.0907

201.1402

172.3609

197.0794

ª®®®®®®®®®®®®®®®®®®®®®®¬

;

©«

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8

ª®®®®®®®®®®®®®®®®®®®®®®¬

=

©«

6.9756 s

4.7876 s

9.7885 s

5.525 s

4.0645 s

8.1642 s

4.4379 s

7.9006 s

ª®®®®®®®®®®®®®®®®®®®®®®¬

.
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The average of the dwell times in the first case is 6.51s compared to 6.4555s in the second,

and the average of the first large ball sizes was 194.9831 compared to 191.6051 in the second

case. Both averages dropped only slightly due to the relaxed conditions. The amount of

benefit achieved by Remark (1) is entirely dependent on the particular system and modes,

as shown between this example and example 6.1.

7. CONCLUSION

This paper developed a practical method for ensuring the stability of switched

systemswithmultiple equilibria usingmodal dwell times fromLyapunov functions. Efficacy

was demonstratedwith examples drawn frompower systems and electronics. The limitations

of thismethod include conservatism in the Lyapunov functionmethod, and some uncertainty

due to approximation in the settling time technique. However, both possess the advantage

of simple applicability and ease of algorithmic implementation. This was designed so that

the method would be attractive and helpful to practicing control engineers. To further

applicability, future work could extend this method to the case in which the set of possible

subsystems is not countable, but instead restricted by some variable parameter. This

extension might provide a better model for real world systems in which all potential modes

aren’t exactly known, but the general range of equilibria is.
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SECTION

3. SUMMARY AND CONCLUSIONS

This thesis develops and demonstrates a practical method for certifying the stabil-

ity of switched systems with multiple operating points. The approach utilizes Lyapunov

function convergence rates of linearized subsystems to procure dwell times and restrict

admissible switching signals. The design is practical and straightforward, and is intended

for use in power system stability and security. Some assumptions were made to weaken

conservatism, such as linearization and the use of settling time approximations. However,

these concessions are often critical in complex real-world applications, as the full nonlinear

analysis of an intricate Smart Grid is a formidable task.

Two compelling areas for future work exist, and both are in progress. First, a model

for switching a microgrid between islanded and grid-tied configurations should be created

and analyzed with the proposed method. This thesis primarily considered load variations

as switching actions, but microgrid switching motivated much of this study and should be

examined in detail. Second, in many practical cases prior knowledge about the precise

system modes may not exist. For example, in the case of load switches on the power grid,

an engineer may not know exactly which values the load might take. Instead, the general

range of expected load values might be available. In such cases it is more accurate to view

the switched system as having an uncountable set of possible subsystems that are limited by

some bounded parameter. Since uncountable dwell times cannot be generated, the proposed

method should be tailored to this case.

Some work has been completed in this regard, which may be detailed in the future.

For a general description, the proposed adaptation is as follows. First, Latin Hypercube

sampling can be used to sample the resulting equilibria from a representative range of the
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bounded input parameters (such as the loads on a power grid). The geometric center of

these operating points can be found, and a large ball can be chosen that contains all samples.

Several calculations must be made online. Upon a switching action, the new operating point

must be computed. Also, the largest ball that is contained in the first ball and centered on

the new operating point must be found. Using the initial location of states upon switching,

a settling time can be calculated that ensures the states are within this ball and thus are

within the large ball after the dwell time has passed. This structure will ensure that states

are always in this large ball upon switching actions.

Work has been done to test this idea. A MATLAB script was created to execute this

algorithm on the boost converter model. Here, the load could take any value from 10 Ω

to 100 Ω. The system was switched to a new random subsystem as soon as the calculated

dwell time passed. The output is displayed in Figure 3.1.

Figure 3.1. Boost converter switching with unknown modes

The black dashed line is the radius of the large ball, and the y-axis depicts the norm

of the states from the center of the ball. The oscillations encountered upon switching reveal

the spiraling of states about new equilibrium points, which appears as oscillations from the

perspective of the geometric center. Note that the states are within the large ball upon every



55

switching action. This will bound the states to the union of the largest possible Lyapunov

level sets within the ball over all modes. While this shows promise, work remains to be

done to formalize the process and produce cleaner simulations.

Ultimately, this thesis presented an algorithm intended to protect switched systems

against instability caused by switching, especially for systems that are susceptible to such

attacks like the Smart Grid. While work is left to be done, the author hopes that the ideas

in this thesis will be applied towards the stability and security of switched systems in their

many contexts.
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APPENDIX

MATLAB SCRIPT

This Appendix contains the MATLAB code written to perform the algorithms

detailed in this thesis.

Main. This code serves to synthesize all subprocesses.

%Main

c l c

c l e a r v a r s

%%

% The on ly i n p u t s a r e a l l t h e sys tem dynamics from fxu .m,

% and t h e i n p u t ma t r ix ,

% U, which d e f i n e s t h e sys tem modes . The U ma t r i x shou l d

% have an i n p u t go ing down a column , wi th t h e number

% of columns c o r r e s p o n d i n g t o t h e d i s c r e t e number o f

% i n p u t s ( and t h u s modes ) .

dim = 2 ; %Dimension o f sys tem

U = [ 3 0 , 5 0 0 ] ; %Boos t Conve r t e r

[A, gam , modes ] = resgamv2 (U, dim ) ;

% Columns of ’modes ’ a r e o p e r a t i n g po i n t s ,

% number o f rows i s t h e d imens ion . A i s an a r r a y where A{ i }

% i s t h e l i n e a r i z a t i o n ma t r i x o f t h e i t h mode .
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%%

%Get t h e number o f modes

m = l e n g t h ( modes ( 1 , : ) ) ;

%%

% Thi s s e c t i o n s e t s up t h e pa t h ma t r ix , Mark . Tha t i s , t h i s

% ma t r i x shows whe the r o r no t a p a t h e x i s t s from mode x t o

% mode y . I f t h e r e i s no pa t h from x t o y , t h en t h e b ig

% b a l l o f x mustn ’ t c o n t a i n t h e sma l l o f y , and so we can

% use t h a t i n f o t o t a i l o r our c o n s t r a i n t s t o t h e problem .

% Mark ( 1 , 3 ) = 0 imp l i e s t h a t t h e r e i s no pa t h from mode 1 .

% to mode 3 .

Mark = ones ( [m,m] ) ;

%%

% We now need t o o b t a i n t h e P ma t r i c e s o f t h e Lyapunov

% fun c t i o n , a s we l l a s t h e min and max e i g e n v a l u e s f o r

% each P ma t r i x . We o b t a i n t h e s e and pu t a l l o f t h e

% i n f o rm a t i o n i n a r r a y s . We a l s o d e f i n e our a l p h a we i gh t s

% ( t o be used l a t e r ) from t h e t ime c o n s t a n t s from t h e

% Lyapunov ma t r i c e s P and Q.

eigmax = z e r o s ( 1 ,m) ;

e igmin = z e r o s ( 1 ,m) ;

t c = z e r o s ( 1 ,m) ;



58

f o r i = 1 :m

[ eigmax ( i ) , e igmin ( i ) , t c ( i ) ] = r e sw e i g h t s (A{ i } ) ;

end

%%

% The f u n c t i o n below use s a l l o f t h e i n f o rm a t i o n found so

% f a r t o d e t e rm i n e t h e op t ima l s i z e s o f t h e b a l l s f o r each

% mode . I t needs t o know t h e o p e r a t i n g po i n t s , a l p h a and

% gamma weigh t s , and t h e pa t h ma t r i x .

[ r a d i i ] = r e s b a l l s ( modes , t c , gam , Mark ) ;

%%

% Now we t a k e a l l o f t h e r a d i i o f t h e b a l l s a l ong wi th t h e

% e i g e n v a l u e s o b t a i n e d b e f o r e t o t r a n s l a t e back t o t h e

% s i z e s o f t h e lyapunov l e v e l s e t s . From he r e one can

% check t h e v a l i d i t y o f t h e b a l l s i z e s .

[ b i g l e v s , l i t t l e l e v s ,K] =

. . . r e s l e v s e t s ( r a d i i , e igmin , eigmax ,m) ;

% F i n a l l y , t h e dwe l l t ime s a r e c a l c u l a t e d i n t h e

% f u n c t i o n below .

[ w a i t t im e s ] = r e s t im e s ( b i g l e v s , l i t t l e l e v s , t c ,m) ;

modes

wa i t t im e s
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% end

Dynamics. This function contains all the dynamics of the switched system. The islanded

microgrid model is shown here as an example.

f u n c t i o n f = fxu ( x , u )

%%

% Mic rog r i d ex t ended model , 2 i n v e r t e r s , i s l a n d e d .

% Cons t a n t v a l u e s

kpd = 0 . 5 ;

kpq = 0 . 5 ;

k i d = 25 ;

k i q = 25 ;

kpcd = 1 ;

kpcq = 1 ;

k i c d = 100 ;

k i c q = 100 ;

kpPLL = 0 . 2 5 ;

kiPLL = 2 ;

Lf = 0 . 0 0 42 ;

Lc = 0 . 0 0 05 ;

Cf = 0 . 000015 ;

omegac = 5 0 . 2 6 ;

omegacPLL = 7853 . 9 8 ;

m = 0 . 0 0 1 ;

rn = 1000 ;

r l i n e = 0 . 1 5 ;
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r f = 0 . 5 ;

r c = . 0 9 ;

Rd = 2 . 0 2 5 ;

omegan = 377 ;

n = . 0 0 1 ;

VOQN = 85 ;

L l i n e = . 0 0 0 4 ;

% S t a t e a s s i gnmen t

P1 = x ( 1 ) ;

Q1 = x ( 2 ) ;

vodf1 = x ( 3 ) ;

phiPLL1 = x ( 4 ) ;

ph id1 = x ( 5 ) ;

ph iq1 = x ( 6 ) ;

gamd1 = x ( 7 ) ;

gamq1 = x ( 8 ) ;

i l d 1 = x ( 9 ) ;

i l q 1 = x ( 1 0 ) ;

i od1 = x ( 1 1 ) ;

i oq1 = x ( 1 2 ) ;

vod1 = x ( 1 3 ) ;

voq1 = x ( 1 4 ) ;

P2 = x ( 1 5 ) ;

Q2 = x ( 1 6 ) ;

vodf2 = x ( 1 7 ) ;

phiPLL2 = x ( 1 8 ) ;
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ph id2 = x ( 1 9 ) ;

ph iq2 = x ( 2 0 ) ;

gamd2 = x ( 2 1 ) ;

gamq2 = x ( 2 2 ) ;

i l d 2 = x ( 2 3 ) ;

i l q 2 = x ( 2 4 ) ;

i od2 = x ( 2 5 ) ;

i oq2 = x ( 2 6 ) ;

vod2 = x ( 2 7 ) ;

voq2 = x ( 2 8 ) ;

i l o a d d 1 = x ( 2 9 ) ;

i l o a d q 1 = x ( 3 0 ) ;

i l o a d d 2 = x ( 3 1 ) ;

i l o a d q 2 = x ( 3 2 ) ;

i l i n e d = x ( 3 3 ) ;

i l i n e q = x ( 3 4 ) ;

d e l t 2 = x ( 3 5 ) ;

% I n pu t a s s i gnmen t

Rload1 = u ( 1 ) ;

Lload1 = u ( 2 ) ;

Rload2 = u ( 3 ) ;

Lload2 = u ( 4 ) ;

% I n t e rm e d i a t e v a r i a b l e s

vbD1 = rn ∗ ( i od1 − i l i n e d − i l o a d d 1 ) ;

vbQ1 = rn ∗ ( i oq1 − i l i n e q − i l o a d q 1 ) ;
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vbD2 = rn ∗ ( ( i od2 ∗ cos ( d e l t 2 )+ ioq2 ∗ s i n ( d e l t 2 ) ) + i l i n e d

. . . − i l o a d d 2 ) ;

vbQ2 = rn ∗ ( ( i oq2 ∗ cos ( d e l t 2 )− i od2 ∗ s i n ( d e l t 2 ) ) + i l i n e q

. . . − i l o a d q 2 ) ;

vbd1 = vbD1 ;

vbq1 = vbQ1 ;

vbd2 = vbD2∗ cos ( d e l t 2 ) − vbQ2∗ s i n ( d e l t 2 ) ;

vbq2 = vbD2∗ s i n ( d e l t 2 ) + vbQ2∗ cos ( d e l t 2 ) ;

% Dynamics

f ( 1 ) = −P1∗omegac + 1 .5∗ omegac ∗ ( vod1∗ i od1 + voq1∗ i oq1 ) ;

f ( 2 ) = −Q1∗omegac + 1 .5∗ omegac ∗ ( voq1∗ i od1 − vod1∗ i oq1 ) ;

f ( 3 ) = omegacPLL∗vod1 − omegacPLL∗ vodf1 ;

f ( 4 ) = −vodf1 ;

f ( 5 ) = 377 − kpPLL∗ vodf1 + kiPLL∗phiPLL1 − omegan + m∗P1 ;

f ( 6 ) = VOQN − n∗Q1 − voq1 ;

f ( 7 ) = k id ∗ ph id1 + kpd ∗ (377 − kpPLL∗ vodf1 . . .

+ kiPLL∗phiPLL1 − omegan + m∗P1)− i l d 1 ;

f ( 8 ) = k iq ∗ ph iq1 + kpq ∗ (VOQN − n∗Q1 − voq1 ) − i l q 1 ;

f ( 9 ) = ( 1 / Lf )∗( − r f ∗ i l d 1 − omegan∗Lf∗ i l q 1 + k i cd ∗gamd1 + . . .

kpcd ∗ ( k i d ∗ ph id1 + kpd ∗ (377 − kpPLL∗ vodf1 + . . .

kiPLL∗phiPLL1 − omegan + m∗P1)− i l d 1 ) . . .

− vod1 ) + (377 − kpPLL∗ vodf1 + . . .

kiPLL∗phiPLL1 )∗ i l q 1 ;

f ( 1 0 ) = ( 1 / Lf )∗( − r f ∗ i l q 1 + omegan∗Lf∗ i l d 1 + k i cq ∗gamq1 + . . .

kpcq ∗ ( k i q ∗ ph iq1 + kpq ∗ (VOQN − n∗Q1 − voq1 ) − i l q 1 ) − . . .

voq1 ) − (377 − kpPLL∗ vodf1 + kiPLL∗phiPLL1 )∗ i l d 1 ;
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f ( 1 1 ) = ( 1 / Lc )∗( − r c ∗ i od1 + vod1 − vbd1 ) + ( 3 7 7 . . .

− kpPLL∗ vodf1 + kiPLL∗phiPLL1 )∗ i oq1 ;

f ( 1 2 ) = ( 1 / Lc )∗( − r c ∗ i oq1 + voq1 − vbq1 ) − . . .

(377 − kpPLL∗ vodf1 + kiPLL∗phiPLL1 )∗ i od1 ;

f ( 1 3 ) = ( 1 / Cf )∗ ( i l d 1 − i od1 ) + (377 − kpPLL∗ vodf1 + . . .

kiPLL∗phiPLL1 )∗ voq1 + Rd ∗ ( ( ( 1 / Lf )∗( − r f ∗ i l d 1 − . . .

omegan∗Lf∗ i l q 1 + k i cd ∗gamd1 + kpcd ∗ ( k i d ∗ ph id1 + . . .

kpd ∗ (377 − kpPLL∗ vodf1 + . . .

kiPLL∗phiPLL1 − omegan + m∗P1)− . . .

i l d 1 ) − vod1 ) + (377 − kpPLL∗ vodf1 . . .

+ kiPLL∗phiPLL1 )∗ i l q 1 ) . . .

− ( ( 1 / Lc )∗( − r c ∗ i od1 + vod1 . . .

− vbd1 ) + (377 − kpPLL∗ vodf1 + . . .

kiPLL∗phiPLL1 )∗ i oq1 ) ) ;

f ( 1 4 ) = ( 1 / Cf )∗ ( i l q 1 − i oq1 ) . . .

− (377 − kpPLL∗ vodf1 + . . .

kiPLL∗phiPLL1 )∗ vod1 . . .

+ Rd ∗ ( ( ( 1 / Lf )∗( − r f ∗ i l q 1 + . . .

omegan∗Lf∗ i l d 1 + k i cq ∗gamq1 . . .

+ kpcq ∗ ( k i q ∗ ph iq1 + . . .

kpq ∗ (VOQN − n∗Q1 − voq1 ) . . .

− i l q 1 ) − voq1 ) + (377 − . . .

kpPLL∗ vodf1 + kiPLL∗phiPLL1 )∗ i l d 1 ) . . .

− ( ( 1 / Lc )∗( − r c ∗ i oq1 + . . .

voq1 − vbq1 ) − . . .

(377 − kpPLL∗ vodf1 + kiPLL∗phiPLL1 )∗ i od1 ) ) ;

f ( 1 5 ) = −P2∗omegac + 1 .5∗ omegac ∗ ( vod2∗ i od2 + voq2∗ i oq2 ) ;
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f ( 1 6 ) = −Q2∗omegac + 1 .5∗ omegac ∗ ( voq2∗ i od2 − vod2∗ i oq2 ) ;

f ( 1 7 ) = omegacPLL∗vod2 − omegacPLL∗ vodf2 ;

f ( 1 8 ) = −vodf2 ;

f ( 1 9 ) = 377 − kpPLL∗ vodf2 + . . .

kiPLL∗phiPLL2 − omegan + m∗P2 ;

f ( 2 0 ) = VOQN − n∗Q2 − voq2 ;

f ( 2 1 ) = k id ∗ ph id2 + . . .

kpd ∗ (377 − kpPLL∗ vodf2 + kiPLL∗phiPLL2 − . . .

omegan + m∗P2)− i l d 2 ;

f ( 2 2 ) = k iq ∗ ph iq2 + kpq ∗ (VOQN − n∗Q2 − voq2 ) − i l q 2 ;

f ( 2 3 ) = ( 1 / Lf )∗( − r f ∗ i l d 2 − . . .

omegan∗Lf∗ i l q 2 + k i cd ∗gamd2 + . . .

kpcd ∗ ( k i d ∗ ph id2 + . . .

kpd ∗ (377 − kpPLL∗ vodf2 + kiPLL∗phiPLL2 − . . .

omegan + m∗P2)− i l d 2 ) − vod2 ) + (377 − kpPLL∗ vodf2 + . . .

kiPLL∗phiPLL2 )∗ i l q 2 ;

f ( 2 4 ) = ( 1 / Lf )∗( − r f ∗ i l q 2 + omegan∗Lf∗ i l d 2 + k i cq ∗gamq2 + . . .

kpcq ∗ ( k i q ∗ ph iq2 + kpq ∗ (VOQN − n∗Q2 − voq2 ) − i l q 2 ) − . . .

voq2 ) − (377 − kpPLL∗ vodf2 + kiPLL∗phiPLL2 )∗ i l d 2 ;

f ( 2 5 ) = ( 1 / Lc )∗( − r c ∗ i od2 + vod2 − vbd2 ) + (377 − . . .

kpPLL∗ vodf2 + kiPLL∗phiPLL2 )∗ i oq2 ;

f ( 2 6 ) = ( 1 / Lc )∗( − r c ∗ i oq2 + voq2 − vbq2 ) − (377 − . . .

kpPLL∗ vodf2 + kiPLL∗phiPLL2 )∗ i od2 ;

f ( 2 7 ) = ( 1 / Cf )∗ ( i l d 2 − i od2 ) + (377 − kpPLL∗ vodf2 + . . .

kiPLL∗phiPLL2 )∗ voq2 + Rd ∗ ( ( ( 1 / Lf )∗( − r f ∗ i l d 2 − . . .

omegan∗Lf∗ i l q 2 + k i cd ∗gamd2 + kpcd ∗ ( k i d ∗ ph id2 + . . .

kpd ∗ (377 − kpPLL∗ vodf2 + kiPLL∗phiPLL2 − omegan + . . .
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m∗P2)− i l d 2 ) − vod2 ) + (377 − kpPLL∗ vodf2 + . . .

kiPLL∗phiPLL2 )∗ i l q 2 ) − ( ( 1 / Lc )∗( − r c ∗ i od2 + vod2 − . . .

vbd2 ) + (377 − kpPLL∗ vodf2 + kiPLL∗phiPLL2 )∗ i oq2 ) ) ;

f ( 2 8 ) = ( 1 / Cf )∗ ( i l q 2 − i oq2 ) − (377 − kpPLL∗ vodf2 + . . .

kiPLL∗phiPLL2 )∗ vod2 + Rd ∗ ( ( ( 1 / Lf )∗( − r f ∗ i l q 2 + . . .

omegan∗Lf∗ i l d 2 + k i cq ∗gamq2 + kpcq ∗ ( k i q ∗ ph iq2 + . . .

kpq ∗ (VOQN − n∗Q2 − voq2 ) − i l q 2 ) − voq2 ) + (377 − . . .

kpPLL∗ vodf2 + . . .

kiPLL∗phiPLL2 )∗ i l d 2 ) − ( ( 1 / Lc )∗( − r c ∗ i oq2 + . . .

voq2 − vbq2 ) − . . .

(377 − kpPLL∗ vodf2 + kiPLL∗phiPLL2 )∗ i od2 ) ) ;

f ( 2 9 ) = ( 1 / Lload1 )∗( −Rload1∗ i l o a d d 1 + vbD1 ) + (377 − . . .

kpPLL∗ vodf1 + kiPLL∗phiPLL1 )∗ i l o a d q 1 ;

f ( 3 0 ) = ( 1 / Lload1 )∗( −Rload1∗ i l o a d q 1 + vbQ1 ) − (377 − . . .

kpPLL∗ vodf1 + kiPLL∗phiPLL1 )∗ i l o a d d 1 ;

f ( 3 1 ) = ( 1 / Lload2 )∗( −Rload2∗ i l o a d d 2 + vbD2 ) + (377 − . . .

kpPLL∗ vodf2 + kiPLL∗phiPLL2 )∗ i l o a d q 2 ;

f ( 3 2 ) = ( 1 / Lload2 )∗( −Rload2∗ i l o a d q 2 + vbQ2 ) − (377 − . . .

kpPLL∗ vodf2 + kiPLL∗phiPLL2 )∗ i l o a d d 2 ;

f ( 3 3 ) = ( 1 / L l i n e )∗( − r l i n e ∗ i l i n e d + vbD1 − vbD2 ) + . . .

(377 − kpPLL∗ vodf1 + kiPLL∗phiPLL1 )∗ i l i n e q ;

f ( 3 4 ) = ( 1 / L l i n e )∗( − r l i n e ∗ i l i n e q + vbQ1 − vbQ2 ) − . . .

(377 − kpPLL∗ vodf1 + kiPLL∗phiPLL1 )∗ i l i n e d ;

f ( 3 5 ) = (377 − kpPLL∗ vodf1 + kiPLL∗phiPLL1 ) − . . .

(377 − kpPLL∗ vodf2 + kiPLL∗phiPLL2 ) ;
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Operating Points and Linearizations. This function serves several purposes: it de-

termines the stable operating point of each subsystem, obtains the linear approximation of

each subsystem, and determines all γ weights.

f u n c t i o n [A, rad , modes , maxeigs ] = resgamv2 (U, dim )

%%

% F i r s t we d e f i n e t h e symbo l i c v a r i a b l e s t o be used .

Hu = sym ( ’ u ’ , [ 1 , l e n g t h (U ( : , 1 ) ) ] ) ;

m = l e n g t h (U ( 1 , : ) ) ;

X = sym ( ’ x ’ , [ 1 , dim ] ) ;

%%

% Here we f i n d t h e s t a b l e o p e r a t i n g p o i n t s o f

% t h e n o n l i n e a r sys tem and pu t them i n t o a ma t r i x

% c a l l e d ’modes . ’ We th en f i n d t h e J a c ob i a n o f t h e system ,

% and from t h i s o b t a i n t h e A ma t r i c e s f o r each mode ,

% which g i v e t h e l i n e a r a p p r o x ima t i o n s .

x0 = z e r o s ( [ 1 , dim ] ) ;

modes = z e r o s ( [ dim ,m] ) ;

f o r i = 1 :m

Ftemp = fxu (X,U( : , i ) ) ;

F = ma t l a bFun c t i o n ( Ftemp , ’ va r s ’ , {X} ) ;

o p t i o n s = . . .

o p t im s e t ( ’ MaxFunEvals ’ , 1000000 , ’ MaxI ter ’ , 1 0 0 0000 ) ;

o p p o i n t s = f s o l v e ( F , x0 , o p t i o n s ) ;

modes ( : , i ) = o p p o i n t s . ’ ;

end
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J = j a c o b i a n ( fxu (X,Hu ) ,X ) ;

A = c e l l ( 1 ,m) ;

maxeigs = z e r o s (m, 1 ) ;

f o r i = 1 :m

A{ i } = subs ( J , [X, Hu ] , [ ( modes ( : , i ) ) . ’ ,U ( : , i ) . ’ ] ) ;

A{ i } = doub l e (A{ i } ) ;

i f max ( r e a l ( e i g (A{ i } ) ) ) > 0

e r r o r ( ’ The A ma t r i x i s no t s t a b l e . ’ )

end

maxeigs ( i ) = abs (max ( r e a l ( e i g (A{ i } ) ) ) ) ;

end

%%

% Now we f i n d our e r r o r te rm by t a k i n g t h e

% l i n e a r i z e d sys tem minus t h e a c t u a l sys tem a t U

% f o r each mode , and we no rma l i z e by d i v i d i n g by t h e

% l i n e a r i z e d sys tem .

f o r i = 1 :m

E ( : , i ) = (A{ i }∗ (X. ’ − modes ( : , i ) ) − fxu (X,U( : , i ) ) . ’ ) ;

f o r j = 1 : dim

Co = c o e f f s (E ( j , i ) ) ;

i f max (Co ) <= .00000001

E( j , i ) = 0 ;

end

end

end
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%%

% Here we de t e rm i n e t h e " q u a l i t y "

% of each l i n e a r a pp r ox ima t i o n

% by a g r a d i e n t a s c e n t a l g o r i t hm t h a t d e t e rm i n e s how f a r

% from each o p e r a t i n g p o i n t t h e a pp r ox ima t i o n e r r o r e q u a l s

% or exceeds W. Th i s w i l l g i v e t h e gamma we igh t s .

r ad = z e r o s ( [m, 1 ] ) ;

f o r i = 1 :m

N = norm (E ( : , i ) ) ;

g = g r a d i e n t (N,X ) ;

W = 0 ;

i t e r = 0 ;

p o i n t = modes ( : , i ) ;

wh i l e W <= 20 && i t e r <= 20

i f g == 0

W = 21 ;

i t e r = 21 ;

p o i n t = I n f ( [ dim , 1 ] ) ;

e l s e

G = subs ( g , [ X, Hu ] , . . .

[ p o i n t . ’ + 0 . 0 1 ,U( : , i ) . ’ ] ) ;

p o i n t = p o i n t + ( (G ) . / norm (G ) ) ;

W = subs (N , [ X, Hu ] , [ p o i n t . ’ ,U ( : , i ) . ’ ] ) ;

i t e r = i t e r + 1

end

end



69

r ad ( i ) = norm ( modes ( : , i ) − p o i n t ) ;

end

i f r ad == I n f (m, 1 )

r ad = z e r o s (m, 1 ) + 1 ;

end

r ad = 1 . / r ad ;

end

Lyapunov Solutions. This function solves the Lyapunov equation for each system mode

and returns the smallest and largest eigenvalues of the solution for use later.

f u n c t i o n [ lammax , lammin , t c ] = r e sw e i g h t s (A)

%%

% Al l we do he r e i s f i n d t h e b i g g e s t and

% sm a l l e s t e i g e n v a l u e s o f t h e P Lyapunov

% s o l u t i o n ma t r i x . We a l s o f i n d our

% a l ph a we i gh t s based on t h e

% t ime c o n s t a n t s y i e l d e d by P and Q.

Q = eye ( l e n g t h (A ) ) ;

P = l y ap (A,Q ) ;

D = e i g (Q ) ;

E = e i g ( P ) ;

lammax = max (E ) ;
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lammin = min (E ) ;

lamminQ = min (D ) ;

t c = lammax . / lamminQ ;

end

Ball Sizes. This script uses the MATLAB function fmincon to optimize the balls Bn and

bn for all n.

f u n c t i o n [ x ] = r e s b a l l s ( P , a , g , Mark )

m = l e n g t h ( P ( 1 , : ) ) ;

n = l e n g t h ( P ( : , 1 ) ) ;

[ row , c o l ] = f i n d (~Mark ) ;

%%

% Cre a t e t h e i n e q u a l i t y ma t r i x t o c o n s t r a i n

% t h e o p t im a z a t i o n problem us i ng

% t h e number o f modes o f t h e sys tem .

A = z e r o s (m∗ (m−1)+m,2∗m) ;

f o r i = 1 :m

v = z e r o s (m−1 ,2∗m) ;

v ( : , ( 2 ∗ i ) −1) = 1 ;

w = [ ] ;

f o r j = 1 :m

i f ( j == i )

e l s e

w = [w, 2∗ j ] ;
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end

end

f o r k = 1 :m−1

v ( k ,w( k ) ) = −1;

end

f o r l = 1 :m−1

A( ( l −1) + ( i −1)∗m − i + 2 , : ) = v ( l , : ) ;

end

A(m∗ (m−1)+ i , 2∗ i −1) = 1 ;

A(m∗ (m−1)+ i , 2∗ i ) = −1;

end

A = A.∗ ( − 1 ) ;

%%

% I n i t i a l i z e a bot tom l e f t t r i a n g u l a r

% ma t r i x c o n t a i n i n g t h e d i s t a n c e s from mode

% to mode based on t h e f u n c t i o n i n p u t P ,

% which i s t h e ma t r i x i n which each column i s

% t h e c o o r d i n a t e s o f one o f t h e modes .

X = z e r o s (m,m) ;

f o r i = 1 :m

f o r j = 1 :m

i f ( i <= j )

X( i , j ) = 0 ;

e l s e
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X( i , j ) = s q r t ( sum ( ( P ( : , i )−P ( : , j ) ) . ^ 2 ) ) ;

end

end

end

X = X.∗ ( − 1 ) ;

%%

% Using t h e ma t r i x X d e f i n e d above ,

% c r e a t e t h e v e c t o r o f c o n s t a n t t e rms f o r

% t h e i n e q u a l i t i e s c o n s t r a i n i n g t h e o p t im i z a t i o n problem .

B = z e r o s (m∗ (m−1)+ m, 1 ) ;

f o r i = 1 :m∗ (m−1)

ytemp = f i n d (A( i , : ) == 1 ) ;

y = ( ytemp ) / 2 ;

ztemp = f i n d (A( i , : ) == −1) ;

z = ( ztemp + 1 ) / 2 ;

i f ( y>z )

B( i , 1 ) = X( y , z ) ;

e l s e

B( i , 1 ) = X( z , y ) ;

end

end

%%

% Here i s where we use t h e pa t h i n f o rm a t i o n

% to e l i m i n a t e t h e unn e c e s s a r y c o n s t r a i n t s .
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f o r i = 1 : l e n g t h ( row )

[ c , ~ ] = f i n d (A ( [ ( c o l ( i ) −1)∗m − c o l ( i ) + 2 , . . .

(m−2) + ( c o l ( i ) −1)∗m . . .

− c o l ( i ) + 2 ] , row ( i )∗2 ) == 1 ) ;

A( ( c−1) + ( c o l ( i ) −1)∗m − c o l ( i ) + 2 , : ) = 0 ;

B ( ( c−1) + ( c o l ( i ) −1)∗m − c o l ( i ) + 2 , : ) = 0 ;

end

%%

% Def ine t h e f u n c t i o n t h a t we want t o o p t im i z e .

Q = sym ( ’ a ’ , [ 1 , 2∗m] ) ;

f3 = 0 ;

f o r i = 1 :m

f1 = g ( i )∗Q(2∗ i −1 ) ;

f2 = a ( i ) . ∗Q(2∗ i −1 ) /Q(2∗ i ) ;

f 3 = f3 + f1 + f2 ;

end

T = ma t l a bFunc t i o n ( f3 , ’ va r s ’ , {Q} ) ;

%%

% The f i n a l s t e p i s t o use fmincon t o

% so l v e t h e c o n s t r a i n e d o p t im i z a t i o n problem .

% So l u t i o n i s i n o r d e r R1 , r1 , R2 , r2 , . . . .

l b = z e r o s (1 , 2∗m) ;

ub = [ ] ;
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x0 = z e r o s (1 , 2∗m) ;

x0 = x0 + 5 ;

x = fmincon (T , x0 ,A,B , [ ] , [ ] , lb , ub )

%%

%For 2D prob lems t h e below code w i l l p l o t t h e s o l u t i o n .

i f ( n == 2)

ang =0 : 0 . 0 1 : 2∗ p i ;

ho ld on

f o r i = 1 :m

xp=x (2∗ i −1)∗ cos ( ang ) ;

yp=x (2∗ i −1)∗ s i n ( ang ) ;

xxp=x (2∗ i )∗ cos ( ang ) ;

yyp=x (2∗ i )∗ s i n ( ang ) ;

s e t ( gca , ’ Co lo rOrde r Index ’ , i )

p l o t ( P ( 1 , i )+ xp , P ( 2 , i )+ yp ) ;

s e t ( gca , ’ Co lo rOrde r Index ’ , i )

p l o t ( P ( 1 , i )+ xxp , P ( 2 , i )+ yyp ) ;

s e t ( gca , ’ Co lo rOrde r Index ’ , i )

p l o t ( P ( 1 , i ) , P ( 2 , i ) , ’∗ ’ , ’ MarkerSize ’ , 1 2 ) ;

end

a x i s e qu a l

s e t ( gcf , ’ P o s i t i o n ’ , [ 2 0 0 200 3 .45∗96 2 . 2 5∗96 ] )
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s e t ( gca , ’ FontName ’ , ’ Times ’ )

s e t ( gca , ’ Fon tS i ze ’ , 8 )

ho ld o f f

e l s e

end

Level Set Sizes. This code obtains each Lyapunov level set size from the ball sizes and

eigenvalues.

f u n c t i o n [L , l ,K] = r e s l e v s e t s ( x , lammin , lammax ,m)

%%

% Obta in a l l l e v e l s e t s i z e s u s i n g minimum

% and maximum e i g e n v a l u e s o b t a i n e d i n r e sw e i g h t s .

L = z e r o s ( 1 ,m) ;

l = z e r o s ( 1 ,m) ;

K = z e r o s ( 1 ,m) ;

f o r i = 1 :m

L( i ) = ( lammax ( i ) ) . ∗ ( ( x ( 2 . ∗ i − 1 ) ) . ^ 2 ) ;

l ( i ) = ( lammin ( i ) ) . ∗ ( ( x ( 2 . ∗ i ) ) . ^ 2 ) ;

end

f o r i = 1 :m

K( i ) = ( l og ( l ( i ) / L ( i ) ) ) . . .

/ ( l og ( ( ( x ( 2 . ∗ i ) ) . ^ 2 ) / ( ( x ( 2 . ∗ i − 1 ) ) . ^ 2 ) ) ) ;

end

Dwell Times. Finally, the dwell times are calculated from all previous information.
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f u n c t i o n [ wa i t s ] = r e s t im e s (L , l , t im e c o n s t a n t s ,m)

wa i t s = z e r o s ( 1 ,m) . ’ ;

f o r i = 1 :m

wa i t s ( i ) = ( l og ( ( l ( i ) ) / ( L ( i ) ) ) )∗ ( − t i m e c o n s t a n t s ( i ) ) ;

end

end

Settling Time Main. This serves as an alternative main function file that uses the settling

time approach to produce dwell times.

%Main

c l c

c l e a r v a r s

%%

% The on ly i n p u t s a r e a l l t h e sys tem

% dynamics from fxu .m, and

% th e i n p u t ma t r ix ,

% U, which d e f i n e s t h e sys tem modes .

% The U ma t r i x shou l d have

% an i n p u t go ing down a column ,

% wi th t h e number

% of columns c o r r e s p o n d i n g t o t h e

% d i s c r e t e number o f i n p u t s

% ( and t h u s modes ) .

dim = 2 ;

U = [ 3 0 , 5 0 0 ] ; %Boos t Conve r t e r I n p u t s

% Obta in o p e r a t i n g p o i n t s and l i n e a r i z a t i o n s .
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% Columns of ’modes ’ a r e o p e r a t i n g po i n t s ,

% number o f rows i s t h e d imens ion . A i s an a r r a y where A{ i }

% i s t h e l i n e a r i z a t i o n ma t r i x o f t h e i t h mode .

[A, gam , modes , maxeigs ] = resgamv2 (U, dim ) ;

%%

% Obta in number o f sub sy s t ems .

m = l e n g t h ( modes ( 1 , : ) ) ;

%%

% Thi s s e c t i o n s e t s up t h e pa t h ma t r ix ,

% Mark . Tha t i s , t h i s

% ma t r i x shows whe the r o r no t a p a t h e x i s t s

% from mode x t o

% mode y . I f t h e r e i s no pa t h from x t o y ,

% then t h e b ig b a l l

% of x mustn ’ t c o n t a i n t h e sma l l o f y ,

% and so we can use t h a t

% i n f o t o t a i l o r our c o n s t r a i n t s t o t h e problem .

% Mark ( 1 , 3 ) = 0 imp l i e s t h a t t h e r e i s no pa t h from mode 1 .

% to mode 3 .

Mark = ones ( [m,m] ) ;

%%

% Dete rmine t h e op t ima l s i z e o f a l l o f t h e
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% r a d i i f o r t h e b a l l s t o be used f o r dwe l l t ime s .

a l p h a = 1 . / maxeigs ;

[ r a d i i ] = r e s b a l l s ( modes , a lpha , gam , Mark ) ;

%%

% Obta in dwe l l t ime s from s e t t l i n g t ime s

[ dwe l l t ime s , p e r c ] = r e s s e t t l e ( r a d i i , maxeigs ,m)

Settling Times. This code computes dwell times using the settling time method.

f u n c t i o n [ dwe l l t ime s , p e r c ] = r e s s e t t l e ( r a d i i , maxeigs ,m)

dwe l l t im e s = z e r o s ( 1 ,m) ;

p e r c = z e r o s ( 1 ,m) ;

f o r i = 1 :m

pe r c ( i ) = r a d i i (2∗ i ) / r a d i i (2∗ i − 1 ) ;

dwe l l t im e s ( i ) = abs ( l og ( p e r c ( i ) ) ) / maxeigs ( i ) ;

end
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