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PUBLICATION DISSERTATION OPTION 

The introduction section of this dissertation gives deep information and 

knowledge about advanced microalgae culturing in cylindrical split internal-loop 

photobioreactor, and hydrodynamics analysis. Critical review of the previous studies for 

the split column with air-water and air-water-microalgae systems, motivation and 

objectives of this study. The body of this dissertation consists of the following five 

articles: 

Paper I, pages 12-29, Assessment of RPT Calibration Need during Microalgae 

Culturing and other Biochemical Processes has been published in IEEE, Xplore Digital 

Library. 

Paper II, pages 30-88, Multiscale Modeling and Experimentation of 

Microalgae Culturing: Integration of Dynamic Growth Modeling and Hydrodynamics in 

an Internal-Loop Split Photobioreactor will submit it to the Algal Research Journal. 

Paper III, pages 89-141, Mapping of Microalgae Culturing via Radioactive Particle 

Tracking-Revised has been submitted to the Chemical Engineering Science (revised 

submission). 

Paper IV, pages 142-197, Investigating the Cross-Sectional Gas holdup 

Distribution in Split internal-loop Photobioreactor during Microalgae Culturing 

via Sophisticated Computed Tomography (CT) Technique (under supervisor review). 

 Paper V, pages 198-236, Split internal-loop Photobioreactor for Scenedesmus 

sp. Microalgae: Culturing and Hydrodynamics (under supervisor review). 

Finally, recommendations for the future studies in the field of microalgae culturing 

and split photobioreactor are listed in the last section of this dissertation. 
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ABSTRACT 

Microalgae are fast growing photoynthetic microorganisms and it have very wide range 

of industrial applications such as biofuels and wastewater treatment. These cells can be grown 

in a wide variety of systems ranging from open culture systems (e.g., ponds) to closed culture 

systems of photobioreactor (e.g., airlift). The open culture systems exist in the external 

environment, and hence, are not intrinsically controllable. However, the microalgae production 

in enclosed photobioreactors faces prohibitively high production costs with special difficulty 

in reactor design and scale-up. The light availability and utilization efficiency in the 

photobioreactor in terms of design and scale-up consider as the major problem in this system. 

It has been found that hydrodynamics and mixing can significantly improve the biomass yield 

by enhanced the light use efficiency. However, the hydrodynamics analysis, and their interacts 

with photosynthesis in real culturing system is remain unclear. The overall objective of this 

study is to advance the understanding of hydrodynamics’ role in the photosynthesis and thus 

the photobioreactor performance. The local flow dynamics in a split internal-loop 

photobioreactor were study by applied a sophisticated Radioactive Particle Tracking (RPT) 

and advanced Computer Tomography (CT) techniques. Based on the findings, fundamentally 

based dynamic modeling approach is developed for photobioreactor performance evaluation, 

which integrates the knowledge of photosynthesis, hydrodynamics, and irradiance. Finally, 

Scenedesmus sp. was grown in split column. The biomass concentrations, flow dynamics, 

physical properties, and irradiance distribution of the culturing systems were monitored. Good 

agreements between the predictions by the developed dynamic model and the experimental 

data were achieved, indicating the applicability of the dynamic model in industrial interested 

condition.  
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1. INTRODUCTION

    The primary form of energy that supporting the lives on earth is the solar energy. 

This energy has a crucial effect on the culturing of photosynthetic organisms in terms of 

light availability and organisms efficiency. These organisms produce complex organic 

molecules, oxygen, and storable energy sources by consuming the CO2, light energy, and 

other simple inorganic compounds (e.g., minerals, nitrogen, and phosphorus sources). 

Among these organisms, microalgae are widely known as the most efficient solar energy 

harvesters (Becker, 1994).  

The microalgae cultures have obvious advantages and applications such as: 

producing useful biomass, e.g., aquaculture biomass feed, food additives (alginates, 

xantangum), abating environmental pollution (e.g., wastewater treatment, CO2 fixation), 

and single cell proteins for feeding livestock and human nutrition. As crude oil and natural 

gas will be depleted in the foreseeable future and their prices are increasing sharply 

nowadays, potential applications of microalgae cultures in producing clean bio-fuels for 

their high lipid contents (up to 50 - 80%) are attracting great attention. Additionally, these 

biomasses are an excellent source of many high-value products, as shown in Figure 1. 

These products all have high commercial value. For example, the price of highly purified 

microalgae eicosapentaenoic acid (EPA, a free fatty acid) was reported to be $150,000 per 

kg (Ibáñez González et al., 1998), with increasing worldwide demand. In general, 

microalgae can thus be grown in two types of culturing systems for mass photosynthetic 

production, either enclosed or open. The enclosed systems, (e.g., airlift, panel, tubular, 

bubble column reactors), that typically allow axenic cultures under full control. The open  
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photobioreactors (such as ponds and raceway) are open to the environment and illuminated 

naturally. They are intrinsically hard to control and cost-effective. as these 

microorganisms strains typically need protection from the outdoor environment and must 

be maintained at appropriate temperature, pH value, salinity, etc. 

 as these microorganisms strains typically need protection from the outdoor 

environment and must be maintained at appropriate temperature, pH value, salinity, 

etc.(Hu et al., 1996; Olaizola, 2002; Luo and Al-Dahhan, 2003)[1], [2]. However, 

the photobioreactors are complex systems due to the integrated effects of 

hydrodynamics, irradiance distribution and photosynthesis. Proper understanding of the 

interactions among these elements is crucial for photobioreactor design, scale-up, 

operation, and process intensification. 

Figure 1.1: Additional high-value products from microalgae 

Nutrient materials and 
high-value products for 
pharmaceuticals. 

Polyunsaturated fatty 
acids (PUFAs). 

Antiviral agents – red 
antiviral polysaccharides 
(RMP) and anti-herpes. 

Natural, 
environmentally-friend 
compounds for 
combating plant 

Pigments (natural food 
colorants and 
fluorescence indicators 
for use in clinical and 
research 
immunoassays).  

A number of space agencies 
(National Aeronautics and 
Space Administration [NASA], 
European Space Agency 
[ESA]) have funded research 
to develop life support systems 
for long-term space missions 
[15-18]. 

Microalgae 

https://en.wikipedia.org/wiki/European_Space_Agency
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In the last decades, typically since 1970, a numerous styles and kinds of enclosed 

photobioreactors design have been tried, resulting in the great diversity of reactor types 

summarized in the literatures (Cañedo and Lizárraga 2016; Gupta, Lee, and Choi 2015; 

Olivieri, Salatino, and Marzocchella 2014)[6][7][8]. However, although many types of the 

PBRs (e.g., tubular reactors, thin panel reactors, fiber optic reactors, etc.) work fine on a 

laboratory scale, few efforts from the industrial for mass production of microalgae have 

been made, and moreover, most of them have failed due to their limitations and challenging 

[9]–[11]. These photobioreactors encounter a major problem in scaling up: the areal or 

volume productivity drops dramatically while the investment and operational costs 

increase greatly [4], [12]. Certainly, the levels of cost and difficulty are proportional to the 

size of the photobioreactors and to the tolerance of the growth conditions (Olaizola, 2000). 

Generally, the main problem in the photobioreactors is light: its availability and its 

utilization efficiency. Light is usually supplied to reactor surfaces, and its intensity drops 

exponentially from the surface which is the illuminated zone to the center of the reactor. 

Governed by radiative transfer theory [13], [14], the irradiance distribution inside the 

photobioreactors is a complex function of flow dynamics, reactor geometry, incident 

irradiance, biomass concentration and composition [15], [16]. Usually, the intensity of the 

light decreases sharply because the extensive cellular absorption, scattering, and reflection 

among the microorganism cells and the liquid elements [17], [18]. 

These phenomena are more important in the industrial conditions. In large-scale 

(pilot scale) mass production systems, both the reactor volume and the biomass 

concentration (usually on the order of grams dry weight biomass per liter) have to be large 

enough to maximize the productivity and to cut costs for economic considerations. Under 
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such conditions, light penetration depth (i.e., the maximal distance a photon can penetrate 

into the medium) is usually only a few millimeters to a few centimeters. Therefore, in the 

center of the reactor, will has a huge dark zone and near to the illuminated surface of the 

column which has a high light intensity zone coexist in the photobioreactors. Both zones 

are not conducive for the cell’s growth, as high irradiance may cause photoinhibition, while 

low irradiance cannot support the needed growth (photolimitation). Although the overall 

effect is photolimitation, photoinhibition is also significant along the illuminated reactor 

surface where light energy is abundant. As a result, the light use efficiency is usually very 

low [19], [20]. 

Diverse approaches have been attempted to improve the photobioreactor 

performance (Lee 1986; Olivieri, Salatino, and Marzocchella 2014; Pulz and 

Scheibenbogen 1998; Robinson et al. 1986; Trevan and Mak 1988). Generally, the aim of 

these approaches target the availability of the light and its usage efficiency problems, such 

as by increasing reactor surface area/volume ratio [4], by introducing light distributing 

glass fiber into the medium. Among them, one of the most promising approaches is 

increasing the turbulent mixing in the reactor [23]–[25].  

It has been found that turbulent mixing can significantly improve the efficiency of 

the biomass productivity for a wide range of operating conditions by enhanced the 

light usage efficiency [4], [14], [26], [27].  For example, in an experiment conducted in 

a photobioreactor with algal cells exposed to ambient light, [28] reported cases with 

2.5 times enhancement of productivity when mixing was improved in a 25m3 pond with 

0.5m depth. Also, [29]used a rotating stainless steel in inner cylinder shaft was 

connected by a flexible coupling to a stepper motor to generate rotational flows that
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in inner cylinder shaft was connected by a flexible coupling to a stepper motor to generate 

rotational flows that enhanced the turbulence within the culture. They found 

that enhancement in the productivity of algae Chlorella vulgaris compared to conditions 

without the rotational flow.  

Several researchers [30]–[37] attribute such productivity improvement to the so-

called flashing light effect, an effect stemming from the cells’ movements in the bioreactor, 

as illustrated in Figure 1-1. Due to the size of the microorganism cells (in micrometers) 

and their density (close to that of the culture medium), their movements in the reactor are 

fully determined by the chaotic local flow phenomena. Therefore, the cells travel randomly 

between the illuminated surface and the dark region in the center, experiencing a random 

time series of light intensities or flashing lights, as shown in Figure 1-1. Such flashing 

lights delivered to the cells practically at dense culturing, as suggested by many 

researchers, may enhance the photosynthetic efficiency and help the cells avoid 

photoinhibition. As a consequence, the overall performance of the photobioreactor 

significantly depend on the interactions between the photosynthesis and the reactor flow 

dynamics. Therefore, flow dynamics plays an important role by affecting the light 

fluctuations in photobioreactor performance. 

Furthermore, the rates of the mass and heat transfer also effect by the 

hydrodynamics, microalgae cells movements and the shear stresses. Generally, in the 

enclosed photobioreactor that has fully controllable conditions, sufficient nutrients are 

needed to maximize the growth rate, and the operating conditions (e.g., pH and temperature 

value) have to be maintained at appropriate levels for the best performance. Failure to 

achieve such conditions usually will cause severe operational problems [4], [10].  
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Additionally, high flow shear stress can damage (disintegrate) even the most robust 

microorganisms [38], [39]. When a cell breaks, cytoplasm (cell contents) spills into the 

culture medium, nourishing bacteria that are usually much smaller than the cells, while cell 

walls remain in the medium or stick on the reactor surface, deteriorating transparency. Cell 

walls and other components can even end up clogging spargers and other components, such 

as oxygen and pH probes. In the end, high stress compromises long-term operation. 

Therefore, hydrodynamic effects on photobioreactor operation are one of the major 

problems that an engineer has to consider for reactor design and scale-up. Indeed, selecting 

a reactor type with appropriate turbulent intensity and manipulating the mixing inside the 

photobioreactors are two of the most important issues [40]–[42]. Many studies have used 

different types of airlift photobioreactors, such as a draft airlift tube, flat airlift, Subitec’s 

Flat Panel Airlift (FPA), and split airlift [31, 38-42].  

Among all types of photobioreactors studied, airlift bioreactors have emerged as 

one of the most promising photobioreactors for their excellent mixing intensity [40], [43]–

[46] these reactors have been widely used in the chemical, biochemical fermentation and

biological wastewater treatment industries, where high mass transfer and good mixing are 

required. They possess many advantages that are especially suitable for mass microalgae 

cultures, such as simple construction, long liquid phase residence time, and low shear stress 

while maintaining high turbulence intensity. Therefore, exploring the possibility of 

applying split column reactors in mass autotrophic microorganism production and 

advancing the understanding of their design, scale-up and process intensification are very 

important. This undertaking requires in-depth knowledge of their local multiphase flow 

characteristics. Based on the measurement and computation of Luo [43] and Luo and Al-
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Dahhan [31, 44, 45], it has been found that the growth of microalgae in a cylindrical split 

airlift column outperforms the other columns.  

The performance of the cylindrical split airlift photobioreactor was 

markedly affected by the hydrodynamics of the culture system. The hydrodynamics of 

split airlift column reactors is characterized by the buoyancy-driven flow due to the 

rising bubbles in the riser section of the reactor. 

1.1. RESEARCH MOTIVATION 

In the literature, essential work on the design, scale-up, and modeling of the 

photobioreactors and for phototrophic cultures have existed. However, the flow dynamics 

(hydrodynamics), particularly its local characteristics that determine the movements of the 

cells inside the photobioreactors, is not fully understood yet. Three reasons contribute to 

such poor understanding. Firstly, photobioreactors are complex multiphase flow systems 

involving microalgae culturing. In this multiphase flow system is involving CO2 supplied 

as a major carbon source and removed O2 from the liquid phase. Moreover, due to the 

targeted high cell concentration in mass production, extensive cellular absorption of light 

photons and self-shading effects among the cells are present in the photobioreactors. 

Therefore, they are essentially opaque systems. Secondly, the techniques that used for 

hydrodynamics measurements have limited capabilities particularly at dense culturing 

which very interesting step for industrial need such as optical fiber probe, manometer, Pitot 

tube, laser Doppler anemometry, particle image velocimetry are not feasible as they either 

cannot provide in-depth hydrodynamic knowledge or cannot be applied in the opaque 
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systems whether in lab scale or industrial scale. Thirdly, the growth of microorganisms 

excretes secondary metabolic products that can change the physical properties of the liquid 

phase. Thus, the physical properties of the culture media are not constants especially in 

dense media after long culturing time. Thus this change in physical properties affects the 

flow dynamics in the photobioreactor system.  

As a results, how the light intensity distributions interact with photosynthesis in 

dense culturing is still under debate, with controversial findings. Furthermore, the analysis 

studies on the performance of the photobioreactor based on static photosynthetic rate 

models with limited local flow dynamic (hydrodynamics) information. These studies, 

applying empirical or semi-empirical correlations, usually ignore the flashing light effects. 

Only a few of them consider photoinhibition effects, which are very important when strong 

external irradiance is used. Therefore, these studies can be applied only to specific 

conditions [47]. 

The dynamic growth rate model was developed by Wu and Merchuk (2001, 2002) 

for evaluations the bioreactor performance. Three-state photosynthetic rate model 

proposed by Eilers and Peeters (1988) was used in this modeling approach based on the 

physiologically phenomena, and that requires the time series of irradiance distribution as 

input. The data of the cells’ movement could provide such a time series and an appropriate 

irradiance distribution model.  

However, experimentally, Wu and Merchuk (2001, 2002) were not capable to get 

the cells’ movement data, and they used a non-physical multi-circulation model developed 

by Joshi and Sharma (1979) to estimate the cells’ trajectories in the reactors. With this 

approach, Wu and Merchuk (2001, 2002) used bubble and a draft tube reactors to simulate 
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the growth rate of Porphyridium sp. using the photosynthetic kinetic parameters they 

measured for Porphyridium sp in a small tubular reactor. Although their simulation results 

matched their experimental data reasonably, such an approach lacks generality. The multi-

circulation model they used to predict the cells’ trajectories does not represent the flow 

pattern in bubble or airlift columns (Degaleesen, 1997). Moreover, many parameters for 

this model were either hard to estimate or were purely fitted parameters. 

Accordingly, a thorough study of the local flow dynamics in photobioreactors and 

a fundamentally based modeling approach are required to better understand how flashing 

lights interact with photosynthesis and to advance in general the design, scale-up, and 

operation of PBRs. Such an approach should integrate the first principles of 

hydrodynamics, photosynthesis, and irradiance to enhance biomass productivity by 

maximizing growth rate and light use efficiency. In-depth knowledge of the flow dynamics 

in the bioreactors is the key for the development of such an approach.  

Recently, Luo and M.H. Al-Dahhan (2011, 2012) studied the hydrodynamics in 

split airlift photobioreactors by using a computer-automated radioactive particle tracking 

(CARPT) technique. They measured the cells’ trajectory, the liquid velocity field, 

turbulence kinetic energy (TKE), and the Reynolds shear stress for the air-water system 

only. They assumed that the measured liquid eddy trajectory in air-water system represents 

the cells’ movement during cultivation of the red-marine microalgae. This could be 

possible during the early stage of culturing.  

However, their work did not address the hydrodynamics in real culturing system 

and the effect of the change in the intensity of culture on the reactor hydrodynamics, 

particularly when the culturing medium coming very dense and thick which is interest for 
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large scale and for industrial applications. Since it provides more details and deep 

knowledge about hydrodynamics of the real culturing conditions.  

Accordingly, the details local hydrodynamic characteristics (e.g., cells’ 

movements, liquid velocity field, turbulence kinetic energy, cross-sectional gas holdup and 

the Reynolds shear stress), during culturing and particularly in a dense medium, remain 

unaddressed and not well understood. Therefore, advancing understanding of the details of 

the flow dynamics phenomena during culturing microalgae is critical for efficient, proper 

and optimized microalgae culturing, and for design and scale up and defining the operating 

conditions of the photobioreactors.  

Thus the novelty of this study is to for the first time we have investigated the 

detailed of the cells’ movements (trajectory), local hydrodynamics, liquid velocity field, 

turbulence kinetic energy, and the Reynolds shear stress of the selected airlift split 

photobioreactor during culturing microalgae using sophisticated radioactive particle 

tracking (RPT) and Computed Tomography (CT) techniques that located In the Multiphase 

Flow and Reactors Engineering Applications Laboratory (mFReal) in the department of 

Chemical and Biochemical Engineering, Missouri University of Science and Technology 

in Rolla. Such study will help understanding the effects of culturing stages (cells 

concentration) on these hydrodynamics as well as the physical properties of the culturing 

media in various growth stage. Combined, these two techniques provide unique and in-

depth knowledge of local characteristics of hydrodynamics.  

More importantly, the uniqueness of implementing RPT during culturing of 

microalgae is to measure the cells’ movements (cell trajectory) and the related 

hydrodynamics and that can be integrated with the dynamic growth and light intensity 
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models to predict and optimize the growth of the microalgae with time and to provide 

benchmarking data for validation computational fluid dynamics CFD [48][49][50].  

1.2. RESEARCH OBJECTIVES 

The general objectives of the present research are to improve and advance the 

understanding and knowledge of the culturing microalgae in photobioreactor for 

maximizing the algal growth production as excellent source for many purposes such as 

bioenergy and CO2 fixation via advanced experimental and multi-scale numerical 

investigations using sophisticated measurement and computational techniques. A 

combined experimental and multi-scale numerical methodology will be developed to 

achieve this objective. The methodology is based on the integration of the fundamentals of 

the reactor hydrodynamics with photosynthesis. It should be noted that the emphasis of 

both the experimental and modeling studies is on the determination of the performance 

inside the photobioreactor during microalgae growth and to develop a fundamental 

modeling approach for cell growth prediction that integrates the hydrodynamics, 

photosynthesis, and irradiance distribution. 
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ABSTRACT 

The calibration maps relating counts with the position of the radioactive 

particle is essential to reconstruct the instantaneous positions of the 

particle and consequently measurements in a 3D manner of the local velocity 

field and turbulent parameters in the split photobioreactor for the microalgae system 

by using advanced radioactive particle tracking (RPT) technique. The calibration 

experiments should perform at the same operating conditions of an actual test. No 

studies in literature account for the effect of the growth of microalgae on the 

physical properties of the culturing medium by employing the calibration curves 

operations. This work used a Plexiglas split column of 5.0 inch (12.7cm) diameter  
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operations even if the medium of the culturing becomes highly 

dense at this microorganism system. This knowledge and findings will help to 

reduce the cost and the efforts of the RPT experiments including air-water-microalgae 

cell systems during the culturing process. Keywords: Split airlift photobioreactor, RPT, 

Microalgae. 

1. INTRODUCTION

Microalgae are fast growing photosynthetic organisms. By utilizing light (indoor 

light or outdoor sunlight) and inexpensive inorganic compounds (namely, water, CO2 and 

some source of nitrogen and others), complex organic molecules are 

synthesized. These organisms are not only excellent sources for biofuels due to high 

lipid content (up to 50 - 80%) [1]–[7] of some strains, but are also useful in 

CO2 fixation in abating environmental pollution (e.g. wastewater treatment from 

inorganic salts, such NH4+, NO3-, PO4 3-), as they are used as nutrient 

materials and high-value products for pharmaceuticals, pigments, animal feed 

as single-cell protein, and others [8]–[10]. Most industries generate and 

dispose wastewater to the environment even though the recent trend in the 

development of treatment techniques is still in recycle process [11].  Many methods 

have been used in treatments of heavy metals and pollutants in wastewater; 

these methods are used in the industries such as physical (Sedimentation 

(Clarification), Degasification, Equalization, Ultra-Violet, Aeration, 

Filtration, Flotation and Skimming), chemical (Chlorination, Ozonation, 

advanced oxidation, Neutralization, Ion Exchange, Coagulation and Adsorption) 
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and biological (Aerobic, Oxidation, Aerobic and aerobic Digestion). Recently, many 

researchers have found application in nitrogen (N) and phosphorus (P) removal from 

wastewater using autotrophic microalgae [12][13]. Microalgae was used as the model 

organism due to its high growth rate, large N and P demand and excellent tolerance 

to contaminants in wastewater [14]. Nowadays, an increased number of studies on 

industry wastewater treatment by microalgae has been reported in the open literature, 

such as in sugar mill effluent, pulp and paper industry effluent [15], fish farm 

wastewater, coal-fired metal-contaminated wastewater, petroleum industrial wastewater, 

pharmaceutical industry wastewater, textile dye industry effluent, and electroplating 

industry wastewater. Notably, both closed and open photobioreactors have been used 

for culturing microalgae for the above mention applications. However, microalgae 

growth depends on the physical properties of the media, cells concentration and how the 

light intensity will reach to the cells, which all depend on the hydrodynamics and 

transport of the culturing in photobioreactor processes. Unfortunately, hydrodynamics 

and transport studies except the limited recent work ([16]–[20]) have not been 

widely accounted for during the effort of advancing the culturing of microalgae and 

the design, scale-up, and performance of photobioreactors. In our laboratory, we have 

developed an advanced approach in developing the microalgae culturing, which is 

demonstrated in Figure 1. In this method, the trajectory of the cells has been used to 

estimate the light received by the cells inside the culture (reactor/pond). By using 

dynamic growth model in terms of temporal light intensity received by the cells and by 

using the shear stresses applied to the cells, the maintenance parameter is accounted due 

to the cells death. For example, the microalgae growth can be estimated and can be 

followed with time. With this, the design 
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parameters and the operating conditions can be selected and defined, which provide the 

desired movement of the cells between the illuminated and dark zones with least 

stresses for lesser cells damage. In our laboratory and in order to demonstrate our 

developed advanced approach shown in Figure, our unique and advanced radioactive 

particle tracking (RPT) technique and computational fluid dynamics (CFD) need to be 

implemented to measure the cells trajectory and their flow pattern in three 

dimensions (velocity components resultant velocity, shear stresses, normal 

stresses, and turbulent kinetic energy) and to validate the CFD which can be used to 

simulate the needed parameters such as cells trajectory and flow dynamics.  To 

implement the RPT technique, the calibration represents the first step in which the 

radioactive particle needs to be placed at known location while the photobioreactor is 

operated under the desired conditions to mimic the attenuation of the gamma ray 

during the measurement experiments to generate the map count received by the 

detectors versus the location of the radioactive particle. [18] Showed that using cell 

trajectory and the stress measured under air-water condition can predict properly the 

growth of microalgae at its earlier stage of culturing where the physical properties 

of the water dominate. However, when this cell's trajectory was used to predict the growth 

of the cells when the cells concentration increased, the prediction failed to match 

reasonably the measured data of the cell's growth. This indicates that the cell's trajectory 

and their movement varies as the growth of the cells continues and the rheology of the 

system, as well as the culture hydrodynamics, changes. During the growth of the cells, the 

density of the cells media does not change and hence the linear attenuation coefficient 

(cm-1) should not change and the RPT calibration may not be needed. However, the 

rheology of the media changes due to the change in the viscosity, and this affects the
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and this affects the bubble dynamics of the system (bubble size, bubble rise velocity, 

frequency, specific interfacial area and local gas holdup), which affects the gamma-

ray attenuation. Furthermore, during microalgae culturing, the rheology of the system can 

also be changed in addition to the effect of the viscosity due to debris formation from 

cells raptures, presence of particulates and the released oil, cells wall, dead cells and 

others that can alter the density and the rheology which effect of the bubble 

dynamics and hence the gamma-ray attenuation. Therefore, question can arise which is, 

does the gamma-ray attenuation vary with the growth? And hence, does the RPT 

calibration vary of the counts received by the detectors versus the radioactive particle 

locations? No one knows about that despite our years of experience in designing, operating 

and implementing RPT techniques on a wide range of multiphase flows and conditions.  

In addition, the half-life of the radioisotopes used plays an important role since the 

microalgae growth takes a long time and hence, reduction in activity needs to be accounted 

for during the calibration and normal RPT experiments. Accordingly, this work addresses 

this question by focusing on finding a reliable answer based on systemically measured 

results that will help and lead the proper implementation of the RPT technique during the 

growth of microalgae, which has never been done before. This static calibration, which is 

usually used for RPT technique, was implemented to assess if there is a significant change 

in the calibration results in terms of the map of counts verses radioactive particle locations 

due to the change in the culturing rheology during microalgae growth. As mentioned earlier 

[21][22][23] the physical properties of the cultivation media of the microalgae process are 

not constants. Likewise, [19],[20] found that the polysaccharides produced which is a 

carbohydrate (e.g. cellulose, or glycogen) whose molecules and sugar molecules are 
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bonded together, which can significantly affect the viscosity of the culture medium. 

These molecules accumulating in the culture medium, especially at the 

stationary growth stage, can significantly affect the culture medium's 

rheological properties [26]–[32]. Thus, in order to address all these points, the 

calibration process equipped at different segments of time growth is presented in this 

work. 

2. EXPERIMENTAL WORK

A green algae, Scenedesmus, was obtained from Carolina Biological Supply 

Company, Burlington, North Carolina, USA, and used in this study since it is one of the 

candidates for bioenergy production. The alga was first grown in 500ml Erlenmeyer 

flasks at room temperature and pH of around 7.5. A special harvest light obtained from 

(Future Harvest Development, Kelowna, Bc, Canada) was supplied from the top by a 

cool white fluorescent lamp at a photon flux density (PFD) of 40-50 μE/m2 s. After the 

cultures reached the stationary growth stage, they were moved to the large-scale in a split 

airlift column photobioreactor. The culturing time segments were evaluated by using a 

spectrophotometer (SPECTRONIC 20) to measure the media optical density, and the 

results in the split photobioreactor are shown in Figure2.  

This RPT technique used Cobalt-60 isotope as a tracer particle. The half-life for 

Co-60 is long, almost 5.27 years, this particle was capsulated by a polypropylene 

particle to make it neutrally beyond the liquid of the system (water/microalgae 

cells). This operation was done in our lab (Multiphase Reactors and Applications 

Laboratory mReal), 
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Department of Chemical and Biochemical Engineering, Missouri University of Science 

and Technology. 

In the RPT technique, the 30 NaI detectors are arranged strategically around the 

column (see Figure 3), and the microalgae culture is represented by 2 mm polypropylene 

particle where 600 µm irradiated Co-60 has been inserted with a gap of air that makes the 

density of the composite radioactive particle similar to the density of the 

microalgae culturing. Before designing the RPT experiments, we identified the start 

and end of the photo-peak of the used radioisotopes which is here Co-60 by measuring 

the emitted energy spectrum from a point source (the used isotope source) using 

multi-channel analyzer (MCA) at different mediums and at the same threshold (the start 

point for the photo-peak) as shown in Figure 4. We do similar MCA analysis for all 30 

NaI detectors used, as shown in Figure 5. We adjust the MCA to make all the detectors to 

be used for the RPT acquisition algorithm have the same threshold in order to avoid the 

scattering and obtain just the counts between the peak limitations. Once MCA 

adjustment is completed the calibration experiment starts to generate counts of 

radiation in all detectors versus the known locations of the radioactive tracer particle. We 

design the automated calibration devices that can allocate the radioactive particle at the 

known locations driver by data acquisition system and computer.  

This is usually performed while the reactor is operated at the same operating 

conditions of the desired experiment to mimic the attenuation in gamma ray experienced 

by the studied media. The RPT experiment has been performed during culturing microalgae 

which takes long time of about 25-30 days. During this time changes in the culture where 

in this case the effective attenuation of the media changes the physical properties (viscosity 
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and surface tension) where the density of the culture remains fairly unchanged and the 

concentration of particulates and debris from the dead cells [1] – [2]. These molecules, 

accumulating in the culture medium especially at the stationary growth stage, can 

significantly affect the culture medium’s rheological properties [3]–[7].  

These would affect the attenuation of the gamma ray passing through the culture 

due to the changes they bring to the bubble dynamics and could be the density. Hence it 

would affect the calibration data of gamma ray counts received by the detectors versus the 

locations of the radioactive particle during the prolonged culturing experiments where the 

RPT technique is implemented. Therefore, for proper implementation of the RPT 

techniques, there is a need to check if the calibration data changes during the progress of 

microalgae culturing.  

This can be done by performing the calibration before the culturing starts using air-

water system and repeating the RPT calibration during the culturing where compression 

need to be purified if changes occur in the calibration data or not. Therefore, in this 

work RPT calibration have been performed in different segments time during 

microalgae culturing by measuring the optical density. Since Co-60 was used with long 

half-life (5.27 years), there is no need to correct for the change of the source activity with 

time since use experiment time is very small component the half-life of the source. 

3. RESULTS AND DISCUSSION

 Figure 6, Show the obtain relationship between the counts of radiation intensity 

received by the detector against the distances for each detector which prepare the basis to 
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reconstruct the tracer particle (instantaneous position).  Obviously, for each detector, the 

calibration curves has the same behavior but it’s shown a little differences in thicknesses 

due to the differences in the positioning of the gamma-ray source using our designed 

automated calibration device and the detectors coordinates (z-level, angles and the redial 

distance from the central of the column). These depend on the NaI crystal solid angle and 

the path length. Essentially for a split airlift column since the length path facing the 

Plexiglas wall twice which means experienced more attenuated path line between the 

detectors and the placed tracer particle at the known location.  

Hence, in high attenuating systems the correct determination of the detector 

azimuthal position is very important. In the present study the detectors were aligned exactly 

(as possible) using the laser equipped dummy detector by checking the level and the 

distance using our laboratory developed procedure. On the other hand, the experiments 

carried out through the growing microalgae system and consider the effect of medium 

properties change on the experimental data curves.  

The static experiment work (calibration) is conducted through microalgae growth 

system and that to understand their effect on the counts intensity of gamma-ray. Hence, 

each calibration position is mapped to a unique series of counts recorded by the detectors 

which mapped the contribution of the microalgae medium which affect the amount of 

received counts. All these data were used as the input for the reconstruction algorithm 

depending on the level of refinement of the calibration location mesh. In order to find more 

accurate resolution than the calibration mesh resolution which would need a model to 

accurately interpolate the contribution of all the variables that affect the amount of received 

counts between the calibration positions [34].  
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This kind of modeling can be done using the Monte-Carlo simulation [35]–[37]. 

Thus, the distance between the detectors and tracer particle versus the intensity counts for 

each detector is two dimensional map.  Obviously, the contribution of 

previous parameters are causes wider of the calibration “curve” line than the 

calibration data quipped without Plexiglas column, see Figure 7. Both of wall path 

and solid angle are contribute to the appearance of lateral arcs on the calibration 

curves. Therefore, the reconstruction algorithm should include those effects. 

4. REMARKS

As a result: 

• There is no significant change in counts of gamma ray (calibration system) through

deference growth steps.

• Based on this finding, there is no need to perform RPT calibration during the progress

of microalgae culturing and the changes in the culture dose not add or the unchanged

culture density that define the intensity of the attenuation of the gamma ray passing

through the system in this way.

• Furthermore, the change in bubble dynamics due to changes in the rheology of the

microalgae seem dose not also affect the attenuation of the gamma-ray. This helps

significantly the level of the effort in performing RPT experimental, at various

condition of culturing microalgae for studying this culture and the photobioreactors

performance in general.
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Figure 1: Integrated approach for overall microalgae 
culturing analysis. 
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Figure 2: Experiment optical density results. 

Figure 3: Radioactive particle tracking technique facilities.ique 
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Figure 4: A and B: Experimentally determined energy spectrums for different 
medium and velocities is employed in the validation experiments. 

Figure 5: MCA analysis for all the 30 NaI detectors. 
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Figure 6: Calibration curves for detector# 20 at different time interval thru 
microalgae growing. 
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ABSTRACT 

In this study, an advanced radioactive particle tracking (RPT) technique was used 

to investigate for the first time the details of the cells’ movements (trajectory) 

and multiphase flow hydrodynamics during microalgae culturing in a cylindrical split 

airlift photobioreactor. The cells’ trajectory, liquid velocity field, distributions of shear 

stresses, and the turbulent kinetic energy field were studied under superficial gas velocity of 

1 and 3 cm/s. The effects of the cells’ concentration and different aeration rate at 

different axial levels on the studied parameters were discussed. It has been found that 

the cells’ fluctuations reduced and its movement frequency between the light 

(wall) and dark zone decreased during the culturing particularly when the 

cells concentrations becomes large after 30 days of culturing. Distinguishing 

behaviors were observed for all the parameters, with a higher magnitude at the 
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superficial gas velocity 3cm/sec than at 1cm/sec. This effect positively enhanced the 

liquid circulation and the movement between the reactor sides, the riser, and 

the downcomer. This circulation and good mixing phenomena had a large positive 

impact on the culture’s continuity. The obtained results are reliable as benchmark 

data to validate computational fluid dynamics (CFD) simulation and other models 

that can be later used to be integrated with dynamic growth and light intensity models 

for optimized. Keywords: Split airlift photobioreactor, microalgae culture, 

Scenedesmus, noninvasive technique.  

1. INTRODUCTION

Microalgae are fast-growing photosynthetic organisms. By utilizing either indoor 

light or sunlight and inexpensive inorganic compounds (namely, water, CO2, and a source 

of nitrogen and phosphorus), complex organic molecules are synthesized. Compared to 

higher plants, the yield of microalgae biomass is many times superior due to their 

shorter life cycles and their efficient growth. These organisms are not only excellent 

sources for biofuels due to the high lipid content of some strains (up to 50-80%) [1-7], 

but they are also useful in CO2 fixation, and in abating environmental pollution 

(e.g., wastewater treatment from inorganic salts, such as NH4+, NO3-, PO4 3- ) [8-10].  

Other applications for microalgae are in pharmaceutical products, food additives, 

aquaculture, single-cell proteins, hydrogen production, and to mitigate the pollutants of 

combustion/gasification from power plants, and many others [11-14]. Additionally, the 

most important application of culturing microalgae is in space missions. The 

culturing system can be used to create a closed ecological life support system (e.g., on the 
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Moon or Mars), using a photobioreactor designed to produce protein and oxygen 

from the microalgae, to restore CO2, and to mitigate waste. Consequently, it is crucial for 

astronauts on reconnaissance missions. Therefore, a number of space agencies (National 

Aeronautics and Space Administration [NASA], European Space Agency [ESA]) have 

funded research to develop life support systems for long-term space missions [15-18]. 

There are thousands of species of microalgae in nature [19]. According to an 

extensive literature review, it has been found that the green microalgae Scenedesmus is a 

promising organism to become a component for biofuel production due to its high lipid 

content and higher efficiency in capturing CO2 than other kinds of algae [20-26]. Gouveia 

et al. [20] reported that if the purpose of growing microalgae is to produce biodiesel from 

only one species, Scenedesmus presents the most sufficient polyunsaturated fatty acid 

profile, with its total oil content in the approximate range of 17-21% [27].  

Andruleviciute et al. [25] worked with Scenedesmus in media with different 

amounts of glycerol. They found that growing microalgae in culturing mediums containing 

smaller amounts of glycerin (C3H8O3) would produce one-and-a-half times more oil than 

when using other amounts of glycerol. Additionally, they characterized the oil production 

of Scenedesmus and found that the amount of saturated fatty acids of 67.11% and 

unsaturated fatty acids of 32.9% in higher than other investigated algae species [26].

According to Makareviciene et al. [28], Scenedesmus can be used in wastewater 

treatment, along with nitrogen and phosphorus, as an additional elimination factor to 

remove pollutants. Also, this kind of microalgae has a high ability to fix carbon [29]. 

In general, microalgae can be grown in a wide variety of systems ranging from open 

culture systems (e.g., ponds) to closed culture systems of photobioreactor (e.g., airlift, 

https://en.wikipedia.org/wiki/European_Space_Agency
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bubble column, and tubular reactors). The open culture systems exist in the external 

environment, and hence, are not intrinsically controllable. For example, it is hard to control 

the temperature, atmosphere, weather conditions, unwanted microalgae species and other 

parameters that might lead to a reduction in the photobioreactor performance, and thus, the 

productivity. Therefore, the growth of microalgae strains requires (1) them to be protected 

from the external environment, and (2) the use of a closed culture system that is completely 

controllable. For closed culture systems, green microalgae have been grown in several 

photobioreactor configurations—flat plate, tubular, bubble column, and airlift—all of 

which allow the microalgae cultures to grow with close control of the operating conditions 

[30, 31].  

Numerous researchers recommend using airlift column reactors as favorable 

photobioreactors for microalgae cultivation. These kinds of reactors have the ability to 

enhance and improve the efficiency of photosynthesis and also have better scalability and 

operational flexibility, thus, improving the overall performance of the culture system. Also, 

there are no moving parts in these reactors [32, 33], and they have minimum power 

consumption, great heat and mass transfer [34, 35], and provide fast mixing, while retaining 

homogeneous shear stress [31, 36-42]. Many studies have used different types of airlift 

photobioreactors, such as a draft airlift tube, flat airlift, Subitec’s Flat Panel Airlift (FPA), 

and split airlift [31, 36, 43-47]. Based on the measurement and computation of Luo [48] 

and Luo and Al-Dahhan [31, 49, 50], it has been found that the growth of microalgae in a 

cylindrical split airlift column outperforms the other columns. Therefore, a cylindrical split 

airlift column was used in this work to further advance culturing microalgae and the 
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development of the new multi-scale modeling approach for optimized culturing to attain 

sustainable production of bioenergy, bio-based chemicals, and CO2 fixation. 

The hydrodynamics of the cylindrical split airlift photobioreactor are markedly 

affected by the culture stages and hence, the performance of these bioreactors. The flow 

dynamics (hydrodynamics) of the split airlift reactors is characterized by the buoyancy-

driven flow due to the rising bubbles in the riser section of the reactor. A few studies have 

investigated the local hydrodynamics for an air-water-microalgae system in cylindrical 

split airlift photobioreactors by using invasive measurement techniques, such as four-point 

optical probe, and monofiber optical probe. 

Among these few studies, Fernandes et al. [51] used a monofiber optical probe 

technology to investigate the only gas holdup of three reactors: (1) bubble column (BC) 

and (2) two split cylinder airlift photobioreactors, (SCAPBRs), featuring two riser-to-

downcomer cross-sectional area ratios, (a) SCAPBR 75 and (b) SCAPBR 50 (75 and 50, 

featuring two different riser-to-downcomer cross sectional area ratios). The optical probe 

was used to locally detect the presence of the gas phase in a multiphase system.  

Ojha and Al-Dahhan [52] experimentally investigated the gas holdup and bubble 

dynamic properties in a microalgae culture in a split airlift PBR by employing four-point 

optical fiber probe technique. They measured the local gas holdup and properties of the 

bubble dynamics, namely, the bubble velocity, chord length, interfacial area, and bubble 

passage frequency along the riser of the downcomer sections.  

These techniques posed many challenges, such as disturbing the flow inside the 

reactor and negatively affecting the reflected signals from the reactor, particularly when 

the growth medium reached dense culturing; at that point, the microalgae will grow on the 
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surface of the tip of the fiber probe, which eventually forms a layer that will cover the fiber 

probe. Also, such techniques provide limited information related to gas/liquid holdup and 

bubble properties. 

Thus, Luo and Aldahhan [44] and [48] studied the hydrodynamics in split airlift 

photobioreactors by using a computer-automated radioactive particle tracking (CARPT) 

technique. They measured the cells’ trajectory, the liquid velocity field, turbulence kinetic 

energy (TKE), and the Reynolds shear stress for the air-water system only. They assumed 

that the measured liquid eddy trajectory in air-water system represents the cells’ movement 

during cultivation of the red-marine microalgae. This could be possible during the early 

stage of culturing. However, their work did not address the hydrodynamics in real culturing 

system and the effect of the change in the intensity of culture on the reactor hydrodynamics, 

particularly when the culturing medium coming very dense and thick which is interest for 

large scale and for industrial applications. Since it provides more details and deep 

knowledge about hydrodynamics of the real culturing conditions. 

Accordingly, the details local hydrodynamic characteristics (e.g., cells’ 

movements, liquid velocity field, turbulence kinetic energy, and the Reynolds shear stress), 

during culturing and particularly in a dense medium, remain unaddressed and not well 

understood. Therefore, advancing understanding of the details of the flow dynamics 

phenomena during culturing microalgae is critical for efficient, proper and optimized 

microalgae culturing, and for design and scale up and defining the operating conditions of 

the photobioreactors.  

Thus the novelty of this study is to for the first time we have investigated the 

detailed of the cells’ movements (trajectory), local hydrodynamics, liquid velocity field, 
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turbulence kinetic energy, and the Reynolds shear stress of the selected airlift 

split photobioreactor during culturing microalgae using sophisticated radioactive 

particle tracking (RPT) technique. Such study will help understanding the effects of 

culturing stages (cells concentration) on these hydrodynamics.  More importantly, the 

uniqueness of implementing RPT during culturing of microalgae is to measure 

the cells’ movements (cell trajectory) and the related hydrodynamics and that 

can be integrated with the dynamic growth and light intensity models to predict and 

optimize the growth of the microalgae with time and to provide benchmarking data for 

validation computational fluid dynamics CFD.  

2. MATERIALS AND METHODS

2.1. EXPERIMENTAL SETUP 

A Plexiglas cylindrical airlift photobioreactors (split column) with a diameter of 

5 inches (12.7 cm) and a height of 59 inches (150 cm) was used. In this type of geometry, 

at the center of the reactor, an acrylic tray was inserted and divided the reactor into 

equivalent areas: a riser section and a downcomer section, with clearance at the bottom of 

2 inches. A stainless steel ring sparger 5-cm in diameter was used in this reactor. 

The sparger had 15 evenly distributed 1-mm diameter holes placed at the top phase 

of the sparger tube and built up 4 cm above the column base in the riser zone 

(i.e., gas injection zone). The configurations of the split column, with its dimensions, 

are shown in Figure 1. In this work, the air was supplied from an oil-free 

industrial compressor (Ingersoll Rand Company). The air was introduced to pre-

calibrated flow meters after passed through filters. Two calibrated 
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flow meters were used that have different scale are connected in parallel to cover the wide 

range of superficial gas velocities and the flow rate of the air was regulated and measured 

using a pressure regulator. The CO2 gas was connected with the air pipe line before the 

sparger entrance in a proper way to make 3% CO2 of the volumetric flow as recommended 

by Luo and Al-Dahhan [44]. The gases were continuously introduced from the bottom of 

the column through the stainless steel sparger distributor, as shown in Figure 1. 

The sparger was used to propel the gases through tap water at ambient conditions 

using superficial gas velocities of 1.0 and 3.0 cm/sec. these two velocities will allow 

studying the effect of gas velocity on culturing of microalgae and hence on the studied 

local hydrodynamics. Special eight cool white fluorescent lamps were used as a harvest 

light that obtained from Future Harvest Development (Kelowna, British Columbia, 

Canada) and were support around the photobioreactor to provide surface photon flux 

density (PFD) of 350-400 μE/m2s as recommended by Ojha and Al-Dahhan [52]. 

2.2. RADIOACTIVE PARTICLE TRACKING (RPT) TECHNIQUE 

Among the different techniques available for measuring the flow field, advanced 

radioactive particle tracking (RPT) is not only accurate but also avoids the introduction of 

any probe into the culture or the reactor column. The RPT technique has been used to track 

and measure the flow domain by tracking a single radioactive (isotope) particle for long 

time to collect enough statics that represent the system. The radioactive particle is made to 

follow the interested phase in any kind of reactor by making it similar density of the 

tracking phases and by detecting the intensity distribution of emitted gamma rays. In this 
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study, 30 Nal scintillation detectors were used and placed at 15 levels 7 cm apart, with two 

detectors per level facing each other, as shown in Figure 2a and 2b. Each detector consisted 

of cylindrical 2 x 2 inch Nal crystal, photon multiplicator (PM), and electronics, forming a 

2.125 x 10.25 inch cylindrical assembly. The detectors used a 850 V power supply. The 

counts were sampled at 50 Hz. The detected signal was amplified, processed, and recorded. 

Details of the count signal acquisition, processing, and recording have been reported 

elsewhere [53-56]. The angular position of the axis of these two detectors in each level 

alternated between one of the eight possible positions, each 45° apart. The axial span of 

the detectors covered the bottom to the top of the plate, a portion of the column from 10 to 

115 cm above the sparger coordinates of the RPT detectors, as shown in Figure 2a. 

Detectors were horizontally leveled using a leveling device and were aligned in the axial 

and azimuthal direction using the laser-equipped PVC dummy detector. The detector’s 

radial position was set using an aluminum spacer of the required thickness (2 inches) to 

adjust the gap between the detector face and the column.  

The first stage of the experiments identified the start and end of the photo-peak by 

measuring the emitted energy spectrum from a point source (isotope source) using a 

multichannel analyzer (MCA). This was used not only to determine the correct threshold 

on the data acquisition system but also to obtain data at this critical threshold to verify the 

optimization routines and to evaluate the particle location reconstruction system. 

Experiments were carried out to determine the beginning of the photo-peak in the energy 

spectrum for each of the 30 NaI detectors and to assure that the threshold (i.e., the 

beginning of the photo-peak) was controlled. The radioactive particle was placed at the 

center of the riser section in the reactor. The multichannel analysis was conducted in 
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relation to four conditions: (1) empty, (2) filled with water (3) air-water, and (4) with air-

water-microalgae cells system in a split airlift reactor.  

2.2.1. Radioactive Particle Preparation that Mimic the Microalgae Culturing. 

Preparation of the radioisotope particle is the most challenging and important step, in which 

the particle density needs to be adjusted to arrive at the best consistency that matches the 

liquid density in order to collect proper representative data. The radioactive particle 

preparation has to be neutrally buoyant, especially for use in a liquid medium system. Also, 

it has to be (1) as small as possible to reduce the drag force in order to track the motion of 

a fluid, (2) completely wettable by the liquid, (3) rigid and thermally stable, and (4) easy 

to handle with complete security. 

Furthermore, the radioactive source must be of sufficient strength and possess a 

long half-life. Therefore, in this study, for all the cases, the isotope particle Cobalt-60 (Co-

60) was used with a 600-micron diameter and an activity close to 200 μCi. Cobalt isotopes

have a half-life of 5.26 years and display two photo-peaks. Cobalt has a density of ‘8.9 

g/cm3’, hence to prepare the tracer particle with density that matches the liquid phase and 

also to avoid contamination, a spherical polypropylene ball (2 mm O.D.) was used as a 

composite material to encapsulate the Co-60, by drilling a 0.61 mm hole that was sealed 

with epoxy. The amount of glue or epoxy was adapted to match the liquid density. All of 

these steps for a composite particle were manufactured inside a safety glove box with 

specific hand tools, where the operator could watch the operation online on an LCD screen 

connected with a microscopic device, as shown in Figure 3. Moreover, the density of the 

tracer particle was checked by using Eq. 1, below:  

𝐶𝐶𝐷𝐷 = 4
3

× 𝐷𝐷
𝑢𝑢𝑓𝑓
2 × 𝑔𝑔 × (𝜌𝜌𝑝𝑝

𝜌𝜌𝑙𝑙
− 1) (1)
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where 𝜌𝜌𝑙𝑙 is the liquid density, 𝜌𝜌𝑝𝑝 is the particle density, D is the particle mean diameter, g 

is the gravitational acceleration, uf is the free fall velocity, and CD is the drag coefficient. 

In stagnant water, the drag coefficient was 0.65 [53]; approximately 0.087 cm/sec was 

obtained by measuring the terminal settling velocity in tap water in a 2-foot long cylinder. 

Thus, the density of the composite particle was approximately 0.999 g/cm3 which in close 

to water and microalgae culture density of 1.0 g/cm3 Luo and Al-Dahhan [44].  

2.2.2. RPT Calibration. A powerful automated calibration device was designed, 

developed and implemented to work on the split airlift photobioreactor, as shown in Figure 

4. The calibration device can automatically move a calibration rod (radial, axial, and

angular direction) with a capsulated Co-60 particle attached to it’s a plastic tip (see Figure 

5) to several hundred or thousand known positions inside the reactor. With a new (6-foot)

vertical motor, one stainless steel rod 9-foot long and 0.5 inches in O.D., it can cover the 

entire column. The movements of the motors are computerized and integrated with the data 

acquisition system; thus, the counts received by each detector are recorded automatically 

along with the data acquisition system. 

The intensity of the detected gamma rays is a complicated function of the space 

between the isotope’s (radioactive particle) source and the detectors, the solid angle 

(locative angle of view), and the medium composition along the path between the source 

and the detector, including the column inventory and the wall path. Therefore, the number 

of detectors that received counts (based on the intensity of the gamma rays) is a strong 

function of the position of the isotope tracer particle inside the column. The main aim of 

the RPT calibration (static experiment) is to supply the relationship between the intensity 
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of the detected radiation (gamma-ray counts) and the position of the tracer particle 

(radioactive particle).  

This relationship is used to estimate (reconstruct) the isotope tracer particle’s 

position from the instantaneous number of counts received by the detectors during the 

dynamic RPT experiment. The static experiment involved the location of the radioactive 

tracer particle at several hundreds to several thousand known positions inside the reactor 

and measuring the intensity counts received by the detectors. The static experiment was 

performed with the column operated at the same conditions as during the dynamic and 

designed experiment. This was done to account for the dynamic attenuation of the gas (air 

+ CO2) and the liquid (algae) medium in the column.

The accuracy of the relationship between the count’s intensity and the static isotope 

tracer’s location is important for the resolution of the RPT measurements. And, the 

relationship between the static tracer locations and the intensity counts has to be efficient 

to use the isotope tracer’s location reconstruction in the dynamic RPT experiment. Hence, the 

number of the static positions must be high in the regions of the column where the number of 

received counts might change significantly with a small change in the location of the isotope tracer 

particle. 

 In the present study, 3,410 calibration points (static locations) were used. These 

locations were homogeneously distributed among 62 axial calibration levels along the split 

column 2 cm apart, with the lowest level about 2 cm above the base of the column. The 

static positions inside the split column were divided into three parts: left side (sparger side), 

right side, and above the plate. The 55 locations at each calibration level were grouped at 

four radial locations, as shown in Figure 6. The calibration device was developed and 
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operated in the Multiphase Flow Reactors Engineering and Applications (mFReal) 

laboratory at the Missouri University of Science and Technology. During the calibration, 

the tracer particle was held within a polypropylene vial that was screwed to the aluminum 

lower end of the stainless steel holding rod. At each of the 3,410 calibration locations, the 

experimental data acquisition frequency was 50 Hz.  

  The time-averaged number of the received counts for all detectors was mapped 

versus the tracer particle location and was used as the input for the tracer location 

reconstruction procedure. The detector crystal center coordinates are important information 

needed to determine the tracer particle location reconstruction. The original tracer particle 

reconstruction algorithm [54] uses the nominal crystal coordinates identifying where the 

crystals are intended to be placed (see Table 1). 

2.3. MICROALGAE CULTURE PREPARATION 

A green algae, Scenedesmus, was obtained from the Carolina Biological Supply 

Company (Burlington, North Carolina). The algae was first grown in 500 ml Erlenmeyer 

flasks at room temperature and at a pH of ~7.5. A special harvest light obtained from Future 

Harvest Development (Kelowna, British Columbia, Canada) was supplied from the top by 

a cool white fluorescent lamp at a photon flux density (PFD) of 40-50 μE/m2s, as shown 

in Figure 7. After the cultures reached the stationary growth stage, they were moved to the 

larger scale of the split airlift column photobioreactor. 

Furthermore, the culturing time segments were evaluated using a 

spectrophotometer (Spectronic 20, Thomas Scientific, Swedesboro, New Jersey). The 
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measurements of the hydrodynamics in this work were done in three stages: air-water, air-

water-15-days of microalgae culturing, and air-water-30-days of microalgae culturing for 

24 hr for each run. These stages were selected depending on the developing culture system, 

as shown in Figure 8. 

2.4. ESTIMATION OF THE HYDRODYNAMIC PARAMETERS 

In this work, the three-dimensional local velocity, shear stresses, turbulent kinetic 

energy, and eddy diffusivity were processed in accordance with the works of Devanathan 

[53] and Degaleesan [54]. The reactor domain is divided into compartments with equal

volume each as shown in Figure 6. The 3-D velocity and turbulent parameters were 

calculated using the methods and equations discussed below: 

2.4.1 Liquid Velocity Field. The difference in the time between the subsequent 

positions of each particle yield instantaneous Lagrangian velocities. Then, let the 

coordinates of the particle be x1, y1, and z1 at position 1 and time 1, which are at a given 

sampling instant; and let the coordinates for the next sampling instant be x2, y2, and z2, at 

position 2 and time 2. Thus, the midpoint of (x1, y1, z1) and (x2, y2, z2) is calculated as x, 

y, z, and the corresponding cylindrical coordinates are r, θ, z. Then, the compartment to 

which (x, y, z) or (r, θ, z) belongs is calculated by determining the compartment indices of 

the midpoint (i, j, k). The velocity calculated by the time difference of (x1, y1, z1) and (x2, 

y2, z2), as shown in the equations below, is assigned to this compartment with indices i, j, 

and k. Instantaneous (f = 50 Hz) axial, radial and angular velocities over the tracer particle 

displacement vector  𝚤𝚤���−��1�,���𝚤𝚤, are calculated as follows: 
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𝑢𝑢𝑧𝑧,𝑖𝑖−1/2 = 𝑓𝑓(𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑖𝑖−1)        (2) 

 𝑢𝑢𝑟𝑟,𝑖𝑖−1/2 = 𝑓𝑓(𝑟𝑟𝑖𝑖 − 𝑟𝑟)        (3) 

𝑢𝑢𝜃𝜃,𝑖𝑖−1/2 = 𝑓𝑓(𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑖𝑖−1) 𝑟𝑟𝑖𝑖+𝑡𝑡𝑖𝑖−1
2

  (4) 

In such a manner, the instantaneous velocities can be calculated for every sampling 

instant, as the particle moves around the column following the liquid. Interpretation of the 

results for the velocity measurements is done by ensemble averaging, which involves 

averaging the instantaneous velocities measured in a compartment over the entire duration 

of the experiment; this ensemble averaging is equivalent to the phasic averaging applicable 

for modeling. 

Authoritative time-averaging requires that radioactive particle tracking (RPT) 

experiments work over an extended period of time to collect appropriate data to gain 

enough statistics to properly explain the phase flow field. For these experiments, 24 hr was 

enough to ensure that the isotope tracer particle visited all the places inside the split 

photobioreactor, to emphasize that the time-averaged resultant and combination liquid 

velocity had reached the plateau. The velocity is calculated as a mean (time-averaged) by 

the ensemble averaging of the number of the instantaneous (Ns) velocity vector 

components (𝑢𝑢𝑟𝑟 ,𝑢𝑢𝜃𝜃 ,𝑢𝑢𝑧𝑧) that are assigned to a given (i, j, k) compartment. 

𝑢𝑢𝑝𝑝(𝚤𝚤,𝚥𝚥,𝑘𝑘)��������� = 1
𝑁𝑁𝑆𝑆
∑ 𝑢𝑢𝑝𝑝(𝑖𝑖,𝑗𝑗,𝑘𝑘),𝑛𝑛
𝑁𝑁𝑆𝑆
𝑛𝑛=1  𝑝𝑝 = 𝑟𝑟, 𝜃𝜃, 𝑧𝑧 (5) 

Fluctuating velocity is then the difference between the instantaneous and mean velocity. 

𝑢𝑢𝑝𝑝(𝑖𝑖,𝑗𝑗,𝑘𝑘)
′ = 𝑢𝑢𝑝𝑝(𝑖𝑖,𝑗𝑗,𝑘𝑘) − 𝑢𝑢𝑝𝑝(𝚤𝚤,𝚥𝚥,𝑘𝑘)��������� (6)
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2.4.2. Shear Stress and Turbulence Kinetic Energy. Turbulence parameters are 

substantial in the modeling of the dynamics in a multiphase flow system. In the cylindrical 

split column, the Reynolds stresses can characterize the interactions in turbulent eddies in 

a liquid phase. Then, it is possible to evaluate the Reynolds stresses using the RPT 

technique with another parameter. When the fluctuating velocities are calculated, the 

turbulence parameters (turbulent kinetic energy and Reynolds stresses) can be estimated. 

Then, the turbulent stress tensor can be defined for the cylindrical coordinates, as shown 

below in Eq. 7: 

𝜏𝜏 = 𝜌𝜌𝑙𝑙 �
𝑢𝑢𝑟𝑟′ 𝑢𝑢𝑟𝑟′������ 𝑢𝑢𝑟𝑟′ 𝑢𝑢𝜃𝜃′������� 𝑢𝑢𝑟𝑟′ 𝑢𝑢𝑧𝑧′������

𝑢𝑢𝜃𝜃′ 𝑢𝑢𝑟𝑟′������� 𝑢𝑢𝜃𝜃′ 𝑢𝑢𝜃𝜃′������� 𝑢𝑢𝜃𝜃′ 𝑢𝑢𝑧𝑧′������

𝑢𝑢𝑧𝑧′ 𝑢𝑢𝑟𝑟′������ 𝑢𝑢𝑧𝑧′ 𝑢𝑢𝜃𝜃′������ 𝑢𝑢𝑧𝑧′ 𝑢𝑢𝑧𝑧′������
�     (7) 

In Eq. 7, the nine unknown components were reduced to six components due to the 

symmetry of the stress tensor, namely: 

Shear stresses: 𝜌𝜌𝑙𝑙𝑢𝑢𝑧𝑧′ 𝑢𝑢𝑟𝑟′������, 𝜌𝜌𝑙𝑙𝑢𝑢𝜃𝜃′ 𝑢𝑢𝑟𝑟′�������, 𝜌𝜌𝑙𝑙𝑢𝑢𝜃𝜃′ 𝑢𝑢𝑟𝑟′�������     (8) 

where,   𝑢𝑢𝑧𝑧′ 𝑢𝑢𝑟𝑟′������=𝑢𝑢𝑧𝑧′ 𝑢𝑢𝑟𝑟′������, 𝑢𝑢𝜃𝜃′ 𝑢𝑢𝑧𝑧′������ =𝑢𝑢𝜃𝜃′ 𝑢𝑢𝑧𝑧′������, also, 𝑢𝑢𝜃𝜃′ 𝑢𝑢𝑟𝑟′�������=𝑢𝑢𝑟𝑟′ 𝑢𝑢𝜃𝜃′�������    

        Normal stresses: 𝜌𝜌𝑙𝑙𝑢𝑢𝑟𝑟′ 𝑢𝑢𝑟𝑟′������, 𝜌𝜌𝑙𝑙𝑢𝑢𝑧𝑧′ 𝑢𝑢𝑧𝑧′������, 𝜌𝜌𝑙𝑙𝑢𝑢𝜃𝜃′ 𝑢𝑢𝜃𝜃′�������   (9) 

The objective of this work is to realize and understand the mechanisms of the 

turbulence in a cylindrical split airlift column. The negative signs and density are not 

considered here, due to the density of the liquid in the culture system (microalgae medium) 

is constant Sabri et al. [57]. The pq component of the Reynolds stress tensor is calculated 

as:  
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 𝜏𝜏𝑝𝑝𝑝𝑝 = 𝑢𝑢𝑝𝑝(𝚤𝚤,𝚥𝚥,𝑘𝑘)
′ 𝑢𝑢𝑝𝑝(𝚤𝚤,𝚥𝚥,𝑘𝑘)

′������������������ = 1
𝑁𝑁𝑆𝑆
∑ 𝑢𝑢𝑝𝑝(𝑖𝑖,𝑗𝑗,𝑘𝑘),𝑛𝑛

′𝑁𝑁𝑆𝑆
𝑛𝑛=1 𝑢𝑢𝑝𝑝(𝑖𝑖,𝑗𝑗,𝑘𝑘),𝑛𝑛

′  𝑝𝑝, 𝑞𝑞 = 𝑟𝑟,𝜃𝜃, 𝑧𝑧      (10) 

The turbulent kinetic energy (TKE) per unit mass is defined as: 

𝑘𝑘 = 1
2

[(𝑢𝑢�𝑧𝑧′ )2 + (𝑢𝑢�𝑟𝑟′ )2 + (𝑢𝑢�𝜃𝜃′ )2]   (11) 

when using the RPT technique, the Lagrangian ensemble components’ velocities are used 

as a time series for the tracer isotope particle, which is used to determine the Lagrangian 

cross- and auto-correlation coefficients. The eddy diffusivities concept can be explained as 

follows. If the tracer particle enters the compartment in the column, a counter is 

initiated, and the tracer is tracked over time. Then, after an extended period of time, 

the tracking starts a new trajectory. To obtain enough statistics over a large number of 

the domain (column) fictitious compartments of the split airlift column, this process is 

iterated for the entire dataset. Therefore, when the experiment is completed, there will be 

an ensemble of trajectories in the column for each single compartment. Depending on the 

ergodicity, this trajectory ensemble might appear as the particle group that was freed at a 

specific time and eventually spread outside the compartment [54, 55]. 

3. RESULTS AND DISCUSSION

The RPT results for the local time-averaged liquid velocities in 

cylindrical coordinates are presented as 3-D contour plots, 2-D velocity vector plots, 

and axial and radial profiles. With the RPT technique, it is possible to measure the local 

time-averaged flow pattern in the entire velocity field, so that it is of interest to see the 

behaviors of the liquid flow field in three ways in a split airlift photobioreactor. 
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All the visualization results were performed using the OriginPro 2017 (OriginLab®, 

Northampton, Massachusetss) software. Because the detectors were positioned near the 

sparger and above the split plate region, the figures are presented for axial locations from 

0 to 120 cm, which cover all the length of the column.  

3.1. OPTICAL DENSITY MEASUREMENTS 

As shown in Figure 9 the differences in superficial gas velocity have clear impact 

on the cultivation system. It is observed that the culture has rapid growth when it runs at 

3cm/sec due to enhanced mixing and distribution for the gas and the liquid flow filed 

as explained in the coming sections. When the cells fluctuated effectively between 

the illuminated and dark zones and the mass transfer of the CO2 and the O2 enhances. 

3.2. MICROALGAE CELLS’ MOVEMENT 

Figure 10 and 11 shows the single cells' trajectory movement that mimics a 

single microalgae cells' circulation inside the split photobioreactor obtained from 

the RPT experiments at a superficial gas velocity of 1 cm/sec and 3 cm/sec, 

respectively. A single trajectory in the split internal-loop photobioreactor is defined as 

one circulation of the particle that it is beginning from a start point (plane) in the lower 

point of the column and returns back to this plane after it has traveled and moved 

through the riser and the downcomer.  For each RPT experiment, more than 4000 

trajectories have been identified. 
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As mentioned above the particle movement was measured for a long time (24hr) that allow 

the particle to visits any location of the split photobioreactor for many times that gives 

plateau time averaged velocity in each compartment of the column.  

Thus, the obtained particle trajectory represents the movement of the cells. As 

expected, the particle trajectories between the riser and the downcomer zones were 

demonstrated by the circular movements of the microalgae cells over the radial length, 

axial length, and the time scales of 12.7cm, 120 cm and 8 sec respectively. The radial length 

represents the radial direction which is equivalent to the diameter of the split 

photobioreactor. As shown in Figure 10 and 11, while the cells’ move along the axial 

length, they have wide radial length movement and fluctuate between the center and the 

surface of the column. Moreover, the trajectories also showed a turbulence radial 

fluctuation in both sections the riser and the downcomer. This fluctuation in the radial 

direction is more during the stage of air-water and it gets reduced as the microalgae growth 

proceed to 15 days and then to 30 days. This clearly shows the effect of the change of the 

viscosity of the culture that affects the movement of the cells. Also, as the gas velocity 

increases the radial fluctuation of the cells movement enhances as shown by the differences 

between Figures 10 and 11. 

In the dense medium, the light intensity in the dark center was very low due to the 

shedding of the cells, thus the radial movement does not cause much light fluctuation 

experienced by a cell as it follows the trajectory. However, in the first day of microalgae 

culture when the light intensity in radial movement introduces high light fluctuation 

experienced by the cells when the medium viscosity is less. These findings are very close 

to Luo et, al. [44], where their study explained the light fluctuation terms of expressing the 
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movement of the cell into three types of quantities a) type I, gross fluctuation between the 

illuminated to the dark zone, b) type II, the turbulence-induced radial fluctuation, and c) 

type III, light intensity gradient in radial movement.  

Obviously, the quantities various with the stages of the growth and the gas velocity 

which will be addressed in our subsequent manuscript that will explain the impact of these 

quantities on the growth of the cells during the stages of the growth at varying gas velocity. 

3.3. LIQUID VELOCITY FLOW FIELD 

The maps of the liquid velocity flow field in the studied split 

photobioreactor column under different superficial gas velocities and various 

microalgae cultivation time stages are shown in Figures 12-18. The local liquid velocity 

fields are visualized in a 3-D pattern, and the local liquid velocity vectors and axial liquid 

velocity profiles are projected on the r-z planes.  

In this work, air-water, air-water-microalgae after 15 days, and air-water-

microalgae after 30 days in the culture system were selected for study, because the results 

represent a clear variety through the growth framework, which starts from the first day and 

extends throughout dense culturing at a time after 30 days. Figure 12 indicates that the 

contour maps that plotted the local values were taken at six levels (i.e., z = 2, 20, 50, 70, 

100, and 120 cm) to cover the entire height of the split column, starting from the bottom of 

the reactor, which is below the split plate. The last level represents the upper section, which 

is located above the split plate. As can be seen, the contour figures demonstrate the 
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movements of the liquid in the riser and downcomer sections in order to obtain the liquid 

velocity direction in the air-water and air-water-microalgae systems. 

As shown in Figures 12 and 13, the red and yellow colors and their gradients 

represent the liquid velocity in the riser section with different positive magnitude values 

(upward direction), and the blue, green, and purple colors and their gradients represent the 

liquid velocity in the downcomer section with negative magnitude. It seems that the 

superficial gas velocity has clear effects on the liquid velocity distribution when the 

photobioreactor works at superficial gas velocities of 1.0 and 3.0 cm/sec for the air-water 

system and hence on both radial and axial fluctuations.  

It is not surprising that in an air-water system, the magnitude of the liquid velocity 

flow field changes greatly when the superficial gas velocity changes from 1 to 3 cm/sec in 

both the riser and downcomer. Above the split plate, the liquid behavior is being mixed in 

a continuous stirred-tank reactor (CSTR) because the liquid distribution is not uniform and 

the color is clear [58]. The study of H.-P. Luo, M.H. Al-Dahhan [59] focused on the macro-

mixing in a draft tube airlift reactor, and they found that the flow structure in the top and 

bottom regions performed similarly to what would occur in a CSTR; this had a significant 

effect on the macro-mixing behavior and was very different from the behaviors in the riser 

and downcomer. Some locations had a lower flow liquid velocity magnitude than others 

due to changes in the driving force. The driving force for the liquid is the gas that was 

introduced to the riser section in the column [59]. Also, because the gas distribution is not 

exactly the same at each location, differences in color can be observed. Our next study will 

investigate the gas distribution in split photobioreactors using a gamma-ray computed 
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tomography (CT) technique to visualize how the gas is moving and distributed in the 

riser and downcomer sections for the same reactor and to combine these with the RPT 

findings. As the microorganisms started to grow in the split airlift column, the 

magnitude of the liquid velocity decreased slightly while the growth stages moved 

from air-water alone to 30 days of cultured growth; this resulted from changes in the 

viscosity of the culture medium, which became thicker and more dense [52,60]. The 

physical properties, especially the viscosity, have a high impact on the fluid 

dynamics. According to Eteshola et al. [61-62] and Geresh et al. [63], the viscosity 

in the air-water system is much lower than the viscosity in a real culturing system. 

Further, Wu and Merchuk [64, 65] have pointed out that the 

polysaccharide (exopolysaccharide, a natural polymer of high 

molecular weight secreted by microorganisms into their environment) 

concentration was low, as is typical through the first 10 days of microalga growth. 

Therefore, the changes in the viscosity may be neglected because the viscosity of 

the culture medium remained close to that of water, and no significant 

differences in the dynamics of the fluid flow were expected. However, when 

experiments extend for a longer amount of time and a high production of 

polysaccharides (exopolysaccharide) must be taken into account besides the increased 

number of the cells, changes in the viscosity would have to be considered. In 

this work, the microalgae culture produced a high level of 

polysaccharides (exopolysaccharide) and high number of cells after 10 days of 

culturing. This finding is very close to Wu and Merchuk [64-65] and is also 

consistent with Ojha [60].  
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A color gradient represents the velocity magnitude because in typical velocity vector 

figures with the same color, it is difficult to see how the growth medium affects the flow 

circulation and movements in the photobioreactor. Thus, in this work, we developed a way 

for the figures to reflect the effect of the liquid velocity on microorganism cell culturing in 

such a system. In the air-water medium, the color gradient for 1 and 3 cm/sec in the velocity 

vector flow patterns shows a gap, and both profiles display a strong circulation pattern, 

with the flow heading upward for the liquid phase in the riser and downward in the 

downcomer sections. Under a high superficial gas velocity (i.e., 3 cm/sec), this rotational 

and circulation flow pattern is considerably stronger. The flow phenomena for these 

behaviors represent two kinds of mixing (macro-mixing), namely bulk circulation and 

spiral movement [44]. On the other hand, in the air-water-microalgae system, the velocity 

vector pattern showed a slightly different velocity magnitude, and there were some 

locations that distinguish magnitude, especially at 1 cm/sec. Obviously, the axial liquid 

velocity profiles in the riser and downcomer exhibit the same behavior, but as mirror 

images, for all superficial gas velocities. Again, this suggests a more uniform flow in both 

the riser and downcomer in this type of photobioreactor.  

The effects of the superficial gas velocity are also displayed in Figure 16. The 

magnitude of the axial liquid velocities in the riser at the gas velocity 1 cm/sec is smaller 

than at higher gas velocity which is 3 cm/sec. A big gap between the axial liquid velocities 

at a gas velocities of 1 and 3 cm/sec was obtained, marking a possible regime transference 

between these both operating conditions. Furthermore, the flux of the liquid circulation is 

lower for smaller superficial gas velocities. Also, the circulation flow is generally 
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expressed as a normalized for the circulation flow liquid velocity by dividing it by the riser 

cross-sectional area. 

All the axial liquid velocity profiles in Figures 16-18 correspond to different 

superficial gas velocities, varying growth stages, and three axial levels, which are 

represented by different magnitudes but very similar trends and shapes for the air-water 

and air-water-microalgae systems.  

 In Figures 16(a), 17(a), and 18(a), the axial liquid velocities behave similarly, and 

the curves in all conditions started from the high point above the riser section and decreased 

gradually at the edge of the split plate, with a peak in the middle region of the radius in the 

downcomer section (i.e., r/R ≈ 0.75). This behavior presents the actual movement of liquid 

at this location, which was visually observed. On the other hand, in Figures 16(b), 17(b), 

and 18(b), at the middle of the column length, the liquid velocity profiles show a peak with 

a positive direction in the middle region of the radius of the riser section (i.e., r/R ≈ 0.3), 

but the peak in the middle region of the radius of the downcomer section (i.e., r/R ≈ 0.75) 

almost exhibits the same behavior in a negative direction.  Interestingly, in Figures 16(c), 

17(c), and 18(c), the trend behaves quite differently.  

The peak in the middle region of the radius of the downcomer section is in negative 

direction (i.e., r/R ≈ 0.75), and the curvy lines move directly to the riser section and form 

a positive peak in the middle region of the radius (i.e., r/R ≈ 0.3) because this region is a 

transition area between the riser and downcomer sections. The liquid moved to the riser 

due to the short space between the split plate and the column base, which was 5 cm, based 

on [48], because a high driving force at this point pushed the liquid to the riser region.  
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The profiles of the axial liquid velocity for all the conditions are higher 

in magnitude as the superficial gas velocity rose, and these findings are reasonable 

because the reactor geometry has a limited effect on the liquid flow in the middle of the 

riser and downcomer sections, but the reactor geometry can significantly affect 

the liquid movements in the lower and upper split plate [50, 59]. Finally, the 

microalgae have an effect on the axial liquid velocity profiles due to the difference in 

physical properties (as mentioned above) after 15 and 30 days of culturing. 

3.4. SHEAR STRESS 

For the proper design and operation of a split airlift photobioreactor, the shear 

stress is an important parameter that can express the magnitude of the hydraulic forces in 

the fluid. In a microalgae culture system, the high shear stress values could cause damage 

and reduce the growth rate of the microalgae cells which needs to be averted [48,65]. 

Hence, for high productivity, a suitable understanding of the details of the shear stress in 

flow dynamics is essential for the optimization and successful design of a microalgae 

culture system. However, for split airlift photobioreactors, very limited quantitative 

information exists in the open literature on the shear stress and its distribution, 

predominantly due to the lack of an appropriate advanced measurement technique.  

Figure 19 represents the 3-D local shear stress distribution, τrz, in the r-theta-z plane and 

illustrates how the shear stress is distributed inside the split column. This figure shows a 

slight difference in the shear stress at the studied superficial gas velocities and at specific 

zones, such as the area below and above the split plate and also close to the sparger,
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because the liquid velocity in these positions is higher, which is dependent on the driving 

force. The figures in this section illustrate the radial shear stress profile at different 

superficial gas velocities (i.e., 1 and 3 cm/sec) within three flow areas: above the split 

plate, middle of the length of the column, and below the split plate. In Figure 20(a), the 

behavior of the curves above the split plate are quite different; many peaks were observed 

in this region due to the harsh action of the liquid, particularly at a high superficial gas 

velocity. However, at the middle length of the column, Figure 20(b) shows two peaks in 

the middle area of the riser and downcomer sections, at r/R ≈ 0.3 and r/R ≈ 0.75, 

respectively, with the lowest magnitude in the downcomer section. 

           On the other hand, below the split plate, the curves display different phenomena 

(Figure 20(c)), peaking close to the wall (split plate), and the shear stress dropped sharply 

below the split plate, which forms a concave shape that moved to the riser section. This is 

because, as mentioned above, this open area is very short compared to the whole column, 

which will lead to an increase in the liquid acceleration at this gate. These results in terms 

of shear stress are inline with Luo [48] study, especially in the riser section. However, the 

shear stress profiles in the downcomer section, had fewer convex lines than the profiles of 

Luo’s work due to the short width of the downcomer section in the draft tube compared 

with the split column. Also, this variation is due to the Luo’s data were presented in 

azimuthally average profiles over the entire cross-section of the column. While in this work 

the hydrodynamics data were averaged azimuthally for each, the riser and the downcomer 

individually (i.e. Half of cross-section of the column).  Due to low magnitudes, the other 

components (i.e., rtt, rrt, and rtz) for the Reynolds stresses are not represented. There was 

almost no effect of the cultivation system on the shear stress profiles, as shown in Figure 
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21, and there was no significant cell damage in the culture system at 1 and 3 cm/sec. 

This finding verifies that these superficial gas velocities are suitable for microalgae 

culturing in a cylindrical split column configuration. These results are consistent 

with the open literature [50, 52, 58]. 

3.5. TURBULENCE KINETICS ENERGY 

Turbulence kinetic energy directly affects liquid mixing as well as mass and 

heat transfer rates; thus, an adequate understanding of the turbulence phenomena in the 

reactor column is always necessary for the design and modeling of a multiphase flow 

reactor [66]. Figure 22 represents the 3-D local turbulent kinetic energy distribution on 

the r-theta-z plane, at superficial gas velocities of 1 and 3 cm/s.  

Figure 22 illustrates that the turbulent energies distribution differs greatly when the 

gas velocity increases from 1 to 3 cm/sec. Additionally, the figure displays the turbulent 

energies distribution in the riser and downcomer sections and above and below the split 

plate. Moreover, the turbulence is widely distributed in the sparger region and will 

represent the liquid movements and interactions in the riser section. And when the liquid 

resides above the split plate, we can clearly see the mixing, and the magnitude will reduce 

gradually in the downcomer section due to a decrease in the driving forces. These findings 

are reasonable because they match the liquid velocity map. The areas with high turbulent 

energies are leading to a large dissipation of energy, which in turn affects the fluid flow 

and hydraulic resistance. Thus, the turbulent energies in the top and bottom areas of the 

split plate are substantial for the flow liquid projections.  
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Figure 23 (a) illustrates the radial profiles of the turbulent kinetic energy in the top 

of the split plate zone at different superficial gas velocities. The curves display an incline 

upward from the column wall (riser side), with a large convexity above the split plate along 

the reactor diameter; then, the curves decline close to the column wall on the downcomer 

side.  

This shows a high magnitude of the turbulence energies, which causes a high 

dissipation of the energy in this area. Figure 23 (b) demonstrates the radial profiles of the 

turbulent kinetic energy in the middle length of the reactor column. Very interestingly, in 

Figure 23 (c) there is a large fluctuation in the bottom of the column below the split plate, 

at the gate between the riser and downcomer sections. This indicates a significant energy 

dissipation as a result of high turbulent kinetic energies in these regions, which in turn 

affects the liquid circulation flow cells’ movement and the hydraulic resistance.  

Furthermore, at the outward corner in the bottom of the reactor, the 

turbulent kinetic energy increases drastically, as indicated in Figure 23. According to Luo 

and Al-Dahhan [58], when they changed the gate distance (bottom clearance), they found 

that the velocity of the liquid circulation decreased when the bottom clearance decreased. 

Thus, their research demonstrated that the space between the base of the column and the 

split plate significantly affects the energy dissipation in the bottom zone, which 

is consistent with our findings. Hence, in the upper and lower zones of the split plate, 

the turbulent kinetic energies are vital for the flux predictions of the liquid circulation [48, 

58]. 

Figures 24 present the effect of microalgae culturing on the turbulence kinetic 

energy, where the radial profiles of the TKE are shown in three zones: top, bottom, and 

mid-column length.



58 

Obviously, the turbulence kinetic energy profiles for different zones have 

extremely similar trends, with slightly various magnitudes in the bottom and middle of the 

reactor due to changes in the viscosity of the culturing medium, as mentioned previously.  

Finally, in a superficial gas velocity of 3 cm/s, the values of the turbulent 

kinetic energies are greater in the riser section than they are in the section of the 

downcomer, except for in the area under the split plate in the downcomer side close to 

the reactor wall; this results from the high resistance of the liquid circulation flux in 

this region, which is consistent with the findings of Luo [48].  

4. REMARKS

In this study, the details of cells’ movement (trajectory) and local hydrodynamics 

in a cylindrical split airlift photobioreactor during microalgae culturing were investigated 

using noninvasive, advanced radioactive particle tracking (RPT) measurement techniques. 

A set of experimental inquiries was conducted to achieve the objectives of this work. The 

3-D local phenomena of the multiphase flow were a focus of discussion to provide a deeper

knowledge needed for achieving optimized design and operating conditions for microalgae 

culturing and for photobioreactors design and scale up. This can be achieved by the 

approaching of integrating the results of this work with dynamic growth and light intensity 

models which represent our future manuscript and by validating CFD simulations to use 

CFD results instead of RPT results. The findings can be briefly summarized: 
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• Sophisticated radioactive particle tracking (RPT) technique was employed to

determine for the first time the cells movement (cell trajectory) during the stages of

green microalgae growth.

• 3-D local liquid velocity fields were visualized in the r-theta-z plane; local liquid

velocity vectors and axial liquid velocity profiles were projected in the r-z planes.

The results showed a clear difference in the liquid velocity magnitude when the

superficial gas velocity rose from 1 to 3cm/sec. The results at 3 cm/sec confirmed

that the split airlift reactor has high performance in terms of a large phase

distribution in all regions, which positively affects microalgae culturing. On the

other hand, the viscosity of the cultivation medium change due to growth continuity

and productivity, which was shown when the culture system reached the dense

medium stage, that occurred after 30 days of growing. In addition, the viscosity will

affect the values and magnitudes of the results, which is liquid velocity felid, shear

stress and turbulence kinetics energy and hence the cells’ movement and trajectory.

• The strength of the shear stress increased when the superficial gas velocity

increased, and that is visually evident in the 3-D local r-theta-z plane and in the r-z

radial profile planes. A slightly higher shear stress was found in the sparger region,

above and below the split plate, than in other locations inside the split reactor.

Values in the riser section were higher than in the downcomer section at 3 cm/sec.

The shear stress had no considerable effect on the microalgae culture system under

all conditions, and there was no effect of the culture medium on the shear stresses.

• Distinguishing behaviors were observed for turbulence kinetic energy, with a

higher magnitude at the superficial gas velocity 3 cm/sec than at 1 cm/sec.
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Moreover, turbulence kinetic energy was present in significantly high strength in 

the riser as well as in the upper and lower regions, as clearly shown on the radial 

profiles. Also, the effect of the culture system was displayed in the radial profiles 

at all the levels in the cylindrical split airlift reactor, and it was clear that the change 

in culture medium properties reduced the magnitude of the TKE radial profiles.  

• The split plate had a significant effect on the flow structure in the cylinder column.

This effect positively enhanced the liquid circulation and the movement between

the reactor sides, the riser, and the downcomer. This circulation and good mixing

phenomena had a large, positive impact on the culture’s continuity. And it was

found also that the cylindrical split column has the suitable conditions for the

culture system due to the reasonable shear stresses, great liquid velocity, and

turbulence kinetic energy distributions, at a superficial gas velocity of 3 cm/sec.

• These results obtained help for advancing the fundamentals knowledge required for

split internal-loop photobioreactor analysis to improve microalgae growth system.

Also, due to the difficulty of investigating using a noninvasive gamma-ray

technique, it is most beneficial to use the results obtained in this work as benchmark

data for computational fluid dynamics (CFD) modeling verification. Thus, the CFD

simulation can be then used to simulate the details cells’ movement and of the local

hydrodynamics parameters in both 3-D and 2-D planes. By integrating the CFD

results with dynamic growth rate and liquid intensity models, the growth of the

cells’ can be tracked and hence without further experimentation we can reach to

optimized conditions for the microalgae culturing and for proper and efficient

design and scale-up of photobioreactors.
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Figure 1: Schematic diagram for split airlift reactor with the ring sparger. 
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Figure 2: (a) Radioactive particle tracking technique facilities 
(b) Detectors arrangement in angler and z-direction.
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Figure 3: (a) schematic for tracer particle, (b) Radioactive particle 
tracking preparation facilities.  

Figure 4: Photos of the automated calibration device for the 
RPT technique. 
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Z0 = 2cm 
Nz = 62 
Δz = 2 cm 
Zmax =124 cm 

Azimuthally averaged for the riser section 

Azimuthally averaged for the downcomer section 

Figure 6: RPT calibration tracer particle positions at different radials and angles in one 
level. 

Figure 5: The plastic tip and iron rod for RPT calibration device. 
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Cool white fluorescent lamp 

Green algae, Scenedesmus 

Figure 7: First grown of microalgae in 500 ml Erlenmeyer flasks at room 
temperature and at a pH of ~7.5. 

Figure 8: Microalgae culturing at different stage (A) air-water (B) air-
water-15day (C) air-water-30day. 
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Figure 9: Optical density measurements for microalgae during the culturing system 
at different superficial gas velocity 3cm/s and 1 cm/s. 
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A B C 

Figure 10: A single particle trajectories in the split photobioreactor in both the front 
r–z plane and the top view cross-sectional plane, solid lines showed the split plate 

and the sparger, at superficial gas velocity 1 cm/sec. A) air-water, B) 15 day of 
culturing, and C) 30 day of culturing. 
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A B C 

Figure 11: A single particle trajectories in the split photobioreactor in both the front 
r–z plane and the top view cross-sectional plane, solid lines showed the split plate 

and the sparger, at superficial gas velocity 3 cm/sec. A) air-water, B) 15 day of 
culturing, and C) 30 day of culturing. 
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a b c 

Figure 12: Visualization of local velocity flow field in r-theta-z plane at superficial gas 
velocity 1 cm/sec (a) air-water (b) air-water-15day growth and (c) air-water-30day 

growth. 



Figure 13: Visualization of local velocity flow field in r-theta-z plane at superficial gas velocity 
3 cm/sec (a) air-water (b) air-water-15day growth and (c) air-water-30day. 

a 
b c 
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a b c

Figure 14: Liquid velocity vector in r-z plane, 1cm/sec (a) Air-water (b) air-
water-15day(c) air-water-30day. 

Figure 15: Liquid velocity vector in r-z plane, 3cm/sec (a) Air-water (b) air-
water-15day(c) air-water-30day. 

a b c
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Figure 16: Effect of superficial gas velocity on axial velocity profiles 
at 1cm/sec and 3cm/sec: (a) above the split plate; (b) at the medial of 

the column; (c) below the split plate. 
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Figure 17: Effect of microalgae culturing on axial velocity profiles at 
1cm/sec and different levels: (A) above the split plate; (B) at the 

medial of the column; (C) below the split plate. 
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Figure 18: Effect of microalgae culturing on axial velocity profiles at 
3 cm/sec and different levels: (A) above the split plate; (B) at the 

medial of the column; (C) below the split plate. 
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Figure 19: Visualization 3D local shear stress τrz in r-theta-z plane at 
superficial gas velocity 1 & 3 cm/sec for air-water system. 
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Figure 20: Shear stress τrz profiles in air-water system at different 
levels and superficial gas velocities: (A) above the split plate; (B) at 

the medial of the column; (C) below the split plate. 
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Figure 21: Shear stress τrz profiles in air-water and air-water-microalgae after 
30days system at different superficial gas velocities. 

Figure 22: Visualization of local turbulent kinetic energy in the r--z plane 
(unit: cm2 /s2 ) at 1 cm/s Ug , 5 cm bottom clearance, and 3 cm top clearance. 
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Figure 23: Turbulence Kinetic Energy profiles in air-water system at 
different levels and superficial gas velocities: (A) above the split plate; 

(B) at the medial of the column; (C) below the split plate.
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(a) 

(b) 

Figure 24: Turbulence Kinetic Energy profiles in (a) air-water-microalgae system at 
different levels and superficial gas velocities 3 cm/sec and (b) air-water-microalgae 

system at different levels and superficial gas velocities 1 cm/sec. 

Riser 

Downcomer 

Riser 

Downcomer 
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Detector # z, cm ϴ0 r, cm 

1 10 115 12.1 

2 24 70 12.1 

3 38 115 12.1 

4 52 70 12.1 

5 66 115 12.1 

6 80 70 12.1 

7 94 115 12.1 

8 17 25 12.1 

9 31 340 12.1 

10 45 25 12.1 

11 59 340 12.1 

12 73 25 12.1 

13 87 340 12.1 

14 101 25 12.1 

15 10 295 12.1 

16 24 250 12.1 

17 38 295 12.1 

18 52 250 12.1 

19 66 295 12.1 

20 80 250 12.1 

21 94 295 12.1 

22 17 205 12.1 

23 31 160 12.1 

24 45 205 12.1 

25 59 160 12.1 

26 73 205 12.1 

27 87 160 12.1 

28 101 205 12.1 

29 108 160 12.1 

30 108 205 12.1 

Table 1: Coordinates of the RPT detectors: (r, z, θ). 



82 

REFERENCES 

[1] N. Ali, Z. Ting, Y.H. Khan, M.A. Athar, V. Ahmad, M. Idrees, Making biofuels from
microalgae - A review of technologies, JFST 1 (2014) 7–14.

[2] E. Manirafasha, T. Ndikubwimana, X. Zeng, Y. Lu, and K. Jing, “Phycobiliprotein:
Potential microalgae derived pharmaceutical and biological reagent,” Biochemical
Engineering Journal, vol. 109. pp. 282–296, 2016.

[3] Q. Hu, M. Sommerfield, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, A. Darzins,
Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and
advances, Plant J. 54 (2008) 621–639.

[4] W. Khatri, R. Hendrix, T. Niehaus, J. Chappell, W.R. Curtis, Hydrocarbon production
in high density Botryococcus Braunii race B continuous culture, Biotechnol. Bioeng.
111 (2014) 493–503.

[5] J.P. Maity, C.-P. Hou, D. Majumder, J. Bundschuh, T.R. Kulp, C.-Y. Chen, L.T.
Chuang, C.N.N. Chen, J.-S. Jean, T.-C. Yang, C.-C. Chen, The production of biofuel
and bioelectricity associated with wastewater treatment by green algae, Energy 78
(2014) 94–103.

[6] I. Rawat, R.R. Kumar, T. Mutanda, F. Bux, Biodiesel from microalgae: A critical
evaluation from laboratory to large scale production, Appl. Energy 103 (2013) 444–
467.

[7] T. Suganya, M. Varman, H.H. Masjuki, S. Renganathan, Macroalgae and microalgae
as a potential source for commercial applications along with biofuels production: A
biorefinery approach, Renew. Sust. Energ. Rev. 55 (2016) 909–941.

[8] A. Fazeli Danesh, S. Ebrahimi, A. Salehi, and A. Parsa, “Impact of nutrient starvation
on intracellular biochemicals and calorific value of mixed microalgae,” Biochem. Eng.
J., vol. 125, pp. 56–64, 2017.

[9] L. Rodolfi, G. Chini Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini, M.R. Tredici,
Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass
cultivation in a low-cost photobioreactor, Biotechnol. Bioeng. 102 (2009) 100–112.

[10] H.-W. Yen, I.C. Hu, C.Y. Chen, S.H. Ho, D.J Lee, J.S. Chang, Microalgae-based
biorefinery--From biofuels to natural products, Bioresour. Technol. 135 (2013) 166–
174. doi: 10.1016/j.biortech.2012.10.099.



83 

[11] C. Y. Chen et al., “Microalgae-based carbohydrates for biofuel production,” Biochem.
Eng. J., vol. 78, pp. 1–10, 2013.

[12] K. Iwasaki, T. Shiraga, H. Matsuda, K. Nagase, Y. Tokuma, T. Hata, Y. Fujii, S.
Sakuma, T. Fujitsu, A. Fujikawa, et al., Further metabolism of FK506 (tacrolimus):
Identification and biological activities of the metabolites oxidized at multiple sites of
FK506, Drug Metab. Dispos. 23 (1995) 28–34.

[13] L. A. Bui, C. Dupre, J. Legrand, and D. Grizeau, “Isolation, improvement and
characterization of an ammonium excreting mutant strain of the heterocytous
cyanobacterium, Anabaena variabilis PCC 7937,” Biochem. Eng. J., vol. 90, pp. 279–
285, 2014.

[14] J. Sheehan, T. Dunahay, J. Benemann, P. Roessler, A Look Back at the U.S.
Department of Energy’s Aquatic Species Program — Biodiesel from Algae; Close-
out Report, National Renewable Energy Laboratory, Golden CO, 1998.

[15] S.J. Burgess, B. Tamburic, F. Zemichael, K. Hellgardt, P.J. Nixon, Solar-driven
hydrogen production in green algae, Adv. Appl. Microbiol. 75 (2011) 71–110.

[16] G. Olivieri, P. Salatino, A. Marzocchella, Advances in photobioreactors for intensive
microalgal production: Configurations, operating strategies and applications, J. Chem.
Technol. Biotechnol. 89 (2014) 178–195.

[17] J. Reyes, C. Labra, Biomass harvesting and concentration of microalgae Scenedesmus
sp. cultivated in a pilot phobioreactor, Biomass Bioenergy 87 (2016) 78–83.

[18] P. Wensel, G. Helms, B. Hiscox, W.C. Davis, H. Kirchhoff, M. Bule, L. Yu, S. Chen,
Isolation, characterization, and validation of oleaginous, multi-trophic, and
haloalkaline-tolerant microalgae for two-stage cultivation, Algal Res. 4 (2014) 2–11.

[19] M.D. Guiry, How many species of algae are there? J. Phycol. 48 (2012) 1057–1063.

[20] L. Gouveia, A.C. Oliveira, 2009. Microalgae as a raw material for biofuels production,
J. Ind. Microbiol. Biotechnol. 36 (2009) 269–274.

[21] S.-H. Ho, C.-Y. Chen, D.-J. Lee, J.-S. Chang, Perspectives on microalgal CO₂-
emission mitigation systems--A review, Biotechnol. Adv. 29 (2011) 189–198.



84 

[22] M.G. De Morais, J.A.V. Costa, Carbon dioxide fixation by Chlorella Kessleri, C.
Vulgaris, Scenedesmus Obliquus and Spirulina sp. cultivated in flasks and vertical
tubular photobioreactors, Biotechnol. Lett. 29 (2007) 1349–1352.

[23] P. Prabakaran, D. Ravindran, Selection of microalgae for accumulation of lipid
production, CJST 1 (2013) 131–137.

[24] R. Tripathi, J. Singh, I.S. Thakur, Characterization of microalga Scenedesmus sp.
ISTGA1 for potential CO2 sequestration and biodiesel production, Renew. Energ. 74
(2015) 774–781.

[25] V. Andruleviciute, V. Makareviciene, V. Skorupskaite, M. Gumbyte, Biomass and oil
content of Chlorella sp., Haematococcus sp., Nannochloris sp. and Scenedesmus sp.
under mixotrophic growth conditions in the presence of technical glycerol, J. Appl.
Phycol. 26 (2014) 83–90.

[26] T. M. Sobczuk, Y. Chisti, Potential fuel oils from the microalga Choricystis minor, J.
Chem. Technol. Biotechnol. 85 (2010) 100–108.

[27] H.M. Amaro, A.C. Guedes, F.X. Malcata, Advances and perspectives in using
microalgae to produce biodiesel. Appl. Energy 88 (2011) 3402–3410.

[28] V. Makareviciene, V. Andrulevičiūtė, V. Skorupskaitė, J. Kasperovičienė, Cultivation
of microalgae Chlorella sp. and Scenedesmus sp. as a potentional biofuel feedstock,
EREM 57 (2011) 21–27.

[29] R. Harun, M. Singh, G.M. Forde, M.K. Danquah, Bioprocess engineering of
microalgae to produce a variety of consumer products, Renew. Sust. Energ. Rev. 14
(2010) 1037–1047.

[30] E. Günerken, E. D’Hondt, M.H. Eppink, L. Garcia-Gonzalez, K. Elst, R.H. Wijffels,
Cell disruption for microalgae biorefineries, Biotechnol. Adv. 33 (2015) 243–260.

[31] H.-P. Luo, M.H. Al-Dahhan, Analyzing and modeling of photobioreactors by
combining first principles of physiology and hydrodynamics, Biotechnol. Bioeng. 85
(2004) 382–393.

[32] Sultan, Abbas J., Laith S. Sabri, and Muthanna H. Al-Dahhan. “Impact of Heat-
Exchanging Tube Configurations on the Gas Holdup Distribution in Bubble Columns
Using Gamma-Ray Computed Tomography.” International Journal of Multiphase
Flow. 2018a.



85 

[33] Sultan, Abbas J., Laith S. Sabri, and Muthanna H. Al-Dahhan. “Influence of the Size
of Heat Exchanging Internals on the Gas Holdup Distribution in a Bubble Column
Using Gamma-Ray Computed Tomography.” Chemical Engineering Science. 2018b.

[34] Sultan, Abbas J., Laith S. Sabri, and Muthanna H. Al-Dahhan. “Investigating the
Influence of the Configuration of the Bundle of Heat Exchanging Tubes and Column
Size on the Gas Holdup Distributions in Bubble Columns via Gamma-Ray Computed
Tomography.” Experimental Thermal and Fluid Science, 2018c.

[35] Sultan, Abbas J., Laith S. Sabri, Jianbin Shao, and Muthanna H. Al-
Dahhan.“Overcoming the Gamma-Ray Computed Tomography Data Processing
Pitfalls for Bubble Column Equipped with Vertical Internal Tubes.” Canadian
Journal of Chemical Engineering, 2018.

[36] Ali Abdul-Rahman Al-Azzi Laith S. S. Al-Kuffe, Influence of Draft Tube Diameter
on Operation Behavior of Air Lift Loop Reactors, Al-Khwarizmi Engineering Journal,
Vol. 6, No. 2, PP 21-32 (2010).

[37] Y. Chisti, Pneumatically agitated bioreactors in industrial and environmental
bioprocessing: hydrodynamics, hydraulics, and transport phenomena, Appl. Mech.
Rev. 51 (1998) 33–112.

[38] F. García Camacho, A. Contreras Gómez, F.G. Acién Fernández, J. Fernández Sevilla,
E. Molina Grima, Use of concentric-tube airlift photobioreactors for microalgal
outdoor mass cultures, Enzyme Microb. Technol. 24 (1999) 164–172.

[39] J.C. Merchuk, M. Gluz, I. Mukmenev, Comparison of photobioreactors for cultivation
of the red microalga Porphyridium sp., J. Chem. Technol. Biotechnol. 75 (2000)
1119–1126.

[40] A.S. Mirón, A.C. Gómez, F. García, C. Emilio, M. Grima, Y. Christi, Comparative
evaluation of compact photobioreactors for large-scale monoculture of microalgae,
Prog. Ind. Microbiol. 35 (1999) 249–270.

[41] E.E. Petersen, A. Margaritis, Hydrodynamic and mass transfer characteristics of three-
phase gaslift bioreactor systems, Crit. Rev. Biotechnol. 21 (2001) 233–294.

[42] G.C. Zittelli, L. Rodolfi, M.R. Tredici, Mass cultivation of Nannochloropsis sp. in
annular reactors, J. Appl. Phycol. 15 (2003) 107–114.



86 

[43] J. Huang, Y. Li, M. Wan, Y. Yan, F. Feng, X. Qu, J. Wang, G. Shen, W. Li, J. Fan,
W. Wang, Novel flat-plate photobioreactors for microalgae cultivation with special
mixers to promote mixing along the light gradient, Bioresour. Technol. 159 (2014) 8–
16.

[44] H.-P. Luo, A. Kemoun, M.H. Al-Dahhan, J.M.F. Sevilla, J.L.G. Sanchez, F.G.
Camacho, E.M. Grima, Analysis of photobioreactors for culturing high-value
microalgae and cyanobacteria via an advanced diagnostic technique: CARPT, Chem.
Eng. Sci. 58 (2003) 2519–2527.

[45] J.C. Merchuk, Airlift bioreactors: Review of recent advances, Can. J. Chem. Eng. 81
(2003) 324–337.

[46] E. Sierra, F.G. Acién, J.M. Fernández, J.L. García, C. González, E.
Molina, Characterization of a flat plate photobioreactor for the production of
microalgae, Chem. Eng. J. 138 (2008) 136–147.

[47] X. Wu, J.C. Merchuk, Simulation of algae growth in a bench scale internal loop airlift
reactor, Chem. Eng. Sci. 59 (2004) 2899–2912.

[48] H.-P. Luo, Analyzing and Modeling of Airlift Photobioreactors for Microalgal and
Cyanobacteria Cultures, D.Sc. Dissertation, Washington University, St. Louis, MO,
2005.

[49] H.-P. Luo, M.H. Al-Dahhan, Airlift column photobioreactors for Porphyridium sp.
culturing: Part I. Effects of hydrodynamics and reactor geometry, Biotechnol. Bioeng.
109 (2011) 932–941.

[50] H.-P. Luo, M.H. Al-Dahhan, Airlift column photobioreactors for Porphyridium sp.
culturing: Part II. Verification of dynamic growth rate model for reactor performance
evaluation, Biotechnol. Bioeng. 109 (2012) 942–949.

[51]B.D. Fernandes, A. Mota, A. Ferreira, G. Dragone, J.A. Teixeira, A.A. Vicente,
Characterization of split cylinder airlift photobioreactors for efficient microalgae
cultivation, Chem. Eng. Sci. 117 (2014) 445–454.

[52] A. Ojha, M. Al-Dahhan, Local gas holdup and bubble dynamics investigation during
microalgae culturing in a split airlift photobioreactor, Chem. Eng. Sci. 175 (2018)
185–198.



87 

[53] N. Devanathan, Investigation of Liquid Hydrodynamics in Bubble Columns via a
Computer Automated Radioactive Particle Tracking (CARPT) Facility, PhD.
Dissertation, Washington University, St. Louis, 1991.

[54] S. Degaleesan, Fluid Dynamic Measurements and Modeling of Liquid Mixing in
Bubble Columns, D.Sc. Dissertation, Washington University, St Louis, 1997.

[55] S.B. Kumar and M.P. Dudukovic, Computer assisted gamma and X-ray tomography:
Applications to multiphase flow systems, in: J. Chaouki F. Larachi, M.P. Dudukovic
(Eds.), Non-invasive Monitoring of Multiphase Flows, Elsevier Science B.V.,
Amsterdam, The Netherlands, 1997, 47.

[56] Al Mesfer, Mohammed K., Abbas J. Sultan, and Muthanna H. Al-Dahhan. 2017.
“Study the Effect of Dense Internals on the Liquid Velocity Field and Turbulent
Parameters in Bubble Column for Fischer–Tropsch (FT) Synthesis by Using Radioactive
Particle Tracking (RPT) Technique.” Chemical Engineering Science 161: 228–48.

[57] Laith S. Sabri, Abbas J. Sultan, Muthanna H. Al-Dahhan, Assessment of RPT
calibration need during microalgae culturing and other biochemical processes, IEEE
Xplore Digital Library, (2018).

[58] H.-P. Luo, M.H. Al-Dahhan, Local characteristics of hydrodynamics in draft tube
airlift bioreactor, Chem. Eng. Sci. 63 (2008) 3057–3068.

[59] H.-P. Luo, M.H. Al-Dahhan, Macro-mixing in a draft-tube airlift bioreactor, Chem.
Eng. Sci. 63 (2008) 1572–1585.

[60] A. Ojha, Advancing Microalgae Culturing via Bubble Dynamics, Mass Transfer, and
Dynamic Growth Investigations, Ph.D. Dissertation, Missouri University of Science
and Technology, Rolla, MO, 2016.

[61] Eteshola, E. Gottlieb, M. Arad, S., Dilute solution viscosity of red microalga
exopolysaccharide, Chemical Engineering Science, 51 (1996) 1487-1494.

[62] Eteshola, E. Karpasas, M. Arad, S.M. Gottlieb, M, Red microalga
Exopolysaccharides: 2. Study of the Rheology, Morphology and Thermal Gelation of
Aqueous Preparations, Acta Polymerica. 49 (1998) 549-556.

[63] Geresh, S. Adin, I. Yarmolinsky, E. Karpasas, M., Characterization of the extracellular
polysaccharide of Porphyridium sp.: Molecular weight determination and rheological
properties, Carbohydrate Polymers. 50 (2002) 183-189.



88 

[64] X. Wu, J.C. Merchuk. Simulation of algae growth in a bench-scale bubble column
reactor. Biotechno. Bioeng. 80 (2002) 156-168.

[65] X. Wu, J.C. Merchuk, A model integrating fluid dynamics in photosynthesis and
photoinhibition processes, Chem. Eng. Sci. 56 (2001) 3527–3538.

[66] Jacobsen, H.A., Sannaes, B.H., Grevskott, S., Svendsen, F., Modeling of bubbly flows.
In: Engineering Foundation Conference in Computational Fluid Dynamics in
Chemical Reaction Engineering, San Diego, October (1996) 13–18.



89 

III. MULTISCALE MODELING AND EXPERIMENTATION OF
MICROALGAE CULTURING: INTEGRATION OF DYNAMIC GROWTH 
MODELING AND HYDRODYNAMICS IN AN INTERNAL-LOOP SPLIT 

PHOTOBIOREACTOR  

Laith S. Sabri, Astha Ojah, Abbas J. Sultan, Muthanna H. Aldahhan† 

Multiphase Flow and Reactors Engineering Applications Laboratory (mFReal). 

Department of Chemical and Biochemical Engineering, Missouri University of Science 

and Technology, Rolla, MO 65409-1230. USA 

†Correspondence author at the Chemical & Biochemical Engineering Department, 

Missouri University of Science and Technology, Rolla, MO, 65409. Tel.: +1 573-578-

8973. E-mail: aldahhanm@mst.edu 

ABSTRACT 

In the present work, a three-state dynamic growth rate model was applied 

for microalgae Scenedesmus, which is useful for energy production; this microalgae 

showed to be an excellent candidate for biofuel production. Verification of this model is 

a crucial parameter for the determination of growth of phototrophic microorganisms 

and reactor productivity. Thus, the model verification has been done by two 

different sets of experiments. In the first approach, the three-state model is 

solved analytically, and the kinetic parameters are estimated for microalgae culturing in 

tubular photobioreactor with an internal diameter of 0.7 cm, and a total volume of 0.55 L, 

and then the specific growth rate will calculated. In this part, a bank of white lights was used 

to vary the incident light intensity, and the light/dark phase was varied by covering 
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parts of the tubular reactor. These values were compared for validation with the 

growth rate obtained from the experimental work in the same tubular photobioreactor.  

In the second approach, the kinetic parameters for the photosynthetic reaction obtained 

from the previous part were used to solve the three-state model numerically in an 

internal loop airlift cylindrical split photobioreactor. In this part, radioactive particle 

tracking (RPT), which is an advanced non-invasive diagnostic technique, was 

used extensively for multiphase flow system. This technique was used to characterize the 

cells’ movement and the light attenuation by biomass according to Beer-Lambert’s 

Law and then to determine the specific growth rate values. These values were 

compared for validation with the growth rate obtained from the experimental work. 

RPT experiments have been carried out in acrylic cylindrical split columns in the 

air-water-microalgae system. The reactor is 5.5-inch in diameter, 59 inches in length, 

and includes an acrylic plate that divided the column into two equal sections (riser 

and downcomer) and installed 2 inches above the base of the column. The aeration 

system was introduced to the riser section through a stainless steel ring sparger at 

superficial gas velocity 3 cm/s. As a result, this approach provides a direct and 

comprehensive tool for photobioreactor analysis, which is essential for proper and 

efficient reactor design and scale-up for large-scale biomass production. 

Keywords: Dynamic Growth Model, Microalgae Scenedesmus, Dynamic Growth 

Kinetics Parameters, RPT, split photobioreactor. 
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1. INTRODUCTION

   Microalgae are fast-growing photosynthetic organisms that produce high yield of 

biomass. These organisms are highly efficient for bioenergy and abating environmental 

pollution such as CO2 fixation and wastewater treatments (Mata, Martins, and Caetano 

2010; Yen et al. 2013) (Maity et al. 2014; Rawat et al. 2013; Suganya et al. 2016; Khatri 

et al. 2014). In addition, various type of microalgae are sources for high value products, 

single cell protein, pigment, and many others (Luo and Al-Dahhan 2012). Microalgae can 

thus be grown in a wide variety of systems ranging from open systems (such as ponds and 

raceway) to enclosed systems in airlift, bubble column, and tubular reactors. The open 

systems are open to the exterior environment and hence are intrinsically not controllable. 

Thus, an enclosed system that is completely controllable becomes a necessity (Hu et al., 

1996; Olaizola, 2002; Luo and Al-Dahhan, 2003)(Günerken et al. 2015; Solimeno and 

García 2017). 

  In both, whether an open or enclosed system, light intensity that reaches to the 

microalgae cells plays a very significant role to make effective and efficient growth 

medium, particularly when it reaches a very dense culturing. In this dense culturing, the 

availability of light can pose a serious problem, especially in large-scale cultures, making 

it the most important factor controlling the growth rate of microalgae (Carvalho et al. 2011; 

Merchuk et al. 1998). Whether the culture is open (irradiated naturally) or enclosed 

(irradiated artificially), there is an exponential decrease in the light flux from the surface 

exposed to light to the interior of the culture, as shown in Figure 1. This effect is more 

pronounced in mass cultures due to increased mutual shading among the cells than others 

(Bannister 1979; Molina Grima et al. 1993). Much like limited light availability, excess 
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light also hampers growth. High-light intensities potentially damage D1 protein and reduce 

the number of active photon traps (Powles 1984; Vonshak, A., Guy, R., Poplawsky, R., 

Ohad 1988). The decrease in growth rate due to light limitation is known as photo 

limitation, while that due to excessive light is known as photoinhibition. Then, how can we 

make the light to be received by these cells in a very optimum way and not limited and not 

inhibited to enhance the growth of microalgae?  

 According to this case, a reliable solution for this type of problem is to have the 

cells expose efficiently to light to optimize their growth cells. Then, the conditions for such 

efficient or optimum culturing of microalgae will quantify the size and the design of the 

photobioreactor (Lam and Lee 2012; H. P. Luo, Kemoun, Al-Dahhan, Sevilla, Sánchez, et 

al. 2003; Zhou et al. 2015).  Thus, apart from the intensity of light, the frequency and 

duration of light/dark cycles as shown in Figure 2 affect the growth. Studies have shown 

the enhanced biomass productivity on being exposed to flashing lights (Meyers 1953). 

Therefore, optimization of light flux available to cells is crucial to obtain good 

biomass productivity. To ensure adequate nutrient and light availability, promote mass 

transfer, and prevent the cells from agglomerating in large scale and dense cultures, various 

mixing strategies are employed in photobioreactors (PBRs). Mixing and agitation aids in 

the movement of the cells between the highly illuminated surface and the darker core of 

the reactor, thus minimizing the effects of photolimitation and photoinhibition. Thus to 

address this issue, it is crucial to rely on the dynamic model, which accounts for growth 

kinetics where the light intensity varies with cell location, which means that each cell 

receives a different amount of light. The shortcoming of this approach is that the movement 

of the cell (location or trajectory of the cell) is required to apply this model. 
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    Various kinetics growth models have been developed accounting in different ways 

for the light intensities to predict the microalgae growth. These models are broadly 

categorized as the static and dynamic photosynthetic rate models. Typically the static rate 

models that have been reported in the literature (Aiba 1982; Banerjee 2010; Molina Grima 

et al. 1993; Steele 1977) assume that each cell in the culture of the photobioreactor receives 

the same amount of light. This is possible at the early growth of the cells, and possible at 

the dilute medium, these conditions are not beneficial for an efficient culturing and 

performance of photobioreactors. 

   Regarding this type of static kinetics growth model, Grima et al. (2001) developed a 

growth rate shown in Equation (1) to scale up airlift-driven tubular photobioreactors. To 

consider the hydrodynamic effects, which are not included in Equation (1), they conducted 

a rough scale analysis of the flow and suggested flow conditions having similar light/dark 

cycles imposed to the cells in the reactors during the scale-up. 
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     With limited hydrodynamics information provided, these approaches assume the 

cells use same the light energy with the same efficiency no matter how the light energy is 

delivered (i.e., ignoring the flashing light effects and the flow dynamics). Hence, the light 

intensity used Equation (1) is estimated base on the reactor volume based average. Luo 

2005 suggested to average the reactor volume per time but you need trajectory.   

    Where each cell receives same light intensity which is not the case in dense 

microalgae culturing. I is usually calculated from an appropriate irradiance distribution 

model (Cassano et al., 1995). Thus, overall reactor performance is usually evaluated based 
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on the overall growth rate averaged over the reactor volume. As suggested by Cornet and 

Albiol (2000) in Equation (2): 

dV
II

I
V

dV
V kP

P

V
m

V
r +

== ∫∫∫∫∫∫ µµµ 11    (2) 

Where V is the total volume of the reactor and Ip is the irradiance of the local dV volume. 

Calculated using an irradiance distrbution model. To calculate the integral term, some 

researchers (Molina Grima et al., 1997; Rorrer and Mullikin, 1999) simply assume that the 

growth in an ideal mixed reactor corresponds to an average irradiance, which is the volume-

averaged irradiance defined by Molina Grima et al. (1997); Cassano et al. (1995) in 

equation (3): 
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Thus, the overall growth rate is: 
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   Some other researchers divide the reactor into different metabolic zones and estimate 

the growth rate separately in each zone. For example, Cornet and Albiol (2000) divided the 

reactor into an illuminated zone and two dark zones with or without metabolic activation. 

This approach takes into account the fact that the kinetic parameters, μ
m 

and I
K
, are defined

only in those parts of the reactor where metabolic activity occurs with a limited range of 

light intensity. Pruvost et al. (2002) developed a Lagrangian approach to calculating the 

overall growth rate from the static models. They used a PIV technique (particle image 

velocimetry) to study the liquid flow field in a tubular photobioreactor and calculated the 
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fluid trajectories that mimic the movement of the cell in the reactor. Even this kind of 

technique which is light based technique faces an issue as it does not work when the 

culturing becomes denser due to the light cannot penetrate opaque media.  

   Regarding the dynamic model, a number of dynamic models are available in the 

literature (Demnan and Gargett 1983; Eilers, P.H.C., Peeters 1988; Falkowski and Wirick 

1981; Gallegosl and Platt 1985, Han 2001; Lee, Jalalizadeh, and Zhang 2015; Papadakis, 

Kotzabasis, and Lika 2005; Rubio Camacho et al. 2003; Solimeno et al. 2015; Solimeno, 

Gabriel, and García 2017, Bernard 2010; Bernard and Rémond 2012; García-Malea et al. 

2006), which include complex calculations, a very large number of associated growth 

parameters, and also a lot of experiments to find their parameter values. These dynamic 

growth kinetics can account for the fluctuation of the light inside the photobioreactor, 

particularly in a very thick cultivation medium, when the light intensity decrease 

exponentially inside the medium to reach unequally to the rest of the cells. 

  Among the models the Eilers and Peeters (1988) is a simple dynamic growth model 

that describes the photosynthesis and photoinhibition in terms of the photosynthetic factory 

(PSF) which consists of into three different states, the resting state, the activated state, and 

the inhibited state, and has been applied in some other works (Eilers, P.H.C., Peeters 1988; 

Rehak, B., Celikovsky, S., Papacek 2008; Wu and Merchuk 2001). This model has been 

further modified by Wu and Merchuk (2001, 2002, and 2003) by quantifying the cellular 

damage due to adverse environments, such as the shear stress through adding a 

maintenance parameter. Due to the complexity of the maintenance process, and as 

suggested by Y. Lee and Pirt (1981), the maintenance factor was assumed to be a constant 

(Wu and Merchuk 2001). Photosynthesis is a complex process with complex inter related 
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steps. It has been known that when the biological culturing is scaled-up. The encountered 

problems that affect the growth are not being biological rather than hydrodynamics and 

transport. Therefore, such simple mechanistic model of PSF representation could be 

adequate to model the growth and to be used to define the design and operating conditions 

for optimized culturing of microalgae. Therefore, this model will be used in the present 

work and will be discussed in detail later. The advantages of such model include their 

ability to represent photoinhibition and other important photosynthesis phenomena on a 

transient basis by accounting for the light intensity received by the cells with time and 

location.  

      Accordingly, the information of the cell movement is needed to estimate the time 

series of light transferred to the cells in order to implement such dynamic models to predict 

the culturing and for the reactor performance, which these cannot be estimated by static 

models. In addition, hydrodynamic parameter of the shear stress is also needed to estimate 

the maintenance parameter that accounts for the cells’ death and damages. Despite the 

power of such model, unfortunately only few researchers used it to analyze the 

photobioreactor performance and reactor design and scale-up (Wu and Merchuk, 2001; 

Pruvost et al., 2002, F. G. Acién Fernández., et al., 1997; Luo and Aldahhan 2003). 

          Wu and Merchuk (2002) simulated the overall reactor performance in a draft tube 

column reactor based on the dynamic model proposed by Eilers and Peeters (1988). 

Apparently, due to the lack of cells’ movement measurement data, they used the multi-

circulation model developed by Joshi and Sharma (1979) to estimate the cells’ trajectories 

in the reactors. In their subsequent study in 2003, they used a PIV technique to find the 

movements of the cells which has a limitation in dense culturing application since PIV is 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Fern%C3%A1ndez%2C+F+G+Aci%C3%A9n
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based on light that cannot penetrate dense culturing. Also in both studies, they used red 

marine microalgae to demonstrate the implementation of the dynamic growth model. 

Pruvost et al., (2002) calculated the overall growth rate by developing a Lagrangian 

approach. This study focused on measuring the liquid flow field by using a PIV technique 

in a tubular photobioreactor and estimated the fluid trajectories that mimic the movement 

of the cells in the reactor for porphyridium purpureum (red microalgae). Thus, to overcome 

the technique limitation, Luo and Al-Dahhan (2003) applied computer automated 

radioactive particle tracking (CARPT) to find the cells’ trajectory and combined their 

findings with the dynamic growth kinetic parameters derived and applied by Wu and 

Merchuk (2001) and developed a predictive model for dilute culturing system where the 

cells’ movement measured in air-water system can be applied. 

          Accordingly, in this study, separate effect experiment has been developed and 

established for the first time the dynamic growth model for green microalgae, which is 

useful for bioenergy production, to estimate the kinetic parameters. Scenedesmus is a 

versatile microalgae species and is a good candidate for biofuel and biodiesel production 

(Gouveia and Oliveira 2009; Miranda, Passarinho, and Gouveia 2012). The oil obtained 

from Scenedesmus has been shown to meet the desired standard requirement of linolenic 

acid, methyl ester, oxidation stability, and iodine value for biodiesel (Makareviciene et al. 

2011a). Also, Scenedesmus species is considered to be used for wastewater treatment as 

well. In the study by Makareviciene et al. (2011b), Scenedesmus sp. removed more nitrate 

and phosphate pollutants from wastewater than Chlorella sp.  

           Thus, the dynamic growth rate parameters for Scenedesmus sp. will add to the 

knowledge base of the species and will also be useful in estimating and validating growth 
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rate studies in large-scale cultures. This can be achieved by integrating the dynamic growth 

rate model with light intensity model and hydrodynamics regarding cell trajectory, and 

shear stresses distribution for the maintenance factor to estimate the microalgae culturing 

in the split airlift photobioreactors and to its quantity performance in a multi-scale 

modeling approach.  

      Therefore, in this work for the first time, we implement radioactive particle tracking 

(RPT) technique during the green microalgae culturing in an internal-loop split 

photobioreactor to measure at the stages of growth the cells’ movement and the shear 

stresses distribution to be integrated with the dynamic growth rate model to predict in a 

multi-scale modeling in the growth and performance of the studied photobioreactor (for 

more details about this measurement technique see (N. Y. Ali 2016; Al Mesfer, Sultan, and 

Al-Dahhan 2017; Sabri, Sultan, and Al-Dahhan 2018)). We established a separate effect of 

experiments based on Wu and Merchuk 2001 and Luo and Al-Dahhan 2012 model 

developments. First, the dynamic growth kinetic parameters were extracted by using 

tubular reactor of this separate effect experiment for culturing green microalgae, and by 

solving the three-state dynamics model analytically. Using the measured cells’ movement 

and shear stresses by RPT technique, the dynamic growth kinetic parameters extracted 

from the separate effect experiment were used to solve the three-state dynamic growth rate 

model numerically by using 5th order Rang Kutta method a cylindrical split photobioreactor 

to predict its culturing performance.  

The predictions of the multi-scale modeling of the integration of the cells’ trajectory 

and shear stresses with the dynamic growth model to predict the growth of the microalgae 

have been validated with the experimental measurements of the microalgae growth in the 
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same split photobioreactor. The above outline multi-scale modeling and experimentation 

methodology have been summarized in Figure 3.  

2. DYNAMIC GROWTH RATE MODEL AND THE THREE-STATE CONCEPT
OF PHOTOSYNTHETIC FACTORIES (PSF)

            The three-state dynamic growth rate model originally developed by Eilers and 

Peters (1988) and modified by Wu and Merchuk (2001) to account for the damaged cells 

is based on the concept of photosynthetic factories (PSFs) that consists of colored pigments 

for light trapping and reaction centers that are activated by incident irradiation. The PSFs 

are mechanistically approximated to exist in three states, namely the fraction of the resting 

state (x1), the fraction of the activated state (x2), and the fraction of the inhibited state (x3). 

The model is schematically shown in Figure 4. This is a simple mechanistic representation 

for complex photosynthesis process. We believed that this could be adequate since for 

scale-up and long scale microalgae culturing the technical challenges will be engineering 

types and are not biological in nature. 

In this mechanistic model, on the incidence of light, the fraction of the resting x1 

cells gets activated and transfer to the fraction of the activated state, x2. The fraction of the 

activated cells (x2) can either absorb another photon from the incident light and move to 

the fraction of the inhibited state, x3, or transfer energy to acceptors for photosynthesis to 

be divided and move to the fraction of the resting state (x1). The fraction of the cells in the 

inhibited state (x3) can be recovered if they stay longer in the dark zone and move back to 

the fraction of the resting state (x1). Assuming no limitations due to nutrient availability 
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and efficient bubbles structure and mass transfer of CO2 to the media and to the cells and 

O2 from the cells and the media to the bubbles, the only variable is the availability of 

light. The transformation of the cells that involves photon absorption, x1 to x2 and x2 to 

x3, is considered to be to be first-order reactions with respect to the light intinsity (I), rate 

=-αI×x1 and -βI× x2, respectivily. While the other two transforations of the cells, x2 to x1 

and x3 to x1, is considered to be of zero order with respect to the light intinsity (I), rate =-

γ×x2 and -δ× x3, respectivily (Eilers and Peters, 1988, Wu and Merchuk 2001). The total 

process of photosynthetic growth is an integration of all four transition possibilities 

shown in Figure 4.  Accordingly, the process is explained by Equation (5), (6) and (7):

𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

=  −𝛼𝛼𝛼𝛼𝑥𝑥1 +  𝛾𝛾𝑥𝑥2 +  𝛿𝛿𝑥𝑥3   (5) 

𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

=  𝛼𝛼𝛼𝛼𝑥𝑥1 −  𝛾𝛾𝑥𝑥2 − 𝛽𝛽𝛼𝛼𝑥𝑥2     (6) 

𝑑𝑑𝑑𝑑3
𝑑𝑑𝑑𝑑

=  𝛽𝛽𝛼𝛼𝑥𝑥2 −  𝛿𝛿𝑥𝑥3     (7) 

 𝑥𝑥1 +  𝑥𝑥2 +  𝑥𝑥3 = 1 

where α, β, γ, and δ are the kinetic parameters, and I is the light intensity received by the 

cells. The specific growth rate, μ, is then based on the fraction of the cells transformed 

from the activated state, x2, to the resting state, x1. As explained by Wu and Merchuk 

(2001), μ accounts for both the growth and the negative growth rate (damaged cells) due 

to adverse conditions that damaged the cell and it is given as a maintenance parameter 

(Me). Hence, µ is given in Equation (8): 

1
𝑑𝑑2

𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

= 𝜇𝜇 = 𝑘𝑘𝛾𝛾𝑥𝑥2 − 𝑀𝑀𝑀𝑀     (8) 

Where k is the rate constant for the photosynthetic reaction, and Me is the maintenance 

constant. As mentioned earlier, the light intensity experienced by a cell in a real culturing 
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environment varies as the cell moves from one point in the reactor to another due to 

attenuation and mutual shading. Thus, in reality, light intensity, I, is a function of time and 

location that depends on the trajectory of the cell inside the reactor. For simplicity and ease 

of calculation, as suggested by Wu and Merchuk (2001), Me is assumed to be a constant. 

However, the decrease in growth rate, accounted for by the maintenance constant, Me, can 

result from a variety of adverse environmental conditions (Wu and Merchuk 2001). Based 

on the findings in the literature that shear stress beyond the critical level damages the cells 

and decreases the growth rate. Hence, Wu, and Merchuk (2002) developed an equation for 

the maintenance factor based on the shear stress experienced by the cells (Equation (9)). 

This equation for maintenance factor gives varying maintenance factor with the 

shear stress experienced by the cells particularly in large-scale reactors where the shear 

stress experienced by the cells varies based on the cell's trajectory. However, in small scale 

culturing the variation in the shear stress would be neglected or the effect of the shear stress 

would be ignored and hence Me is considered constant. Wu and Merchuk (2002) and H. P. 

Luo and Al-Dahhan (2012) applied this maintenance factor equation in pilot plant scale 

bubble column and lab scale draft tube airlift reactors, respectively, for accounting for the 

decrease in growth rate due to the shear stress experienced by the cells. However, in the 

separate effects experiment developed and implemented based on Wu and Merchuk (2001) 

owing to the low gas flow rate (1 vvm), low volume of the reactor (500 ml), and the low 

density of cells maintained inside the reactor at all times, the effect of shear stress can be 

ignored and the maintenance constant can be assumed to be a constant: 

𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀 𝑀𝑀𝑘𝑘𝑚𝑚(𝜏𝜏−𝜏𝜏𝑐𝑐)                                                     (9) 
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where Me is the maintenance factor due to shear effects, 𝑀𝑀𝑀𝑀 is  th e co nstant ma intenance 

factor without shear stress (as estimated in Wu and Merchuk, 2001, and in this study for 

the separate effects experiment), 𝑘𝑘𝑚𝑚 is the extinction coefficient for shear stress, and 𝜏𝜏 and 

𝜏𝜏  are the shear stress and the critical shear stress, respectively. 

       Therefore, to obtain the dynamic growth rate kinetic parameters outlined above, a 

separate effects experiment need to be developed for which the intensity of light (taken to 

be constant) received by the cells is known and the maintenance constant can be safely 

assumed to be constant. The procedure to solve Equations (5)-(9) to obtain the kinetic 

parameters is explained in following sections.  

3. EVALUATING THE DYNAMIC GROWTH PARAMETERS

To calculate the kinetics parameters we need of the following simplifications which 

can be implementation by separate effect experiment.  

3.1. SIMPLIFICATION OF THE MODEL TO BE SOLVED ANALYTICALLY TO 
GET DYNAMIC GROWTH PARAMETERS 

The solution to the dynamic three-state model has been adapted from Wu and 

Merchuk (2001). Equations (5)-(7) can be solved simultaneously to obtain the number of 

cells in the activated state (x2) to estimate the growth rate, μ. The kinetic growth 

parameters, α, β, γ, δ, and the photosynthetic rate constant, k, can then be determined by 

fitting the experimental data for specific growth rate to the resulting equation. To estimate 
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x2 regarding the kinetic parameters, an analytical solution to Equations (5)-(7) was 

obtained by assuming a quasi-steady state (Wu and Merchuk 2001) under the following 

assumptions:  

(a) The total circulation time (tc) for completely flowing through the reactor once

was divided into a light phase (tl) and a dark phase (td). 

(b) The microalgae were considered to experience zero and non-zero light intensity

values during the dark and the light phases, respectively. 

(c) The non-zero light intensity during the light phase was considered to be a

constant (Wu and Merchuk 2001).  Then, knowing the value of light intensity, Equations 

(5)-(7) were solved simultaneously. To facilitate the solution of the modified three-state 

model (Equations (5)-(7)), a separate effects experiment was needed to satisfy the 

assumptions mentioned above. This was achieved by the tubular photobioreactor which 

shown in Figure 5. 

Solution: 

The light illumination, I, was assumed to be constant in the light phase at the 

beginning of the cycle, t=0 (I>0, constant). At the end of the light phase, at t=tl, when the 

PFD is switched off, I=0 until the circulation time, t=tc.  

The differential equations (5)-(8) can then be solved as follows in two steps ((i) and 

(ii)). 

(i) At 0 < t < tl, the PFD is constant, αI and βI are non-zero.

Rearranging Eq. (6), 

𝛼𝛼𝛼𝛼𝑥𝑥1 =  𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

+ 𝛾𝛾𝑥𝑥2 +  𝛽𝛽𝛼𝛼𝑥𝑥2      (10) 

Substitute the derivative of Equations (10) and (7) into Equation (5), 
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𝑑𝑑2𝑑𝑑2
𝑑𝑑𝑑𝑑2

+ (𝛼𝛼𝛼𝛼 +  𝛽𝛽𝛼𝛼 + 𝛾𝛾 +  𝛿𝛿) 𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

 + (𝛼𝛼𝛽𝛽𝛼𝛼2 +  𝛼𝛼𝛼𝛼𝛿𝛿 +  𝛽𝛽𝛼𝛼𝛿𝛿 +  𝛿𝛿𝛾𝛾)𝑥𝑥2 =  𝛼𝛼𝛼𝛼𝛿𝛿      (11)

The above equations can be solved to obtain the transient values of x1 and x2 (x1,l, 

and x2,l ) during the light period as  

𝑥𝑥1,𝑙𝑙 =  𝑐𝑐(𝛽𝛽𝛽𝛽+ 𝛾𝛾)+𝑏𝑏𝐶𝐶1(𝐴𝐴+𝛽𝛽𝛽𝛽+𝛾𝛾)𝑒𝑒𝐴𝐴𝐴𝐴+𝑏𝑏𝐶𝐶2(𝐵𝐵+𝛽𝛽𝛽𝛽+𝛾𝛾)𝑒𝑒𝐵𝐵𝐴𝐴

𝛼𝛼𝛽𝛽𝑏𝑏
   (12) 

𝑥𝑥2,𝑙𝑙 = 𝑐𝑐
𝑏𝑏

+ 𝐶𝐶1𝑀𝑀𝐴𝐴𝑑𝑑 + 𝐶𝐶2𝑀𝑀𝑩𝑩𝑑𝑑  (13) 

where  𝑎𝑎 =  𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛼𝛼 + 𝛾𝛾 + 𝛿𝛿,   𝑏𝑏 = 𝛼𝛼𝛽𝛽𝛼𝛼2 + 𝛿𝛿𝛾𝛾 + 𝛼𝛼𝛼𝛼𝛿𝛿 + 𝛽𝛽𝛼𝛼𝛿𝛿,   𝑐𝑐 = 𝛼𝛼𝛼𝛼𝛿𝛿      (14) 

and 𝐴𝐴 = −𝑎𝑎+√𝑎𝑎2−4𝑏𝑏
2

, 𝐵𝐵 = −𝑎𝑎−√𝑎𝑎2−4𝑏𝑏
2

.  (15) 

At t = 0,   𝑥𝑥1(0) = 𝑐𝑐(𝛽𝛽𝛽𝛽+ 𝛾𝛾)+𝑏𝑏𝐶𝐶1(𝐴𝐴+𝛽𝛽𝛽𝛽+𝛾𝛾)+𝑏𝑏𝐶𝐶2(𝐵𝐵+𝛽𝛽𝛽𝛽+𝛾𝛾)
𝛼𝛼𝛽𝛽𝑏𝑏

, 𝑥𝑥2(0) = 𝑐𝑐
𝑏𝑏

+ 𝐶𝐶1 + 𝐶𝐶2   (16) 

At t = tl    𝑥𝑥1(𝑡𝑡𝑙𝑙) = 𝑐𝑐(𝛽𝛽𝛽𝛽+ 𝛾𝛾)+𝑏𝑏𝐶𝐶1(𝐴𝐴+𝛽𝛽𝛽𝛽+𝛾𝛾)𝑒𝑒𝐴𝐴𝐴𝐴𝑙𝑙+𝑏𝑏𝐶𝐶2(𝐵𝐵+𝛽𝛽𝛽𝛽+𝛾𝛾)𝑒𝑒𝐵𝐵𝐴𝐴𝑙𝑙
𝛼𝛼𝛽𝛽𝑏𝑏

     , and

𝑥𝑥2(𝑡𝑡𝑙𝑙) = 𝑐𝑐
𝑏𝑏

+ 𝐶𝐶1𝑀𝑀𝐴𝐴𝑑𝑑𝑙𝑙 + 𝐶𝐶2𝑀𝑀𝐵𝐵𝑑𝑑𝑙𝑙 .   (17) 

(ii) At tl < t < tc, when the PFD is shut off), I = 0. Then the solution is

𝑥𝑥1,𝑑𝑑 = 1 − 𝑀𝑀−𝛾𝛾(𝑑𝑑−𝑑𝑑𝑙𝑙)𝑥𝑥2(𝑡𝑡𝑙𝑙) + [𝑥𝑥1(𝑡𝑡𝑙𝑙) + 𝑥𝑥2(𝑡𝑡𝑙𝑙) − 1]𝑀𝑀−𝛿𝛿(𝑑𝑑−𝑑𝑑𝑙𝑙)         (18) 

 𝑥𝑥2,𝑑𝑑 = 𝑀𝑀−𝛾𝛾(𝑑𝑑−𝑑𝑑𝑙𝑙)𝑥𝑥2(𝑡𝑡𝑙𝑙)  (19) 

At t = tc 

𝑥𝑥1(𝑡𝑡𝑐𝑐) = 1 − 𝑀𝑀−𝛾𝛾𝑑𝑑𝑑𝑑𝑥𝑥2(𝑡𝑡𝑙𝑙) + [𝑥𝑥1(𝑡𝑡𝑙𝑙) + 𝑥𝑥2(𝑡𝑡𝑙𝑙) − 1]𝑀𝑀−𝛿𝛿𝑑𝑑𝑑𝑑        (20) 

𝑥𝑥2(𝑡𝑡𝑐𝑐) = 𝑀𝑀−𝛾𝛾𝑑𝑑𝑑𝑑𝑥𝑥2(𝑡𝑡𝑙𝑙)       (21) 

where td = tc – tl. 

For quasi-steady state, 

𝑥𝑥1(0) = 𝑥𝑥1(𝑡𝑡𝑐𝑐), and  𝑥𝑥2(0) = 𝑥𝑥2(𝑡𝑡𝑐𝑐)  (22) 

Equations (16), (20), (21), and (22) give the solution of C1 and C2: 
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𝐶𝐶1 = 𝐵𝐵𝑐𝑐(𝑢𝑢−1)(𝑛𝑛−𝑣𝑣)+𝛼𝛼𝛽𝛽𝑏𝑏(𝑛𝑛−𝑢𝑢)(𝑣𝑣−1)+𝑐𝑐(𝛼𝛼𝛽𝛽+𝛽𝛽𝛽𝛽+𝛾𝛾)(𝑛𝑛−1)(𝑢𝑢−𝑣𝑣)
𝑏𝑏[𝐵𝐵(𝑠𝑠−𝑢𝑢)(𝑛𝑛−𝑣𝑣)−𝐴𝐴(𝑛𝑛−𝑢𝑢)(𝑠𝑠−𝑣𝑣)+(𝛼𝛼𝛽𝛽+𝛽𝛽𝛽𝛽+𝛾𝛾)(𝑠𝑠−𝑛𝑛)(𝑢𝑢−𝑣𝑣)] ,      (23) 

𝐶𝐶2 = −𝐴𝐴𝑐𝑐(𝑢𝑢−1)(𝑠𝑠−𝑣𝑣)+𝛼𝛼𝛽𝛽𝑏𝑏(𝑠𝑠−𝑢𝑢)(𝑣𝑣−1)+𝑐𝑐(𝛼𝛼𝛽𝛽+𝛽𝛽𝛽𝛽+𝛾𝛾)(𝑠𝑠−1)(𝑢𝑢−𝑣𝑣)
𝑏𝑏[𝐵𝐵(𝑠𝑠−𝑢𝑢)(𝑛𝑛−𝑣𝑣)−𝐴𝐴(𝑛𝑛−𝑢𝑢)(𝑠𝑠−𝑣𝑣)+(𝛼𝛼𝛽𝛽+𝛽𝛽𝛽𝛽+𝛾𝛾)(𝑠𝑠−𝑛𝑛)(𝑢𝑢−𝑣𝑣)] ,      (24) 

Where 𝑠𝑠 =  𝑀𝑀𝐴𝐴𝑑𝑑𝑙𝑙 ,𝑛𝑛 = 𝑀𝑀𝐵𝐵𝑑𝑑𝑙𝑙 ,𝑢𝑢 = 𝑀𝑀𝛾𝛾𝑑𝑑𝑑𝑑 , 𝑣𝑣 = 𝑀𝑀𝛿𝛿𝑑𝑑𝑑𝑑 . 

Then, for one cycle, the mean specific growth rate is as given by Equation (6). 

�̅�𝜇 =  𝑘𝑘𝛾𝛾
𝑑𝑑𝑐𝑐
∫ 𝑥𝑥2(𝑡𝑡)𝑑𝑑𝑡𝑡 − 𝑀𝑀𝑀𝑀𝑑𝑑𝑐𝑐
0       (25) 

�̅�𝜇 =  𝑘𝑘𝛾𝛾
𝑑𝑑𝑐𝑐
�∫ 𝑥𝑥2,𝑙𝑙(𝑡𝑡)𝑑𝑑𝑡𝑡 + ∫ 𝑥𝑥2,𝑑𝑑(𝑡𝑡)𝑑𝑑𝑡𝑡𝑑𝑑𝑐𝑐

𝑑𝑑𝑙𝑙
𝑑𝑑𝑙𝑙
0 � − 𝑀𝑀𝑀𝑀      (26) 

�̅�𝜇 =  𝑘𝑘𝛾𝛾
𝑑𝑑𝑐𝑐

 �𝑐𝑐
𝑏𝑏
𝑡𝑡𝑙𝑙 + 𝐶𝐶1

𝐴𝐴
(𝑠𝑠 − 1) + 𝐶𝐶2

𝐵𝐵
(𝑛𝑛 − 1) + �𝑐𝑐

𝑏𝑏
+ 𝐶𝐶1𝑠𝑠 + 𝐶𝐶2𝑛𝑛�

𝑢𝑢−1
𝑢𝑢𝛾𝛾
� − 𝑀𝑀𝑀𝑀      (27) 

Since the method to obtain the kinetic parameters is through data fitting, the use of 

an additional equation based on these parameters will provide a better fit. Therefore, in 

addition to Equation (27), chlorophyll fluorescence measurements, which have been shown 

to be a reliable indicator of photoinhibition (Vonshak, Torzillo, and Tomaseli 1994), were 

used for parameter extraction. The ratio, q, of the variable and maximum fluorescence (FV 

and Fm) is considered to be a direct indicator of the number of cells that are not inhibited 

(i.e., are either in resting or active state) (Wu and Merchuk 2001). 

𝑞𝑞
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚

= 𝑓𝑓 1−𝑑𝑑3
1

,      (28) 

𝑞𝑞 = 𝑓𝑓′(1 − 𝑥𝑥3) = 𝑓𝑓′(𝑥𝑥1 + 𝑥𝑥2), or      (29) 

𝑥𝑥3 = 1 − 𝑞𝑞
𝑓𝑓′

 ,      (30) 

𝑓𝑓′ = 𝑓𝑓𝑞𝑞𝑚𝑚𝑎𝑎𝑑𝑑      (31) 

The mean value of q in quasi-steady state was calculated in Wu and Merchuk 

(2001) as 



106 

𝑞𝑞 = 𝑓𝑓′(𝑥𝑥1 + 𝑥𝑥2) =
𝑓𝑓′
𝑡𝑡𝑐𝑐
� [𝑥𝑥1(𝑡𝑡) + 𝑥𝑥2(𝑡𝑡)]𝑑𝑑𝑡𝑡
𝑑𝑑𝑐𝑐

0
 

 =
𝑓𝑓′
𝑡𝑡𝑐𝑐
�� �𝑥𝑥1,𝑙𝑙(𝑡𝑡) + 𝑥𝑥2,𝑙𝑙(𝑡𝑡)�𝑑𝑑𝑡𝑡

𝑑𝑑𝑙𝑙

0
+ � �𝑥𝑥1,𝑑𝑑(𝑡𝑡) + 𝑥𝑥2,𝑑𝑑(𝑡𝑡)�𝑑𝑑𝑡𝑡

𝑑𝑑𝑐𝑐

𝑑𝑑𝑙𝑙
� 

𝑞𝑞 = 𝐹𝐹𝑣𝑣
𝐹𝐹𝑚𝑚

= 𝑓𝑓
𝑑𝑑𝑐𝑐
�

𝑡𝑡𝑑𝑑 + 𝑐𝑐
𝑏𝑏
�1 + 𝛽𝛽𝛽𝛽𝛾𝛾

𝛼𝛼𝛽𝛽
� 𝑡𝑡𝑙𝑙 +

[𝑑𝑑1(𝑑𝑑𝑙𝑙)+𝑑𝑑2(𝑑𝑑𝑙𝑙)−1]�1−1𝑣𝑣�

𝛿𝛿

+ 𝐶𝐶1
𝐴𝐴
�1 + 𝐴𝐴+𝛽𝛽𝛽𝛽+𝛾𝛾

𝛼𝛼𝛽𝛽
� (𝑠𝑠 − 1) + 𝐶𝐶2

𝐵𝐵
(1 + 𝐵𝐵+𝛽𝛽𝛽𝛽+𝛾𝛾

𝛼𝛼𝛽𝛽
(𝑛𝑛 − 1)

� (I>0)     (32) 

Equations (27) and (32) can then be used to fit the mean specific growth rate, , 

and fluorescence measurements, q, and extract the growth parameters. 

3.2. DEVELOP SEPARATE EFFECT EXPERIMENT 

In this section, the green microalgae have been cultured in a tubular 

photobioreactor. As shown in Figure 5, the kinetic parameters are estimated by solving the 

three-state model as discussed below, the growth rate of the microalgae is estimated, and 

these values are compared with the growth rate provided from the experimental work.  

A strain of green, freshwater algae Scenedesmus was initially grown in alga-growth 

medium in conical flasks according to the supplier’s instructions. The strain and growth 

medium were obtained from Carolina labs. For obtaining the experimental data, air 

enriched with 3% carbon dioxide was introduced in the tubular airlift PBR at a constant 

flow rate of 1 vvm. The PBR was filled with 500 ml of fresh water growth medium and 

inoculated with 50 ml of microalgae culture. Such a setup allowed for only two variables- 

the incident PFD on the reactor, and the time spent by the culture in the light phase. A bank 
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of cool white lights was used to provide PFD between 110-550 μE/m2s, and part of the 

tubes was covered to provide the necessary ark phase. The values of the PFD and the time 

spent in the light phase used for data fitting to Equation (27) and (32) are given in Table 

1. Growth rate and fluorescent measurements at each experimental condition were taken

for an average of 2-3 days, ensuring a maximum final cell concentration of 120x106 cells/

ml. 

3.3. PERFORMANCE OF TUBULAR EXPERIMENT 

Firstly, a light sensor QSL-2101 from Biospherical Instruments Inc. was used to 

measure the irradiance on the surface of the reactor. The irradiance values studied were 

110, 220, 550 μE/m2s. Also, the total circulation time through the reactor was 45 s. A 

colored dye technique was used to measure the time taken by the liquid to circulate 

through each leg of the tubular reactor. Based on that, Illuminated time, tc, of 45.2, 43, 

41.7, 38.2, 36.6, 35, and 28 s was studied at each incident PFD (photon flux density). As 

well as a handy PEA (plant efficiency analyzer) by Hansatech, UK was used to measure 

the fluorescence of the culture twice a day for the experimentation period.  

The variable and maximal fluorescence, Fv and Fm, were measured for each 

sample. Also, to measure the growth rate µ, a cell count measurement was done twice a 

day for 2-3 days under a microscope. A 100 μL of culture was drawn from the top wall of 

the tubular photobioreactor. Three cell count measurements were made under a 

microscope to obtain an average cell number. The slope of the log of the cell count versus 

time plot was recorded 
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as the growth rate, μ. The experimental data of μ and Fv/Fm for the different light intensities 

and illuminated time, tl, is given in Table 1. 

3.4. DYNAMIC GROWTH KINETIC PARAMETERS 

‘Scientist’ software by Micromath was used to fit the experimental data given in 

Table 1 to equations (27) and (32) through the least square error minimization technique. 

The goodness of fit (R2) for the fitting of growth rate and fluorescent values were 0.91 and 

0.97, respectively. The 95% confidence interval values of the parameters are given in Table 

2. Thus, the three state dynamic growth model with the fitted kinetic parameters is as given

below: 

𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

=  −0.018071 𝛼𝛼𝑥𝑥1 +  0.000361 𝑥𝑥2 +  0.000004153 𝑥𝑥3 (33) 

𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

=  0.018071𝛼𝛼𝑥𝑥1 − 0.000361𝑥𝑥2 − 8.487 ∗ 10−7 𝛼𝛼𝑥𝑥2  (34) 

𝑑𝑑𝑑𝑑3
𝑑𝑑𝑑𝑑

=  8.487 ∗ 10−7𝛼𝛼𝑥𝑥2 −  0.000004153𝑥𝑥3  (35) 

𝜇𝜇 = 0.08369 ∗ 0.000361 𝑥𝑥2 − 0.02126 (36) 

𝐹𝐹𝑉𝑉
𝐹𝐹𝑀𝑀

= 0.4505( 1 − 𝑥𝑥3) (37) 

         Equations (36) and (37) were used to obtain the fitted values, which were then 

compared with the experimental data. The results of the fitted versus experimental data are 

shown in Figure 6. While the parameters given in Table 2 have been derived assuming a 

constant irradiance at all points inside the reactor, and the experimenters in this study were 

carried out over a limited range of light/dark ratio (1-0.5) and light intensities, Equations 

(33)-(37) can be used for any known light intensity, constant or varying. 
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Equations (33)-(36) can be used to analyze the growth rate over the complete range 

of light/dark ratio for different light intensities. The results of this simulation are given in 

Figure 6. Also shown in Figure 7 are the simulation results for certain higher light 

intensities (I=750, 100, and 2000 μE/m2s). As can be seen in this figure, as the ratio of 

light/dark phase increases, increasing the exposure of the cells to light. The growth rate at 

the higher light intensities (I≥750 μE/m2s) tends to be lower than that at the lower light 

intensities. This may be due to the damage of cell proteins due to excessive light, causing 

the cells to deactivate and move to the resting state (X3 in Figure 3) due to the process of 

photoinhibition (Wu and Merchuk 2001).  

Although the results of the simulation are based on the assumption of a 

constant light intensity received by the cells, which is not the case in real culturing 

systems, the trend from Figure 7 suggests that the incident light intensity, as well as 

the ratio of the light/dark cycle, must be optimized for efficient microalgae culturing, 

especially in large-scale reactors. The irradiance in a large-scale real culturing system 

varies from one point to another due to effects of mutual shading by the cells, movement 

of microalgae particles within the reactor, gas holdup, and the presence of dark zones in 

the core of the reactor. This leads to a time series of irradiance experienced by the cells 

inside the reactor. This also signifies the importance of studying the dynamic growth 

kinetic model.  

3.5.  COMPARE BETWEEN MODEL PREDICTION AND TUBULAR RESULTS 

   In Figure 8, the growth rate µ calculated from Equation 8 depends on the 

mathematical solution for x2 in first set of experiments, and these values are compared with 
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the growth rate µ estimated experimentally in a tubular photobioreactor. In general, the 

results show an excellent comparison between the experimental and mathematical 

solution, with slight differences in some points. This is because the cell count in these 

points could have errors due to the human counting through the microscopic device. As 

shown in Figure 9 the error bar, and it is seen that the maximum percentage error is 

8.26%. To check the reliability of the experiment's data, these experiments were 

conducted in triplicate. One way ANOVA performed on this set of experiments was 

determined using Origin Lab 2017 and it has been found that there is no significant 

differences between the replicated results (p = 0.9764), as shown in Figure 10. The 

dynamic growth kinetic model for Scenedesmus sp. (Equations (33)-(36)) can be 

applied to both open and closed photobioreactors, provided that the trajectory of 

the particles inside the reactor and the holdup of the constituent materials are 

known.  

4. HYDRODYNAMICS EXPERIMENTS DURING THE CULTURING

In this experiment, the green microalgae have been growing in a cylindrical split 

photobioreactor. The three-state model was solved as discussed below numerically. The 

growth rate was estimated by measuring the light received for the microalgae cells 

depending on the cell positions (trajectory) of the microalgae and shear stresses. Finally, 

these growth rate values were compared with the growth rate provided for the experimental 

work.  
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4.1. SPLIT PHOTOBIOREACTOR OPERATION AND CONFIGURATION 

Green algae, Scenedesmus, was obtained from Carolina Biological Supply 

Company Burlington, North Carolina, USA. The algae was first grown in 500 ml 

Erlenmeyer flasks at room temperature with pH of around 7.5. A special harvest light 

obtained from Future Harvest Development, Kelowna, Bc, Canada was supplied from the 

top by a cool white fluorescent lamp at a photon flux density (PFD) of 40-50 μE/m2 s. 

After the cultures reached the stationary growth stage, they were moved to large-scale in 

split airlift column photobioreactors. Furthermore, the culturing time segments were 

evaluated by using a spectrophotometer (SPECTRONIC 20), and the results are shown in 

Figure 11. In this part of this work, the sparger was used to flow the gases through into tap 

water at ambient conditions at superficial gas velocity (Ug) of 3.0 cm/sec.  

The static level for the liquid was 160 cm, corresponding to the top of the plate. For 

this work, a cylindrical Plexiglas split airlift photobioreactor has been used in this study. 

The outside column diameter is 5.5 inches (14 cm) and the column length is 59 inches (150 

cm). In this geometry, at column center, a 3 mm thick Plexiglas tray was inserted and 

divided the reactor into two equal areas: a riser portion and a downcomer portion with a 

clearance at the bottom of 2 inch. Also, this column consists of a stainless steel ring sparger 

with 5 cm diameter and 10 cm high. This sparger was used to introduce the gases to the 

culturing system. There are 15 equally distributed holes of 1 mm diameter in the top phase 

of the sparger tube, and it is built-up in the riser zone (gases injection area). The 

configurations and the dimensions of the split column are shown in Figure 12. Air plus 3% 

of CO2 gases was injected through the sparger into tap water at ambient conditions at 
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superficial gas velocity 3.0 cm/sec. The static level for the liquid is 160 cm, corresponding 

to the top of the plate. 

4.2. RADIOACTIVE PARTICLE TRACKING (RPT) TECHNIQUE 

Radioactive particle tracking (RPT) is a technique for tracking a single radioactive 

tracer particle by detecting the intensity distribution of emitted gamma-rays. The gamma-

ray intensity distribution is detected using an array of NaI scintillating detectors 

strategically placed around the studied region of the column. Collected radiation intensity 

distribution data is first used to reconstruct the tracer particle trajectory (tracer particle 

location in time), which is then used in further processing to obtain the tracer particle 

occurrence, velocity flow field, shear stress, and eddy diffusivity. 

In the last few decades, this technique has been extensively used for diagnostics of 

the dynamic flow in various multiphase systems such as bubble column, slurry bubble 

column, and fluidized bed reactor (Ong, 2003; Rados, 2003; Bhusarapu, 2005; Luo, 2005; 

and Shaikh, 2007, Degaleesan, 1997; Chen et al., 1999; Ong, 2003; Rados, 2003).  

In this work, Coblat60 has been used as the isotope tracer material in the m-Real. It 

was selected out of several candidate isotopes, because it has long half-life, which is 

sufficient to conduct a series of long experiments. A gamma-ray has good attenuation in 

its path through the Plexiglas reactor wall. Polypropylene was used as the material to coat 

or capsulate the isotope particle to match the liquid density, and also to protect the Coblat60

particle with improved thermal stability, mechanical strength, and chemical stability. 
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4.2.1. Isotopes Particle Preparation. The preparation of the isotope particle is the 

most challenging part and crucial step, in which the density of the particle needs to be 

adjusted to arrive at the optimum consistency that matches the liquid density to collect 

accurate and precise data. The radioactive particle preparation has to be neutrally buoyant, 

particularly for use in a liquid medium system. It is essential that the capsulated particle is 

as small as possible to reduce the drag force to track the motion of a fluid, completely 

wettable by the liquid, rigid and thermally stable, and easy to handle with complete 

security. However, a neutrally buoyant isotope particle with a diameter of 2 mm and a 

sampling frequency of 50 Hz was used to track the movements of the microalgae cell in 

the split airlift column. The cells of the microalgae are very small, and the density of 

culturing liquid inside the split photobioreactor, which includes both water and microalgae 

is close to the density of water (even at dense culturing as demostrated in Laith et al. 2018), 

so we can be assumed that the isotopes particle follow the liquid flow. Hence, the tracer 

ball can also be assumed to mimic the cells’ movements.       

Furthermore, the radioactive source must be of sufficient strength and possess a 

long half-life. Therefore, in this study, for all cases, the isotope particle Cobalt-60 (Co-60) 

was used with a 600-micron diameter and an activity close to 200 μCi. Cobalt isotopes 

have a half-life of 5.26 years. Cobalt has a density of 8.9 g/cm3, so to prepare the tracer 

particle with density that matched the liquid phase and also to avoid contamination, a 

spherical polypropylene ball (2 mm O.D.) was used as a composite material to encapsulate 

the Co-60 by drilling a 0.61 mm hole that was sealed with epoxy.  

The amount of glue or epoxy was adapted to match the liquid density. All of these 

steps for a composite particle were manufactured inside a safety glove box with specific 
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hand tools, where the operator could watch the operation online on an LCD screen 

connected with a microscopic device, as shown in Figure 13. Moreover, the density of the 

tracer particle was checked by using Eq. 38 and 39, below: 

𝜌𝜌𝑃𝑃 = 𝜌𝜌𝑙𝑙 + 18𝑢𝑢𝑠𝑠𝑢𝑢𝑙𝑙
𝑔𝑔𝑑𝑑𝑃𝑃

2  (38) 

where,

𝑢𝑢𝑠𝑠 = 𝑔𝑔(𝜌𝜌𝑃𝑃−𝜌𝜌𝑙𝑙)𝑑𝑑𝑃𝑃
2

18𝜇𝜇𝑙𝑙
    (39) 

where 𝜌𝜌  is the liquid density, 𝜌𝜌 𝑝𝑝  is the particle density, g is the gravitational 

acceleration, us is the velocity of sedimentation, In stagnant water, approximately 0.087 

cm/sec was obtained by measuring the terminal settling velocity in tap water in a 2-foot 

long cylinder. Thus, the density of the composite particle was approximately 0.99987 g/

cm3.   

This experiment includes a cylindrical 2 x 2 inch Nal (Sodium iodide) crystal 

detector, and 30 Nal scintillation detectors are placed 7 cm apart with two detectors per 

level facing each other, which are placed at 15 levels as shown in Figure 14 and 15. The 

angular position of the axis of these two detectors is alternates between one of the eight 

possible 45° apart positions. The axial span of the detectors is covered from the bottom 

to the top of the plate, a portion of the column from 10 to 115 cm of height above the 

sparger coordinates of the RPT detectors. 

The detected signal is amplified, processed, and recorded. Details on the count 

signal acquisition, processing and recording have been reported by Devanathan et al. 

(1990), Degaleesan et al. (1997), Kumar and Dudukovic (1997). The RPT experiment has 

two main parts the static experiment, which is the calibration work, and the dynamic 
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experiment, when the isotope particle throws inside the split column and lets it move 

freely. 

 4.2.2. Calibration. As shown in Figure 15, an advanced automated calibration 

device has been established and implemented for a cylindrical split airlift photobioreactor. 

This device consists of three stepper motors that can automatically move the calibration 

rod in three different ways: radial, axial, and angular. The encapsulated isotope Cobalt 60 

particle is attached to the calibration rod by using a plastic tip. Several hundred or 

thousand known positions inside the reactor can be selected inside the column. The 

calibration device has a 6-foot vertical motor connected to one stainless steel rod available 

with a length of 9 foot and 0.5 in OD; it is enough to cover all the column zones.  

The motor’s movements are connected with the advanced data acquisition system, 

which is computerized. Thus, the counts received by each detector are recorded 

automatically along with the data acquisition system.   

  The main purpose of the RPT calibration is to find the relationship between the 

intensity of detected radiation (γ-Ray counts) and the position of the tracer particle 

(radioactive particle). 

This relationship is used to estimate (reconstruct) the isotopes tracer particle 

position from the instantaneous number of counts received by detectors during the actual 

dynamic RPT experiment. The static experiment involves the location of the radioactive 

tracer particle at several hundred to several thousand known positions inside the reactor 

and measuring the intensity counts received by the detectors.  

 The static or calibration experiment is performed with the dynamic experiment at 

the same operating conditions, and this is required to account for the actual dynamic 
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attenuation of the culturing medium in the operation column. A precise relationship 

between the counts of the gamma-ray intensity and the tracer location is essential for the 

RPT measurement resolution, and it has to be efficient for the reconstruction of the 

isotopes tracer position of the actual RPT (dynamic) experiment. Thus, in the regions of 

the split column, the number of the static tracer positions must be high where the number 

of received counts might change significantly with a small change in the location of the 

isotopes tracer particle. 

 In the present study, 3410 total number of calibration points (static position) 

were used. These positions are homogeneously distributed through 62 axial levels 

along the split column with 2 cm between each one, as shown in Figure 16. At each 

level, 55 locations are grouped at four radial locations. The static positions for tracer 

inside the split column are divided into three sections: left side (riser section), right 

side (downcomer section), and above the plate. The calibration device was developed 

and operated significantly in mReal in University of Missouri Science and 

Technology. 

 Throughout the calibration work, the isotope tracer particle is held within a plastic 

vial that is screwed to the lower end of the calibration rod. At each of the 3410 calibration 

positions the data is collected using data acquisition frequency of 50 Hz. The counts 

received for all the detectors are mapped versus the tracer particle location and the 

coordinates of the detector crystal center, which are both important inputs for the 

reconstruction procedure of the tracer location. The original tracer particle reconstruction 

algorithm (Degaleesan, 1997) uses the nominal crystal coordinates. However, the 

coordinates are where the crystals were intended to be placed (Figure 16). 
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4.3. NUMERICAL SOLUTION TO THE THREE-STATE DYNAMIC GROWTH 
MODEL 

         The kinetic parameters for governing differential equations for the three-state growth 

rate model proposed in equation 5 to 9, for green microalgae, Sencendeum sp. are listed in 

Table 3. However, the light intensity with time changing, I(t), and shear stress, τ, are highly 

dependent on the cell’s movements and their positions inside the split photobioreactor as 

shown in the governing equations below: 

𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

=  −𝛼𝛼𝛼𝛼(𝑡𝑡)𝑥𝑥1 +  𝛾𝛾𝑥𝑥2 +  𝛿𝛿𝑥𝑥3         (5) 

𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

=  𝛼𝛼𝛼𝛼(𝑡𝑡)𝑥𝑥1 −  𝛾𝛾𝑥𝑥2 − 𝛽𝛽𝛼𝛼(𝑡𝑡)𝑥𝑥2         (6) 

 𝑑𝑑𝑑𝑑3
𝑑𝑑𝑑𝑑

=  𝛽𝛽𝛼𝛼(𝑡𝑡)𝑥𝑥2 −  𝛿𝛿𝑥𝑥3         (7) 

 𝑥𝑥1 +  𝑥𝑥2 + 𝑥𝑥3 = 1 

1
𝑑𝑑2

𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

= 𝜇𝜇 = 𝑘𝑘𝛾𝛾𝑥𝑥2 − 𝑀𝑀𝑀𝑀     (8) 

𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀 𝑀𝑀𝑘𝑘𝑚𝑚(𝜏𝜏−𝜏𝜏𝑐𝑐)      (9) 

             Thus, the cell’s movement has to be supplied with the radioactive particle tracking 

(RPT) data. Due to the chaotic nature system of the numerical methods for cell growth for 

an actual photobioreactor, they are required to solve the governing differential equation. 

The cells’ trajectories measured by RPT experiments consist of successive sampling points 

at a frequency of 50 Hz. Between the short intervals of any two successive samples, the 

cells’ concentration and the irradiance distribution inside the reactor can be assumed to be 

constant (H. P. Luo, Kemoun, Al-Dahhan, Sevilla, Sunchez, et al. 2003).  

            On the other hand, to account for the effects of shear stress, the time-averaged shear 

stress distribution obtained from RPT experiments was used to calculate the maintenance 
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constant, Me, by Equation 9. Therefore, the overall growth rate can be obtained by 

integrating the governing differential equations along the whole cell’s trajectory from point 

to point. The initial conditions we used in the simulation are as follows:  

x1 = 1, x2 = x3 = 0, t = 0 

       These conditions assume all cells are in the resting state. The 5th order Ronge-Kuta 

algorithm (the subroutine available in Matlab2016 was used here) was used to solve the 

above initial value problem. Figure 17 Shows the numerical solution for a three-state 

dynamic growth model, and it is clear that x1 starts with 1.0 (representing the resting 

state) and drops to be close to zero, while x2 (growth state) starts from 0 to reach the 

maximum, which represents the growth behavior. At the same time, x3 (inhibiting state) 

starts from zero and has very slow gradually increase because to the process was an 

active stage. At the same time, the specific growth rate increases until reaching steady 

state rate after thirty days, and the curve is supposed to decline after 30 or 35 days, but 

our study covered just 30-35 days.

4.4. LIGHT INTENSITY MODEL 

In this work, we used the split airlift photobioreactor as large scale with real 

culturing systems for the validation process. If the assumption of constant intensity of the 

light experienced by the cells and a constant maintenance are not valid, then the particle 

trajectory is measured from the radioactive particle tracking (RPT) technique and the light 

intensity distribution is estimated inside the airlift photobioreactor by calculating the light 

intensity as a function of time (I(t)).  



119 

Hence, the intensity of the light at any point between the two sampling points, I(t), 

can be estimated by linear interpolation based on Wu and Merchuk (2002) for simplicity 

and demonstration purposes as you can be seen in the equation (34) (H.-P. Luo 2005):  

𝛼𝛼(𝑡𝑡) = 𝛼𝛼𝐸𝐸  . 𝑀𝑀𝑥𝑥𝑒𝑒 �−�𝑘𝑘𝑑𝑑 .𝑥𝑥𝑗𝑗 + 𝑘𝑘𝑤𝑤�. �𝑑𝑑𝑗𝑗 + 𝑑𝑑−𝑑𝑑𝑗𝑗

𝑑𝑑𝑗𝑗+1−𝑑𝑑𝑗𝑗
(𝑑𝑑𝑗𝑗+1 − 𝑑𝑑)��           (40) 

where 𝑡𝑡 𝑗𝑗  < 𝑡𝑡  < 𝑡𝑡 𝑗𝑗 +1 , 𝑗𝑗  = 1, 𝑁𝑁  − 1 , N is the total trajectory point number, and d is 

the distance to the illuminated surface. On the other hand, to account for the effects of shear 

stress, the time-averaged shear stress distribution obtained from RPT results was used to 

calculate the maintenance constant, Me. In the RPT experiments, gases (air+3%CO2) 

bubbled through the ring sparger into a split column consisting of RO water at ambient 

conditions at superficial gas velocity 3 cm/s to mimic the conditions for the microalgae 

growth process in a tubular reactor (first step).  

4.5. CELL TRAJECTORY 

        Figure 18 shows the exemplary Lagrangian trajectories that represent the particle’s 

movement between the riser and downcomer section for a single circulation in the reactor 

obtained from the RPT results at a superficial gas velocity of 3 cm/s. As mentioned 

previously, the trajectories of the particle represent the movement of the cells. This 

movement of the particle has been measured for 24 hours, to make sure that the particle 

visits all the positions inside the reactor.  

          It is sensible to assume that the obtained particle trajectories represent the movement 

of all the cells in the reactor. Utilizing cells’ trajectories obtained from RPT technique, the 
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cell’s growth rate equations (5, 6 and 8) can be integrated between two successive sampling 

locations: 

δδγδα +−++−= jjj
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dt

dx
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I.C:   x1 =1, x2 = x3 =0,    t = 0

In RPT, we assume straight line between two successive positions as shown in 

Figure 18c. So we can integrate the differential equations in this interval. The 

differential equations then can be rewritten like this. It’s almost same to the original 

equations, but here light intensity is a function of time. The total number of cells are 

updated after the each integration. In this work, 5th R-K method was used to solve this 

problem as mentioned above. 

4.6.  THE INTEGRATION BETWEEN SECTIONS 3 AND 4 

From Figure 18, we can predict that the validation was successful and the 

kinetic parameters are valid for large scale due to the same behavior, which can be seen in 

Figure 10 for both steps. The particle trajectories can then be used to estimate the light 

intensity 
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distribution inside the reactor to estimate the light intensity as a function of time (I(t)), 

which is now being further investigated for the next paper.  

As shown in Figure 18 the error bar, and it is seen that the maximum percentage error 

is ≈13%. To check the reliability of the experiment's data, these experiments were 

conducted in triplicate. One way ANOVA performed on this set of experiments and it has 

been found that there is no significant differences between the replicated results (p = 

0.995), as shown in Figure 19. 

In laboratory or pilot plant setups, advanced non-invasive measurement techniques 

such as radioactive particle tracking (RPT) was used to obtain the particle trajectories and 

the needed turbulent parameters to validate the CFD models to further obtain the gas and 

the liquid distributions. Validated computational fluid dynamics can also be used to 

estimate the detailed hydrodynamics of the photobioreactor.  

Knowledge of the trajectory of the cells inside the photobioreactor can then be used 

in conjunction with the above model to track the growth of the microalgae cells and 

enhance the environmental and growth conditions for the microalgae to attain faster and 

more efficient growth.  

The detailed data and information obtained from CFD and the measurement 

technique mentioned above combined with the dynamic growth model can be used to carry 

out performance evaluation and optimize the design and scale-up of large-scale microalgae 

culturing and photobioreactor configurations.  
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5. HOW TO EXTRAPOLATE TO ANY OTHER APPLICATION CLOSED OR
OPENED POND

      For industrial scale photobioreactors such as closed or open pond, it is crucial 

to implement this methodology by following the same method in section 3, and instead 

the method in section 4 which is the RPT experiment, we will developed and validate 

the computational fluid dynamic (CFD). Then CFD methodology will be used to 

generate trajectory (cell movement) and with these will follow same steps above 

(Luo and Al-Dahhan 2011). The dynamic growth methodology can also be applied to 

other microalgae strains that have potential to be used for bioenergy production, carbon 

sequestration, flue gas, and wastewater treatment, as well as other high-value 

consumer products such as pharmaceuticals, human nutrition, etc. This process of 

combining the dynamic growth kinetics with the cell trajectories inside 

photobioreactors is based on integrating fundamental principles of photobioreactor 

design and growth kinetics, and can thus bridge the gap between small-scale 

investigational experiments and commercial production, making the whole process of 

microalgae cultivation for various applications economically feasible.  

6. REMARKS

       In this study, Scenedesmus microalgae was cultured in a tubular photobioreactor to 

estimate the kinetic parameters of the photosynthetic reaction, and it was also  cultured in 

a cylindrical split airlift photobioreactor to find the cell trajectory via radioactive particle 

tracking (RPT). In both reactors, the results were investigated mathematically and 

experimentally.  
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These two sets of experiment inquiries were conducted to achieve the objectives of 

this work. Furthermore, the results presented in this work provide rich information 

for photobioreactor analyses and for CFD simulation verification. The findings can be 

briefly summarized as follow: 

• A dynamic growth model for microalgae Scenedesmus was successfully developed

in a separate effects experiment inside a tubular photobioreactor at light intensities

of 107, 220, 560 μEm-2s-1. The ratio of the light to dark phase was varied, and the

growth rate and fluorescence were evaluated experimentally.

• The data was fitted to the modified three-state dynamic growth model based on the

original idea of Eilers and Peeters, 1988, and modified by Wu and Merchuk, 2001,

to estimate the dynamic growth parameters of microalgae Scenedesmus. The fitted

parameters when substituted back in the model were able to predict the expected

growth rate and fluorescence values.

• The dynamic growth model successfully accounts for the simultaneous processes

of photoinhibition and photolimitation that are experienced by the cells in real

cultures and can be used with any reactor configuration with a known intensity and

variation of light. The ability of the model to incorporate the light history of the

cells gives useful insight into the effect of hydrodynamics on the process of

photosynthesis.

• The dynamic growth model of Scenedesmus was also used to simulate the growth

rate of algae over the entire range of the light/dark cycle, as well as at higher light

intensities than those studied in the experiments. The results of the simulation using

the fitted parameters indicated that the specific growth rate at light intensities
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greater than 750 μE/m2s was lesser than that at the lower intensities of 107, 220, 

and 560 μE/m2s, with the difference increasing with an increase in the ratio of the 

light/dark cycle. This was thought to be due to enhanced effect of photoinhibition 

at higher intensities. 

• The three-state growth rate model of photosynthesis has been investigated

numerically in a cylindrical internal-loop split photobioreactor, which combined

real trajectory (cell locations), and the growth rate model has been established for

the first time for the green microalgae. The comparison of the simulation results

with the experimental data indicated that the results are reasonable.

• This finding emphasizes the need of integrating the dynamic growth kinetic model

with the photobioreactor hydrodynamics and cell trajectories to enhance the

microalgae culturing process to make it economically viable. The studied

methodology can be extended to other strains of microalgae with potential for

various applications with industrial scale.
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 Figure 1: The light intensity gradient in the culturing media and photobioreactor.
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Figure 2: Schematic representing the steps of the microalgae during 
the light/dark cycle (adapted from Wu and Merchuk 2001). 
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Slide structure to provide 
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lights and the reactor 

Figure 5: Schematic of the tubular loop reactor with air lift pump 
((1) Gas inlet, (2) Gas sparger, (3) Illuminated part, (4) Dark part, Megard et al. 1984). 

1

Figure 4: schematic of the three states dynamic growth kinetics 
model (proposed by Eilers and Peeters 1988). 



128 

Figure 6: The experimental data and the predicted data from the model 
for the specific growth rate, μ (a), and the fluorescence measurements 

(b) (Equations (33)-(36)).
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Figure 7: Simulation of the effect of different light intensities over the entire 
range of light/ dark cycle from the dynamic growth model ((33)-(36)). 

Figure 8: Comparison between the growth rate µ which estimated 
mathematically and experimentally. 
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Figure 9: The error bar between the experimental and the mathematical 
solution in tubular photobioreactor. 

Figure 10: The differences between the replicated results of the 
experiments in tubular photobioreactor. 
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Figure 12: Schematic diagram for split airlift reactor with the ring sparger. 
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Figure 11: Optical density values. 



132 

Figure 13: (a) Schematic for tracer particle, (b) radioactive particle tracking 
preparation facilities. 

Figure 14: Top view of the detectors around the split column. 
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(a) (b) 
Figure 15: Automated calibration device (a) schematic (b) image. 

Figure 16: Axil configuration of radiation detectors and the compartment 
level with (r, z, θ) coordinates of the RPT detectors. 
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 Figure 17: Numerical simulation results or three-stage dynamic growth model.

Figure 18: Single particle trajectory in the split columns in both the (a) front 
and the (b) top view of the trajectories are shown respectively in the r-z plane 

and the cross-sectional plane, and (c) represent straight line between two 
successive positions. 

a 

b 

c 
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Figure 19: Validation active stage (X2) in terms of the dynamic growth rate 
model between dynamic growth rate in numerical simulation with their 

experiments values results for the split column at 3.0 cm/s. 

Figure 20:  The error bar between the experimental and the numerical solution 
in split photobioreactor. 
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Table 2: Specific growth rate and fluorescence measurement data 

Illuminated 
Time 

Illuminated/ 
Circulation 

time 
I= 107 μEm-2s- I= 220 μEm-2s- I= 560 μEm-2s- 

tl (s) tl /tc μ (h-1) FV/FM μ (h-1) FV/FM μ (h-1) FV/FM 

45.2 1.0 0.0415 0.387 0.0462 0.411 0.0471 0.392 

45.2 1.0 0.0407 0.421 0.0482 0.413 0.0466 0.383 

43.0 0.95 0.0389 0.404 0.0501 0.416 0.0351 0.372 
43.0 0.95 0.0394 0.424 0.0517 0.405 0.0410 0.324 
41.7 0.92 0.0373 0.435 0.0524 0.422 0.0482 0.336 
41.7 0.92 0.0352 0.441 0.0518 0.471 0.0461 0.341 
38.2 0.85 0.0361 0.472 0.0463 0.500 0.0412 0.376 
38.2 0.85 0.0382 0.480 0.0447 0.520 0.0433 0.357 
36.6 0.80 0.0321 0.414 0.0429 0.463 0.0317 0.332 

36.6 0.80 0.0342 0.452 0.0437 0.437 0.0368 0.360 

35.0 0.77 0.0284 0.406 0.0402 0.381 0.0343 0.311 

35.0 0.77 0.0310 0.416 0.0396 0.376 0.0313 0.323 

28.0 0.51 0.0262 0.382 0.0353 0.445 0.0301 0.314 

28.0 0.51 0.0257 0.395 0.0327 0.431 0.0294 0.309 

Figure 21: The differences between the replicated results of the 
experiments in tubular photobioreactor. 

Table 1: Specific growth rate and fluorescence measurement data. 
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ABSTRACT 

    In this study, an advanced noninvasive gamma-ray computed tomography 

(CT) technique was used to investigate the cross-sectional gas holdup distribution 

of the multiphase flow for an air-water-microalgae system in a 

cylindrical split airlift photobioreactor. The gas holdup distribution and their 

radial profiles were investigated during the culturing of the green microalgae. The 

gas distribution in the whole reactor, the riser, the downcomer, as well as their 

distributions above and below the split plate was also characterized, together with the 

impact of different superficial gas velocities at 1 and 3 cm/sec, different axial levels, and the 

change in culturing starting from the first day until the medium became very dense. 

mailto:aldahhanm@mst.edu
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The results are reliable as benchmark data to validate computational fluid dynamics 

(CFD) simulation and other models. 

Keywords: Split airlift photobioreactor, microalgae culture, Scenedesmus, Computed 

tomography, local gas holdup. 

1. INTRODUCTION

Microalgae have short life cycles and fast-growing photosynthetic organisms. These 

microorganisms have a wide range of applications: such as excellent source for biofuel, 

CO2 fixation, wastewater treatment, pharmaceutical products, food additives, aquaculture, 

and hydrogen production. These microoganisms also mitigate the products of 

combustion/gasification from power plants, and additionally, the culturing system can be 

used to create a closed ecological life support system (e.g., on the moon or Mars) using a 

photobioreactor designed to produce protein and oxygen from the microalgae, to restore 

CO2, and to mitigate waste. Consequently, it is crucial for astronauts on reconnaissance 

missions [1-10]. The green microalgae Scenedesmus has been found from the 

comprehensive literature review to be a favorable component for biofuel production due to 

its high oil (lipid) content and higher efficiency in capturing CO2 than other kinds of algae. 

Thus, this kind of microorganism have been selected in this study from numerous number 

of microalgae [11-19]. 

The results of Mandal and Mallick [20] demonstrate that the biodiesel from 

Scenedesmus. Obliquus contains mainly saturated and mono-unsaturated fatty acids (~75% 



144 

of the total fatty acyl methyl esters), which advocates its high oxidative stability. Thus, 

Scenedesmus. obliquus could be considered as a potential organism for biodiesel 

production. 

X. Chen et al. [21] used ionic liquors and subcritical water to extract the oil from

the Scenedesmus species. The results suggest that Scenedesmus is suitable for producing 

biodiesel, based on its high oil and oleic acid content [20][22]. According to Patnaik and 

Mallick [23], it can be confidently concluded that the green microalgae, Scenedesmus is 

not just a significant stimulant of lipid accumulation but also a more sustainable and 

economically viable process for industrial production of biofuel from the microalgae 

feedstock. Moreover, Abomohra et al. [24] examine pilot-scale cultivation of Scenedesmus 

in cost-efficient plastic bags as a highly promising microalgae for biofuel production, and 

after lipid extraction, the residual algal biomass can be efficiently used as food additives 

for animal feeding.  

Regarding pollution treatments, [25] [26] Scenedesmus is highly capable of carbon 

fixation and can be used in wastewater treatment. It was established that the Scenedesmus 

sp. can convert nearly 15-25% CO2 from the atmospheric into biodiesel for transportation 

fuel [27][28]. Also, according to Latiffi et al. [29], experimental results showed that the 

microalgae Scenedesmus sp. are able to remove heavy metals pollutant such as copper, and 

zinc, from food stall wastewater effectively when they used it in the phytoremediation 

process.  

The green microalgae can thus be grown in a wide range of bioreactor ranging from 

open culture systems (e.g., open ponds and raceway ponds) to closed culture systems (e.g., 

airlift, bubble column, and tubular reactors). The external environment in the open culture 
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systems is not intrinsically controllable. For example, it is hard to control the atmosphere, 

temperature, weather conditions, and many other parameters that might lead to a reduction 

in the photobioreactor performance, and thus, the productivity. Therefore, the microalgae 

strain culturing requires protection from the external environment. Hence, the closed 

culture system was chosen for this work because it is completely controllable. 

In the last decade, microalgae have been cultured in several closed photobioreactor 

configurations: airlift, tubular, flat plate, and bubble column [30, 31]. Many researchers 

have used the airlift columns, and it is a recommended configuration to use it as favorable 

photobioreactors for the cultivation of the microalgae. These kinds of reactors have no 

moving parts, and they have minimum power consumption, great heat, and mass transfer, 

and provide fast mixing while retaining homogeneous shear stress [31-37]. For the previous 

reasons, these reactors have the ability to enhance the efficiency of photosynthesis and also 

have better scalability and operational flexibility, thus improving the overall performance 

of the cultivation process. 

Different types of airlift photobioreactor configuration have been used for a 

photosynthetic reaction such as a flat airlift, draft airlift tube, Subitec’s Flat Panel Airlift 

(FPA), and split airlift [31, 38-42]. Based on the measurement and computation of Luo 

[43] and Luo and Al-Dahhan [31, 44, 45], it has been found that the cylindrical split airlift

column outperforms the other columns for microalgae growth. Therefore, a cylindrical split 

airlift column was used in this work to further advance the development of the new multi-

scale modeling approach for sustainable production of bioenergy, bio-based chemicals, and 

CO2 fixation. 
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The liquid movements inside this kind of reactor are driven by gas bubbles rising 

that are commonly introduced at the lower part of the riser section in these columns. Thus, 

the difference between the gas holdups in these two paths causes a pressure drop, and that 

is the driving force behind the recirculation of the liquid between the riser and downcomer 

zones. Gas distribution is the main part of culturing microalgae system because it is 

directly regarding to the rate of the mass transfer between liquid and gas phases. Therefore, 

the distributions of the gas holdup in both channels are crucial parameters to the internal 

loop split photobioreactors performances due to their simple construction, low operating 

cost and high efficiency [46][47]. Also it's important parameter for bioreactor design, since 

it’s define and describe the gas/liquid interfacial area available for mass transfer and this 

gas/liquid dispersions depend largely on the geometry of the reactor column [48]. 

To the authors’ best knowledge, a limited researchers have investigated the local 

gas holdup characterization for cylindrical internal loop split photobioreactors by using 

different invasive measurement techniques, such as a four-point optical probe, a monofiber 

optical probe, and U-tube manometers. 

Among these limited studies, Fernandes et al. [46] used an invasive monofiber 

optical probe to measure the gas holdup in the riser section in the split photobioreactors in 

different two riser-to-downcomer cross-sectional area ratios and compared with regular 

bubble column results. The optical probe was used to locally detect the presence of the gas 

phase in the air-water system. 

Ojha and Al-Dahhan [47] studied the gas holdup in split airlift PBR by employing 

a four-point optical fiber probe technique. They measured the local gas holdup along the 

riser and the downcomer sections for air-water including microalgae culturing.  
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Additionally, Mostafa K. M. et al. [49] investigate the gas holdup in a split-cylinder 

airlift reactor for the air-water system. The gas holdup values in the section, the riser, and 

the downcomer were measured by inverted U-tube manometers by determining the 

difference in hydrostatic pressure between the manometer taps. These techniques showed 

many problems and challenges, such as disturbing the liquid movement inside the reactor, 

as well negatively affecting the reflected signals from the column, especially when the 

rheology properties of this medium will definitely change in dense culturing; at that point, 

a layer will eventually form that will cover the fiber probe on the surface of the tip of the 

probes [47]. Luo and Al-Dahhan [43] studied the local gas holdup in airlift 

photobioreactors by using computed tomography (CT). They measured it for the air-water 

system only and they assumed that the measured local gas holdup in an air-water system 

mimics the local gas holdup during cultivation of the red marine microalgae. However, 

their work did not address the local gas holdup in the real culturing system or the effect of 

the change in the intensity of culture on the reactor hydrodynamics, particularly when the 

culturing medium becomes very dense and thick, which is of interest for large-scale and 

industrial applications. They also suggested that more data are required to approve and 

quantify the local gas holdup profiles because the limited quantity of data points that 

obtained in the open literature. 

Accordingly, the details of local gas holdup distributions characteristics in the 

multiphase flow during culturing and particularly in a dense medium remain unaddressed 

and it is still a difficult task. Therefore, advancing understanding of the details of flow 

dynamics phenomena during culturing microalgae is critical for efficient, proper, and 
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optimized microalgae culturing, desiging a scale-up, and defining the operation conditions 

of the photobioreactors.  

Thus, the novelty of this study is to for the first time investigate the detailed 

local cross-sectional gas holdup distributions and their radial profiles of the selected 

cylindrical split photobioreactor during culturing microalgae using sophisticated 

computed tomography (CT). Such study will help to understand the effects of culturing 

stages (cell concentration) on the local gas holdup distributions.  

More importantly, the uniqueness of implemented CT during culturing of 

microalgae is to measure the local gas holdup distribution combined with liquid 

flow dynamics reported in Sabri at, el. (submitted for publication [50]) that measured the 

details of the local hydrodynamics by using an advanced radioactive particle tracking 

(RPT) technique to measure the cells’ movements (cell trajectory). These outcomes 

can be integrated with the dynamic growth models to predict the growth of the 

microalgae with time and to provide benchmarking data for validation computational fluid 

dynamics (CFD). 

2. MATERIALS AND METHODS

2.1. MICROALGAE CULTURE PREPARATION 

A green Scenedesmus sp. microalgae acquired from the Carolina Biological 

Supply Company (Burlington, North Carolina). First, the algae was grown in 500 ml 

Erlenmeyer flasks at a pH of ~7.5 and room temperature. Light intensity of 40-50 μE/m2s 

was applied by a special white fluorescent lamp for harvest light and was acquired from 

Future Harvest Development (Kelowna, British Columbia, Canada), as shown in 
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Figure 1. Then the cultures touched the stationary growth stage, the cultured algae 

were moved to the larger scale of the split internal-loop photobioreactor. 

Furthermore, the segments of the culturing time were evaluated using 

a spectrophotometer (Spectronic 20, Thomas Scientific, Swedesboro, New Jersey). By 

using this device, the culturing was evaluated each day of growth system to 

monitor the cultivation progress.  

2.2. EXPERIMENTAL SETUP 

Acrylic (Plexiglas) cylindrical internal-loop photobioreactor (split column) with 

a diameter of 5 inches (12.7 cm) and height of 59 inches (150 cm) was used. In this 

geometry, the column consists of four main parts: the riser, the downcomer, and the lower 

and upper split plate. This acrylic tray was placed at the center of the reactor and 2 inches 

above the base in a bottom column. Also in this column, the gases were introduced 

through a 2 inch diameter stainless steel ring sparger. This sparger consists of 15 evenly 

distributed 1-mm diameter holes placed at the top phase of the sparger tube and built up 

4 inches above the column base in the riser zone (i.e., gas injection zone). The 

configurations of the split column, with its dimensions, are shown in Figure 2. The 

sparger was used to propel the gases through tap water at ambient conditions at a 

superficial gas velocity of 1.0 and 3.0 cm/sec. 

The static level for the liquid was 160 cm, corresponding to the top of the plate. 

Regarding culturing the microalgae, the CT structure has to be covered all by using a black 

sheet in order to control the light intensity at 350-400 μE/m2s as recommended from Astha 
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and Al-Dahhan [47], as shown in Figure 3. Twenty-two light sources were installed around 

the photobioreactor and were been used for photosynthesis reaction. In this study, the air 

(gas phase) was provided from an industrial compressor (Ingersoll Rand Company), CO2 

was supplied from the CO2 cylinder, and both the air and CO2 were continuously 

introduced to the photobioreactor through the sparger in the riser section as a volume 

percentage of 97% air and 3% CO2 as recommended from the literature [31]. In this 

investigation, the cylindrical split column was centered and well-balanced in the central of 

the rotate plate in gamma-ray computed tomography (CT) scanner, as shown in Figure 4. 

The diagnostics of the hydrodynamics in this work were done in three stages: air-

water, air-water-15-days of microalgae culturing, and air-water-30-days of microalgae 

culturing. These stages were selected depending on the developing culture system, 

as shown in Figure 5. In addition, a CT scan was taken in axial cross-sectional planes at 

five different heights of the column, corresponding to the bottom zone H1 =3 cm 

(below the split plate), at level H2 = 29 cm, at H3 =52 cm, H4 =76 cm, and at H5 = 110 cm 

(above the split plate), as can be seen in Figure 6. The experiments work were 

carried out at atmospheric pressure and room temperature. 

2.3. GAMMA-RAY COMPUTED TOMOGRAPHY (CT) TECHNIQUE 

    The advanced noninvasive dual-source gamma-ray computed tomography (DSCT) 

technique is a diagnostic machine designed to quantitatively and qualitatively obtain the 

cross-sectional phase holdup distribution of the multiphase system, such as gas-liquid, gas-

liquid-solid, liquid-solid, or other multiphase flow systems. This CT technique has been 
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designed to use two sealed gamma-ray sources as shown in Figure 7. Presently, it consists 

of 60Co (the initial activity ~50 mCi) half-life of about 5.24 years and 137Cs (the initial 

activity ~300 mCi) half-life of about 37 years. Both sources is housed in a collimated 

source, which is made of lead (for 137Cs) and tungsten (for 60Co).  

   The arrangement of the fan beam of the radiation source and detectors is utilized for 

transmission measurements of the gamma-ray photons through the split column in the 

experimental setup. The beam of the photons fan involves of a longitudinal sector of a fan 

cone. All point of the gamma-ray source are located at the peak of a fan cone. The split 

column of the experimental setup is located in the center of the rotating CT circle. The 

gamma-ray sources are located at the center of geometrical lead house to provide maximum 

protecting. 

Figure 7 shows a schematic of the top and side views of the dual-source gamma-

ray setup. The CT setup is designed and prepared for the multiphase flow system when 

the experimental setup such as gas-liquid or gas-liquid-solid was placed at the center, and 

that will lead to simultaneously exposed gamma photons from both sources. Each of the 

fifteen detectors contains NaI (sodium iodide) and is located in front of each gamma 

source. Before the CT work is performed, it is first ensured that the split column is 

operated under the required conditions, and then the sources will open. In this work, the 

system consists of air-water with microalgae. This system looks like three-phase flow, but 

in fact, Sabri et al. [49] reported that the density of the microalgae is close to the density 

of the water even with high dense culturing. Thus, since this system is assumed to be a 

two-phase flow, only single gamma-ray source has been used, which is 137Cs.  
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137Cs is a single gamma-ray source with 662 KeV energy and was successfully used 

in the computed tomography (CT) technique to measure the cross-sectional phase 

distributions and their radial profiles in a two-phase flow bubble column [52-55], pebble 

bed [56], fluidized bed [57], spouted bed [58], and fixed-bed catalytic reactors [59] at 

different operating conditions. All this work has been done in our laboratory, Multiphase 

Flow and Reactors Engineering Application Laboratory (mFReal).   

            The experiment of the CT scan is then launched, and typically the runs will take 

about 8.30 hours. In the end, the source is closed to ‘turn off’ the sources. Through the CT 

scan, the fifteen detectors, array is made to move in an angular manner. For each movement 

or motion of the detectors, the data acquisition system collects the counts received from 

the gamma-ray. The plate that holds the detector has moved 21 times by using another 

stepper motor and an angle of 0.13°; hence, there are 21 angular positions for each detector 

with respect to the gamma-ray source. This way, the scan has 315 angular positions for a 

given position of the source covered along the arc of the fan beam.  

By moving the circular source plate around the studied split column with a small 

angle (≈ 1.83°) per each rotation by utilized the precise stepper motor, the locations of the 

sources are then changed, and the process described above is repeated. The circular source 

plate shown in Figure 7 has an axis of rotation along the center of the CT setup. The 

gamma-ray sheet positions are indicated as a dotted yellow line in Figure 7. Through a 

single scan, the positions source has 197 movements that are covered all around the 

experiments system. For many scans of axial levels (vertical direction) in the column, the 

base plate can be repositioned vertically. This base plate is mounted on four vertical ball 
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screws, and that makes this vertical movement possible. The motions of the CT setup are 

completely controlled and automated by the data computer.  

To obtain the linear attenuation coefficients (μ, cm-1) for the cross-sectional 

distribution in the split internal-loop photobioreactor by applying the alternating 

minimization (AM) algorithm, it is required to have the column three diferent scans as 

follows: 

• Scan the empty column.

• Scan the column filled with water only.

• Scan the column under operating conditions.

This algorithm was developed by O'Sullivan et al. [60] and implemented by Varma

[61]. Additional information about the mathematical derivation and implementation of the 

AM algorithm for reconstructing images can be found in [60] [61]. For image 

reconstruction, the cross section of the photobioreactor domain was divided into a 

resolution of 80×80 pixels.  

Thus, through a specific procedure the gas holdup distributions and their redial 

profiles were calculated and that will be explained in the next section. For considerations 

of the radiation safety, the CT technique was shielded and protected with lead on all sides 

to decrease and eliminate the dose of the radiation from the CT. Thus, this CT technique is 

safe to use if all operational protocols are followed and applied. Note that these operational 

protocols were established and approved by the Department of Environmental Health and 

Safety at Missouri University Science and Technology. 
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2.4. CT VALIDATION 

      For accuracy purposes for CT experiments and also to examine the performance 

of the CT technique, the validation is crucial before each CT run. The Acrylic phantom 

has two concentric cylinders; the inner diameter is 3 in. (7.62 cm) and the outer 

cylinder’s diameter is 6 in (14 cm), as shown in Figure 8. A number of different scans were 

performed for the experiments of the Phantom with various scans as follows: First scan: 

An empty Phantom. Second scan: The outer cylinder was empty (just air), while the 

inner cylinder was filled with water. Third scan: The inner cylinder was empty, while the 

outer cylinder was filled with water. Fourth scan: Both external and internal cylinders 

were filled with water. 

To evaluate the quality and accuracy of the collected data of the CT scans, the 

sinogram and the transmission ratio figures were plotted for all the CT experiments. This 

evaluation serves as a diagnostic tool to discover the detectors’ defects. After this step, the 

running time for each scan was 8.30 hours (frequency of 10 Hz), and 15 scintillation NaI 

detectors recorded the data to reconstruct the cross-sectional images of the linear 

attenuation coefficient (𝜇𝜇, 𝑐𝑐𝑐𝑐−1) by usi ng the  AM alg orithm and  presented by 80× 80 

pixels. For all the phantom scans of transmission ratio figures, the x-axis represents the 

angular location of the projection in the fan beam arrangement, while the y-axis represents 

the calculated transmission ratio.  

All the results for the transmission ratio displayed in Figure  are smooth and 

symmetric without any detector’s problem in the detectors. It is clear from these results 

that the CT scans captured and characterized the boundaries of outer and inner cylinders of 
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the test phantom for all scans. Moreover, it was able of obviously distinguishing between 

air, water, and Plexiglas. 

Furthermore, the CT technique test was capable to recognize between the phantom 

material, which is the acrylic, and liquid, which is the water, as shown in Figures 9 and 

10 for case number four despite the convergence of their linear attenuation coefficients 

for Plexiglas = 0.0098 and for the water = 0.086 cm-1. Moreover, the reconstructed linear 

attenuation coefficient values represented by the CT test were very close to the theoretical 

values. 

2.5. GAS HOLDUP ESTIMATION  

The local gas holdup has been estimated for the split column from the Beer-

Lambert's law, and it can be described by the beam intensity of the gamma-ray that is 

transmitted through the split column, these equations are discribed also in [55]: 

𝑇𝑇 = 𝐼𝐼/𝐼𝐼° = 𝑒𝑒−𝑙𝑙𝑙𝑙𝜇𝜇�  (1) 

𝐿𝐿𝐿𝐿(𝐼𝐼/𝐼𝐼°) = −𝑙𝑙𝑙𝑙�̅�𝜇 (2) 

𝐴𝐴 = 𝐿𝐿𝐿𝐿(𝐼𝐼/𝐼𝐼°) = +𝑙𝑙𝑙𝑙�̅�𝜇 (3) 

where 𝐼𝐼°: the initial gamma ray intensity,𝑇𝑇: transmission ratio, 𝐼𝐼: the gamma ray 

intensity that transmitted through split columns, 𝑙𝑙: path length through the medium (cm), 

and �̅�𝜇: mass attenuation coefficient (cm2/g) of a material. The term of 𝐿𝐿𝐿𝐿(𝐼𝐼0/𝐼𝐼)  is equal 

to the integral sum of the measured attenuation that passes through the materials along 

the beam path. 
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In CT scanning, the attenuations are measured along some such beam paths through 

the split columns from different angles. For a two-phase split column operating at any 

investigated superficial gas velocity, the total attenuation in each pixel can be: 

𝐴𝐴𝑔𝑔˗𝑙𝑙,𝑖𝑖𝑖𝑖 = �𝑙𝑙𝑔𝑔𝑙𝑙𝑔𝑔�̅�𝜇𝑔𝑔 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�̅�𝜇𝑙𝑙�𝑖𝑖𝑖𝑖 (4) 

since 𝑙𝑙𝑔𝑔 = 𝜀𝜀𝑔𝑔,𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖 ,𝑎𝑎𝐿𝐿𝑎𝑎 𝑙𝑙𝑙𝑙 = 𝜀𝜀𝑙𝑙,𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙 + 𝑙𝑙𝑔𝑔. 

Thus, Eq. (4): 

𝐴𝐴𝑔𝑔˗𝑙𝑙,𝑖𝑖𝑖𝑖 = (𝜀𝜀𝑔𝑔,𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖)𝑙𝑙𝑔𝑔,𝑖𝑖𝑖𝑖�̅�𝜇𝑔𝑔,𝑖𝑖𝑖𝑖 + (𝜀𝜀𝑙𝑙,𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖)𝑙𝑙𝑙𝑙,𝑖𝑖𝑖𝑖�̅�𝜇𝑙𝑙,𝑖𝑖𝑖𝑖 (5) 

 since 𝜀𝜀𝑙𝑙 + 𝜀𝜀𝑔𝑔 = 1, and hence Eq. (5) can be: 

𝐴𝐴𝑔𝑔˗𝑙𝑙,𝑖𝑖𝑖𝑖 = (𝜀𝜀𝑔𝑔,𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖)𝑙𝑙𝑔𝑔,𝑖𝑖𝑖𝑖�̅�𝜇𝑔𝑔,𝑖𝑖𝑖𝑖 + �̅�𝜇𝑙𝑙,𝑖𝑖𝑖𝑖(1 − 𝜀𝜀𝑔𝑔,𝑖𝑖𝑖𝑖)𝐿𝐿𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙,𝑖𝑖𝑖𝑖 (6) 

𝐴𝐴𝑔𝑔˗𝑙𝑙,𝑖𝑖𝑖𝑖 = 𝜀𝜀𝑔𝑔,𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖𝑙𝑙𝑔𝑔,𝑖𝑖𝑖𝑖�̅�𝜇𝑔𝑔,𝑖𝑖𝑖𝑖 + 𝐿𝐿𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙,𝑖𝑖𝑖𝑖�̅�𝜇𝑙𝑙,𝑖𝑖𝑖𝑖 − 𝜀𝜀𝑔𝑔,𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖  
𝑙𝑙𝑙𝑙,𝑖𝑖𝑖𝑖�̅�𝜇𝑙𝑙,𝑖𝑖𝑖𝑖. (7) 

And this equation can be rearranged in the following way: 

𝐴𝐴𝑔𝑔˗𝑙𝑙,𝑖𝑖𝑖𝑖 = 𝐿𝐿𝑖𝑖𝑖𝑖(𝜀𝜀𝑔𝑔,𝑖𝑖𝑖𝑖𝑙𝑙𝑔𝑔,𝑖𝑖𝑖𝑖�̅�𝜇𝑔𝑔,𝑖𝑖𝑖𝑖 + 𝑙𝑙𝑙𝑙,𝑖𝑖𝑖𝑖�̅�𝜇𝑙𝑙,𝑖𝑖𝑖𝑖 − 𝜀𝜀𝑔𝑔,𝑖𝑖𝑖𝑖  
𝑙𝑙𝑙𝑙,𝑖𝑖𝑖𝑖�̅�𝜇𝑙𝑙,𝑖𝑖𝑖𝑖). 

When we have to scan the column filled with water only (stagnant), each pixel can be 

expressed as attenuation by: 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜀𝜀𝑙𝑙,𝑖𝑖𝑖𝑖 = 1 

𝐴𝐴𝑙𝑙,𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙,𝑖𝑖𝑖𝑖�̅�𝜇𝑙𝑙,𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙,𝑖𝑖𝑖𝑖�̅�𝜇𝑙𝑙,𝑖𝑖𝑖𝑖𝜀𝜀𝑙𝑙,𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖  . (8) 

Substituting Eq. (8) into Eq. (7) will obtain 

𝐴𝐴𝑔𝑔˗𝑙𝑙,𝑖𝑖𝑖𝑖 = −𝐴𝐴𝑙𝑙,𝑖𝑖𝑖𝑖𝜀𝜀𝑔𝑔,𝑖𝑖𝑖𝑖 + 𝐴𝐴𝑙𝑙,𝑖𝑖𝑖𝑖 + 𝑙𝑙𝑔𝑔,𝑖𝑖𝑖𝑖�̅�𝜇𝑔𝑔,𝑖𝑖𝑖𝑖𝜀𝜀𝑔𝑔,𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖  (9) 

Due to this condition𝑙𝑙𝑙𝑙, 𝜇𝜇𝑙𝑙 ≫  𝑙𝑙𝑔𝑔, 𝜇𝜇𝑔𝑔 . 
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Then we can neglect 𝑙𝑙𝑔𝑔�̅�𝜇𝑔𝑔𝜀𝜀𝑔𝑔,𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖 ≈ 0, which is the attenuation caused by only gas phase 

(air), so Eq. (9) will be: 

𝐴𝐴𝑔𝑔˗𝑙𝑙,𝑖𝑖𝑖𝑖 = −𝐴𝐴𝑙𝑙,𝑖𝑖𝑖𝑖𝜀𝜀𝑔𝑔,𝑖𝑖𝑖𝑖 + 𝐴𝐴𝑙𝑙,𝑖𝑖𝑖𝑖 (10) 

𝐴𝐴𝑔𝑔˗𝑙𝑙,𝑖𝑖𝑖𝑖 = (1 − 𝜀𝜀𝑔𝑔,𝑖𝑖𝑖𝑖)𝐴𝐴𝑙𝑙,𝑖𝑖𝑖𝑖 (11) 

𝜀𝜀𝑔𝑔,𝑖𝑖𝑖𝑖 = 1 − (𝐴𝐴𝑔𝑔˗𝑙𝑙,𝑖𝑖𝑖𝑖/𝐴𝐴𝑙𝑙,𝑖𝑖𝑖𝑖) (12) 

since 𝐴𝐴𝑔𝑔˗𝑙𝑙,𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑔𝑔˗𝑙𝑙,𝑖𝑖𝑖𝑖�̅�𝜇𝑔𝑔˗𝑙𝑙,𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑔𝑔˗𝑙𝑙,𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖 

𝐴𝐴𝑙𝑙,𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙,𝑖𝑖𝑖𝑖�̅�𝜇𝑙𝑙,𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑙𝑙,𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖 

𝜀𝜀𝑔𝑔,𝑖𝑖𝑖𝑖 = 1 − (𝐴𝐴𝑔𝑔˗𝑙𝑙,𝑖𝑖𝑖𝑖/𝐴𝐴𝑙𝑙,𝑖𝑖𝑖𝑖) = 1 − (𝜇𝜇𝑔𝑔˗𝑙𝑙,𝑖𝑖𝑖𝑖/𝜇𝜇𝑙𝑙,𝑖𝑖𝑖𝑖) = 1 − (𝜇𝜇𝑔𝑔˗𝑙𝑙,𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖/𝜇𝜇𝑙𝑙,𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖) (13) 

𝜀𝜀𝑙𝑙,𝑖𝑖𝑖𝑖 = 1 − 𝜀𝜀𝑔𝑔,𝑖𝑖𝑖𝑖 (14) 

where 𝜀𝜀 𝑔𝑔 , : local gas holdup for each step or pixel, 𝐿𝐿 : the length of the gamma ray 

beam that passes through this pixel,  𝜇𝜇 𝑙𝑙 , : linear attenuation of liquid in each pixel 

(cm-1), 

𝜇𝜇 𝑔𝑔 ˗𝑙𝑙 , : linear attenuation of gas liquid for each pixel (cm1). 

2.6. EXPERIMENTAL SCANNING PROCEDURE FOR SPLIT COLUMN 

The cross-sectional gas holdup distribution through the entire diameter of the split 

column has been measured by the following scanning procedure: Step one: CT scan 

without a split column, which is just air (atmosphere) between the detectors and the 137Cs 

source and will consider this case as reference scan ( I°). Step two: Scan the split column 

with water only (I) (filled water) and then determine A𝑙𝑙  ,  by computing the 

transimssion ratio ( I⁄ I°). Step three: Scan the split column in operation conditions when 

the air-water 
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is in operation at the studied superficial gas velocity �𝐼𝐼𝑔𝑔˗𝑙𝑙�, and  the n det ermine 𝐴𝐴𝑔𝑔˗𝑙𝑙,𝑖𝑖𝑖𝑖 by 

calculating the transimssion ratio �𝐼𝐼𝑔𝑔˗𝑙𝑙⁄𝐼𝐼°�. All these steps have been presented in Figure . 

Also, these steps have been done for three different levels in the split internal-loop 

photobioreactor: the first level below the split plate, the second level at the middle of the 

column, and third level above the split plate. These locations have different parts because 

below the split plate there is a sparger tube, at the middle section there is a plate and above 

the plate is like a bubble column. Thus, we must consider these varations, as shown in 

Figures 12, 13, and 14. 

The algorithm of alternating minimization (AM) has been implemented for each 

�I / I°�, which is the transmission ratio, where (I ⁄ I°) reconstruct the l inear 

attenuation coefficients (𝜇𝜇 −1) for both the gas–liquid A˗𝑙𝑙  and the liquid 

𝜇𝜇  . Finally, the local gas holdups could be directly calculated by applying  Eqs. (13) and 

(14).  

3. RESULTS AND DISCUSSION

The CT experiments have been performed in five levels in order to cover the entire 

length of the split photobioreactor column, starting from the first day of microalgae 

culturing until the culturing system became very dense approximately after thirty days 

of culturing at different superficial gas velocities.  

The unprecedented results are described analyzed, and displayed in the following 

section: the effect of the presence of microalgae culturing in different cultivation stages 
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(on first day, after fifteen days, and after thirty days of culturing) on the overall and 

local gas holdup distributions and their radial profiles.  

3.1. REPRODUCIBILITY OF THE CT MEASUREMENTS 

The CT measurements of the cross-sectional local gas holdup distribution and its 

radial profile in an internal loop cylindrical split photobioreactor column were replicated 

for observing the reproducibility of the CT scans. These replications have been carried out 

with a 5.5-inch diameter of the cylindrical split column at three different levels and under 

a superficial gas velocity of 3 cm/s. for the experiments in both tests that are displayed in 

Figures 15a, b for the middle section, Figures 16a, b for the bottom section, and Figures 

17a, b for the top section, the distributions in the cross-sectional gas holdup show that the 

scans (test 1 and 2) are similar.  

Furthermore, the semi-azimuthally averages for the radial profiles of the gas holdup 

have been computed from the image results, which visually shows the cross-sectional gas 

holdup by averaging the half-circumference of the image's pixels to quantify the variation 

between the profiles of the gas holdup. Figure 15c, 16c, and 17c show that the profiles of 

the gas holdup for three levels in both tests are very close and similar in the magnitude for 

most the positions in the cylindrical split column diameter. 

Moreover, in the same operating conditions, the azimuthal average has been taken 

for each section individually, for the riser and for the downcomer in the split column in 

order to measure the gas holdup distribution as cross-sectional images and their radial 

profiles. Test 1 and test 2 were very similar along the riser and the downcomer of the split 
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column diameter, indicating the reliability and the high precision of the CT results and the 

measurements through the length of the reactor. For instance, by using Eq. 2, the average 

absolute relative difference (AARD) was calculated at superficial gas velocity 3 cm/sec and 

between two profiles, and it was found to be 1.64% at the bottom level, 2.07% at the middle 

level, and 4.15% at the top level:  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
1
𝑁𝑁
��

𝑥𝑥1(𝑒𝑒) − 𝑥𝑥2(𝑒𝑒)
𝑥𝑥1(𝑒𝑒)

�
𝑁𝑁

𝑖𝑖=1

 (2) 

where test 1 and test 2 experiments are represented by the 𝑥𝑥 1(𝑒𝑒 ) and 𝑥𝑥 2(𝑒𝑒 ) as gas 

holdup values, respectively, at corresponding positions of the radius (dimensionless), 

and N explain the number of points of the data over the cross-sectional of the split 

column diameter. The replicated experimental data were analyzed statistically for both sets 

(1st test and 2nd test) and were determined using Origin Lab 2017. One-way analysis of

variance (ANOVA, level of significance: p < 0.05) has been used to determine the significant 

effects of the replication test on the accuracy of the CT. Both tests were performed on this set 

of experiments, and there were no significant differences between the replicated results at the 

bottom, middle, and the top levels (p = 0.59677, p= 0.81553, and p= 0.95278 respectively). 

Furthermore, the gained values of the AARD and ANOVA test for the gas holdup results 

showed that the CT measurements are highly reproducible and highly precise. 

3.2. OPTICAL DENSITY MEASUREMENTS 

The optical density measurements have been used to obtain the microalgae 

culturing progress at difference superficial gas velocities. It is clear that as shown in Figure 
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18, the differences between 3 cm/sec and 1 cm/sec have a clear impact on cultivation 

system. It is observed that the culturing system has rapid growth when it runs at 3 cm/sec 

due to perfect gas mixing and its distribution throughout the entire split column.  

3.3. LOCAL GAS HOLDUP DISTRIBUTION 

The cross-sectional gas holdup distribution and their radial profiles have been 

determined by using the computed tomography (CT) technique, under of 1 and 3 cm/s 

superficial gas velocity and at different culturing stages that started from the first day of 

growing the microalgae until reaching the dense medium after approximately thirty days. 

These values are visualized at five axial levels of the cylindrical split photobioreactor with 

their radial profiles. All the visualization results were performed using the OriginPro 2017 

(OriginLab®, Northampton, Massachusetts) software. 

The maps of the cross-sectional gas holdup distribution in the studied split 

photobioreactor column under different superficial gas velocities and various microalgae 

cultivation time stages are shown in Figures 19-24. It obviously showed a bundle of the 

gas phase distributing and rising up from the sparger section, soon distributing to the entire 

cross-section of the riser at the level of H=10 cm, and then the gases travel to the top section 

in the split column. There part of the gas phase separates from the liquid phase, and other 

parts of the gases move downwards to the downcomer and will finish the gas-liquid 

circulation when they reach the same sparger section at the beginning of the riser section.  

The local gas holdup distribution fields are visualized in a 3-D pattern, and the 

radial profiles are projected on the r-z planes. This work used air-water-microalgae at the 
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first day, 15 days, and after 30 days of the culture system. Figure 19 shows that the cross-

sectional gas holdup distribution values were taken at five levels (i.e., z = 3, 29, 52, 76, and 

110 cm) to cover the entire length of the split internal loop column, starting from the bottom 

of the reactor, which is below the split plate, to the upper section. The last level represents 

the upper section, which is located above the split plate. As can be seen, these figures 

illustrate that the gas travels in all directions in the riser and downcomer sections in order 

to obtain the gas distributions in the air-water-microalgae systems.  

In Figures 19 and 20, the yellow color and its gradients represent the local gas 

holdup distribution moving upward in the riser section, and as well the yellow color and 

its gradients represent the local gas holdup distribution in the downcomer section, while 

the blue color and its gradients represent the liquid distribution.  

 3.3.1. Superficial Gas Velocities Impacts. Figures 19 and 20 indicate that the 

superficial gas velocity has clear effects on the gas holdup distribution when the 

photobioreactor works at superficial gas velocities of 1.0 and 3.0 cm/sec for the microalgae 

system. It is clear that the magnitude of the gas distribution field varies greatly when the 

superficial gas velocity varies from 1 to 3 cm/sec in both sections the riser and downcomer. 

In the upper section of the split column, as shown in Figures 19 and 20, the gas distribution 

is being spread in a wide range of area due to the different behaviors, which is called 

continuous stirred-tank reactor (CSTR) conduct because the gas-liquid distribution is 

nonuniform [64].  

 According to this behavior, Luo and Al-Dahhan [64] studied the fluid mixing in a 

draft tube airlift reactor, and they found that the flow structure in the top and bottom regions 

performed similarly to what would occur in a CSTR; this had a significant effect on the 
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macro-mixing behavior and was very different from the behaviors in the riser and 

downcomer. Some positions had a lower gas holdup distribution magnitude than others due 

to changes in the driving force [64]. Also, because the gas distribution magnitude is not 

exactly the same at each location, differences in color can be observed. Our next study will 

investigate the liquid field in split photobioreactors using a radioactive particle tracking 

(RPT) technique to visualize and quantify how the dynamic liquid is moving and 

distributed in the riser and downcomer sections for the same reactor and combine these 

with the CT findings.  

 Figure 21 illustrates the radial profile for gas holdup distribution, and it is clear that 

the performance of the gas holdup has a considerable change when the superficial gas 

velocity varies from 1 to 3 cm/sec but have the same behavior in all the conditions. It is 

clear in Figure 21 that the local gas holdup increases in both the riser and the downcomer 

when the superficial gas velocity increases. In addition, the bubble movements in the radial 

directions are also at higher gas velocity more prominent than the lowest velocity have 

been seen.  

 3.3.2. Different Axial Levels Effects. Figures 19 and 20 visually show five 

different cross-sectional gas-holdup distributions of the split photobioreactor that were 

scanned for each operating condition, corresponding to the top z=110 cm, bottom regions 

z=3 cm, close to the sparger section at z=29 cm, the middle z=52 cm and z=76 cm. It is 

clear that a bundle of gas has been distributed axially and radially in the riser and in the 

downcomer sections, as well as from the images, the CT scans are able to catch the gas 

spreading at the lowest point and at low superficial gas velocity of 1 cm/sec. 
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In the radial direction, as shown in Figure 21 and 22, a high gas bubble 

concentration can be recognized in the riser and downcomer centers for all the levels except 

the bottom and the top levels due to the differences in their performance. As it is can be 

seen in the top section the curve begins from the left side (riser section) at a high value, 

and it reduces to the lowest values and increases to the highest point suddenly and moved 

forward greatly to reach the minimum values. Such profiles for the local gas holdup can 

also be associated with the profiles of the shear stress that was pointed out in Sabri S. et, al 

(submitted for publication [50]). Since the drag force between the surrounding liquid 

phase and the bubbles rising is the driving force of the liquid circulation flow, the 

distribution of gas holdup is almost flat in the bottom section and suggests a small gas-

liquid shear stress, but the gas holdup profiles above the sparger have an arch shape in 

both sections and do not change much in the riser section due to a large gradient which 

implies a large shear stress as described in Sabri S. et al. (submitted to publication [50]).  

However, at higher axial levels, the gas holdup distribution is larger than the values 

in the bottom section in the downcomer and riser sections, and this trend is clear in the 

images’ cross section and their radial profiles. In addition, the profiles of the gas holdup 

above the split plate are not symmetric. This is due to the high radial velocity of the liquid 

phase on the top, that drive the gases bubbles outwards to the outer column wall. The cross-

sectional gas holdup distribution in the downcomer section has fewer bubbles spreading 

because mostly small gases bubbles be able to carry into the downcomer and the depth they 

can reach depends on their size. This phenomena are consistent with the reports in the 

literature (H. p. Luo and Muthanna [43]) (Aatha and Al-Dahhan [47]). 



165 

 3.3.3. Microalgae Culturing Effects. As the microalgae cells launched to cultivate 

in the split airlift column, the magnitude of the cross-sectional gas holdup slightly 

decreased as seen in Figures 19 and 20 and their radial profiles in the Figure 23 while the 

growth stages moved from the first day of the culturing alone to thirty days of cultured 

growth, when the culture medium became more dense and thicker due to variations in the 

physical properties [47]. Particularly, the viscosity from the physical properties has a high 

influence on the fluid dynamics. According to Eteshola et al. [65-66] and Geresh et al. [67], 

the viscosity value in the real culturing system is much higher than the viscosity in the air-

water system. Furthermore, through the first ten days of microalgae growth, the 

exopolysaccharide concentration is typically low according to Wu and Merchuk [68, 69]. 

During this period of time, no significant differences in the dynamics of the fluid flow were 

expected because the viscosity of the cultivation system remained close to that of water. 

However, when the microalgae culturing system takes a long time, high production of 

exopolysaccharide (polysaccharides) must be taken into account, and changes in the 

viscosity would have to be considered. In this investigation, a high level of polysaccharides 

(exopolysaccharide) was produced after ten days of culturing. This finding is very close to 

Wu and Merchuk [68-69] and is also consistent with Ojha [70]. Additionally, in the 

literature, with an increase in viscosity of the liquid, the gas holdup values in the airlift 

reactors has been found to decrease, mainly due to reduce the interaction of the bubble that 

resulting from reduced turbulence and mixing at higher viscosities and increased the gas 

bubble size and reduced the bubble frequency at higher viscosities [71].   

 According to the finding of Rajarajan et al. [72], the gas holdup values decreased 

when the liquid viscosity increased in a glycerol-water solution. Olivieri et al. [73] studied 
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the effect of the liquid viscosity with several aqueous solutions of Alginate in 

bubble column and in an internal loop airlift, and they reported a decrease in the gas hold 

up with increasing the liquid viscosity. Also Yang et al. [74] investigated the viscosity 

impacts on the gas holdup by using high liquid viscosity in bubble column. Acrylates/

C10-30 alkyl acrylate cross-polymer was used as viscosity-increasing agent, and they 

found that the gas holdup decreases when the liquid viscosity increases. Finally, 

Besagni et al. [75] liquid phase with various water-monoethylene glycol solutions were 

employed as viscosity agent in the bubble column. Thus, higher viscosities destabilize 

the homogeneous flow regime and decrease the gas holdup.  

Also since the optical density values of the liquid medium increase as shown in 

Figure 18, the viscosity of the medium will increase. In this study, the results found are 

similar and comparable to those found in the literature.  

4. REMARKS

In this work, the cross-sectional gas holdup distributions have been 

observed visually in the split internal-loop photobioreactor, as well as their radial 

profiles, by using the sophisticated computed tomography (CT) technique. The 

distributions of the local gas holdup parameters have been investigated in both axial and 

radial directions. The impacts of the superficial gas velocity, different axial levels to cover 

the entire photobioreactor, and microalgae culturing progress stages on the cross-sectional 

gas holdup distributions within the split photobioreactor have also been discussed.  
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Furthermore, combining data presented for the local gas holdup in this article with 

the details of the liquid flow dynamic knowledge in Sabri and Al-Dahhan (submitted for 

publication 2018) provides a benchmark database to enhance the understanding of the gas-

liquid flow dynamics in split internal-loop photobioreactors and to validate the CFD 

closures and models. However, it should be noted that this study was accomplished in an 

air-water-microalgae system, which represents a starting point to capture the local 

characteristics of the gas-liquid flow dynamics. These are comprehensive studies that use 

a real culturing system and will be required and crucial to capture the effects of the physical 

properties differences, such as viscosity, on the local hydrodynamics parameters. Such a 

rich and advanced understanding should then be combined in the CFD modeling and 

simulation for reliable photobioreactor design and scale-up.  

The findings can be briefly summarized as follows: 

• Cross-section local gas holdup distribution and their radial profiles were visualized

and projected in the r-theta-z plane and in the r-z planes, respectively. The results

showed a clear difference in the local gas holdup magnitude when the superficial

gas velocity rose from 1 to 3 cm/sec. The results at 3 cm/sec confirmed that the split

airlift reactor has high performance regarding a large phase distribution in all

regions, which positively affects microalgae culturing. On the other hand, the

physical properties of the cultivation medium change due to growth continuity and

productivity, which was shown when the culture system reached the dense medium

stage, after 30 days of growing.

• The viscosity of the medium of the microalgae Scenedesmus increased with the

increased optical density values that were observed at superficial gas velocities of
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1.0 and 3.0 cm/s. A sophisticated CT technique was successfully employed for the 

cylindrical split photobioreactor in the Scenedesmus cultivation system. The cross-

sectional gas holdup distributions and their radial profiles were measured beyond 

thirty days due to the change in the culturing medium properties of microalgae cells. 

The local gas holdup was seen to increase significantly with an increase in the 

superficial gas velocity in both the riser and the downcomer, particularly above the 

sparger section, while slightly different below the split plate in the axial properties. 

However, a clear variation was observed in the top section above the split plate.  At 

each superficial gas velocity, the gas holdup and its radial profiles decreased with 

an increase in the optical density and viscosity of the medium.  

• Distinguishing behaviors were observed for the local gas holdup in cross-sectional

image and its redial profiles, with a higher magnitude at the superficial gas velocity

of 3 cm/sec than at 1 cm/sec. Moreover, these values were present in significantly

high strength in the riser as well as in the upper and lower regions, as clearly shown

on the radial profiles. Also, the effect of the culture system was displayed in the

radial profiles at all the levels in the cylindrical split airlift reactor, and it was clear

that the change in culture medium properties reduced the magnitude of the cross-

sectional gas holdup and its radial profiles.

• The split plate that inserts in the cylinder column had a significant effect on the gas

flow distribution. The gas-liquid circulation and the movement between the reactor

sides, the riser, and the downcomer have a positive effect that enhanced the

bioreactor performance. This great circulation and high mixing phenomena had a

large, positive impact on the culture’s continuity. And it was found that the
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cylindrical split column has the optimal conditions for the culture system due to the 

reasonable local gas holdup distribution at a superficial gas velocity of 3 cm/sec.  

• It is most beneficial to use the results that obtained in this work due to the difficulty

of investigating using a noninvasive gamma-ray technique as benchmark data for

computational fluid dynamics (CFD) modeling verification. Thus, the CFD

simulation can be used to diagnose the details of the local hydrodynamics

parameters in both 3-D and 2-D planes, for the design and scale-up validation of a

cylindrical split internal-loop photobioreactor.
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Cool white fluorescent lamp Green algae, 
Scenedesmus 

Figure 1. First stage of microalgae culturing in 500 ml Erlenmeyer flasks at 
room temperature and at a pH of ~7.5.

Spectrophotometer 20 
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Figure 2: The Plexiglas split internal-loop photobioreactor with sparger design 
and dimensions. 
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Figure 3: Black sheet was covered the CT structure in order to maintain the 
light intensity for photosynthesis reaction. 

Black sheet to 
maintain the light 
intensity constant 

CT

Figure 4: Cylindrical split column centered and balanced in the middle 
(center of the rotate plate) of the CT technique. 
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Figure 5: Microalgae culturing at different stage (A) air-water (B) air-water-15day (C) 
air-water-30day. 

A 
B 

C 

 Level 29 cm Level 52 cm Level 3 cm 

CT scan at level 76 cm  CT scan at level 110 cm, above the 
split plate 

Figure 6: Five different CT scan levels of axial cross-sectional planes of the 
split column. 
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Figure 7: Top and front view for CT technique including 
the split column. 
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(a) cross-sectional linear attenuation
coefficient, cm-1 for case I (empty
phantom)

(b) Cross-sectional linear attenuation
coefficient, cm-1 for case II (the inner
cylinder filled with water)

(c) Cross-sectional linear attenuation coefficient, 
cm-1 for case III (the outer cylinder filled with

water) 

(d) Cross-sectional linear attenuation coefficient,
cm-1 for case IV (the inner and outer cylinders
filled with water) 

Figure 8: Images of the gamma ray computed tomography (CT) technique where single gamma source was used to 
scan the phantom with phantom test results in different phases. 
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First case a) Transmission ratio (I/Io).    b) Phantom schematic, all empty. c) Sinogram

Second case a) Transmission ratio (I/Io).   b) Empty in outer and filled water in inner   c) Sinogram

Third case a) Transmission ratio (I/Io).   b) Empty in inner and filled water in outer        c) Sinogram

Fourth case a) Transmission ratio (I/Io).    b) Filled water in both    c) Sinogram

Figure 9: Transmission ratio (I/Io), sinogram, and schematics diagrams for different 
cases of the phantom. 
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Figure 10: Diametrical profiles of the reconstructed linear attenuation coefficient 
for various cases of the phantom, (A) Diametrical profile of linear attenuation 

coefficient for phantom scan I, (B) Diametrical profile of linear attenuation 
coefficient for phantom scan II, (C) Diametrical profile of linear attenuation 

coefficient for phantom scan III, and (D) Diametrical profile of linear attenuation 
coefficient for phantom scan IV. 
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A 

B 

C 

Figure 11. Steps of scanning for the experimental procedure for a cylindrical 
split column, (A) Scan without a split column, (B) Scan a split column filled with 

only water, and (C) Scan a split column with gas-liquid (under operation). 
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Scan without a split column 
(Io) 

Scan a split column with gas-liquid 
(Ig-l) 𝑨𝑨𝒍𝒍,𝒊𝒊𝒊𝒊 = 𝑳𝑳𝑳𝑳(𝑰𝑰°/𝑰𝑰𝐥𝐥) ,𝒂𝒂𝑳𝑳𝒂𝒂,𝑨𝑨𝒍𝒍˗𝒈𝒈,𝒊𝒊𝒊𝒊

Minimization 
𝐴𝐴 ,

Alternating 
Algorithm (AM)  

𝐴𝐴𝑔𝑔˗𝑙𝑙,𝑖𝑖𝑖𝑖 
Alternating Minimization 
Algorithm (AM) 

𝝁𝝁𝒍𝒍,𝒊𝒊𝒊𝒊 

𝝁𝝁𝒈𝒈˗𝒍𝒍,𝒊𝒊𝒊𝒊
 

Reconstructed linear attenuation coefficient 
�𝜇𝜇𝑙𝑙,𝑖𝑖𝑖𝑖 ,𝑐𝑐𝑐𝑐−1� distribution for a column filled with 

water only. 
Reconstructed linear attenuation 

coefficient �𝜇𝜇𝑔𝑔˗𝑙𝑙,𝑖𝑖𝑖𝑖 , 𝑐𝑐𝑐𝑐−1� distribution for a 
column containing gas-liquid at a 
superficial gas velocity of 3 cm/s. 

𝜺𝜺𝒈𝒈,𝒊𝒊𝒊𝒊 = 𝟏𝟏 − (𝝁𝝁𝒈𝒈˗𝒍𝒍,𝒊𝒊𝒊𝒊/𝝁𝝁𝒍𝒍,𝒊𝒊𝒊𝒊) 

Gas holdup distribution at a superficial gas velocity of 3 cm/s 

Figure 12: Steps of scanning for the experimental procedure for a cylindrical split column to find the gas-holdup in 
middle levels. 
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Scan without a split column 
(Io) 

Scan a split column filled with only water 
(Il) 

𝐴𝐴,𝑖𝑖𝑖𝑖 
Alternating 

Minimization 

Algorithm (AM)  

𝐴𝐴𝑔𝑔˗𝑙𝑙,𝑖𝑖𝑖𝑖Alternating Minimization 
Algorithm (AM) 

𝝁𝝁𝒍𝒍,𝒊𝒊𝒊𝒊 

𝝁𝝁𝒈𝒈˗𝒍𝒍,𝒊𝒊
 

Reconstructed linear attenuation 
coefficient �𝜇𝜇𝑙𝑙,𝑖𝑖𝑖𝑖, 𝑐𝑐𝑐𝑐−1� 

distribution for a column filled 
with water only. 

Reconstructed linear  
attenuation coefficient 

�
 𝑔𝑔 ˗𝑙𝑙 , , −1� distribution 

for a column containing gas- 
liquid at a superficial gas velocity 

of 3 cm/s. 

𝜺𝜺𝒈𝒈,𝒊𝒊𝒊𝒊 = 𝟏𝟏 − (𝝁𝝁𝒈𝒈˗𝒍𝒍,𝒊𝒊𝒊𝒊/𝝁𝝁𝒍𝒍,𝒊𝒊𝒊𝒊) 

Gas holdup distribution at a superficial gas velocity of 3 cm/s 

Figure 13: Steps of scanning for the experimental procedure for a cylindrical split column to find the gas-holdup in 
bottom level (under the split plate). 

(a)
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Scan without a split column 
 (Io) 

Scan a split column filled with only 
water (Il) 

𝐴𝐴,𝑖𝑖𝑖𝑖 
Alternating Minimization 
Algorithm (AM)  

𝐴𝐴𝑔𝑔˗𝑙𝑙,𝑖𝑖𝑖𝑖 
Alternating Minimization 
Algorithm (AM) 

𝝁𝝁𝒍𝒍,𝒊𝒊𝒊𝒊 
 

𝝁𝝁𝒈𝒈˗𝒍𝒍,𝒊𝒊
 

Reconstructed linear attenuation 
coefficient �𝜇𝜇𝑙𝑙,𝑖𝑖𝑖𝑖, 𝑐𝑐𝑐𝑐−1� 

distribution for a column filled 
with water only. 

Reconstructed linear 
attenuation coefficient 

�𝜇𝜇𝑔𝑔˗𝑙𝑙,𝑖𝑖𝑖𝑖, 𝑐𝑐𝑐𝑐−1� distribution for 
a column containing gas-
liquid at a superficial gas 

velocity of 3 cm/s. 

𝜺𝜺𝒈𝒈 𝒊𝒊𝒊𝒊 = 𝟏𝟏 − (𝝁𝝁𝒈𝒈˗𝒍𝒍 𝒊𝒊𝒊𝒊/𝝁𝝁𝒍𝒍 𝒊𝒊𝒊𝒊)

Gas holdup distribution at a superficial gas velocity of 3 cm/s 

Figure 14: Steps of scanning for the experimental procedure for a cylindrical split column to find the gas-holdup 
in top level (upper the split plate). 
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a) Time-averaged gas holdup distribution of

test #1 in split column in middle level operated 
at superficial gas velocity of 3 cm/s 

b) Time-averaged gas holdup distribution of
test #2 in split column in middle level operated 

at superficial gas velocity of 3 cm/s 

c) Semi-Azimuthally average of gas holdup profiles in split column at middle level
operated at superficial gas velocity of 3 cm/s 

Figure 15: Reproducibility of the cross-sectional gas holdup distributions and their 
radial profiles in split photobioreactor at middle level and operated at superficial gas 

velocity of 3 cm/s. 



182 

 

 

a) Time-averaged gas holdup distribution of
test #1 in split column in bottom level operated 

at superficial gas velocity of 3 cm/s 

b) Time-averaged gas holdup distribution of
test #2 in split column in bottom level operated 

at superficial gas velocity of 3 cm/s 

c) Semi-Azimuthally average of gas holdup profiles in split column at bottom level
operated at superficial gas velocity of 3 cm/s 

Figure 16: Reproducibility of the cross-sectional gas holdup distributions and their 
radial profiles in split photobioreactor at bottom level and operated at superficial gas 

velocity of 3 cm/s. 
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 a) Time-averaged gas holdup distribution of
test #1 in split column in top level operated

at superficial gas velocity of 3 cm/s 

b) Time-averaged gas holdup distribution of
test #2 in split column in top level operated at

superficial gas velocity of 3 cm/s 

c) Semi-Azimuthally average of gas holdup profiles in split column at top level
operated at superficial gas velocity of 3 cm/s 

Figure 17: Reproducibility of the cross-sectional gas holdup distributions and their 
radial profiles in split photobioreactor at top level and operated at superficial gas 

velocity of 3 cm/s. 
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Figure 18: Optical density measurements for microalgae during the culturing 
system at various superficial gas velocity 3cm/s and 1 cm/s. 
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(a) (b) (c) 

Figure 19: Cross-sectional gas holdup distribution in cylindrical split internal loop photobioreactor at five levels, in superficial 
gas velocity 3 cm/sec and deferent culturing stages, (a) microalgae culturing at first day 1D, (b) microalgae culturing at fifteen 

days 15D, and (c) microalgae culturing at last day when we have full dense medium FD. 



Figure 20: Cross-sectional gas holdup distribution in cylindrical split internal loop photobioreactor at five levels, in 
superficial gas velocity 1 cm/sec and deferent culturing stages, (a) microalgae culturing at first day 1D, (b) microalgae 

culturing at fifteen days 15D, and (c) microalgae culturing at last day when we have full dense medium FD. 

(a) 
(b) (c) 
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Figure 21: Effects of superficial gas velocities on the radial profiles of gas holdup at 
different levels.  
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Figure 22: Different axial levels for the radial profiles of gas holdup at 
superficial gas velocity 3 cm/sec. 

Figure 23: Radial profiles of gas holdup at superficial gas velocity 3 cm/sec at 
different levels in various culturing stages. 
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Figure 23: Radial profiles of gas holdup at superficial gas velocity 3 cm/sec at 
different levels in various culturing stages. 
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ABSTRACT 

In this work, a species of green microalgae, Scenedesmus sp, was cultured in a 

cylindrical split internal-loop photobioreactor. The physical properties in terms of 

density, pH, temperature, viscosity, and surface tension of the culture medium were 

measured, and the microalgae culturing was monitored by measuring the optical density, cell 

population, dry biomass, and chlorophyll. The flow hydrodynamics during microalgae 

culturing for the first time were investigated by using a sophisticated radioactive particle 

tracking (RPT) technique to measure the local velocity field, turbulence kinetic energy, and 

shear stresses, and also using an advanced gamma-ray computed tomography (CT) technique 

to measure the local gas holdup distributions in five different axial levels. All the flow 

dynamics measurements were done in the whole reactor during the change in culturing 

in three different culturing stages; on the first day, after 15 days, and after 30 days of 
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culturing under superficial gas velocity of 1 and 3 cm/s. Moreover, the information 

indicating that the flow distribution may significantly affect the performance of the 

photobioreactor, which may have substantial effects on the cultivation process. The results 

are reliable as benchmark data to validate computational fluid dynamics (CFD) simulation 

and other models. Keywords: Green microalgae, Split airlift photobioreactor, 

Scenedesmus, noninvasive technique.  

1. INTRODUCTION

Microalgae are microorganisms that have rapid photosynthesis and have great 

potential as a source of many industrial products in diverse areas such as for biofuel as 

alternatives to fossil fuels, wastewater treatments, and CO2 fixation to abating 

environmental pollution, as well as a nutraceutical, pigments, or pharmaceutical products 

[1]–[8], a summary of microalgae application are shown in Figure 1. In addition, 

microalgae is used to produce protein and oxygen in a closed ecological life support 

system on the Moon and Mars, and restore CO2 and waste. Thus, this life supports system 

is crucial for astronauts occupying reconnaissance missions. Therefore, a number of 

space agencies (e.g., NASA) have funded research to develop life support systems for 

long-term space missions [8]–[12].  

However, effective microalgae production in large-scale commercial systems such 

as open pond (raceway) or enclosed photobioreactors is still a main challenge to overcome 

[13]. As Guo et al. [13] point out, due to the reactor’s complexity, the efficient design of 

the photobioreactors remains a considerable challenge, particularly with a culturing 
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system. Serious factors that should be considered carefully, such as growth kinetics, flow 

dynamics, mass transfer, and the light intensity, are closely interrelated, making the design 

more complicated. Hence, a deep knowledge of microorganisms’ growth and their 

performance in the PBR in terms of hydrodynamics parameters and the culturing 

environment is urgently needed. 

The culturing system complexity arises from the challenge of including different 

chemical and physical phenomena of multiple length and time scales [14]. For instance, a 

gas-liquid flow in photobioreactors has a chaotic behavior and forces the cells to experience 

light fluctuations, and it is characterized by multiple time-scales that may be responsible 

for a decrease in the culturing photosynthesis rate [15][16]. The biomass reproduction and 

the mass transfer time-scales could be in minutes, hours, or days, while the time-scales for 

the reactions of the photosynthetic range from catching the photons to carbon fixation may 

happen in a few milliseconds or in micrometers [15][16]. Thus, the culturing systems to 

produce these microorganisms’ cells need careful and accurate design and scale-up 

examination.  

The low concentration of the cell sustainable in the microalgae culturing process is 

one of the major cause for high costs for the operational microalgae production generally 

because the light energy that can be transferred to the microalgae cells is limited, especially 

with high dense culturing medium, which is a stage of interest for the industry applications. 

Unlike other substrates, such as carbon dioxide (CO2) and water, the sunlight can only be 

provided by the surfaces that have limited depth penetration due to the effects of the 

shading from the microorganisms’ cells closer to the surfaces when it has a thicker 

culturing medium. This is a common reason for the photoinhibition of the microorganisms’ 
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cells close to the reactor surface while the rest of the microorganisms’ cells are starving 

from the light intensity. The photoinhibition is familiar to the area that named the effect of 

the flashing light, which can help minimize the photoinhibition phenomena and 

consequently improve the performance in using light energy [15]. This effect of the 

flashing light is coming from the microorganism cells’ movement between the regions at 

the surface that has high illumination surface with the dark region at the center of the 

photobioreactor. These movements generate a high fluctuating in light which experienced 

by the cells [17]. Thus, the impact of the flashing light is determined particularly by the 

liquid turbulence or flow dynamics (hydrodynamics), and the flux light distribution in the 

photobioreactors.  

Thus, regrading to the flow dynamics (hydrodynamics), it is decisive to understand 

this kind of phenomenon, the growth stages and their effects on the productivity of the 

photosynthesis reaction. For these fundamentals, a good understanding could enhance the 

light distribution in terms of proper design and scale-up of the photobioreactors. These 

photobioreactors have been focused on by the researchers in last decade in many types of 

reactor columns, such as the airlift reactor, that have been considered as a promising 

photobioreactor [18], [19]. Many researchers such as Miron et al. [20] have focused on the 

comparison between different airlift photobioreactors. They studied the mixing behaviors 

in the bubble column and airlift (draft-tube and split) column, and have suggested that the 

airlifts column improves the mixing time and has an organized cycle compared with the 

chaotic flow in the bubble column. Luo and Al-Dahhan [21] between three different 

reactor geometries (split column, draft tube and bubble column) for the culturing system, 
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and they found that the split geometry has slightly better performance than the others. Thus 

in this work, split geometry was used. 

The flow dynamics (hydrodynamics) in the internal-loop column is controlled by 

the interactions among the three phases: gas, liquid, and microalgae. Because the density 

of the microorganism cells is very close to water [22], it is sensible to suppose that the 

culturing medium as a pseudo-homogenous stage. However, in the pseudo-homogenous 

phase, the rheological properties may so various from those of either the cell or the liquid. 

The cell concentration could influence these properties, whether cells aggregate or not and 

may form larger particles. Furthermore, a large number of microorganisms secrete 

secondary metabolic products that transform the medium of the culturing into a more 

viscous fluid, and thus further differences in this medium make the flow dynamic 

characteristics in the split photobioreactor more complex. in the opening literature, several 

researchers employ different mediums to mimic the real system of microalgae culturing, 

like aqueous salt solution [23], non-Newtonian carboxymethyl cellulose solution [24], or a 

viscous Newtonian fluid [25][26]. As a consequence, the studies on the characteristics the 

local flow dynamics (hydrodynamics) using a real microalgae culturing system are rare 

[27]–[29].  

Therefore, a better knowledge and understanding of the local flow dynamics 

parameters for the multiphase flow system in a real culturing conditions is essential for the 

photobioreactors regarding to proper design and scale-up. This study will enhance the 

understanding of hydrodynamics in the multiphase flow system and the irradiance 

distributions and their effects on the photosynthetic reaction and thus on the cells culturing. 

In this work, a green microalgae, Scenedesmus sp., was cultured in a split internal-loop 
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3 column. The physical properties were measured for culturing medium in terms of 

pH, temperature, viscosity, density and surface tension. Also, the local hydrodynamics in 

the split internal-loop column were studied by utilizing sophisticated gamma-ray 

techniques, radioactive particle tracking (RPT) and computed tomography (CT). 

The biomass concentrations parameters to monitor the performance of the 

photobioreactor: chlorophyll (a), optical density, cell number counts, and dry biomass. 

The next parts first characterize the methods and materials utilized in the 

experiments and then explain the clarifications and outcome were obtained. 

2. MATERIALS AND METHODS

2.1. PREPARATION OF MICROALGAE CULTURE 

Scenedesmus sp. is a green microalgae obtained from Carolina Biological Supply 

Company (Burlington, North Carolina). For the first step of growth, the species were 

cultured in 500 ml Erlenmeyer flasks at room temperature and a pH of ~7.5.  

The light intensity was 40-50 μE/m2s applied by a special white fluorescent lamp 

for harvest light and was obtained from Future Harvest Development (Kelowna, British 

Columbia, Canada), as shown in Figure 2. When the cultures reached the stationary growth 

stage, the cultured algae were moved to the larger scale of the split internal-loop 

photobioreactor. 
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2.2. SPLIT INTERNAL-LOOP PHOTOBIOREACTOR CONFIGURATION 

In this work, a cylindrical internal-loop column (split column) was made from a 

Plexiglas material with a diameter of 12.7 cm (5 inches) and a height of 150 cm (59 inches). 

This geometry consists of four regions: the riser, the downcomer, the bottom and upper 

sections. By inserting an acrylic tray at the center of the column, these areas were made. 

This acrylic plate was inserted in 2 inches above the column base.  

A stainless steel sparger with 5-cm diameter was used in this reactor. The ring 

sparger has at the top phase 15 evenly distributed 1-mm diameter holes and is inserted in 

the riser section 4 cm above the column base (i.e., gas introduce zone).  

The column configurations, and its dimensions are shown in Figure 3. In this study, 

an oil-free industrial compressor (Ingersoll Rand Company) was used for air production. 

The CO2 gas was connected with the air pipe line before the sparger entrance to make 3% 

CO2 of the volumetric flow as recommended by Luo and Al-Dahhan [44].  

The gases were continuously introduced from the bottom of the riser section 

through the sparger distributor and through tap water, as shown in Figure 3, with ambient 

conditions and two superficial gas velocities of 1.0 and 3.0 cm/sec.  

For harvest light, eight special cool fluorescent lamps from Future Harvest 

Development (Kelowna, British Columbia, Canada) and were supported around the 

photobioreactor to provide surface photon flux density (PFD) of 350-400 μE/m2s as 

recommended by Ojha and Al-Dahhan [52]. 
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2.3. PHYSICAL PROPERTIES OF CULTURING MEDIUM 

The physical properties of the liquid/cell phase for the microalgae culturing in terms 

of the viscosities and the surface tension at different growth steps were measured. A 

viscometer (DV1 digital viscometer by Brookfield) was used to measure the viscosities 

and a tensiometer (Sensadyne Surface Tensiometer) was used to measure the surface 

tension. The density was measured by a 25 ml pycnometer. The pH and temperatures are 

measured through the culturing system.  

2.4. EXPERIMENTAL PROCEDURE AND OPERATING CONDITIONS 

The split internal-loop photobioreactor was operated at room temperature and 

ambient pressure. All the experimental works have been done in batch mode. At the 

beginning, the column was filled with RO water plus microalgae growth medium (algae 

species and Proline F/2 algae food). Compressed air enriched with 3% CO2 was introduced 

in the sparger through a calibrated rotameter at the specific superficial gas velocities of 1.0 

and 3.0 cm/s. The dynamic liquid height was maintained at 126 cm of the column height. 

It is important to have a constant top clearance between the top flange and the dynamic 

liquid height of the split column, which has been shown to affect the properties of the 

bubble dynamics in the photobioreactors [21]. Next, the split column was inoculated with 

150 ml of microalgae Scenedesmus sp. Once the liquid height was adjusted, the split 

column was run at superficial gas velocity of 0.5 cm/s for 24 hours under room light to 

allow the microalgae species to acclimatize (to adept the new environment). Then, to 

illuminate the surface of the split column, all the lamps lights were turned on with surface 
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illumination of 350-400 µE/m2s. The measurements of the medium physical properties and 

the biomass concentration such as the optical density, viscosity, and density were taken 

once a day to see the advance in the culturing system. The local hydrodynamics 

characteristics such as liquid velocity field, turbulent kinetics, shear stresses and local gas 

holdup distribution were measured after each five days until the culturing became very 

denes after thirty day of culturing. The temperature and the pH values have been measured 

as well. 

2.5. HYDRODYNAMICS CHARACTERISTICS 

The local flow dynamics structures have been characterized in the split internal-

loop photobioreactor. Sophisticated radioactive particle tracking (RPT) and computed 

tomography (CT) were used in this study. All the experiments were performed done under 

real microalgae culture conditions. 

2.6. RADIOACTIVE PARTICLE TRACKING (RPT) 

Advanced radioactive particle tracking (RPT) was used to track and measure the 

flow dynamics by tracking a single radioactive (isotope) particle for a long time (24 hours) 

to collect enough data to represent the system. The radioactive particle is made to follow 

the interested phase in any kind of reactor by making it have similar density to the tracking 

phases and by detecting the intensity distribution of emitted gamma rays. In this study, 30 

Nal scintillation detectors were used and placed at 15 levels 7 cm apart, with two detectors 
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per level facing each other, as shown in Figure 4. Details of the count signal acquisition, 

processing, and recording have been reported elsewhere [30]. The angular position of the 

axis of these two detectors in each level alternated between one of the eight possible 

positions, each 45° apart. The axial span of the detectors covered the bottom to the top of 

the plate, a portion of the column from 10 to 115 cm above the sparger coordinates of the 

RPT detectors. The first stage of the experiments identified the start and end of the photo-

peak by measuring the emitted energy spectrum from a point source (isotope source) 

using a multichannel analyzer (MCA). In the second stage, calibration experiments 

(static experiment) were performed to supply the relationship between the intensity of the 

detected radiation (gamma-ray counts) and the position of the tracer particle (radioactive 

particle). This relationship was used to estimate (reconstruct) the isotope tracer 

particle’s position from the instantaneous number of counts received by the detectors 

during the dynamic RPT experiment. In the third stage, isotopes particle was throw inside 

the split column and the particle was left to move freely. This is this called the dynamics 

experiment. This isotopes particle was prepared and adjusted to match the density of 

culturing liquid by encapsulating a 600-micron diameter Co-60 in a spherical 

polypropylene ball (2 mm O.D.). This is the most challenging and important step in this 

part of the experiments. This particle has to be neutrally buoyant, especially for use in a 

liquid medium system.  

2.7. COMPUTED TOMOGRAPHY (CT) 

An advanced gamma-ray computed tomography (CT) technique is used to measure 

the phase holdup distribution of the multiphase system, such as gas-liquid, gas-liquid-
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solid, liquid-solid. This CT technique has been designed to use two sealed gamma-ray 

sources as shown in Figure 5. Currently, it consists of 60Co and 137Cs. These sources 

should work simultaneously with a three-phase flow system. In this study, the system 

consists of air-water with microalgae, and it looks like three-phase flow, but in fact, Sabri 

et al. [22] reported that the density of the microalgae is close to the density of the water 

even with high dense culturing. Thus, if this system is assumed to be a two-phase flow, 

then only a single gamma-ray source has been used, which is 137Cs. Top and side schematic 

views of the CT technique are shown in Figure 5. The CT setup is designed and prepared with 

fifteen NaI (sodium iodide) detectors located in front of the 137Cs source. When the experiment of 

the CT scan launched, the photons of the gamma-ray will penetrate the split column and be 

received by the detectors. Three scans in axial levels (vertical direction) have been taken in the 

column. The motions of the CT setup are completely controlled and automated by the data 

computer. More details about the software and hardware used by the CT technique are available 

elsewhere [31], [32]. 

2.8. MICROALGAE CONCENTRATION MEASUREMENTS 

    A sample of 100 mL from the culturing medium was taken from the split 

photobioreactor once a day for monitoring purposes. This amount was divided into a 

number of sections for diverse measurements, optical density, cell population, dry biomass 

weight, and chlorophyll concentration, to monitor the culturing progress and to preferable 

compare with the data in the literature. These measurements will be described in detail in 

the following sections. 
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2.8.1. Optical Density. The optical densities were measured for the 

microalgae samples by using a spectrophotometer (SPECTRONIC 20) at a wavelength of 

665 nm and with cuvettes (a straight-sided, optically clear container for holding liquid 

samples in a spectrophotometer) of 1 cm path length [33]. Three measurements were used 

and averaged. The results show that the standard deviation was quite low. 

            2.8.2. Cell Population. Cell populations were counted under a 

microscope (Olympus CX43) using a counting chamber (Hemacytometer Bright 

Line). A linear relationship was obtained between the cell population and the optical 

densities (R² = 0.9892):  

Cell Population (cell/ml)*106 = 32.673×Optical Density (dimensionless) + 2.8232 

2.8.3. Dry Biomass Weight. Firstly, 10 mL of two samples were filtered by a 

15 cm diameter of filter paper (Whatman® membrane filters) and washed with a small 

amount of water (deionized water). The filter paper including the microalgae was then 

dried in an oven for 24 h at 105oC, and then the sample was weighed. The dry biomass 

weight was taken as an average of the two samples. A linear relationship was obtained 

between the dry biomass weight and the optical densities (R² = 0.9892):  

Dry Biomass (g/L) = 9.0787×Optical Density (dimensionless) + 2.3585 

2.8.4. Chlorophyll (a) Concentration. Concentration of the chlorophyll (a) 

was measured by taking two samples once a day. An initial volume of 10 mL for 

each microalgae sample was measured through a filter paper. Each sample was 

analyzed individually at one time following this technique [34][35]. The remaining 

microalgae amount was extracted on the filter paper by using 10 mL 90% aqueous 

acetone solution including trace magnesium carbonate hydroxide to remove any acid 

present and then the 
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suspension was clarified by filtration through filter paper. Under various wavelength 

values, the optical densities of the extracted samples were identified in a spectrophotometer 

device. The chlorophyll (a) concentrations were then calculated by [34]: 

Ca = 11.85(OP664) - 1.54(OP647) - 0.08(OP630)  

Chlorophyll (a) = (Ca × v)/ V 

where Ca is the concentration of chlorophyll (a), and OP664, OP647, and OP630 are optical 

densities at different wavelengths. The chlorophyll (a) is in mg/L, v is the volume 

of acetone in L, and V is the extracted volume in L.  

3. RESULTS AND DISCUSSIONS

3.1. PHYSICAL PROPERTIES  

The physical properties measurements results of the microalgae culture medium are 

as follows. Firstly, the surface tension value was constant and near to the surface tension 

of water. The surface tension measured value was 72.12 mN.m-1 at high optical density, 

which is very close to the surface tension of  water (i.e., 72.86 mN.m-1 at 20oC and 71.89 

mN.m-1 at 25oC temperature [36]). The density was also shown to be very close to the water 

density, even with high dense culturing as seen in Figure 5. 

Figure 6 displays the viscosity values versus the culturing time, and it was found 

that the viscosity changed significantly through the culturing system in the split column, 

and in turn on the overall performance of the photobioreactor. The microalgae produced a 

considerable amount of polysaccharides [37]. This amount of polysaccharides accumulate 

in the culture medium particularly after the stationary growth stage and will increase 
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gradually [21] and considerably affect the rheological properties in the culture medium 

[21], [38], [39].  

In the beginning of the culturing, the viscosity values were similar to that of water 

viscosity 0.895 mN.s/m2 and increased gradually with the progressing in growth time due 

to very low biomass concentration. However, the variation of viscosity soon increased as 

the biomass concentration increased. These results are consistent with the literature [40] 

and confirm that the polysaccharides produced from the microalgae cells have considerable 

effect on the culture medium viscosity [41]. Also, the medium of culturing was monitored 

by measuring the pH and the temperatures, and it has been found that there is no 

significant effects on the growth system, as shown in Figure 8. 

3.2. PERFORMANCE OF THE SPLIT PHOTOBIOREACTOR 

The culture medium started the active growth step after the microalgae cells have 

adapted to the new environment in the culturing system, and this active stage continued 

until it reached very dense medium. Through these culturing stages, the performance of the 

split internal-loop column on Scenedesmus sp. culturing has been studied, and the results 

are shown in Figure 9. This figure displays the optical density for the culturing medium, 

concentration of the chlorophyll (a), the cell populations, and concentration of the dry 

biomass. All these values raised nearly linearly with the cultivation period. 

Correspondingly, the intensity of the light in the center of the split photobioreactor 

also reduced linearly, suggesting the photolimitation phenomena began to control the 

growth of the microorganisms. Under these conditions, the effects of the intensity of the 
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light are not distinguishable because the intensity of the light was very low, particularly at 

end of culturing. The growth rate in the split photobioreactor was approximately 

proportional to the provided total light energy. In such step, the microalgae cells were 

mostly quite small as noticed under the microscope as shown in Figure 10, compared to 

the latest growth stage. To further examine the impacts of the mixing intensity on the 

photobioreactor behavior, the superficial gas velocity value was increased from 1 cm/s to 

3 cm/s. As shown in Figure 10a, these results showed an increase in the optical density 

values. Such behavior was observed as well in the dry biomass weight behavior, as 

displayed in Figure 5b. Nevertheless, these consequences suggest that the increase in the 

superficial gas velocity has a considerable effect on the photobioreactor performance.  

Moreover, the culturing liquid phase still has a Newtonian behavior even when the 

viscosity becomes high and unharmed shear stresses as mentioned below. This may 

further damp out the turbulent intensity in the wall region [21]. Thus, the superficial gas 

velocity value increasing to 3 cm/s will improve the turbulent intensity in the wall area, 

as shown in the flow dynamics outcome, and therefore will improve the overall growth 

rates. 

3.3. HYDRODYNAMICS OF THE SPLIT PHOTOBIOREACTOR 

Both RPT and CT techniques were employed to characterize the local 

hydrodynamics in the split internal-loop photobioreactor during Scenedesmus sp. culturing 

system, starting from the first day of culturing (zero optical density) and increasing to the 

maximum culturing at 30 days (2 optical density). Since at the beginning of the growth, 

the culture was at a batch mode, the values of the optical density was increased during the 
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3 investigates as well as the physical properties of the culturing mediums also changed. 

The RPT and CT results were obtained in this part of the study as seen in Figure 11 and 

12.  

The local hydrodynamic characteristics in the split photobioreactor in 

different culturing stages (from first day to 30 day), different superficial gas velocity (1 

and 3 cm/s), and at different axial levels (below the split plate, middle of the column, and 

upper the split plate) are shown in Figure 11 in terms of Reynolds shear stress (trz), 

and axial liquid velocity profiles. Figure 12 shows the hydrodynamics in terms of 

local gas holdup and turbulent kinetic energy profiles. These outcomes indicate that 

rising in the superficial gas velocity has a clear effect on the flow dynamics behavior, as 

shown by the increasing of all the parameters in all conditions. On the other hand, the 

changes in microalgae presence decrease the axial liquid velocities, local gas holdup, 

shear stress, and turbulent kinetic energy. This suggests that the structures of the flow 

dynamics are quite different between an air-water (first culturing day) and a real culture 

system (especially at dense medium).  

Apparently, the changes in the physical properties of the culturing medium play a 

significant role in this situation. This is likely because of the viscosity increase in 

the microalgae culturing, as shown in Figure 7.  

In fact, when the viscosity values increased, the turbulent sub sheet in the culturing 

medium expanded, where the light was difficult for the cells to access [42]. Thus, the 

availability of the light delivered to the cells is reduced in this phenomenon, 

particularly when the culturing becomes very dense, and thus affects the photobioreactor 

performance [42]. 



214

4 vary due to the amount of the electrolyte solution and the polysaccharide, which 

is produced by Scenedesmus sp. cells [40][21].  

The gas bubbles’ coalescence is inhibited usually by the electrolyte solution [44], 

and the Scenedesmus sp. cells also produce polysaccharide, which could also considerably 

inhibit or promote the bubbles’ coalescence [40]. A little foaming quantity appeared above 

the culture when it started the active growth stage. This phenomena became considerable 

when the biomass concentration increased. This phenomenon is that consistent with Luo 

[45]. The impacts of nature shear-thinning fluids on the flow dynamics are need more 

knowledge. Because the gas bubbles in riser split photobioreactors are the driving force of 

the magnitude of the fluid circulation, the variations in the size of the bubble distribution 

have considerable influence on the hydrodynamics (turbulent kinetic energy). But how the 

distribution in bubble size variations, however, is not obvious. Additional investigation is 

needed for the bubble dynamics under real cell culturing conditions with very dense 

culturing, and thus our next manuscript will focus on the bubble properties in the spilt 

photobioreactor. It should be pointed out that the hydrodynamics were measured through 

the changes in biomass concentrations starting from low to high concentration. When the 

cell culture of the microalgae touches the active stages with high biomass concentration, 

the viscosity can be considerably larger, as shown in Figure 7.  

Under these conditions, the local structures for the multiphase flow dynamics might 

be much more complex. Indeed, by visual observations, a broad range of bubble size 

distribution were showed at the end of the cultures due to differences in gas bubbles in both 

tiny and very large sizes [46]. Also, foaming phenomenon occurred when the experiments 
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5 work finished. Furthermore, low shear rates with small-scale turbulence may likely 

be highly damped out because of the viscosity values high.  

Certainly, this phenomena may minimize the light intensity fluctuations for 

the cells in the split photobioreactor and increase the photoinhibition phenomena. 

These examinations and analysis of the fluid dynamics provide deep information and 

a base information to understand the performance of the photobioreactor. 

3.4. IMPACTS OF GAS VELOCITIES VARIATIONS 

 Figures 11 and 12 illustrates the radial profile for gas holdup distribution, and it is 

clear that the performance of the gas holdup has a considerable change when the superficial 

gas velocity varies from 1 to 3 cm/s and also even at different axial levels, but have the 

same behavior in all the conditions. Figures 11 and 12 indicate that the superficial gas 

velocity has considerable effects on all the hydrodynamics parameters, local gas holdup, 

axial liquid velocity, shear stresses, and turbulent kinetics energy distributions, when the 

photobioreactor works at superficial gas velocities of 1.0 and 3.0 cm/sec for the microalgae 

system.  

    In Figure 11A, the shear stress behavior above the split plate is quite different; 

many peaks were observed in this region due to the harsh liquid action, particularly at a 

high superficial gas velocity. However, at the middle length of the column, Figure 11A 

shows one peak at r/R ≈ 0.3 in the riser section and one peak at r/R ≈ 0.75 in downcomer 

section in the middle area, with the lowest magnitude in the downcomer section. This 

finding verifies that these superficial gas velocities are suitable for microalgae culturing in 



216 

a cylindrical split column configuration. These results are consistent with the open 

literature [50, 52, and 58]. All the axial liquid velocity profiles in Figure 11B correspond 

to different superficial gas velocities, which are represented by different magnitudes, but 

very similar trends and shapes for the air-water and air-water-microalgae systems. Also, 

the axial liquid velocities behave similarly, and the curves in all conditions start from the 

high point above the riser section and decrease gradually at the edge of the split plate, with 

a peak in the middle region of the radius in the downcomer section (i.e., r/R ≈ 0.75). This 

behavior presents the actual movement of liquid at this location, which was visually 

observed. On the other hand, at the middle of the column length, the liquid velocity profiles 

show a peak with a positive direction in the middle region of the radius of the riser section 

(i.e., r/R ≈ 0.3), but the peak in the middle region of the radius of the downcomer section 

(i.e., r/R ≈ 0.75) almost exhibits the same behavior in a negative direction.  

The profiles of the axial liquid velocity for all the conditions are higher in 

magnitude as the superficial gas velocity rose, and these findings are reasonable because 

the reactor geometry has a limited effect on the liquid flow in the middle of the riser and 

downcomer sections, but the reactor geometry can significantly affect the liquid 

movements in the lower and upper split plate [50, 59]. Figure 12C shows that the turbulent 

kinetic energy values are greater in a superficial gas velocity of 3 cm/s than 1 cm/s in both 

section and in all the axial levels, except for in the area under the split plate in the 

downcomer side close to the reactor wall; this results from the high resistance of the liquid 

circulation flux in this region, which is consistent with the findings of Luo [48]. It is clear 

in Figure 12D that the local gas holdup increases in both the riser and the downcomer when 

the superficial gas velocity increases.  
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In addition, the bubble movements in the radial directions are more prominent at 

higher superficial gas velocity than the lowest velocity. Finally, the microalgae have an 

effect on the axial liquid velocity profiles due to the difference in physical properties 

(as mentioned above) at 15 and 30 days of culturing. When the superficial gas 

velocity increased to 3 cm/s, the biomass concentration in the split photobioreactor soon 

touched the dense culturing, while it took longer to reach the dense culturing at 1 cm/s. 

These trends are clearly shown in Figure 10, where faster growth rate can be further 

proven by the behavior of chlorophyll and biomass concentration.   

3.5. CELL MOVEMENTS 

The RPT experiments obtained typical trajectories that demonstrate the movement of the cell 

for a single particle circulation in the split photobioreactor at a superficial gas velocity of 3 cm/s and 

different culturing stages (first day, 15 days, and 30 days), as shown in Figure 13. Since the culturing 

medium density is close to water density [22] and also the moving particle has been measured for 24 

hours in which the particle visits any portion inside the split column in multiple times, then it is 

sensible for obtained trajectories to assume that this movement shows the cell movement inside the 

column. This is essential knowledge for further analysis of the hydrodynamic parameters and the 

flow pattern. As predicted, the cell movements explained the cell rotation between the riser and the 

downcomer sections in the radial direction.  

As shown in Figure 13, in the dense culturing usually after 30 days, where the central location 

is dark but the surface is illuminated, this light fluctuation causes by circulation movement in the 

internal-loop column. Furthermore, the trajectories of the cells also explained a turbulence-induced 
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r-direction fluctuation that is consistent with Luo and Al-Dahhan [47]. Where the intensity of the 

light gradient declines from the dark center to the illuminated zones, this motion does cause 

considerable fluctuation in the light experienced by the cell as it follows the path. 

The riser and the downcomer circulation in the split column demonstrate the movement of 

the cells can be further statistically and quantitatively were analyzed. The particle circulation in the 

split photobioreactor, which starts from the lower section of the split column and will returns to this 

section after it has traveled to many places through the riser and the downcomer sections, is defined 

as a single trajectory.  

More than 4000 trajectories have been identified for each RPT experiment. The circulation 

time and length, average quantity, and dimensionless variance (a) for the split column at gas velocity 

= 3 cm/s are shown in Figure 13. As can be seen, a faster circulation and narrower distributions are 

present for the first day of culturing than the culturing at 30 days due to change in physical properties 

that may affect the liquid circulation. This information can be further demonstrated by the analysis 

of the trajectory length distribution (TLD), as suggested by Villermaux [48][49][50][51][52]. 

4. REMARKS

In the present work, a green microalgae, Scenedesmus sp, was cultivated in a split 

internal-loop photobioreactor. The physical properties of the liquid phase, the local 

hydrodynamics characteristics using noninvasive CT and RPT techniques, and the biomass 

concentration in the photobioreactor were investigated, and the following outcomes were 

made:  
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• The viscosity of the microalgae culturing medium was significantly changed, due

to the polysaccharides amount that excreted from the Scenedesmus sp. However,

the density, pH, temperature and the surface tension remained almost constant. The

impacts of fluid culturing viscosity on liquid velocity field (fluid circulation),

turbulence kinetics energy, cells trajectories and gas holdup, were significant. And

due to increasing the viscosity will increase the resistance for the circulation path

flow in the internal-loop column and the drag of the viscous fluid will increased,

hence reducing liquid circulation velocity and thus increase mixing time. However,

the effect of the viscosity on the Reynolds shear rate is not as significant.

• The cells of the microalgae frequently affected the local hydrodynamics parameters

for the multiphase system in the studied split internal-loop photobioreactor

comparing to that in an air-water system. These microorganisms cells has less

opportunity to reach the wall areas inside the split column; the local gas holdups,

liquid velocity field, cells movement and turbulent kinetic energy in the riser and

the downcomer sections increased considerably; while the shear stress varied

slightly.

• The investigations performed that the increasing in the superficial gas velocity will

resulting in an increase in driving force (increase in energy generated) for liquid

circulation velocity and hence reduce the overall liquid circulation length and time

thus effects the growth system. as well the results detected that increasing the

superficial gas velocity will increase all the hydrodynamics parameters this will

improves the gas-liquid mixing in all the photobioreactor zones.
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• It is most beneficial to use the results that obtained in this work due to the difficulty

of investigating using a noninvasive gamma-ray technique as benchmark data for

computational fluid dynamics (CFD) modeling verification. Thus, the CFD

simulation can be used to diagnose the details of the local hydrodynamics

parameters, for the design and scale-up validation of a cylindrical split internal-

loop photobioreactor.
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Figure 2: Grown microalgae in 500 ml Erlenmeyer flasks and in large 
scale at room temperature and at a pH of ~7.5. 
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Figure 5: Computed tomography (CT) technique, (a) front view (b) 
top view (c) scans in different levels and (d) CT scan with dense 

culturing. 
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Figure 6: (a)Viscosity values and (b) Density values through the 
culturing system. 

(a)

(b)
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Figure 7: The measurements values through the cultivation time 
(A) PH and (B) temperatures.
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Figure 8: Evolution of biomass concentration in the split internal-loop 
photobioreactor for Scenedesmus sp. growth medium. (a) Optical density; (b) dry 

biomass concentration; (c) the chlorophyll (a) concentration; (d) irradiance 
behavior through the culturing system and (e) Cell population. 
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Figure 9: Evolution of microalgae concentration in the split photobioreactors for 
Scenedesmus sp. culturing by the microscope in different growth stages. 

First day of culturing 5 days of culturing 
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SECTION 

2. REMARKS AND RECOMMENDATIONS

 The overall objective of this research is to advance the knowledge and the 

understanding of the microalgae culturing in terms of the flow dynamics in 

the photobioreactors. Fundamentally, provide a deep information for cell growth 

predictions in terms of modeling approach that integrates the hydrodynamics, 

photosynthesis, and lights distribution. To accomplish the objective, this investigation 

used different sophisticated hydrodynamic measurement technique, i.e., RPT, CT, GRD 

and four-point optical fiber probe as well as a computational technique, i.e., CFD 

simulation, to study the local multiphase flow dynamics in airlift column 

reactors and finally feed-forward back-propagation neural network (FBN) have been 

used to predict the growth dynamics of the green microalgae Scenedesmus sp. in a 

culture medium.   

2.1. RPT TECHNIQUE FOR PHOTOBIOREACTOR ANALYSIS 

 In this work, for the first time, the movements of the microalgae have been studied 

by tracking its cells in various culturing stages started from the first day of growth until 

the medium reach the maximum dense culturing which eventually after 30 day of 

culturing by using the RPT technique for photobioreactor analysis. Based on the findings 

from the RPT measurement, we further proposed a novel interactions between the cells 
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movement (cell trajectory) and the photosynthesis phenomena. From this integrated 

methodologies, we are apple to characterize the light availability and 

fluctuations delivered to the microorganism cells. The following major remarks can be:

• For photobioreactor analysis, the RPT technique is very promising. It provides

fundamental information needed to advance cell growth rate predictions for

photobioreactors modeling, design, scale-up, and operations.

• The internal-loop split photobioreactor was studied in this work. The time scales of

the mixing or the light fluctuations are not only in seconds, but also in 10 ms due

to various type of phases mixing mechanisms, that produce flashing lights

fluctuating experienced by the cells. This range of time scales overlaps the range

associated with the photosynthesis. As a consequence, since the microalgae moves

from the highly illuminated zone (which is essentially at the surface) to the dark

zone (at the center), the photosynthetic reaction at the center of apparatus of a cell

can immediately relax and avoid the high reduction. Thus, it is possible to keep the

high-efficiency for light utilization and the quantum yield.

• RPT technique is able to measure the movements of the cells (cell trajectory) and

from this particle tracking the light distribution can be calculated from using a

suitable irradiance distribution model at different culturing step through 30 days of

culturing. The light fluctuations in these patterns contain different frequencies due

to the chaotic nature of multiphase flow dynamics particularly when the liquid

media including microalgae cells. This work proposed the interact of the

hydrodynamics with the photosynthesis. This concept was also applied to

quantitatively characterize the light distribution, availability, and fluctuations
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delivered to the cells by three parameters: the time averaged irradiance, the 

frequency of the over-/under- charged cycles, and the dimensionless relaxation 

time. 

• 3-D local liquid velocity fields were visualized in the r-theta-z plane; local liquid

velocity vectors and axial liquid velocity profiles were projected in the r-z planes.

The results showed a clear difference in the liquid velocity magnitude when the

superficial gas velocity rose from 1 to 3cm/sec. The results at 3 cm/sec confirmed

that the split airlift reactor has high performance in terms of a large phase

distribution in all regions, which positively affects microalgae culturing. On the

other hand, the viscosity of the cultivation medium change due to growth continuity

and productivity, which was shown when the culture system reached the dense

medium stage, that occurred after 30 days of growing. In addition, the viscosity will

affect the values and magnitudes of the results, which is liquid velocity felid, shear

stress and turbulence kinetics energy and hence the cells’ movement and trajectory.

• 3-D local liquid velocity fields were visualized in the r-theta-z plane; local liquid

velocity vectors and axial liquid velocity profiles were projected in the r-z planes.

The results showed a clear difference in the liquid velocity magnitude when the

superficial gas velocity rose from 1 to 3cm/sec. The results at 3 cm/sec confirmed

that the split airlift reactor has high performance in terms of a large phase

distribution in all regions, which positively affects microalgae culturing. On the

other hand, the viscosity of the cultivation medium change due to growth continuity

and productivity, which was shown when the culture system reached the dense

medium stage, that occurred after 30 days of growing. In addition, the viscosity will
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affect the values and magnitudes of the results, which is liquid velocity felid, shear 

stress and turbulence kinetics energy and hence the cells’ movement and trajectory. 

• Distinguishing behaviors were observed for turbulence kinetic energy, with a

higher magnitude at the superficial gas velocity 3 cm/sec than at 1 cm/sec.

Moreover, turbulence kinetic energy was present in significantly high strength in

the riser as well as in the upper and lower regions, as clearly shown on the radial

profiles. Also, the effect of the culture system was displayed in the radial profiles at

all the levels in the cylindrical split airlift reactor, and it was clear that the change in

culture medium properties reduced the magnitude of the TKE radial profiles.

• The split plate had a significant effect on the flow structure in the cylinder column.

This effect positively enhanced the liquid circulation and the movement between

the reactor sides, the riser, and the downcomer. This circulation and good mixing

phenomena had a large, positive impact on the culture’s continuity. And it was

found also that the cylindrical split column has the suitable conditions for the

culture system due to the reasonable shear stresses, great liquid velocity, and

turbulence kinetic energy distributions, at a superficial gas velocity of 3 cm/sec.

• A dynamic growth model for microalgae Scenedesmus was successfully developed

in a separate effects experiment inside a tubular photobioreactor at light intensities

of 107, 220, 560 μEm-2s-1. The ratio of the light to dark phase was varied, and the

growth rate and fluorescence were evaluated experimentally.

• The data was fitted to the modified three-state dynamic growth model based on the

original idea of Eilers and Peeters, 1988, and modified by Wu and Merchuk, 2001,

to estimate the dynamic growth parameters of microalgae Scenedesmus. The fitted
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parameters when substituted back in the model were able to predict the expected 

growth rate and fluorescence values. 

• The dynamic growth model successfully accounts for the simultaneous processes

of photoinhibition and photolimitation that are experienced by the cells in real

cultures and can be used with any reactor configuration with a known intensity and

variation of light. The ability of the model to incorporate the light history of the

cells gives useful insight into the effect of hydrodynamics on the process of

photosynthesis.

• The dynamic growth model of Scenedesmus was also used to simulate the growth

rate of algae over the entire range of the light/dark cycle, as well as at higher light

intensities than those studied in the experiments. The results of the simulation using

the fitted parameters indicated that the specific growth rate at light intensities

greater than 750 μE/m2s was lesser than that at the lower intensities of 107, 220,

and 560 μE/m2s, with the difference increasing with an increase in the ratio of the

light/dark cycle. This was thought to be due to enhanced effect of photoinhibition at

higher intensities.

• The three-state growth rate model of photosynthesis has been investigated

numerically in a cylindrical internal-loop split photobioreactor, which combined

real trajectory (cell locations), and the growth rate model has been established for

the first time for the green microalgae. The comparison of the simulation results

with the experimental data indicated that the results are reasonable.

• This finding emphasizes the need of integrating the dynamic growth kinetic model

with the photobioreactor hydrodynamics and cell trajectories to enhance the
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microalgae culturing process to make it economically viable. The studied 

methodology can be extended to other strains of microalgae with potential for 

various applications with industrial scale. 

2.2. CT TECHNIQUE FOR PHOTOBIOREACTOR ANALYSIS 

 In this work, the cross-sectional gas holdup distributions have been observed 

visually in the split internal-loop photobioreactor, as well as their radial profiles, by using 

the sophisticated computed tomography (CT) technique. The distributions of the local gas 

holdup parameters have been investigated in both axial and radial directions. The impacts 

of the superficial gas velocity, different axial levels to cover the entire photobioreactor, and 

microalgae culturing progress stages on the cross-sectional gas holdup distributions within 

the split photobioreactor have also been discussed. However, it should be noted that this 

study was accomplished in an air-water-microalgae system, which represents a starting 

point to capture the local characteristics of the gas-liquid flow dynamics. These are 

comprehensive studies that use a real culturing system and will be required and crucial to 

capture the effects of the physical properties differences, such as viscosity, on the local 

hydrodynamics parameters. Such a rich and advanced understanding should then be 

combined in the CFD modeling and simulation for reliable photobioreactor design and 

scale-up. The findings can be briefly summarized as follows: 

• Cross-section local gas holdup distribution and their radial profiles were visualized

and projected in the r-theta-z plane and in the r-z planes, respectively. The results

showed a clear difference in the local gas holdup magnitude when the superficial
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gas velocity rose from 1 to 3 cm/sec. The results at 3 cm/sec confirmed that the split 

airlift reactor has high performance regarding a large phase distribution in all 

regions, which positively affects microalgae culturing. On the other hand, the 

physical properties of the cultivation medium change due to growth continuity and 

productivity, which was shown when the culture system reached the dense medium 

stage, after 30 days of growing.  

• The viscosity of the medium of the microalgae Scenedesmus increased with the

increased optical density values that were observed at superficial gas velocities of

1.0 and 3.0 cm/s. A sophisticated CT technique was successfully employed for the

cylindrical split photobioreactor in the Scenedesmus cultivation system. The

cross-sectional gas holdup distributions and their radial profiles were measured

beyond thirty days due to the change in the culturing medium properties of

microalgae cells.  The local gas holdup was seen to increase significantly with an

increase in the superficial gas velocity in both the riser and the downcomer,

particularly above the sparger section, while slightly different below the split plate

in the axial properties. However, a clear variation was observed in the top section

above the split plate.  At each superficial gas velocity, the gas holdup and its radial

profiles decreased with an increase in the optical density and viscosity of the

medium.

• Distinguishing behaviors were observed for the local gas holdup in cross-sectional

image and its redial profiles, with a higher magnitude at the superficial gas velocity

of 3 cm/sec than at 1 cm/sec. Moreover, these values were present in significantly

high strength in the riser as well as in the upper and lower regions, as clearly shown
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on the radial profiles. Also, the effect of the culture system was displayed in the 

radial profiles at all the levels in the cylindrical split airlift reactor, and it was clear 

that the change in culture medium properties reduced the magnitude of the 

cross-sectional gas holdup and its radial profiles.  

• The split plate that inserts in the cylinder column had a significant effect on the gas

flow distribution. The gas-liquid circulation and the movement between the reactor

sides, the riser, and the downcomer have a positive effect that enhanced the

bioreactor performance. This great circulation and high mixing phenomena had a

large, positive impact on the culture’s continuity. And it was found that the

cylindrical split column has the optimal conditions for the culture system due to the

reasonable local gas holdup distribution at a superficial gas velocity of 3 cm/sec.

2.3. RECOMMENDATIONS 

Recommendations for future work on PBR analysis and modeling work are as follows: 

1. In this research, we relied on the RPT technique to provide in-depth and fundamental

knowledge of the 3D-local flow phenomena inside the photobioreactors. Although this

technique has been developed in our laboratory (multiphase flow and reactions

engineering application laboratory mFReal in chemical Eng. Dep. In Missouri

university of science and technology) for many years and has achieved high reliability,

it still has some room for improvement, especially for its application in analysis of the

photobioreactor for example in industrial scale also, a radioactive particle with stronger

strength may help reduce the white noise magnitude.
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2. In this research, the three-state photosynthetic rate model proposed by Eilers and

Peeters (1988) to produce the photosynthetic kinetics was employed. This model is

simple and easy to handle based on physiology. However, in this model, some

important physiological processes are not included, such as photo-respiration,

photo-acclimation, photo-adaptation, and so on. Including these processes in the model

could considerably enhance the reliability of the predictions based on this model.

However, this effort requires an excellent understanding of complex photosynthesis

and is out of the scope of this research. On the other hand, it should be pointed out that

the estimated model parameters were relied on experiments conducted under low

flashing light frequencies (Wu and Merchuk, 2001). Better designed experiments could

certainly help to estimate more realistic model parameters and to improve the model’s

capability to capture the high frequency flashing light effects.

3. Improve the computed tomography CT technique in order to provide a very high

resolution for the cross-sectional phase’s distribution. And develop the reconstruction

algorithm to build the 3D structure image.

4. As a very powerful and fast advancing tool in the study of multiphase flow dynamics,

CFD simulation can provide in-depth knowledge of hydrodynamic information for

photobioreactor analysis. Successful integration of CFD and the dynamic growth rate

model developed in this work can form a more general and favorable modeling

approach for PBR design, scale-up, and process intensification. Experimental work in

studying the physical properties and flow dynamics may be very helpful in guiding the

CFD simulation.
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5. The study can also be extended to other microalgae strains to evaluate the effect of the

microalgae strains on the flow dynamics parameters. Investigations can also be carried

out on different photobioreactor configurations and scales, including open raceway

ponds.
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