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ABSTRACT 

The contribution of coal to global energy is expected to remain above 30% 

through 2030. Draglines are the preferred excavation equipment in most surface coal 

mines. Recently, studies toward dragline excavation efficiency have focused on two 

specific areas. The first area is dragline bucket studies, where the goal is to develop new 

designs which perform better than conventional buckets. Drawbacks in the current 

approach include operator inconsistencies and the inability to physically test every 

proposed design. Previous simulation models used Distinct Element Methods (DEM) but 

they over-predict excavation forces by 300% to 500%. In this study, a DEM-based 

simulation model has been developed to predict bucket payloads within a 16.55% error. 

The excavation model includes a novel method for calibrating formation parameters. The 

method combines DEM-based tri-axial material testing with the XGBoost machine 

learning algorithm to achieve prediction accuracies of between 80.6% and 95.54%.   

The second area is dragline vision studies towards efficient dragline operation. 

Current dragline vision models use image segmentation methods that are neither scalable 

nor multi-purpose. In this study, a scalable and multi-purpose vision model has been 

developed for draglines using Convolutional Neural Networks. This vision system 

achieves an 87.32% detection rate, 80.9% precision and 91.3% recall performance across 

multiple operation tasks. The main novelty of this research includes the bucket payload 

prediction accuracy, formation parameter calibration and the vision system accuracy, 

precision and recall performance toward improving dragline operating efficiencies. 
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1 

1.   INTRODUCTION 

This section gives some background information surrounding this research. It 

summarizes the research problem and highlights the scope and objectives of this study. It 

provides a high-level summary of the research methodology and also lists the expected 

contributions of the study to the current body of knowledge.  

1.1. BACKGROUND 

Coal remains one of the most important sources of energy in the two strongest 

economies in the world. Currently, the U.S. ranks second world-wide in terms of both 

coal production and consumption. In the U.S., the EIA [1] projects that coal will 

contribute at least 20% of annual national energy production through 2040 (Figure 1.1). 

Coal contribution to China’s energy production is expected to be at least twice that figure 

within the same period (Figure 1.2). The story is no different in the rest of the world as 

coal contribution to electricity generation is projected to remain above 30% through 2030 

(Figure 1.3). In surface mines, coal production is often extracted using the strip mining 

method. In these mines, dragline mining methods remain the preferred methods for 

removing overburden. This makes dragline productivity a major factor in coal 

production. In 1999, about 41% of the total coal production by the United States came 

from 56 mines dragline operating mines [2]. A dragline system used in surface mines 

costs anywhere from US$50 to $300 million [3]. The high capital cost of a dragline, 

coupled with its key role in the coal production chain, has made it an important area of 

interest to several investigators. Most of the studies in this area have focused on 
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increasing dragline productivity by improving various aspects of the dragline operating 

cycle.  

 

  

Figure 1.1. Forecast US energy production by source [1] 

 

 

Figure 1.2. Current and projected electricity generation in China [4] 
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Figure 1.3. Current and projected world electricity generation [5] 

 

Over the years, researchers have concentrated efforts on dragline automation [6-

8], kinematics [9, 10], dynamics and rigging [11-14]. The cost of dragline production 

down time is estimated at AUD 8000 per hour [15].  On the other hand, small 

improvements in their performance can lead to substantial cost savings. It is estimated 

that a 1% increase in dragline utilization can contribute an extra $35 million per year in 

earnings [16]. It is estimated that a 10% improvement in dragline productivity is 

equivalent to $2,000,000 in savings per dragline per year [17]. Therefore, any study that 

centers on optimizing dragline productivity (i.e. bucket payload, cycle times, excavation 

energy) is a step in the right direction. 
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1.2. PROBLEM SUMMARY  

Dragline excavation engineering studies have focused on operating performance. 

Dragline performance is affected by several factors including operator efficiency, 

machine availability and material (formation) properties. Dragline excavation technology 

has improved over the years through the work of several researchers, who sought to 

optimize different aspects of dragline operations. However, the tasks involved in the 

work of the dragline operator (swing, hoist, dig, and dump) is an area which has received 

relatively little attention and therefore remains a bottleneck for production. A study by 

Lumley [18] found that dragline operator performance on different cycles can be highly 

variable, even for the best dragline operator teams in the world. Table 1.1 compares the 

performance of the average dragline operator on key performance indices to best 

practices. The biggest adverse impacts of operator inefficiency are experienced in 

reduced payload, hence, increased daily swings and ultimately in reduced productivity. 

This suggests that current annual dragline production figures are suboptimal and more 

can be done in this area to improve dragline excavation efficiency. 

Over the past couple of decades, there have been efforts to increasingly automate 

dragline excavation tasks. These efforts have focused primarily on building autonomous 

systems, which together, will deliver better performance than the average dragline 

operator. Initial studies and automation trials with hoist, swing and dump tasks gave 

encouraging results [8, 19, 20]. However, the swing path had to be pre-defined by a 

human operator, who also monitors the entire swing phase to prevent collisions. 

Therefore, the unresolved research question in these studies revolved around how the 

autonomous system will be able to visualize its surroundings and respond to different 
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situations, without human involvement. This is an even bigger problem during the 

digging phase, where the excavator cannot follow a pre-defined path, but has to adjust its 

operations, based on ground conditions. This is a challenge, not only for dragline digging 

automation but for autonomous excavation in general.  

Up to date, the most successful autonomous digging models were all proposed for 

wheel-loaders and back-hoe excavator operations, where the digging trajectory is slightly 

more well-defined. Nonetheless, all these models are only successful in completely 

homogenous material. While some of the models [21, 22] fail completely in the presence 

of big rocks and other ground obstructions, other models [23, 24] only achieve loading by 

changing the digging trajectory to avoid these rocks and obstructions. Up to date, the best 

autonomous digging model [25] uses trial and error to attempt obstruction removal. If 

obstruction removal is not possible, the bucket disengages and progresses with the 

excavation elsewhere. The main weakness of all these previous logic-based models is the 

lack of situational awareness (“blindness”) which limits their ability to handle the 

different, random and complex occurrences of ground obstructions.  

Currently, Corke et al. [26] and Hainsworth et al. [27] have proposed the only 

vision model for dragline operations. However, the model is only able to perform 

dragline bucket pose estimation tasks. Hence, it requires other dragline vision models to 

be operational. The model uses an image segmentation technique, which is neither 

scalable nor suitable for real-time application, and also fails when the bucket approaches 

full-loading. Therefore, this research will seek to contribute to excavation automation 

studies by developing a multi-purpose machine vision model, which is scalable, suitable 

for real-time applications and is capable of addressing all dragline vision tasks. This is an 
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important step towards improving dragline excavation efficiency through automation as 

the vision model will enable the dragline to visualize and adjust accordingly to different 

environments and situations, especially in the digging and swing phases.  

 

Table 1.1. Dragline performance, normalized for Marion 8050 [18] 

  

 

Besides automation, recent dragline excavation efficiency studies have also 

focused on bucket design improvements. However, this is another area where operator 

inconsistencies come into play. Currently, the industry standard for bucket design 

improvements is to build and test the performance of physical scale models of several 

new designs against conventional buckets. When these new designs are compared with 

current industry buckets, the differences in performance typically hovers around 10% to 

20%. However, the different bucket geometries are not the only variables in these tests. 

Inconsistencies in operator sequences and techniques alone, can lead to bucket 

performance variations of over 10% [28].  
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On the other hand, virtual simulation can provide a control environment, which is 

repeatable and where the only true variables, are the different bucket geometries. A 

virtual simulation model will allow for a cheaper and quicker preliminary testing of new 

designs, while removing opportunity cost to designs that are discarded without testing. 

Such a model may also be useful in carrying out formation failure analyses and 

fragmentation studies for efficient excavation. Current dragline simulation models [29, 

30] are not able to accurately predict any bucket performance metric, which can be used 

for comparing different designs. Therefore, this study would also seek to develop a full 

scale dragline excavation simulation model that is useful for formation failure analyses, 

fragmentation studies and for testing new bucket designs.    

1.3. RESEARCH OBJECTIVES AND SCOPE 

The primary goal of this research is to contribute to advances in knowledge and 

frontiers in dragline excavation and vision. The components of this primary objective 

include the following:  

(i) Develop a scientific method for calibrating the constitutive model of the formation 

using discrete element parameters.   

(ii) Develop a virtual prototype model of a dragline bucket for excavation and bucket 

payload analysis.  

(iii) Develop a dragline vision model to advance excavation efficiency.   

This research initiative is limited to dragline excavation technology. Nonetheless, 

with some modifications where necessary, the derived mathematical formulations and 

models, as well as the theories and methods employed, may be applied to other excavator 
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types or tillage equipment. Draglines perform excavations in a cyclic manner. A single 

operating cycle consists of the (i) bucket filling, (ii) hoisting, (iii) swinging, and (iv) 

dumping phases. However, all the bucket - formation interactions that are of interest to 

this study occur during bucket filling. Therefore, the offline simulation portion of this 

research focuses primarily on the bucket filling (digging) phase processes. In addition, 

the research is mainly concerned with the development of computer solutions to 

excavation problems. Consequently, no physical experiments were carried out. Rather, 

the reported analytical and experimental results of other investigators were used for 

validating the models. 

1.4. RESEARCH METHODOLOGY 

A literature review has been undertaken to establish the extent of knowledge in 

the field. This review includes previous theoretical, experimental and numerical methods 

employed for various dragline excavation studies. The artificial intelligence model for 

terrain and obstacle recognition will be developed using a deep learning approach. The 

convolutional neural network architecture will be used to fit the model. Over 2,000 

images collected for different mobile mine equipment, excavation terrains and over-sized 

particles will serve as data for training the model using the Tensorflow [31] package in 

Python. The vision model will be verified and validated a portion of the dataset. 

Application experiments will then be conducted to test the model on publicly-available 

videos. 

For the offline simulation model, interactions between the formation and the 

dragline bucket will be simulated using the DEM technique [32]. Mathematical models 
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are used to dynamically measure the required excavation outcomes at pre-determined 

time intervals. The Hertzian Contact Theory [33] will form the basis for the formation’s 

constitutive model. The discrete parameters of the constitutive model will be calibrated 

using a machine learning approach, specifically the eXtreme Gradient Boosting 

algorithm [34]. The data for the calibration will be obtained from virtual laboratory test 

simulations using a combination of Python and FISH scripting in the DEM framework, 

Particle Flow Code 5.0 (PFC 5.0). The calibration model will be verified and validated 

using available overburden property data. The dragline simulation model will also be 

verified and validated using both qualitative and quantitative comparisons with available 

experimental data from an Australian mine [35].  

Further experiments will be conducted to investigate the following: (i) the 

performance of the formation calibration model over large-scale testing, (ii) the inter-

relationships between formation properties and DEM micro-properties, (iii) the effects of 

material particle size distribution on simulated excavation performance (payload), and 

(iv) the material density distribution in a dragline bucket during loading. 

1.5. SCIENTIFIC AND INDUSTRIAL CONTRIBUTIONS 

Firstly, the dragline excavation model, from this research, expands existing 

knowledge on the mechanics of formation failure in dragline operations. It confirms 

existing theories about the formation failure process. It also introduces new knowledge 

about density variations in the formation ahead of the bucket.  

The dragline excavation model is also expected to have immediate industry 

relevance. It provides an opportunity for parameterized simulation of dragline 
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excavations under varying control conditions. The simulator will serve as a dependable 

platform for comparing and evaluating the performance of new bucket designs. It will 

eliminate operator inconsistencies and scale effects, which are notable improvements on 

current results obtained through experimental testing. Also, the simulation model will 

significantly reduce the amount of effort, time and cost that is currently spent on 

prototype testing for bucket design improvements.  

Thirdly, the goal of formation blasting is to achieve good fragmentation for 

efficient excavation. Poor fragmentation from blasting results in increased cycle times 

and hence, reduced productivity. Therefore, a clearer understanding of the effects of 

different material size distributions, on the performance of a particular dragline bucket, 

holds a lot of promise for optimizing excavation performance. For a given dragline 

bucket and excavation environment, this can be achieved by observing bucket 

performance for different fragmentation simulations. When the material size distribution, 

which guarantees optimum dragline performance is determined from the simulations, it 

can be used as an input for blast design. The excavation simulation model, from this 

study, will provide a means for determining the best fragmentation that promises 

optimum excavation efficiency. 

In addition, one challenge with discrete element modeling is that the method 

requires calibration of model micro-parameters and there is currently no widely-accepted 

process for calibrating earth materials. The calibration model, from this research, will 

provide a scientific and generalized process for determining the micro-parameters, which 

replicate earth material behavior. The model could also be extended for calibrating other 

granular materials with very little adjustment.    
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Finally, previous efforts towards autonomous excavation have resulted in a few 

robotic excavator models that complete digging cycles successfully in homogenous 

material. However, these models fail when they encounter big rock obstructions. The 

machine vision model, from this research, will form the basis for future digging control 

systems. It will enable an autonomous excavator to recognize big rock obstructions and 

different excavation environments so that the digging strategy may be adjusted 

accordingly. This study is the first attempt to develop a multi-purpose vision model for 

any excavator. The study will leverage some significant advances in artificial 

intelligence, within the last couple of years, to address age-old autonomous excavation 

challenges, such as bucket pose estimation, boulder identification and terrain recognition.  

1.6. STRUCTURE OF DISSERTATION 

Section 2 is a comprehensive survey of all relevant literature. It comprises 

dragline automation studies, machine vision studies in the excavation industry, formation 

failure theories, processes and resistance models in earthmoving and advances in the 

evolution of dragline excavation technology.  

The first part of section 3 contains details of the proposed geomaterial calibration 

procedure using machine learning. It discusses the virtual triaxial test simulation process, 

wrangling of test data and feature engineering, model building and feature selection as 

well as model verification, validation and experimental design. The second part of the 

section discusses the methodology behind the offline dragline simulation model. It 

contains the mathematical modeling for the excavation performance metrics, a discussion 
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of the distinct element method and simulation modeling in PFC as well as model 

verification, validation and experimental design.  

Section 4 presents the dragline vision modeling approach. It focuses on the theory 

behind convolutional neural networks, the image data collection and annotation 

procedure, data augmentation techniques, model training process as well as model 

verification, validation and experimental design. Section 5 details a discussion of the 

results from the experiments. Finally, section 6 consists of the research conclusions, 

contributions and recommendations for future research directions.  
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2. LITERATURE SURVEY  

There has been a significant amount of effort toward dragline excavation research over 

the past couple of decades, especially by the Australian Coal Association Research 

Program (ACARP). Since its inception in the early 1990s and as of April 2008, the 

program had resulted in a 10% improvement in dragline productivity for the Australian 

coal mining industry. In monetary terms, this is the equivalent of two (2) million USD 

per dragline per year or 150 million USD for the entire coal industry [36]. Most of 

ACARP’s dragline studies have focused generally on mechanical issues and specifically 

on dragline productivity and automation [37]. This section will present the seminal 

literature, which is relevant to dragline excavation research and technology.  

2.1. ARTIFICIAL INTELLIGENCE STUDIES IN EXCAVATION  

When Orenstein and Koppel presented ‘FUTURE’ as the first automated 

excavator in the 1980s at a German science fair, it was considered a sci-fi and fantasy 

project [38]. The automated component, proposed by Orenstein and Koppel, was an on-

line monitor which tracked the actual condition of the excavator’s hydraulic system and 

engine [38]. Since then, various studies have considered the possibility of developing 

different automated systems for ground excavation. A detailed review of this literature 

has been presented by Singh [39]. Early studies into autonomous excavation identified 

some key performance criteria which included the following [25]:  

• The autonomous excavator must be able to work in any type of earth material. 

• Its excavation accuracy must be within 50mm. 
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• It should be able to handle different surface and underground obstacles 

autonomously. 

• It should be able to operate at the speed of the average operator in any condition. 

• Its operation should be capable of safe integration with other site systems. 

One early school of thought held that understanding the soil / rock mechanics and 

operator behavior during the excavation process is integral to any autonomous excavator 

model. However, this view was quickly discarded for a number of reasons. Firstly, the 

excavation process is complex due to the wide range of physical properties of naturally-

occurring earth material. This is further complicated by the random occurrence of tree 

roots, boulders and other such obstructions, which deviate from regular material failure 

processes. It had however been observed that excavation success depended a lot on the 

manipulative skills of operators. Therefore, it was concluded that the capability of a 

controller to detect changes in the operating conditions, adjust its digging strategy and 

respond in real-time was of utmost importance [25].  

Up to date, all the partially-successful models in autonomous excavation adopted 

classical, rule-based artificial intelligence methods. By observing both experienced and 

inexperienced operator actions, various investigators have developed rule-based systems 

which define the digging trajectory. The major difference in these autonomous 

excavation models is in their response to tree roots, big rocks and other random 

obstructions in the ground.  

The simplest of these systems use pre-set force thresholds to pre-define the 

excavator response. Gocho [22] presented an autonomous model for the wheel loader. 

The model was able to achieve loading by driving the bucket into a muckpile until a pre-
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defined hydraulic pressure threshold is reached. At that point, the loader scoops the 

material and moves towards the dumping area. A similar model was proposed by Bullock 

and Oppenheim [21] for the back-hoe excavator. In their model, Bullock and Oppenheim 

[21] used strain gauges to monitor strain measurements as the back-hoe travelled through 

a prescribed trajectory until a preset threshold was exceeded. However, both models fail 

to successfully complete digging when they encounter big rock obstructions.  

Shi et al. [24] Huang and Bernold [40] later extended the digging controls in the 

previous autonomous wheel loader and back-hoe models to accommodate the presence of 

big rocks in the ground. However, both models achieve loading by changing the digging 

trajectory to avoid obstructions, once encountered (Figure 2.1).  

 

 

Figure 2.1. Obstacle avoidance wheel loader model [24] 

 

The most successful autonomous excavator model, up to date, was presented by 

Bradley and Seward [25] for a back-hoe excavator. Their model achieves obstruction 

removal in some cases, using a trial and error approach (Figure 2.2). In their model, a 
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boulder is first detected via the force feedback from contact. When this happens, the 

bucket attack and drag angles are adjusted repeatedly until the bucket completely 

penetrates the ground underneath the obstruction. If this is not possible, the bucket 

disengages and progresses with the excavation elsewhere. 

 

 

Figure 2.2. Big rock removal by trial and error [25] 

 

The main weakness of all these previous logic-based models is the lack of 

situational awareness (“blindness”) which limits their ability to handle the different, 

random and complex occurences of obstructions in the ground. 

2.2. DRAGLINE AUTOMATION STUDIES 

For draglines, initial attempts in automation focused on improving the monitoring 

of the operating phase. To this end,  McCoy and Crowgey [6] developed an automated 

model for controlling the tightline of dragline buckets. Based on a geometric analysis and 

the length of the ropes, the model established tightline limits. These limits form part of a 

control system that monitors the dragline operations and stops or slows down the rope 

drives when the preset tightline approaches its limits [41].  
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As scaled physical models grew popular for performance optimization, dragline 

excavation monitoring also became an essential means of acquiring actual performance 

data for model validation. By comparing the performance data from fourteen (14) 

dragline monitors, Lumley and Haneman [42] spotted a high variability in the 

performance of different draglines. Some of the performance indicators, which were used 

included idle time, bucket efficiency ratio, return time, swing time, fill time, swing angle 

and cycle time among others. The high-performance variability was found to be greatly 

influenced by the differences in bucket design and rigging.  

Beyond monitoring, the utmost benefits in dragline automation will be derived 

from automating the operator’s actions, as was revealed in a study by Lumley [18]. 

Fundamentally, dragline excavation can be considered as the interaction between three 

main components namely the operator, the dragline excavator, and the ground / 

formation. Dragline technology improvement studies, in the past, have always focused on 

one of these areas. Of the three components, operator action is arguably the biggest 

bottleneck in dragline technology today. Generally,  equipment performance is known to 

be heavily dependent on operator skill, attitude and knowledge [43].  

With the aim of investigating variability in dragline operator performance, 

Lumley [18] studied the team of operators for a dragline that consistently achieved 

productivity in the top 10% of draglines worldwide. After documenting the productivity 

and damage impact of each operator on the team (Figure 2.3), Lumley discovered that the 

average difference between the most productive operators (no. 5 and 23) and least 

productive operators (no. 14 and 7) is about 35% in productivity and 140% in equipment 

damage impact. The fact that this study was carried out on one of the best dragline 
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operator teams in the world makes the results even more disturbing. Interestingly, the 

study also revealed that even the best operators, are still some way off the optimum 

performance zone for both productivity and damage impact (Figure 2.3).  

 

  

Figure 2.3. Damage versus productivity for dragline operators [18] 

 

Lumley’s observations are further supported by Jessett [28], who estimated that 

inconsistencies in operator sequences and techniques can lead to productivity rate 

variations of over 10% on any given day. Even for the same operator, Lumley showed 

that production performance can vary significantly over a six-month period (Figure 2.4), 

especially for the less-experienced operators. In most industries, people get better with 

age. The reverse was found to be true in the case of dragline operators. A more recent 

study by ACARP [17] revealed that the productivity of dragline operators generally 

declines at an average rate of 0.75% per year of age. The same study also found that 

operators, on the average, lose about 0.35% of their overall motor skills per year of age.  
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Earlier solution strategies adopted by most mining companies, involved operator 

training and performance monitoring. However, these strategies did not sharply improve 

operator performance or reduce performance variability in the long term. Hence, in the 

industry’s quest for increased productivity, automation has been considered as the next 

phase in dragline technology evolution for the past couple of decades [44]. Currently, 

most dragline automation efforts have focused on addressing different aspects of the 

operation cycle. Advancements in this area have been rather incremental with early 

studies focusing on remote dragline operation (tele-operation) and semi-automation. 

Figure 2.5 shows the complete evolution trend for dragline technology. Dunbabin et al. 

[45] developed one of the first tele-operated dragline models. It was a 1/7 scale model, 

which was capable of digging, swinging and dumping without direct human operation.  

 

                                                 

Figure 2.4. Variability in operator digging over six months [18] 
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Figure 2.5. Dragline technology evolution 

 

Albeit indirectly, the model still required human control since coordinates for 

both dig and dump locations had to be pre-defined on an on-board controller prior to 

every cycle. When tested experimentally, the model was able to complete 50 cycles, 

moving about 5.1 cubic metres of material in the process. Despite its latency problems, 

the study is still regarded as an important step towards remote excavation operations, 

especially for extra-terrestrial mining. Corke et al. [9] presented the first semi-automated 

mechanical control system for an electric walking dragline. Simulations were performed 

by using partial manufacturer data to design bucket position control systems. The control 

model was verified using a 1:10 scale dragline model. Based on this effort, later studies 

[46-48] led to the optimization and full automation of the dragline dump phase. 

For over 20 years, ACARP and the Commonwealth Scientific and Industrial 

Research Organization (CSIRO) of Australia have spearheaded research efforts on 

dragline automation. Notably, most of their efforts have centered on automating the 

swing, dump and return phases of the dragline operation cycle [18]. Corke et al. [26], 

Corke et al. [46], Winstanley et al. [48], and Winstanley et al. [20]  developed a dragline 

swing automation system to reduce dragline cycle time, consequently reducing 

excavation costs. One limitation of the study, however, was that the monitoring systems 
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could not measure the bucket position during the swing phase. Hence, their Dragline 

Swing Assist (DSA) system was limited by its “blindness” to the excavator’s 

surroundings.  

Roberts et al. [49], therefore integrated the three dimensional imaging technology, 

Digital Terrain Mapping (DTM), with the DSA system for providing situational 

awareness to swing automation tasks. This was achieved by mounting a DTM laser 

scanner at the tip of the boom, giving the system an eagle-eye view of the whole 

excavation environment. This makes it possible to map areas which are obstructed from 

the operator’s view. The result is a short, collision-free path for completing the swing 

task. However, the model by Roberts et al. [49] still required human interference to avoid 

swing collisions. Despite all these studies, the complete automation of the entire dragline 

operating cycle is not yet a reality. A lot of studies have focused on optimizing and even 

automating other phases of dragline operations but studies on the actual digging phase 

are relatively limited. The digging phase is, perhaps, the most difficult to automate since 

it involves forceful interaction with the terrain [50]. Other phases do not involve 

unpredictable interactions, like in the case of formation interactions. Therefore, 

autonomy in these phases implied making the excavator complete pre-determined tasks, 

traveling through pre-determined paths.  

On the other hand, the digging phase presents a unique challenge where the 

bucket – ground interactions may lead to multiple possible outcomes. Therefore, the 

excavator’s subsequent actions must be a direct response to ground interactions and 

cannot be pre-planned. Hence, full autonomy of the digging phase also requires that the 

excavator is able to adjust its operations instantaneously, based on the outcome of any 
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given bucket-ground interaction. Apart from productivity concerns, another risk in 

autonomous digging is the damage that machines could suffer due to overloading and 

inappropriate digging routines.  

Therefore, for the digging phase, the ability of the excavator to independently 

complete pre-determined tasks (i.e. automation) is not enough. It must also be able to see, 

learn, understand and adjust (i.e. intelligent) to constantly changing excavation 

environments; hence the need for a smart, autonomous excavator. Most, if not all, of a 

human operator’s actions in the digging phase are directly influenced by what he sees. 

The operator then acts to control bucket movement based on what is happening. 

Therefore, the entire digging phase can be considered as several cycles of operator action 

– ground response – operator’s adjusted action – new ground response (Figure 2.6), 

which is guided by the operator’s vision.  

 

 

Figure 2.6. Digging phase cycle 
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Also, for full dragline autonomy, the bucket position must be known, both for 

stable control of the bucket’s movement and for developing path plans to optimize bucket 

performance [27].  While, there has been very little progress on completely automating 

the digging phase up-to-date, there has been more interest in solving the machine vision 

problem. Since an operator’s vision influences the entire operating cycle, the 

development of a fully-functional, multi-purpose dragline vision model is an important 

step towards full autonomy.    

2.3. RECENT VISION-BASED STUDIES IN THE EXCAVATION INDUSTRY 

Most of the past vision-based studies in the excavation industry have focused 

mainly on hydraulic excavators and dump trucks. These studies vary mainly by the 

feature extraction method used and also by the vision task. Vision tasks typically fall into 

one of three categories: (i) object recognition, (ii) detection and tracking, and (iii) action 

recognition. Feature extraction methods used also fall into two main categories: (i) 

traditional image segmentation using either background subtraction or foreground 

detection, and (ii) feature extraction using the Histogram of Gradients (HOG). 

Chi and Caldas [51] proposed an automated object recognition model for real-

time safety monitoring on construction sites. The model first uses a background 

subtraction and region segmentation algorithm to separate the moving objects from the 

rest of the image. Image classification is then achieved using both Bayes and Neural 

Network classifiers. Ji et al. [52] also proposed a model for detecting trucks and 

excavators using image segmentation. In place of background subtraction, Ji et al. [52] 

uses a foreground detection algorithm to extract the excavator and dump truck features 
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from the rest of the image. When tested on actual construction videos, their model 

achieved detection rates of 73% to 89%.  

Bügler et al. [53] presented a novel vision-based method for estimating and 

monitoring the excavation productivity of construction equipment. The main novelty of 

their approach is that it combines two data sources (photogrammetry and video analysis) 

to generate productivity estimates. Photogrammetry algorithms are first used to obtain 

estimates of excavated material volumes from both ground and aerial images. Video 

analysis of excavator-dump truck interactions is then used to generate activity statistics, 

which is later combined with material volume estimates to obtain productivity estimates 

at specified intervals.  

To date, the only vision-based model for draglines was presented by Hainsworth 

[7] to solve the problem of bucket pose estimation. His study presented a 1:10 scale 

dragline model which automatically senses bucket position using image segmentation 

techniques. The machine vision system was achieved by mounting a video camera at a 

point on the boom to overlook the entire area of bucket motion. The edge outline of the 

bucket is then colored in green paint. Background subtraction is then used to filter out 

just the green pigment in the image. Using this approach, the author could locate and 

track the centroid of the bucket. When tested at full scale, the results on the scaled model 

could not be satisfactorily replicated on a full-size Tarong dragline. One of the limitations 

of this model was that the green paint on the bucket edge outline is sometimes covered by 

the excavated material and this causes the segmentation technique to fail for bucket pose 

estimation. Generally, image segmentation models do not perform well in active 
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environments where several different objects need to be recognized within the same 

image sequence. 

In this regard, the HOG method, proposed by Dalal and Triggs [54], outperforms 

traditional image segmentation approaches. The fundamental idea behind the HOG 

method is that an object shape and appearance can often be well described by the 

distribution of edge directions and local intensity gradients in an image. Practically, this 

is achieved by dividing the image into small regions with each region accumulating a 

local histogram of edge orientations and gradient directions. The image representation is 

then formed by a collection of different features, which are defined by the individual 

local histogram entries.  

Most of the recent machine vision models in the excavation industry use the HOG 

method. Azar et al. [55] developed the server-customer interaction tracker (SCIT), which 

identifies and measures material loading cycles of dump trucks. The authors used the 

HOG method for dump truck recognition and Haar-cascade features detection algorithms 

for tracking the dump trucks. The model detects material loading actions using a 

combination of pattern recognition and logic-based understanding of spatio-temporal 

image data, collected from excavator-dump truck interactions. When the SCIT model was 

tested on real-life construction videos, the results showed that dump truck recognition 

and tracking were both slow. Also, the SCIT model can only track one operating 

excavator and hence, is not suitable for construction environments with multiple 

earthmoving operations.  

Memarzadeh et al. [56] also introduced a model to detect excavators, haul trucks 

and workers in construction environments. Their model combined HOG and color 
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descriptors with binary Support Vector Machine classifiers to achieve object detection. 

Golparvar-Fard et al. [57] developed an action-recognition model, which identifies 

different phases of excavator and truck operating cycles. The model was trained using 

four classes of excavator action (digging, dumping, hauling, swinging) and three classes 

of truck action (filling, moving, dumping). The model achieves action recognition by 

combining the HOG feature extractor with a multi-class Support Vector Machine 

classifier.  The authors tested the model on a construction video dataset and reported 

model accuracies between 86% and 98%.  

Nonetheless, the HOG method is computationally expensive and image 

processing times are usually very high [55]. HOG method uses a brute force algorithm to 

search an entire image for target features. Generally, this results in poor scalability and 

high latency, which limits the suitability of HOG-based models for real-time applications.   

2.4. FAILURE MECHANICS IN EARTHMOVING 

The failure of earth formations occurs mainly in compression, tension or shear. 

The most common type of failure in earthmoving operations is shear failure. This section 

discusses the failure theories and failure processes in earthmoving, as well as the 

formation resistance models which have been proposed by previous investigators. 

2.4.1. Failure Theories in Formation-Excavator Studies. The first attempt at 

studying formation strength and failure is credited to Coulomb [58]. Coulomb proposed 

that the resistance of soils to shear failure depends on the soil’s internal friction angle, on 

the cohesive bonds between its particles and on the normal stress, which acts on the 

failure surface. Mathematically, the relation is expressed as equation 2.1. Rankine [59] 
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also proposed a theory to address tensile failure of earth materials. The theory assumes 

that failure occurs when the tensile strength of the earth material is exceeded by the 

maximum principal stress. However, Rankine’s analysis involved several limiting 

assumptions. Firstly, the earth material was assumed to be both frictionless and 

cohesionless. Also, the formation failure surface was considered to be planar with the 

formation-wall (i.e. tool) interface assumed as vertical. 

𝜏𝑛 = 𝑐 + 𝜎𝑛 𝑡𝑎𝑛 ø       (2.1) 

 Mohr [60] chose to follow Coulomb’s approach and later brought more clarity to 

Coulomb’s work by introducing a linear envelope that could predict the failure of a 

material on its weak surface plane (Figure 2.7). Mohr-Coulomb’s failure theory was 

widely accepted to be true for all isotropic, homogenous materials. However, Karman 

[61] and Boker [62] performed tests on earth materials and found that, while the theory 

delivers good accuracy for mid-range compressive stresses, the results are less impressive 

when the stresses are closer to the extremes. Another criticism of the theory is the 

assumption of a planar failure surface and a straight line envelope.  

 

  

Figure 2.7. Mohr-Coulomb’s failure envelope [63]  
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2.4.2. Formation Failure Processes in Earthmoving. Ohde [64] later developed a 

logarithmic spiral method that yields a curved envelope. While the method was initially 

intended for evaluating soil loads, it has been used extensively [65-68] for calculating 

formation resistance in earthmoving operations.  From Ohde’s analysis, the earth material 

that fails, under the action of an excavating tool, is assumed to have two components 

(Figure 2.8): i) a Rankine passive zone; and ii) a shear zone, which is bounded by a 

logarithmic curve [69]. The failure surface geometry, proposed by Ohde, was later 

confirmed through the observations of Selig [70] on the failure mode of different soil 

types when acted upon by flat blades. However, one limitation of Ohde’s method is that it 

requires a lot of tedious trial solutions in order to obtain the minimum force. Also, the 

method is not applicable for low rake angles.   

 

  

Figure 2.8. Ohde’s logarithmic failure theory [69]  
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After carrying out several experiments on how hard bodies penetrate soft 

materials, Prandtl [71] observed that the soft bodies underwent plasticity upon failure. 

Based on these findings, Terzaghi [72] applied Prandtl’s plasticity theory to the failure of 

earth materials under the action of shallow foundations. According to Terzaghi’s analysis 

of the failure mechanism (Figure 2.9), upon failure, the earth material comprises of three 

(3) zones:  

(i) Elastic zone (Zone I), the wedge-shaped area that forms under the surface load; 

(ii) Radial shear zones (Zone II), the area bounded by the logarithmic spiral; and 

(iii) Rankine passive zones (Zone III) 

DeBeer and Vesic [73] later confirmed the nature of the failure surface that Terzaghi 

assumed in his study. However, their experimental results also showed that the size of the 

wedge-shaped elastic zone (Zone 1) had been under-estimated, whilst the radial shear 

zones (II) had been over-estimated in Terzaghi’s analysis.  

 

Figure 2.9. Terzaghi’s failure theory [74] 
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Early investigations into formation-tool interactions focused on the formation 

failure ahead of narrow tools used in agricultural tillage operations. Initial attempts, at 

better understanding the formation-tool failure phenomenon, were concerned with 

characterizing the formation and determining the properties, which influence failure 

patterns. Fountaine and Payne [75] identified these properties to be density, cohesion, 

soil-metal friction, adhesion and internal friction.  

Other studies also focused on fully establishing the various stages involved in the 

development of formation failure. Payne [76] closely analyzed the mode of soil failure by 

narrow tools and observed that a wedge-shaped soil block is formed in front of the tool 

and moves forward with it, acting as a knife in splitting the soil sideways and upwards. 

O'Callaghan and Farrelly [77] also carried out similar tests on three (3) different types of 

soil. They observed that the failure zone consisted of two zones: (i) a zone, which 

resembles Ohde’s logarithmic spiral and (ii) a second zone, which satisfies the Prandtl-

Terzaghi failure condition.                                                                       

Osman [78] also tried to assess the applicability of two earth pressure theories 

(Coulomb’s and Ohde’s) to excavation processes. Osman concluded that Coulomb’s 

wedge solution only held good for smooth blades of small rake angles, working in 

cohesionless soils. On the other hand, he found that Ohde’s solution gave better accuracy 

over a wide range of rake angles and soil types [79]. More recent studies by Siemens et 

al. [80], Bailey and Weber [81], Hettiaratchi and Reece [67], Godwin and Spoor [82], 

McKyes and Ali [83], Perumpral et al. [84], Swick and Perumpral [85] and Zeng and Yao 

[86] have resulted in observations that agree either fully or partially with those of Payne, 

O’Callaghan-Farrelly and Osman.                        
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While formation failure with tillage tools has been extensively researched, 

relatively little work has been done in earthmoving. The two disciplines have several 

similarities in their modes of formation failure but there also exist subtle differences. One 

such difference is the tool orientation, position and trajectory during operation. Most 

tillage tools merely push and turn the soil. These tools are often vertical or slightly 

inclined and do not completely undercut the formation during the operation. On the other 

hand, most earth-movers, such as draglines, consist of near-horizontal components that 

completely undercut the formation. Therefore, the mechanics of formation failure will 

differ due to the tool geometry, orientation, trajectory and on the formation properties.  

Earthmoving-formation interactions research began in the mid-1900s by the 

Caterpillar Tractor Company, when Cobb, Cohron and a small team of investigators 

applied soil mechanics principles to the design of more efficient scrapers [65, 87]. For 

dragline research, Rowlands [88] carried out the first study on the formation failure ahead 

of the bucket. Figure 2.10 is a summary of Rowland’s observations. By observing the 

bucket filling patterns of granular materials, he noticed that the failure processes for 

dragline buckets were quite different from what had been previously presented for other 

types of excavation equipment. Rowland suggested that, at the initial stages of bucket 

filling, the granular material can be divided into three different zones: (i) a zone of 

laminar flow into the bucket, (ii) the active dig zone and the (iii) virgin (undisturbed) 

material zone. However, as the bucket motion progresses, the number of zones increase 

to include an active flow zone and a dead load zone.  
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Figure 2.10. Failure regime in Rowland’s shear zone theory [88] 

 

Coetzeé [89] later carried out a two-dimensional discrete element experiment, to 

confirm that Rowland’s Shear Zone Theory, holds for other granular material. In his 

study, Coetzee investigated the flow characteristics of corn and wheat into a bucket-like 

equipment with a wide blade. By monitoring the ratio of individual particle 

displacements to blade displacements, he managed to identify the formation of zones at 

the front end of the blade and found them to be quite consistent with Rowland’s theory. 

Figure 2.11 shows results of the study with the particle displacement ratio (PDR) range 

for each zone. Fundamentally, the two studies by Rowland and Coetzee suggest that, for 

dragline bucket filling, the shear zone (active dig zone) follows a Rankine-type failure. 

Nonetheless, the complex nature of the flow characteristics also warrants some attention. 

One major limitation of the two models is that they both ignore the effects of the bucket 

sides, which have been known to also influence formation interactions [90]. 
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Figure 2.11. Failure regime ahead of a dragline bucket [89] 

 

2.4.3. Formation Resistance Models. The formation resistive forces, which an 

excavator equipment is required to overcome, have been categorized into three (3) groups 

by Blouin et al. [91] and Hemami et al. [92]. These groups include: 

(i) force required to penetrate the formation (i.e. penetration force); 

(ii) force required to move the tool through the formation (i.e. cutting force); and 

(iii) total force required to separate, dig out and extract part of the formation (i.e. 

digging force).  

Early records of penetration force studies include the works of Prandtl [71] and 

Terzaghi [72]. One crucial but perhaps unintended consequence of their work was the 

discovery that the penetration of a hard body into a softer body also led to shear failure. 

Having made similar observations, Zelenin et al. [90] noted that the failure pattern of 

geomaterials were similar for both penetration and cutting forces. Blouin et al. [91] also 

suggested that, for all practical purposes, the amount of penetration into the material may 

be used as a measure of its cutting resistance. This is particularly true for situations, such 
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as dragline bucket filling, where the penetration phase is not completely divorced from 

the cutting phase.  

Formation cutting force theories can be further grouped into (i) those that are 

derived from fundamental continuum mechanics principles and (ii) those that stem from 

experimental observations of the cutting process [93]. Reece [65] was one of very few 

researchers to base their studies on fundamental soil mechanics principles. By comparing 

formation shear failure in earthmoving to the Prandtl-Terzaghi bearing capacity failure, 

Reece proposed the fundamental earthmoving equation.  

However, Reece’s work did not consider the effects of inertia. McKyes [94] later 

added an inertia term to Reece’s work which resulted in equation (2.2) for the resultant 

cutting force. 𝑁𝛾, 𝑁𝑐, 𝑁𝑎, 𝑁𝑞, 𝑁𝑐𝑎  are the weight, cohesion, inertia, surcharge and 

adhesion factors respectively. Similarly, the horizontal component of the cutting force is 

given by equation (2.3). Most of the cutting force models were based on experimental 

studies. From his experiments, Osman [78] proposed one of the first cutting force models 

for flat blades. His model comprises two main terms: (i) a frictional component and (ii) a 

second component, which accounts for cohesion and surcharge effects. Gill and Berg [95] 

also improved Osman’s model to account for inertia effects. None of these experimental 

models considered the effects of the soil-tool interface on the cutting force. Therefore, 

Swick and Perumpral [85] later suggested a cutting model, which accounts for adhesion 

effects, as well as surcharge, cohesion and inertia effects.  

Goryachkin [96] also proposed equation (2.4) for the cutting force of a plow. m, 

v, h are the plow mass, plow velocity and the thickness of the cut soil section 

respectively. The first term of equation (2.4) accounts for 41% of the cutting force, the 
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second accounts for 56% and the third makes up the remaining 3%. Alekseeva [93] tested 

Goryachkin’s formula on some earthmoving equipment and noted that it yields 

unacceptable results. Alekseeva attributed these discrepancies to the differences in blade 

geometry and the type of formation. For excavator buckets, one of the seminal works was 

presented by Zelenin et al. [90]. Based on the theory of elasticity, Zelenin proposed the 

following analytical expressions in equation (2.5) for the tangential cutting resistance 

forces, 𝑇𝑟. 𝐶𝑦, 𝛽0, z, 𝑐𝑏 are respectively the number of blows of the dynamic 

penetrometer, bucket angle co-efficient, cutting depth and the co-efficient accounting for 

blade effects [93]. 

𝑇 =  w (𝛾𝑔𝑑2𝑁𝛾 + 𝑐𝑑𝑁𝑐 + 𝐶𝑎𝑑𝑁𝑐𝑎 + 𝑞𝑑𝑁𝑞 +  𝛾𝑣
2𝑑𝑁𝑎)        (2.2) 

𝑇ℎ = 𝑇 sin (𝛽 + δ)       (2.3) 

𝑇 = 𝑚𝛿 + 𝑘𝑤ℎ + 0.1𝑘𝑤ℎ𝑣2       (2.4) 

𝑇𝑟 = 

{
 
 

 
 
𝐶𝑦𝑧

1.35(1 + 2.6𝑙) (1 + 0.0075𝛽)(1 + 0.03ℎ)𝛽0𝜇  ∀ buckets without teeth

𝐶𝑦𝑧
1.35(1 + 0.1ℎ) (1 −

90−𝛽

180
)𝛽0   ∀ individual teeth                                   

𝐶𝑦𝑧
1.35(1 + 2.6𝑙)(1 + 0.0075𝛽)𝑐𝑏  ∀ buckets with teeth                               

(2.5) 

Within the earthmoving industry, the study of digging forces began with Cobb et 

al. [97] and Cohron [87], who confirmed that the sides of an excavator bucket tend to 

increase its excavation force. Osman [78] later observed that the digging force depends 

on eight (8) parameters which include:  

(i) the excavator geometry (i.e. shape and dimension) 
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(ii) the formation characteristics (i.e. surcharge, density, friction, cohesion) 

(iii) the formation-excavator interface properties (i.e. adhesion and friction) 

Dombrovskii [98] proposed one of the first expressions for the digging force. He 

suggested that the tangential resistance to excavation, 𝑇𝑟 is given by equation (2.6). 

𝑇𝑟 = 𝑅𝑐 + 𝑅𝑓 + 𝑃𝑛       (2.6) 

𝑅𝑐, 𝑅𝑓 and 𝑃𝑛 are the formation’s cutting resistance, frictional resistance to bucket 

movement and the resistances to the movement of the failure prism, respectively. The 

tangential force, 𝑇𝑓, required to overcome this formation resistance was also proposed as 

equation (2.7). The digging resistance, 𝑘1is a function of the cutting resistance, all 

frictional forces, as well as the bucket trajectory. The shape of the yielded material is also 

given by the width, 𝑤 and depth, 𝑑. Alekseeva [93] proposed something similar for the 

formation’s tangential resistance and expressed it as equation (2.8).  

𝑇𝑓 = 𝑘1𝑤𝑑       (2.7) 

𝑇𝑟 = 𝑃𝑓 + 𝑅𝐴 + 𝑃𝐴       (2.8) 

𝑃𝑓 , 𝑅𝐴 and 𝑃𝐴 are the penetration force, friction forces and the sum of the cutting 

force, compression resistance and drag prism resistance respectively. For 𝑇𝑓, he adopted 

Dombrovskii’s expression but introduced a new chart of 𝑘1 values. Zelenin et al. [90] 

used the same concept to determine the total excavation resistance of bucket excavators 

(scrapers) from equation (2.9) [91]. 𝑃𝑓 , 𝑅𝑝 and 𝑅𝑓 are, respectively, the penetration-

cutting force, the force required to move a filled bucket and the sum of total friction and 
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compression resistance. Based on the earth pressure theory, Balovnev [99] also 

determined the total excavation force for a curved dozer blade as the sum of all formation 

resistance forces on individual components (sides and blade).  His proposed horizontal 

excavation force, H, is given by equation (2.10).  

𝑇𝑟 = 𝑃𝑓 + 𝑅𝑓 + 𝑅𝑝       (2.9) 

𝐻 = 𝑃1 + 𝑃2 + 𝑃3 + 𝑃4     (2.10) 

𝑃1 is the surface friction and cutting resistance; 𝑃2 is the extra cutting resistance 

caused by a blunt blade edge; 𝑃3 is the cutting resistance from the bucket sides; 𝑃4 is the 

frictional resistance from the bucket sides. Through experimental observations, Zelenin et 

al. [90] had earlier suggested that the frictional forces on the sides of a bucket typically 

range from 2% to 3% and up to 6% of the total cutting force and can therefore be ignored 

[92]. However, a numerical comparison with the formulation of Balovnev [99] showed 

that frictional forces represented 50% of the total cutting forces in Balovnev’s model but 

only 6% in Zelenin’s model. More recently, Bernold [23] performed excavation 

experiments and concluded that friction accounts for nearly half of the formation 

resistance, which is consistent with Balovnev’s model [91].  

 Hemami et al. [92] studied the interaction between a shovel dipper and soil 

formations. They further broke down the total excavation force into six components 

(Figure 2.12) namely: (i) the payload force,𝑓1; (ii) the soils resistance to compacting by 

the base of the bucket in touch with the soil,𝑓2; (iii) the frictional forces due to material 

sliding inside the bucket,𝑓3; (iv) the cutting resistance at the front and cutting edges of the 

dipper,𝑓4; (v) the payload’s inertia force, 𝑓5; and (vi) the dipper’s deadweight,𝑓6. 
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Their total excavation force for the dipper is given by equation (2.11). Hemami et 

al. [92] compared their force components to equation (2.12) from Alekseeva [93], 

equation (2.13) from Zelenin et al. [90] and equation (2.14) from Balovnev [99].                    

𝑃 = 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6      (2.11) 

𝑃𝑓 = 𝑓4 ,       𝑅𝐴 = 𝑓3 ,       𝑃𝐴 = 𝑓1 + 𝑓2 + 𝑓5 + 𝑓6       (2.12) 

𝑃𝑓 = 𝑓4 , 𝑅𝑓 = 𝑓1 + 𝑓2 + 𝑓3 ,    𝑅𝑝 = 𝑓5 + 𝑓6      (2.13) 

𝑃1 + 𝑃2 + 𝑃3 = 𝑓4 , 𝑃4 = 𝑓3      (2.14) 

 

Figure 2.12. Resistance forces in dipper excavation [92]  

 

Takahashi et al. [100] also presented a model, which is quite similar to the one by 

Hemami et al. [92] except that 𝑓1 and 𝑓6 are combined into a single force component. 

Also, the bucket in Takahashi’s model follows a pre-defined trajectory at zero 

acceleration to satisfy the assumption of zero inertial force. Moreover, it is assumed that 



39 

compression of the formation by the bottom of the bucket is negligible. When compared 

with experimental data, the model of Takahashi et al. (1998) showed good agreement.       

All the force models discussed so far are based on either empirical or analytical 

methods. Moreover, these models resulted mainly from studies on flat blades, scrapers, 

excavator buckets and shovel dippers. To date, no analytical or empirical force models 

have been proposed specifically for dragline bucket operations. Over the years, the 

practice has been to adopt available models for use in other earth-moving scenarios, 

which they were not originally intended for. However, these analytical methods cannot 

satisfactorily address the effects of complex and three-dimensional equipment geometry 

changes on the results. Similarly, the empirical models for wide blades, scrapers and 

shovel dippers cannot be extended to explain dragline excavation because they involve 

different geometries and / or digging trajectories.  

2.5. ADVANCES IN DRAGLINE EXCAVATION TECHNOLOGY 

This section summarizes some recent seminal advances in dragline bucket design. 

2.5.1. Bucket Design Optimization. A typical dragline bucket comprises bucket teeth for 

engaging the ground, bucket lips for cutting the material and a rear basket for holding the 

excavated material. The GET component consists of teeth and lip shrouds. Traditionally, 

dragline buckets were designed as a unit, such that the GET were not detachable. One 

shortcoming of this traditional design was that whenever there was damage to one 

component (usually the teeth) from extensive use, the whole bucket needs to be replaced.  

Gooch [101] revolutionized the dragline bucket industry by proposing a new 

bucket design with an easily detachable front-end (teeth and arch). The damaged front-
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end could be quickly detached and replacement parts installed relatively cheaply. The 

main limitation of Gooch’s work was that even one damaged tooth requires replacement 

of the whole front-end component. To address this problem, Bierwith [102] developed a 

new bucket design, which comes fitted with a connection system for attaching replace-

able bucket teeth. Therefore, the bucket tooth, once worn out, could be removed and 

replaced with a new ground engaging tooth at a reasonable cost. Bierwith’s solution 

introduced a new problem as the detachable teeth become loose with extensive use and 

fall off. More recently, Smith and Harder [103], Harder and Smith [104], Chenoweth et 

al. [105], Rimmey [106], Ballinger [107], Campomanes and Lonn [108], Campomanes 

and Jeske [109], and Jeske [110] have all designed retainer systems to keep the 

detachable teeth in place.  

For a given dragline, its boom is limited by the maximum suspended load that can 

be carried. This is given by the sum of the bucket deadweight (i.e. mass of empty bucket 

and rigging) and the mass of the suspended material (i.e. payload). Leslie et al. [111] and 

Lumley [112] proposed different lightweight bucket designs with geometries that also 

allow for increased payload. For soft and low-density earth materials, the design by 

Leslie et al. (2004) showed improvements of 10% increase in payload, 20% reduction in 

bucket fill time and 30% reduction in drag energy when compared to conventional 

buckets of similar struck capacity.  

Leslie et al. [113] and Leslie et al. [114] later designed multiple buckets with 

similar performances for hard and high-density earth materials. From experimental scale 

testing of twelve (12) different bucket geometries, Leslie et al. [115] also found that 

bucket performance increases considerably for buckets with a 15° side wall inclination 
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and a bucket front-end with width-to-height ratio of 3.5:1. The authors, however, 

conceded that further bucket trials with a wider range of geometric variations may result 

in a more accurate optimization of the bucket dimensions. 

2.5.2. Offline Simulation Modeling. One of the earliest dragline simulation 

models is 3d-Dig 2000 (Figure 2.13), which was developed under ACARP. It is a three-

dimensional modeling platform, which provides a graphical interface for integrating 

topographic simulations with excavation, transport and dump sequence simulations for 

dragline operation.  

 

  

Figure 2.13. 3D-Dig 2000 interface 

 

3d-Dig 2000 compares a Digital Terrain Model (DTM) of the existing pit 

topography with a user-provided final design topography. To achieve the final design, the 

model simulates material removal in incremental steps to a user-defined dump area. At 

each step, a small parcel of material is excavated and dumped numerically. The original 
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topography is modified accordingly to reflect the excavation and the process is repeated 

continuously until the desired pit design is achieved. 3d-Dig offers flexibility for 

simulating operations under variable machine and environmental conditions. In addition 

to using existing and final DTM maps, it also uses site-specific input data to achieve 

results. Such input data include spoil material characteristics (swell factor, specific 

gravity and repose angle), machine characteristics (geometry) and machine-operator 

performance characteristics (productivity rates, excavated material volume). The model is 

also able to determine dragline productivity, by considering swelling, excavated material 

volumes, swing angles, dig times, dig depths, dump heights and average operation cycle 

times [116]. A more recent version of the software, 3d-DigPlus, offers more flexibility 

and includes simulation modules for other excavation operations, such as bulldozer and 

truck and shovel operations.  

As a high-level planning tool, 3d-Dig offers a lot of advantages. However, it is 

not capable as a tool for improving dragline productivity through bucket design 

optimization. Cleary [29] presented the first dragline bucket simulation model, targeted at 

comparing the filling behavior and productivity of two competing bucket designs. 

Cleary’s model was based on the Distinct Element Method [117] and it identified six 

main forces that influence the motion of a bucket (Figure 2.14): the tension in the drag 

lines, 𝑇1, rigging forces, 𝑇2, collisional forces at lips and teeth, 𝐹𝑐 , the force applied to the 

back of the bucket by the spoil, 𝑆𝑟 , the bucket weight, 𝑊𝑏 , and the weight of the spoil 

material in the bucket, 𝑊𝑠.  
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Figure 2.14. Forces acting on a dragline bucket [29] 

 

Cleary [29] demonstrated that the distinct element method can be very useful for 

evaluating different bucket designs, estimating bucket wear distribution and for 

evaluating the effects of material characteristics variations. However, the model was only 

two-dimensional and failed to consider width effects. Coetzee et al. [30] proposed the 

first three-dimensional dragline simulation model using the Distinct Element approach. In 

this study, the authors presented a new iterative procedure for calibrating the parameters 

of the discrete model. However, the iterative process required conducting numerical 

laboratory experiments repeatedly and varying the value of one parameter in each 

experiment until the numerical results match the real values for all parameters. The main 

challenge with this approach is that it is a very tedious process and has to be repeated 

even for very slight changes in material property.  Also, the dragline model from their 

study over-predicts drag forces by almost five folds.  
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2.6. RATIONALE FOR PHD RESEARCH 

This research is a pioneering effort toward improving dragline technology for 

efficient and economic excavation. Computer vision research in the mining industry have 

mainly focused on autonomous dump trucks. To date, the only vision-based model for 

draglines was presented by Hainsworth [7] who used image segmentation for bucket pose 

estimation. Hainsworth used a background subtraction technique which fails when the 

bucket undergoes full loading. In addition, the model only deals with one dragline vision 

problem (bucket pose estimation) and does not address any others. This study is the first 

attempt at building a vision-based model for terrain and obstacle recognition during the 

dragline digging phase, as well as for collision prevention. This research also introduces 

convolutional neural networks as a better alternative for bucket pose estimation. In short, 

this study seeks to contribute to vision-based dragline studies by proposing a multi-

purpose vision model which is faster, scalable, more accurate and more suitable for real-

time application in active construction environments. 

In addition, this study contributes to geomaterial calibration methods for 

numerical modeling in civil engineering and related industries. It introduces a machine 

learning alternative to the current trial-and-error approach for calibrating distinct element 

parameters of overburden materials. A better material calibration process results in a 

more realistic formation model in simulations and consequently, more realistic 

excavation simulation results.  

The mechanics of formation failure differ based on tool geometry, orientation and 

trajectory. While failure of earth material ahead of tillage and excavation equipment has 

been the subject of much interest over the years, dragline studies in this area have 
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received relatively little attention. This study represents the first attempt at investigating 

the nature of excavator-induced formation failures using the 3-D distinct element 

modeling (DEM) approach. It also introduces DEM as a cost-effective, time efficient and 

all-around better alternative to the current scale model technology for initial phase bucket 

design testing and optimization.  

2.7. SUMMARY 

In this section, an attempt was made to review the most relevant literature in 

geomaterial calibration, numerical modeling, dragline automation, machine vision and 

excavation research. This section captured both early and recent automation studies, 

related to dragline excavations. Orenstein and Koppel developed the first semi-

autonomous excavator. The autonomous component was an on-line monitor for tracking 

the excavator’s condition. Similarly, dragline automation studies started with the initial 

goal of improving monitoring. McCoy and Crowgey [6] developed the first automated 

tightline control system for dragline buckets. With time, on-line monitoring became the 

primary means of obtaining and analyzing dragline performance data. Lumley and 

Haneman [42] spotted a high variability in dragline performance by analyzing fourteen 

(14) monitors and found that bucket design and rigging were the biggest contributing 

factors.  

Beyond automated monitoring, dragline studies have also looked into optimizing 

the operator’s actions. It was Lumley [18] who carried out studies to confirm what had 

been suspected for a very long time: many dragline operators operate at extreme 

suboptimal levels. After studying the performance of a top 10% global dragline operator 
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team over six months, he discovered that the average difference between the most 

productive operators and least productive operators is about 35% in productivity and 

140% in equipment damage impact. Lumley’s findings were supported by Jessett [28] 

who also found that inconsistencies in operator sequences and techniques can lead to 

productivity rate variations of over 10%.  

Nonetheless, the shift towards automating the operator’s tasks has been rather 

incremental. Corke et al. [9] presented the first semi-automated mechanical control 

system for an electric walking dragline. Corke et al. [46], Roberts et al. [47] and 

Winstanley et al. [48] added improvements which led to the full automation of the 

dragline’s dump phase. Winstanley et al. [19], Winstanley et al. [20], Corke et al. [26], 

Corke et al. [46] and Winstanley et al. (2003) developed a dragline swing automation 

(DSA) system to reduce dragline cycle time, consequently reducing excavation costs. 

Roberts et al. [49] improved the DSA system with the three dimensional imaging 

technology, Digital Terrain Mapping (DTM), as a means of providing situational 

awareness to swing automation tasks. However, the improved model still required human 

interference to avoid swing collisions. Dunbabin et al. [45] developed one of the first 

tele-operated dragline models, which however, required an operator to input the dig and 

dump location coordinates.  

From the literature, it is obvious that most of the hiccups in dragline automation 

research concern decision-making, based on what is happening at any given instance. The 

previous models lack both the vision to see what is happening and the intelligence to 

learn, understand and deal with new situations based on what is seen. Several studies 

have focused on vision-based research in excavation. To date, the only vision-based 
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model for draglines was presented by Hainsworth [7] who used image segmentation to 

solve the problem of bucket pose estimation. One of the limitations of this model was that 

the green paint, which was used along the bucket edges to help with background 

subtraction, was sometimes covered by the excavated material and this causes the 

segmentation technique to fail. Also, image segmentation models do not perform well in 

active environments, where several different objects need to be recognized within the 

same image sequence. This research seeks to contribute to vision-based dragline studies 

by proposing a deep learning model which is faster, scalable, more accurate and more 

suitable for real-time application in active construction environments.  

In this section, the failure mechanics in earthmoving has also been reviewed.  The 

first attempt at studying formation strength and failure is credited to Coulomb [58] who 

proposed a shear failure model for soil based on the internal friction angle, the cohesive 

bonds between its particles and the normal stress, which acts on its failure surface. Mohr 

[60] improved this model by introducing a linear envelope that could predict the failure 

of a material on its weak surface plane. However, Karman (1912) and Boker (1915) 

found that the improved theory only delivers good accuracy for mid-range compressive 

stresses, and not for very high or very low stresses.  

Nonetheless, the Mohr-Coulomb failure theory is still widely accepted to be true 

for all isotropic, homogenous materials. Rankine [59] proposed the first tensile failure 

theory for earth materials. However, the theory assumes that the material is both 

frictionless and cohesionless. Ohde [64] also developed a logarithmic spiral method that 

yields a curved envelope. A few researchers [65-68] adapted Ohde’s model for 

calculating formation resistance to excavation. Ohde proposed that as soil experiences 
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failure under the action of a moving, excavating blade, three zones are created within the 

soil profile: (i) rankine zone, (ii) shear zone, and (iii) logarithmic spiral curve zone.  

Up to date, only Rowlands [88] has proposed a failure theory for materials under 

the action of a dragline bucket. From his experiments, Rowlands observed that the 

following zones are formed in the material during bucket digging: (i) Initial laminar 

layer, (ii) Dead load, (iii) Active flow zone, (iv) Active Dig Zone, and (v) Virgin 

Material. In line with Rowlands experimental work, this research will use three-

dimensional bucket excavation simulations to further investigate the material failure 

process in dragline excavations.    

This section also reviewed the most recent advances in dragline technology 

evolution. Recently, a lot of work in dragline excavation have focused on bucket design 

improvements. Gooch [101] proposed the first bucket design with an easily detachable 

front-end (teeth and arch). Bierwith [102] improved this model with a connection system 

that allowed individual worn-out bucket teeth to be replaced. Later, Smith and Harder 

[103], Harder and Smith [104], Chenoweth et al. [105], Rimmey [106], Ballinger [107], 

Campomanes and Lonn [108], Campomanes and Jeske [109], and Jeske [110] all 

designed different retainer systems to help keep the detachable teeth in place. Leslie et al. 

[111] and Lumley [112] proposed different lightweight bucket designs with geometries 

that also allow for increased payload, reduced fill time and reduced drag energy.  

However, their models were only suitable for soft and low-density earth materials. 

Leslie et al. [113] and Leslie et al. [114] later designed multiple buckets with similar 

performances for hard and high-density earth materials. From experimental scale testing 

of twelve (12) different bucket geometries, Leslie et al. [115] also found that bucket 
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performance increases considerably for buckets with a 15° side wall inclination and a 

bucket front-end with width-to-height ratio of 3.5:1. The authors, however, conceded that 

further bucket trials with a wider range of geometric variations may result in a more 

accurate optimization of the bucket dimensions.  

All these bucket geometry studies used physical scale models which have huge 

time, effort and cost constraints. This research will seek to remove these constraints, in 

addition to opportunity costs, by presenting a three-dimensional numerical model that 

allows for a wider range of geometries to be tested and compared.  
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3. DRAGLINE EXCAVATION MODELING 

This section discusses the methods for formation parameter calibration and 

dragline excavation simulation. Both models are based on the Distinct Element Method 

and are simulated in the Particle Flow Code (PFC) 5.0 environment. 

3.1. THE DISTINCT ELEMENT METHOD IN PFC 5.0 

The Distinct Element Method (DEM) was developed by Cundall for simulating 

rock [118] and soil [119] behavior. The numerical simulation is achieved through several 

series of displacement and contact force calculations. These particle displacements 

disturb surrounding particles and govern the movement of other particles as this 

disturbance is propagated through the entire medium with time. The DEM is based on the 

concept that a single time step is chosen to be very small such that particle disturbances 

are not propagated beyond immediate neighbors. Therefore, at any given time step, the 

resultant forces on any particle can be computed from interactions with only the particles 

that it is in contact with. At each time step, it is assumed that both the accelerations and 

velocities of all particles are constant. Particle displacements are governed by contact 

models and are determined through a series of calculations tracing the movements of 

individual particles at equilibrium. The equations of motion are solved numerically using 

the Velocity Verlet algorithm to determine the movement of each particle when forces 

are applied through contact. For a particle, 𝑥, which experiences a resultant force, 𝐹(𝑥), 

and moment, 𝑀(𝑥) after contact, its linear and angular accelerations (�̈� and �̈�) are 

determined via Newton’s second law using equations (3.1) and (3.2). 
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𝑚(𝑥)�̈�𝑖 = ∑𝐹(𝑥)𝑖 
       (3.1) 

𝐼(𝑥)�̈�(𝑥) = ∑𝑀(𝑥) 
       (3.2) 

(�̇�𝑖)𝑡+𝛿𝑡
2

= (�̇�𝑖)𝑡−𝛿𝑡
2

+ (
∑ [𝐹(𝑥)𝑖 + 𝐷(𝑥)𝑖]

𝑚(𝑥)
)

𝑡

𝛿𝑡 

      (3.3) 

(�̇�(𝑥))𝑡+𝛿𝑡
2

= (�̇�(𝑥))𝑡−𝛿𝑡
2

+ (
∑𝑀(𝑥)

𝐼(𝑥)
)
𝑡

𝛿𝑡 
      (3.4) 

(𝑟𝑖)𝑡+𝛿𝑡 = (𝑟𝑖)𝑡 + (�̇�𝑖)𝑡+𝛿𝑡
2

𝛿𝑡       (3.5) 

(𝜃(𝑥))𝑡+𝛿𝑡 = (𝜃(𝑥))𝑡 + (�̇�(𝑥))𝑡+𝛿𝑡
2

𝛿𝑡       (3.6) 

  𝑚(𝑥) and 𝐼(𝑥) are the mass and moment of inertia of particle, 𝑥, respectively. If 

the particle accelerations, �̈� and �̈�, are assumed to be constant over any given time step, 

𝛿𝑡, the linear and angular velocities (�̇� and �̇�) can be derived using the Velocity Verlet 

algorithm [120] as shown in equations (3.3) and (3.4). ∑𝐷(𝑥) represents the sum of all 

contact damping forces and ∑𝑀(𝑥) now also includes moments from the contact damping 

forces. Similarly, the particle linear and angular displacements (𝑟 and 𝜃) may be derived 

through numerical integration as equations (3.5) and (3.6). 

The Newton equations (3.1 and 3.2) and Finite-Difference equations (3.3, 3.4, 3.5 

and 3.6) above are then repeated for each particle in the collection. Based on the material 

constitutive model, the force-displacement law is also used to update the forces arising 

from the relative motion at each contact [121]. This allows the dynamic material behavior 
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of the entire system to be simulated with moderate memory requirements [32]. The 

Particle Flow Code (PFC) 5.0 by Itasca is a DEM framework for simulating the 

mechanical behavior of discrete particles (Figure 3.1).  

 

  

Figure 3.1. General DEM modeling procedure in PFC 5.0 
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It relies largely on contact mechanics principles for particle movement and 

interactions. Particles interact at point contacts by means of internal forces and moments 

with equilibrium established whenever the internal forces balance. Figure 3.1 illustrates 

the general DEM modeling procedure within PFC 5.0. For every simulation, DEM makes 

the following assumptions [122]:  

• All elements / particles in the simulation behave like rigid bodies.  

• Clumps of variable shapes can be formed from a collection of particles but all 

particles have a base spherical shape.  

• Particles overlap one another at contact points and the post-collision behavior is 

determined by the degree of overlap.   

• Particles only interact at a point and the contact force from the interaction relates 

to the degree of overlap through the force-displacement law.  

• A bond may exist between two particles at their contact point.   

3.2. THE FORMATION CALIBRATION MODEL 

Constitutive modeling of geomaterials is the mathematical description of their 

behavioral response to various stress loadings. The mechanical behavior of geomaterials 

plays a vital role in their deformation or failure during ground excavation operations. 

Traditionally, geomaterials have been modeled at the macro-scale and as a continuum. 

However, in dragline operations, the earth materials occur as fragmented blocks and 

distinct particles (i.e. boulders, cobbles, conglomerates, gravels and sand), which only 

interact at contact points. Therefore, for the purpose of characterizing these earth 
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materials, a discontinuum model which reflects the particle-to-particle interaction at the 

micro-scale is more appropriate.  

Therefore, constitutive modeling of the formation will follow the Hertzian 

Contact Theory (Hertz, 1882) which relates contact forces between any two bodies to the 

stiffnesses of the bodies and to their relative displacements. Numerical simulations with 

DEM require the selection of constitutive model micro-parameters through a calibration 

process in which the behavioral response of the physical material has to be replicated in 

the model. With proper calibration, the linear model proposed by Cundall and Strack 

[32], has been known to reproduce the stress-strain behavior of granular soil and rock 

assemblies.  

For geomaterials, calibration experiments may be uniaxial, triaxial or tensile 

testing among others. Most previous studies use iterative simulation processes [30, 123, 

124] based on domain knowledge. However, this approach tends to be tedious and the 

entire process has to be repeated in order to calibrate new material properties. Other 

studies have proposed calibration charts [125] and curve-fitting methods [126, 127] 

which seek to define “line of best fit” functions on the original data distribution. To an 

extent, these calibration charts and simple regression models are able to take advantage of 

basic hidden relationships between model micro-parameters and macroscopic material 

behavior. However, these models were developed from few simulation tests (i.e. 10 to 

100 tests) and were fitted to those simulation results. Therefore, their performance on 

calibrating new material properties can be hit-or-miss depending on how these material 

properties vary from those in the original simulation tests.  
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This section will describe a novel process for calibrating the linear constitutive 

model to not only fit the original distribution but also to possess relatively high predictive 

performance, which makes it very useful for calibrating new material properties. The 

calibration model is developed from 1,500 triaxial simulation tests and its predictive 

performance is compared to that of the polynomial curve-fitting technique which has 

been used for material calibration by previous investigators [126, 127]. 

3.2.1. The Constitutive Model. Dragline excavation often involves 

unconsolidated earth and granular material. Hence, the constitutive model for the 

excavation simulation geomaterial is based on the linear model by Cundall and Strack 

[32]. The Cundall and Strack model (Figure 3.2) is based on the behavior of an 

infinitesimal contact surface, which permits relative rotation of the particles in contact, 

such as in granular materials. 

 

 

Figure 3.2. Rheological components of the linear model [122] 
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The contact force which governs the body-to-body interactions of the model is 

given by equations (3.7) and (3.8). 𝐹𝑙 and 𝐹𝑑 are the linear elastic and dashpot force 

components respectively. �̂�𝑐 and �̂�𝑐 are the unit vectors which define the contact plane. 𝐹𝑛
𝑙 

and 𝐹𝑠
𝑙 are the normal and shear force components of the linear force, 𝐹𝑙. Similarly, 𝐹𝑛

𝑑 

and 𝐹𝑠
𝑑 are the normal and shear force components of the dashpot force, 𝐹𝑑.  

         𝐹𝑐 = 𝐹
𝑙 + 𝐹𝑑 ,    𝑀𝑐 ≡  0       (3.7) 

𝐹𝑙 = −𝐹𝑛
𝑙�̂�𝑐  +  𝐹𝑠

𝑙 �̂�𝑐  , 𝐹𝑑 = −𝐹𝑛
𝑑�̂�𝑐  +  𝐹𝑠

𝑑 �̂�𝑐       (3.8) 

For visco-elastic, granular earth materials, the model’s elastic component 

represents typical tensionless, frictional behavior while the viscous behavior is reflected 

in the dashpot component. The linear force component is expressed in terms of the 

normal and shear stiffnesses (𝑘𝑛 and 𝑘𝑠), the friction coefficient (µ), the effective 

modulus (𝐸∗), and the normal-to-shear stiffness ratio (𝑘∗). The model’s dashpot force 

component, 𝐹𝑑, is expressed in terms of the normal and shear critical-damping ratios (𝛽𝑛 

and 𝛽𝑠), which act in parallel to 𝑘𝑛 and 𝑘𝑠, respectively (Figure 3.2). When two moving 

particles come into contact, the relative normal (∆𝛿𝑛) and shear (∆𝛿𝑠) translational 

displacement increments at that timestep, ∆𝑡, are adjusted using the initial (𝑈𝑛)𝑜 and 

final (𝑈𝑛) body-body overlaps as shown in equations 3.9, 3.10 and 3.11 [128].  

The adjusted increment is then used according to the force-displacement law to 

update the linear normal force (𝐹𝑛
𝑙), linear shear force (𝐹𝑠

𝑙), damping normal force (𝐹𝑛
𝑑) 

and the damping shear force (𝐹𝑠
𝑑) as shown in 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (3.12), (3.13) and 

(3.14). (𝐹𝑛
𝑙)𝑜 and (𝐹𝑠

𝑙)𝑜 are the initial linear normal and shear forces. 𝛿�̇� and 𝛿�̇� are the 
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relative normal and shear translational velocities. 𝑚𝑐 is the contact mass whereas 𝑚(1) 

and 𝑚(2) are the masses of the two particles. During particle-particle interactions, the 

strain energy from the linear springs (𝐸𝑘), the total frictional slip energy dissipated (𝐸µ), 

and the total damping energy (𝐸𝛽) are updated according to Equations. (3.15), (3.16), 

(3.17) and (3.18). ∆𝛿𝑠
µ
 and ∆𝛿𝑠

𝑘
 are the components of the relative shear displacement 

increment, ∆𝛿𝑠.   

∆𝛿𝑛 =  𝛼∆𝛿𝑛       (3.9) 

∆𝛿𝑠 =  𝛼∆𝛿𝑠    (3.10) 

 𝛼 =  {

𝑈𝑛
𝑈𝑛 − (𝑈𝑛)𝑜

,         (𝑈𝑛)𝑜 > 0 𝑎𝑛𝑑 𝑈𝑛 < 0

1,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

    

   (3.11) 

 

𝐹𝑙 =

{
 
 
 
 
 

 
 
 
 
 

𝐹𝑛
𝑙 =

{
 
 

 
 
{

𝑘𝑛𝑈𝑛 ,                              𝑈𝑛 < 0 

0,                                      𝑈𝑛 ≥ 0

; (absolute)

∗

min( (𝐹𝑛
𝑙)𝑜  +  𝑘𝑛∆𝛿𝑛, 0),  (incremental)

∗

𝐹𝑠
𝑙 = {

𝐹𝑠
∗ = (𝐹𝑠

𝑙)𝑜  +  𝑘𝑠∆𝛿𝑠,              ‖𝐹𝑠
∗‖  ≤  𝐹𝑠

µ
 

𝐹𝑠
µ
(
𝐹𝑠
∗

‖𝐹𝑠
∗‖
),   𝐹𝑠

µ
= −µ 𝐹𝑛

𝑙;         ‖𝐹𝑠
∗‖ >  𝐹𝑠

µ

 

    

 

 

   (3.12) 
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𝐹𝑑 =

{
 
 
 
 

 
 
 
 
𝐹𝑛
𝑑 = {

𝐹𝑛
∗ = ( 2𝛽𝑛√𝑚𝑐𝑘𝑛)𝛿�̇�          (full normal)

min(𝐹𝑛
∗, −𝐹𝑛

𝑙),      (𝑛o − tension normal)
∗
∗

𝐹𝑠
𝑑 = {

𝐹𝑠
∗  = ( 2𝛽𝑠√𝑚𝑐𝑘𝑠)𝛿�̇�,         (full shear) 

0,                                               (slip − cut)

             

       

 

    (3.13) 

𝑚𝑐 =

{
 

 
𝑚(1)

𝑚(1) +𝑚(2)
,      𝑏𝑎𝑙𝑙 − 𝑏𝑎𝑙𝑙

𝑚(1),        𝑏𝑎𝑙𝑙 − 𝑓𝑎𝑐𝑒𝑡

             

  

    (3.14) 

𝐸𝑘 = 
1

2
(
‖𝐹𝑛

𝑙‖2

𝑘𝑛
+
‖𝐹𝑠

𝑙‖2

𝑘𝑠
) 

    (3.15) 

𝐸µ ∶=  𝐸µ − 
1

2
((𝐹𝑠

𝑙)𝑜 + 𝐹𝑠
𝑙). ∆𝛿𝑠

µ  
    (3.16) 

∆𝛿𝑠
µ = ∆𝛿𝑠 − ∆𝛿𝑠

𝑘 = ∆𝛿𝑠 − (
𝐹𝑠
𝑙 − (𝐹𝑠

𝑙)𝑜
𝑘𝑠

) 
    (3.17) 

𝐸𝛽 ∶=  𝐸𝛽 − 𝐹
𝑑 . (�̇� ∆𝑡)     (3.18) 

The Cundall and Strack model can be fully defined by specifying the following 

parameters: µ, 𝑘𝑛 and 𝑘𝑠, 𝛽𝑛 and 𝛽𝑠. However, specifying fixed values for 𝑘𝑛 and 𝑘𝑠 is 

considered a “hard-wiring” approach since the same stiffness values have to be used for 

materials, which may be comprised of particles of variable sizes. A material size agnostic 

approach and perhaps, better alternative is to rather define 𝐸∗ and 𝑘∗. In the course of 
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simulations, the 𝑘𝑛 and 𝑘𝑠 values are then computed automatically for the different 

particle sizes in the formation using equations (3.19) and (3.20).   

𝑘𝑛 =
𝐴 ∗ 𝐸∗

𝐿
 

    (3.19) 

𝑘𝑠 =
𝐴 ∗ 𝐸∗

𝐿 ∗ 𝑘∗
 

    (3.20) 

For any given particle-particle or particle – facet (wall) interation (Figure 3.3), the 

particle surface area, 𝐴 and body-body distance, 𝐿 are given by equations (3.21) and 

(3.22). The damping co-efficients, 𝛽𝑛 and 𝛽𝑠, vary based on the nature of the interaction. 

Hence, they will not be calibrated using triaxial test simulations. Instead, a sensitivity 

analyses will be carried out on the entire range of possible 𝛽𝑛 and 𝛽𝑠 values (from 0.0 to 

1.0) using bucket filling simulations. The values that best reflect actual excavation 

outcomes will be selected as optimum. 

𝐴 =  𝜋𝑟2 {

𝑟 = min(𝑅(1), 𝑅(2)) , ball − ball

𝑟 =  𝑅(1),                        ball − facet  

 

    (3.21) 

𝐿 = {

𝑅(1) + 𝑅(2),   ball − ball

𝑅(1),              ball − facet

 

 

    (3.22) 

On the other hand, 𝑘∗, µ and 𝐸∗ can each range in value from 0.0 to +∞, which 

makes parameter calibration by sensitivity analyses almost impossible. Therefore, over 
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1000 triaxial test simulation experiments were performed in FISHTank to generate 

enough data for the development of a predictive calibration model.   

 

 

Figure 3.3. Contact interactions of the linear model [122] 

 

3.2.2. Numerical Simulation of Triaxial Tests in PFC 5.0. Triaxial compression 

tests were simulated in the PFC 5.0 FISHTank virtual environment to provide 

experimental data for model calibration. The compression tests were performed in 

rectangular vessels (Figure 3.4) of standard triaxial test specimen dimensions of 38mm x 

38mm x 76mm under polyaxial loading conditions. To simulate typical confining 

pressures in laboratory triaxial tests, pressures of 1.0 MPa were applied at the vessel 

boundaries in all directions for each test. All the tests were then repeated at 2.0 MPa and 

3.0 MPa confining pressures. For each specimen, typical axial loading was achieved by 

moving the axial walls at pre-defined strain rates while keeping the confining pressure 

(𝑝𝑐)  constant [129].  
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For each test, the deviatoric stress (𝜎𝑑), axial stress (𝜎𝑎), and radial strain (휀𝑟), 

were recorded for increasing axial strain (휀𝑎) at 0.1mm strain intervals. The axial stress at 

failure (𝜎𝑓) was also recorded for each test. The original PFC 5.0 FISH code was 

modified to compute the actual geomaterial properties which correspond to the chosen 

model parameter values. The Young’s modulus (𝐸𝑦𝑚), resilient modulus (𝐸𝑟𝑚), poisson’s 

ratio (𝑣𝑝𝑟) and co-efficient of friction (µ𝑓) of the material were computed from the 

simulation results using the concept in Figures 3.5 and 3.6 and according to 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 

3.23, 3.24, 3.25 and 3.26. In order to set up experiments for a wide range of pre-defined 

𝑘∗, µ and 𝐸∗ values, the original PFC code was modified to automate and repeat the test 

simulation and material property computation processes. 

 

 

Figure 3.4. Triaxial test simulation in Itasca’s FISHTank environment 
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Figure 3.5. Derivation of Young’s modulus from simulation results 

 

  

Figure 3.6. Derivation of poisson ratio from simulation results 
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𝐸𝑦𝑚 = |
∆𝜎𝑎
∆휀𝑎

| 
   (3.23) 

𝐸𝑟𝑚 = |
𝜎𝑑
∆휀𝑎

|    (3.24) 

 𝑣𝑝𝑟 = −(
∆휀𝑟
∆휀𝑎

)  
   (3.25) 

µ𝑓 = (
𝜎𝑓

2(0.5𝜎𝑓 + 𝑝𝑐)
)  

   (3.26) 

  

3.2.3. Triaxial Simulation Test Results. A total of 1500 triaxial tests were 

conducted in a three-stage experiment to generate the PFC material’s macroscopic 

property data (𝐸𝑦𝑚, 𝐸𝑟𝑚, 𝑣𝑝𝑟 and µ𝑓), which correspond to a wide range of the model’s 

micro-parameters (𝑘∗, µ and 𝐸∗). The first stage of the experiment involved 500 triaxial 

test simulations. Since 𝑘∗, µ and 𝐸∗ all range from 0 to +∞, the main objective of the 

stage one simulations was to establish the range of model micro-parameter values, which 

produce typical 𝐸𝑦𝑚, 𝐸𝑟𝑚, 𝑣𝑝𝑟 and µ𝑓 values for earth materials. For stage one testing, 71 

𝐸∗ values were selected from the 100 MPa to 100GPa range. Similarly, 20 𝑘∗ values and 

43 µ values were chosen from 1 to 5 and 0.36 to 57.3, respectively. These values were 

considered to be enough for the stage one experiments. The number and value of later 

parameters were then decided based on the generated data distribution. 

For naturally-occuring geomaterials, 𝐸𝑦𝑚 and 𝐸𝑟𝑚 values typically range from 

0.01 to 10.0 GPa. 𝑣𝑝𝑟 and µ𝑓 values also range from 0.1 to 0.5 and 0.26 to 3.7, 

respectively. This information was used to prune the stage 1 results and to fine-tune the 
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selection of 𝑘∗, µ and 𝐸∗ values for the subsequent stages of the experiment. Once the 

target 𝑘∗, µ and 𝐸∗ ranges had been established, stage two and stage three experiments 

were conducted within the target ranges to generate more data and to obtain a good data 

distribution for predictive model training. Figures (3.7), (3.8), (3.9), (3.10), (3.11), (3.12) 

and (3.13) show the frequency distribution plots of both the inputs and outputs of the 

experiment after stage three.  

 

 

Figure 3.7. Distribution of resilient modulus after stage three tests 

 

For elastic bodies making elliptical contacts, Mindlin [130] showed that 𝑘𝑠/𝑘𝑛 

(i.e. 𝑘∗) usually ranges from 0.67 to 1.0. Hence, most of the previous granular earth 

material flow studies, which adopted the Cundall and Strack model [29, 30, 32, 131, 132] 

assumed a value of 1 for 𝑘∗. Although 𝑘∗ ranged from 0.1 to 5.0 in the triaxial test 
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simulations, Figure 3.13 illustrates that most of the best results which produced realistic 

geomaterial macroscopic properties, were obtained with 𝑘∗ in the 0.5 to 1.5 range and 

over 70% of the 𝑘∗ values being exactly 1.0.  

 

  

Figure 3.8. Distribution of Young modulus after stage three tests 

 

This creates a high data imbalance, which will skew the results of any predictive 

calibration model, involving 𝑘∗. Also, the empirical evidence, up to date, suggests that 

previous studies, which assumed 𝑘∗ to be 1.0 for granular earth materials achieved 

acceptable results [29, 30, 32, 131]. For these reasons and for the sake of model 

simplicity, this study will follow convention and assume 𝑘∗ to be 1.0.   
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Figure 3.9. Frequency distribution of poisson ratio after stage three tests 

 

  

Figure 3.10. Frequency distribution of friction coefficient 
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Figure 3.11. Frequency distribution of fric, µ, after stage three tests 

 

  

Figure 3.12. Frequency distribution of emod, E*, after stage three tests 

 



68 

 

Figure 3.13. Frequency distribution of kratio, k*, after stage three tests 

 

3.2.4. Model Training. After initial analysis of the simulation results, the data for 

the predictive model was reduced to 849 observations, 2 target variables (𝐸∗ and µ) and 4 

predictor variables (𝐸𝑦𝑚, 𝐸𝑟𝑚, 𝑣𝑝𝑟 and µ𝑓). This was done to remove all data points 

where 𝑘∗ was not 1.0 and to also remove outliers in the data, which typically reduce 

model performance. A new feature, shear modulus (𝐸𝑠𝑚), was added to the data using 

Equation (3.27). The following 5 higher-order feature transforms were also added to the 

feature set: (𝐸𝑦𝑚)
2, (𝐸𝑟𝑚)

2, (𝐸𝑠𝑚)
2, (µ𝑓)

2 and (µ𝑓 ∗ 𝐸𝑟𝑚 ∗ 𝐸𝑦𝑚 ∗ 𝑣𝑝𝑟). The predictive 

calibration model was trained on the data set using the XGBoost machine learning 

algorithm, proposed by Chen and Guestrin [34]. XGBoost is a tree-based ensemble 

method which uses additive functions to make output predictions. For a data set with 𝑛 

observations and 𝑚 features, the prediction output, �̂�𝑖, is given by Equation (3.28). A 

regularization term is added to the optimization objective, equation (3.29), to penalize 
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model weights and reduce the risk of overfitting the data. Cross-validation is also run at 

each iteration to further reduce the risk of overfitting.    

𝐸𝑠𝑚 = 
𝐸𝑦𝑚

2(1 + 𝑣𝑝𝑟)
 

     (3.27) 

�̂�𝑖 =  𝜙(𝑥𝑖) =  ∑𝑓𝑘(𝑥𝑖)

𝐾

𝑘=1

 

     (3.28) 

ℒ( 𝜙) =  ∑𝑙(�̂�𝑖, 𝑦𝑖)

𝑖

+ ∑(𝛾𝑇 + 𝜆‖𝑤‖2)

𝑘

 
     (3.29) 

𝑇 is the number of leaves, 𝜆 is the L2 norm regularization co-efficient and 𝑦𝑖 is 

the actual target. The method uses a greedy search approach to iteratively determine the 

best split candidate to add to the tree up to a limiting maximum depth. Parameters of the 

XGBoost model include: the number of boosting iterations (𝑛𝑟𝑜𝑢𝑛𝑑𝑠), the maximum 

tree depth (max_𝑑𝑒𝑝𝑡ℎ), the learning rate, which determines the step size of weight 

shrinkage (𝑒𝑡𝑎), the minimum loss reduction needed to partition a leaf node (𝑔𝑎𝑚𝑚𝑎), 

the number of variables that can be randomly sampled at a given iteration 

(𝑐𝑜𝑙𝑠𝑎𝑚𝑝𝑙𝑒_𝑏𝑦𝑡𝑟𝑒𝑒) and the minimum weight of a child node (min _𝑐ℎ𝑖𝑙𝑑_𝑤𝑒𝑖𝑔ℎ𝑡). 

For model training, it is typical in machine learning to use 80% of the data. The remaining 

20% is then used for further model evaluations. Therefore, the 849 observations were split 

into 80% training and 20% test data. The training data was used for both training and 

parameter tuning via a ten-fold cross-validation. During model training, 200 different 

combinations of the 7 model parameters were tested in a parameter tuning process (Figure 
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3.14) and the combination with the best performance was selected. Table 3.1 shows the 

final parameter values, which resulted in the lowest RMSE score. 

 

Table 3.1. Final parameter values for XGBoost model 

 

 

 

Figure 3.14. XGBoost model parameter tuning via cross-validation 

 

For comparison, a polynomial regression model was also used to fit the same train 

data set. The loss function of this non-linear curve-fitting model is given by equation 

Parameter eta
max_

depth
gamma

colsample

_bytree

min_child

_weight
subsample nrounds

emod 0.5325723 9 0.3462468 0.3800338 4 0.9995035 892

fric 0.1745362 9 0.1604142 0.6762885 7 0.7747859 724
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(3.30). 𝑤 and 𝑏 are the model weights (parameters) and bias, respectively. 𝑦𝑖 is the true 

output and (𝑤𝑇𝑥𝑖 + 𝑏) is the predicted output of the model. At each iteration, the 

Stochastic Gradient Descent (SGD) algorithm is used to update the model weights as 

shown in equation (3.31). The final parameter values of the polynomial regression model 

is shown in Table 3.2. Figures 3.15 and 3.16 show the results from model training. Both 

plots show an improvement in model training (reduction in model error) as more data 

points are added. For comparison, the results of the polynomial curve fitting model is also 

shown in both plots. As a convention, previous methods for discrete element geomaterial 

calibration [30, 124-126, 133] always involved few simulation tests (< 100 tests).   

 

Table 3.2. Final parameter values for polynomial regression model 

Model Feature 
NL Regression Model 

Emod (𝐸∗) weight Fric (µ) weight 

Intercept 2.938 2.938 

Res_modulus (𝐸𝑟𝑚) -122.39 -122.39 

Yng_modulus (𝐸𝑦𝑚) 38.744 38.744 

Psn_ratio (𝑣𝑝𝑟) -2.525 -2.525 

Shear_modulus (𝐸𝑠𝑚) -25.23 -25.23 

Fric_coeff (µ𝑓) -13.881 -13.881 

Fric_coeff2 (µ𝑓)
2 97.779 97.779 

Res_modulus2 (𝐸𝑟𝑚)
2 -468.726 -468.726 

Yng_modulus2 (𝐸𝑦𝑚)
2 138.455 138.455 

Shear_modulus2 (𝐸𝑠𝑚)
2 12.692 12.692 

Fric_Res_Yng_Psn                      

(µ𝑓 ∗ 𝐸𝑟𝑚 ∗ 𝐸𝑦𝑚 ∗ 𝑣𝑝𝑟) 
612.959 612.959 
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𝐿𝑜𝑠𝑠𝑁𝐿_𝑅𝑒𝑔 =
1

𝑛
 ∑(𝑦𝑖 − (𝑤

𝑇𝑥𝑖 + 𝑏))
2

𝑛

𝑖=1

 
   (3.30) 

𝑤𝑖+1 ← 𝑤𝑖 −  𝜂 (

1
𝑛 
∑ (𝑦𝑖 − (𝑤

𝑇𝑥𝑖 + 𝑏))
2𝑛

𝑖=1

𝜕𝑤
) 

   (3.31) 

 

Figure 3.15. Model learning curve for emod (𝐸∗) using train data set  

 

However, Figures 3.15 and 3.16 both indicate that with more data points, and a 

more powerful learning algorithm, such as XGBoost, it is possible to build a calibration 

model, which performs significantly better than a conventional polynomial curve-fitting 

method. When up to 20% (i.e. 170 data points) and 38% (i.e. 323 data points) of the data 
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points were used for training emod, 𝐸∗ (Figure 3.15) and fric, µ (Figure 3.16) 

respectively, the polynomial curve-fitting method performed better than the XGBoost 

model. However, with the addition of more data, the XGBoost calibration model 

continued to improve its parameter tuning whilst the performance of the polynomial 

curve-fitting model remained fairly constant. At each iteration during model training, the 

XGBoost model also uses the concept of cross-validation to evaluate the overall accuracy 

of its parameter tuning by testing different hypotheses on 10% of the training data, which 

was not used in the parameter tuning process.  

 

 

Figure 3.16. Model learning curve for fric (µ) using train data set 
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Finally, when all 680 train data samples were used, the XGBoost model produces 

a much lower error (RMSE) and a significantly better 𝑅2 value. These results suggest that 

the XGBoost calibration model is able to match, and in some cases, outperform 

conventional non-linear curve-fitting models in reducing errors between actual material 

properties and model predictions (i.e. material property matching). 

3.2.5. Model Verification and Validation. A DEM model of earth material was 

formulated using Cundall and Strack’s viscoelastic constitutive model and calibrated 

from virtual triaxial experiments in PFC 5.0 using the XGBoost algorithm. The XGBoost 

calibration model was verified and validated using the formation properties from the 

Newlands Mine dragline bucket loading experiments, reported by O'Beirne [35]. At the 

Newlands Mine, the main overburden to the Newlands Upper coal seam is the Rangals 

formation, which is a mixture of mudstone and siltstone with small to moderate sandstone 

content. Table 3.3 shows the reported material property values [35, 134, 135], the 

generated features as well as the XGBoost model’s predicted DEM parameters. For 

model verification and validation, the formation macro-properties were first used to 

generate the input parameters of the XGBoost Calibration model. The XGBoost model 

was then used to predict DEM micro-parameters for the formation (Table 3.3). Then 

using the predicted DEM micro-parameters, triaxial testing in PFC was conducted to 

generate model estimates of the formation macro-properties (Table 3.4).   

The goal of the verification process was to evaluate how well the predicted DEM 

parameters are able to replicate typical material behavior under triaxial loading. The 

simulation results from the triaxial loading phase (Figure 3.18) were therefore compared 

to typical experimental results for mudstones (Figure 3.17) in the literature [136]. Figure 
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3.18 shows that the model is able to sufficiently replicate the initial gradual rise in 

deviatoric stress, the distinct peak failure and the post-failure strain-hardening behavior. 

Hence, the XGBoost calibration model was able to meet the verification criteria.   

 

Table 3.3. Material parameters from XGBoost calibration 

Model Input 

𝐸𝑟𝑚 0.235 

𝐸𝑦𝑚 0.280 

𝑣𝑝𝑟 -0.360 

𝐸𝑠𝑚 0.215 

µ𝑓 0.870 

(µ𝑓)
2 0.757 

(𝐸𝑟𝑚)
2 0.055 

(𝐸𝑦𝑚)
2 0.078 

(𝐸𝑠𝑚)
2 0.046 

(µ𝑓 ∗ 𝐸𝑟𝑚 ∗ 𝐸𝑦𝑚 ∗ 𝑣𝑝𝑟) 0.020 

Model Output          

Emod, 𝐸∗ (GPa) 28.29259 

Fric, µ 0.871712 

Kratio, 𝑘∗ 1.0 
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Figure 3.17. Experimental triaxial loading results for mudstone [136] 

 

 

Figure 3.18. Triaxial test loading phase simulation in PFC 5.0 
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Figure 3.19. Eym result for PFC material parameters 

 

The goal of the validation process was to evaluate how well the model-generated 

formation macro-properties matched the actual macro-properties. The 𝐸𝑦𝑚 and 𝑣𝑝𝑟 

values were determined from the plots of the simulation results, as shown in Figures 3.19 

and 3.20, respectively. The µ𝑓 and 𝐸𝑠𝑚 values were also determined from the triaxial 

simulation using equations (3.26) and (3.27), respectively. Table 3.4 shows the 

comparison between the reported material properties and the corresponding properties 

from DEM parameters, determined with the XGBoost material calibration model. From 

the results, the XGBoost model shows good predictions for 𝐸𝑦𝑚, 𝐸𝑠𝑚 and µ𝑓 with less 

than 10% error in all cases. The only exception is the predicted 𝑣𝑝𝑟 value, which shows 

an error of almost 20%. This can be attributed to the initial modeling assumption that 𝑘∗ 

is 1.0. Potyondy and Cundall [124] showed that 𝑣𝑝𝑟 correlates strongly with 𝑘∗. 
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Therefore, fixing 𝑘∗ at 1.0 partially accounts for the larger error in 𝑣𝑝𝑟 prediction, 

compared to the other properties.  

 

 

Figure 3.20. Vpr result for PFC material parameters 

 

Nonetheless, the model simplification, which is made possible by this assumption, 

is desirable since it partially accounts for the small error predictions in the other 

properties. Also, the model-predicted 𝑣𝑝𝑟 value of 0.43 is acceptable since it falls in the 

range of typical values (0.1 to 0.5), for shale and mudstone [137]. Generally, the 

XGBoost calibration model meets the validation criteria as it sufficiently predicts the 

actual formation properties.        
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   Table 3.4. XGBoost model evaluation 

  
Actual material 

properties 

Material properties 

from XGBoost-

predicted parameters 

% Error 

𝐸𝑦𝑚 (GPa) 0.280 
0.257 

8.21 

𝐸𝑠𝑚 (GPa) 0.215 0.225 -4.46 

𝑣𝑝𝑟 -0.36 -0.43 -19.4 

µ𝑓 0.87 0.81 7.24 

 

3.3. DRAGLINE EXCAVATION MODELING 

This section discusses the development of a simulation model for dragline bucket 

– formation interactions. The simulation model is verified and validated using typical 

bucket loading behavior and actual, full-scale dragline bucket-loading experiments at the 

Newlands Mine in Queensland, Australia.  

3.3.1. Excavation Performance Metrics. As shown in Figure 3.21, the forces 

which act on a dragline bucket during excavation may be broken down into the following 

components: (i) payload, 𝑓1; (ii) frictional force generated between bucket floor and the 

formation, 𝑓2 ; (iii) frictional force generated between payload and bucket floor, 𝑓3; (iv) 

cutting force at bucket lips and teeth, 𝑓4; (v) inertia force of payload, 𝑓5; (vi)  deadweight 

of the bucket, 𝑓6; (vii)  fictional force generated between payload and bucket sides, 𝑓7; 

(viii) hoist force, 𝐹ℎ; and (ix) drag force, 𝐹𝐷. During dragline excavation simulation in 

PFC 5.0, the payload at any time step, is given by the total weight of all particles (i.e. 

earth material) in the bucket. For n particles of mass, m, and occupying volume, V, in a 

bucket,  the payload, 𝑓1 is given by equation (3.32). ɣ𝑓 and 𝑉𝑖 are the unit weight of earth 

material and the volume of particle, 𝑖, in the bucket, respectively. The maximum 
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suspended load, 𝑀𝑆𝐿 is given by the sum of the bucket deadweight and the payload in 

equation (3.33). 𝑉𝑏 and ɣ𝑏 are the volume and unit weight of the bucket respectively. The 

frictional forces, 𝑓2 and 𝑓3 are then given by equation (3.32) and (3.35), respectively. 𝜇𝑠𝑚 

is the soil-metal friction. 𝛼𝑓 is introduced as a limiting factor because the value of 𝑓3 is 

high when the bucket is near-empty but reduces with time as the material loading 

progresses.  

 

Figure 3.21. Forces on a dragline bucket during excavation 

𝑓1 = ∑(𝑚𝑖

𝑛

𝑖=1

∗ 𝑔) =  ∑(𝜌𝑓 ∗ 𝑉𝑖

𝑛

𝑖=1

∗ 𝑔)  =  ɣ𝑓∑𝑉𝑖

𝑛

𝑖=1

 
   (3.32) 

𝑀𝑆𝐿 =
1

𝑔
(𝑓1 + 𝑓6) =  (𝜌𝑓∑𝑉𝑖

𝑛

𝑖=1

 + 𝜌𝑏𝑉𝑏) 
   (3.33) 
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𝑓2 = 𝜇𝑠𝑚 (ɣ𝑓∑𝑉𝑖

𝑛

𝑖=1

+ ɣ𝑏𝑉𝑏)𝐶𝑜𝑠 𝜃 
   (3.34) 

𝑓3 = 𝜇𝑠𝑚 (𝛼𝑓ɣ𝑓∑𝑉𝑖

𝑛

𝑖=1

) ;  0 <  𝛼𝑓  <  1 
   (3.35) 

The cutting force, 𝑓4, may be expressed as the sum of all contact forces at the 

bucket lips and teeth. Its magnitude depends on material stiffness, bucket geometry and 

the drag velocity. It is assumed that the bucket dragging occurs with minimal changes in 

bucket velocity. The resistance forces, 𝑓2, 𝑓3 and 𝑓4, are far greater than the force 

generated between the payload and the bucket sides, 𝑓7. Therefore, 𝑓7 is also assumed to 

be negligible. The drag force, FD is given by equation (3.36). 𝑥�̈� and 𝑦�̈� are the bucket 

acceleration in the x- and y- directions, respectively. At any given time during the 

simulation, the drag energy of the bucket, ED can be determined as the sum of the kinetic 

energy and the work done in dragging the bucket through a horizontal distance, 𝑥𝑏 at 

velocity, 𝑥�̇� [138], as given by equation (3.37).  

𝐹𝐷 = 𝜌𝑓𝑥�̈� (∑𝑉𝑖

𝑛

𝑖=1

 +  𝜌𝑏𝑉𝑏) 

+ 𝜇𝑠𝑚 (ɣ𝑓∑𝑉𝑖

𝑛

𝑖=1

+ ɣ𝑏𝑉𝑏  + 𝛼𝑓𝑓1 + 𝑓4 ) 𝐶𝑜𝑠 𝜃      

(3.36) 

𝐸𝐷 = (𝜌𝑓∑𝑉𝑖

𝑛

𝑖=1

 +  𝜌𝑏𝑉𝑏) (
1

2
𝑥�̇�

2 + 𝑔 ∗ 𝑥𝑏 ) 
(3.37) 
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3.3.2. Dragline Simulation Modeling. In PFC 5.0, simulation modeling begins 

with first defining the spatial extent of the simulation domain. The material assembly is 

then generated and the material properties are also defined by the user. Gravity is 

introduced into the simulation and the system is stepped to equilibrium through a number 

of cycles until satisfactory initial conditions are achieved after equilibrium. The complete 

pipeline for DEM dragline simulation in PFC 5.0 is summarized in Figure 3.22. 

3.3.3. Experimental Setup. A major difficulty which was encountered in this 

study was the unavailability of experimental data for dragline bucket loading. In order to 

replicate physical bucket-formation interactions in a simulation model, specific 

experimental data on bucket properties (i.e. geometry, weight, velocity), formation 

properties (i.e. density, porosity, poisson’s ratio, elastic modulus, friction coefficient, 

particle size disstribution), and excavation outcome (i.e. payload or forces) are all 

required.  

The setup for the simulation model followed the experiment by O'Beirne [35] at 

the Newlands Mine in Australia, since the reort contained enough information for model 

validation. The bucket used in the experiment wa the 47𝑚3 capacity Esco Mark IV 

dragline bucket. For the simulation, a full scale CAD model of te bucket was developed 

using Solidworks 2014 and Rhinoceros 5.0 (Figure 3.23). The CAD model was then 

converted into a STL (stereolithography) file and transferred into the PFC 5.0 virtul 

environment using FISH codes. A full scale, three dimensional (3-D) bucket - foration 

interaction model was not found in the literature. Both full scale and 3-D DEM models 

tend to be computationally expensive. Figure 3.24 shows a close view of the bucket – 

formation setup. 
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Figure 3.22. Flow chart for the simulation of dragline bucket-filling in PFC 

 

Therefore, in order to perform a full scale, 3-D bucket analyses at a reasonable 

computational expense, some features of a standard dragline bucket were omitted. 

Caution was taken to restrict omissions to areas that would have very little to no impact 

on material flow pattern and payload measurements. These omissions include the bucket 

rigging and arch. Typically, draglines achieve a 70 – 90 % fill factor in three to six 

bucket lengths of dragging [29, 30]. Therefore, the required material bin needs to be long 

and wide enough to allow for bucket-loading behavior without unrealistic boundary 

effects. 

3.3.4. Boundary and Initial Conditions. Boundary conditions were achieved 

using the material bin, which is bounded by fixed walls at the bottom and on all four 

sides. These walls act together to restrict material movement. The particles in the 

material can flow freely within the bin but they lose their velocity and come to a stop at 

the fixed walls. The setup was designed to ensure that the fixed boundary conditions do 
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not affect the bucket loading process unrealistically. This was achieved by allowing a gap 

of at least one bucket width between the bucket path and the side walls. In PFC 5.0, the 

initial conditions of the material assembly are inherited from the applied boundary 

conditions and the packing history [139]. After the material assembly was generated, 

gravitational force was introduced into the system before cycling.  

 

 

Figure 3.23. Full scale CAD model of dragline bucket 

 

Figure 3.24. Close view of dragline bucket and the formation  
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3.3.5. Bulk Density Calibration. At the beginning of material simulation in PFC 

5.0, the user defines a particle density for the material. PFC uses particle density, rather 

than bulk material density, which can be determined experimentally. For any physical 

material, particle density is different and often greater than the material bulk density. 

Since the bulk density of the virtual material is required to match that of the physical 

material, a fast, iterative calibration method was proposed.  

During material generation, the initial bulk density of the material assembly was 

determined by writing FISH functions to measure the material mass in three measurement 

regions, each of volume 1 𝑚3. The measurement regions were chosen at the left, mid and 

right sections of the bin. The initial bulk density was then determined from the average of 

the densities in the three regions. Depending on the difference between this initial bulk 

density and the actual bulk density of the physical material, new parameter values are 

then selected for the packing arrangement (material porosity) and the particle density. 

The two values are then varied iteratively until the bulk densities matched. By using this 

approach, the bulk densities were typically matched within 3 to 5 iterations. 

3.3.6. Payload Measurement. PFC 5.0 has no module for measuring the 

excavation performance. Hence, a FISH function was defined to measure the payload 

using the measurement region, shown in Figure 3.25. The measurement region was 

extended beyond the bucket’s struck capacity by about 50% of the bucket height. This 

was to allow for accurate measurements in case of material heaping during bucket 

loading. An extension of 50% of the bucket height was deemed sufficient because 

realistically, material heaping does not reach that height. After every 10,000 cycles 
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during the simulation, the payload function loops through all the particles within the 

measurement region and updates the total weight accordingly.   

 

 

Figure 3.25. Payload-measuring region in dragline bucket 

 

3.3.7. Model Verification and Validation. The simulation model is verified and 

validated using typical bucket loading behavior and experimental data from the Newlands 

Mine in Queensland, Australia, which has been reported by [35]. The Newlands Mine lies 

within the Bowen Basin, where the Rangal formation acts as overburden to the 6.5m 

thick Upper Newlands coal seam under development [135]. The overburden formation 

consists mainly of mudstone and siltstone with varying amounts of sandstone content 

across the basin. Hence, the formation density varies from point to point across the mine 

[140], depending on local conditions. The overburden was calibrated for DEM simulation 

using the XGBoost model as previously discussed in section 3.2.  

In PFC, a large material bin was used for the simulation to limit unrealistic 

boundary effects. The bin spans at least ten bucket lengths. Its width was also chosen to 

be three times the bucket width. Similarly, the material depth was chosen to be at least 



87 

twice the height of the bucket. The Bucyrus Erie 1370W (BE 1370) dragline and the Esco 

Mark IV dragline bucket were used for the Newlands Mine experiments. Figure 3.26 

shows the experimental setup in PFC 5.0. Table 3.5 shows both the formation and 

dragline parameters which were used as input for the simulation model [29, 35, 134, 135, 

141].    

The model was verified by visual inspection of the bucket loading process. The 

goal of model verification was to evaluate how well the model simulates typical dragline 

bucket loading behavior. Figure 3.27 illustrates the bucket-loading process in PFC 5.0. 

As the bucket interacts with the formation, a check is made after every 1000 time steps to 

identify material that has moved into the payload-measuring region inside the bucket. 

These particles turn to green and the bucket payload is updated by iteratively adding the 

weights of the individual particles, one at a time (Figure 3.27). The green materials in the 

trail of the bucket represent the heaved material, which fall over as the bucket fills up at 

the rear. This model behavior is consistent with observations during physical bucket-

loading processes.  

Two forms of validation were used to evaluate the model. These involved the 

bucket-filling rate and the payload after four bucket lengths. The bucket filling rate 

during the simulation was tracked and compared with observed experimental results 

(Figure 3.29). In PFC 5.0, a measure of the bucket filling rate was achieved by 

monitoring the bucket payload at 1000 time step intervals and recording the 

corresponding bucket fill distances. Figure 3.28 shows that the bucket filling behavior 

during the simulation is similar to the pattern which O'Beirne [35] observed in their field 

experiments (Figure 3.29). The model was able to correctly capture the slow, initial 
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build-up in filling, the steady increase in payload with time and distance as well as the 

reduced filling rate as the bucket approaches full-capacity.  

 

 

Figure 3.26. Full scale material bin, formation and bucket setup in PFC 5.0 

 

  

Figure 3.27. Bucket-loading process 
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Also, while draglines have been known to achieve a 70% to 90% fill factor in less 

than 3 bucket lengths of dragging [142], it typically takes 3 to 6 bucket lengths in most 

cases [29]. Figure 3.30 shows a comparison of payload for both simulation and 

experimental results at different densities for the same 47𝑚3 Esco Mark IV bucket. The 

results show that the simulation model is able to produce excavation outcomes, which fall 

in the ball park of experimental results. To provide a quantitative evaluation of these 

results, a linear function was used to fit the experimental data. The mean absolute error of 

the simulation results was then computed, weighted and then compared with that from the 

experimental tests. Table 3.6 shows that the experimental results achieve a weighted 

percentage error of 10.26% about the mean, compared to 16.55% from the model 

simulation results. Nonetheless, the model is deemed acceptable because even for the 

same dragline operator, it is typical for payload variations to exceed 16.55% across 

multiple digging cycles.   

 

 

Figure 3.28. Payload tracking during bucket loading in PFC 5.0 
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Table 3.5. Input parameters for the dragline simulation model 

 

Formation Rangal Coal Measures

Bulk Density (kg/m3) 1700 - 2300

Porosity 0.35

fric 0.87

emod (GPa) 2.82

kratio 1.0

Particle size range (m) 0.025 - 0.2

Bucket - Formation friction 0.58

Damping ratio (normal) 0.9

Damping ratio (shear) 0.9

Dragline model Bucyrus Erie 1370W (BE 1370) 

Dragline weight 3 500 tons

Boom length 97.6 m

Production capacity/hour 3 000 tons

Bucket model Esco Mark IV

Bucket dimensions: width 4.0 m

Bucket dimensions: height 2.7 m

Bucket dimensions: length 5.2 m

Horse power of drag motor 1045 hp

Bucket weight (empty) 37 ton

Bucket weight (loaded) 73 ton

Rated Bucket Capacity 42.8 m³

Typical bucket velocities (m/s) 1.5 - 2.0

Max. depth that can be worked 38 m

Typical bucket velocities (m/s) 1.5 - 2.0

Rated Bucket Capacity 42.8 m³

Formation Characteristics

Dragline Specifications
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Figure 3.29. Payload tracking during bucket loading [35] 

   

 

 

 

Figure 3.30. A comparison of simulation results and experimental data 
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Table 3.6. Model validation results 

 

 

3.4. EXPERIMENTATION 

Five experiments were designed for the dragline excavation model. This section 

discusses these experiments in detail. 

3.4.1. XGBoost Calibration Prediction. The convention in DEM parameter 

calibration of earth material has always been to both calibrate and evaluate the model 

using a few experiments. In most previous geomaterial calibration models [30, 123-127], 

the model evaluation process involved only a handful of experiments (< 20 tests). 

However, without the ability to produce acceptable DEM parameter predictions over a 

wide range of material properties, a calibration model may not be very useful to other 

investigators beyond the typically narrow parameter range of the original experiments.  

Test
Density 

(kgm^3)

Payload 

(tons)

Linear 

Best_Fit 

(tons)

Test Mean 

(Best Fit)  

(tons)

Standard 

Error

Absolute 

Standard 

Error

Weighted Mean 

Absolute 

Standard Error

Weighted 

% Error

2020 114 117.45 3.45 3.45

1910 78 90.01 12.01 12.01

1780 54 57.59 3.59 3.59

1860 106 77.54 -28.46 28.46

1830 77 70.06 -6.94 6.94

1770 53 55.10 2.10 2.10

1990 114 109.97 -4.03 4.03

1880 85 82.53 -2.47 2.47

1830 57 70.06 13.06 13.06

1870 73 80.04 7.04 7.04

1960 119 102.48 -16.52 16.52

1960 75 102.48 27.48 27.48

1900 94 87.52 -6.48 6.48

1900 110 87.52 -22.48 22.48

1850 67 75.05 8.05 8.05

1930 105 95.00 -10.00 10.00

81.04

91.68

Experimental

Simulation

8.31

15.17

10.26

16.55
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To this end, an experiment was designed to evaluate the predictive performance 

of the XGBoost calibration model over a wide parameter range. Table 3.7 gives the 

details of the designed experiment. 

Table 3.7. Large scale evaluation of XGBoost calibration model 

 

 

To guard against sampling bias, a test size of 170 samples was used in order to 

cover a wide, but realistic range of values for both the target micro-parameters (𝐸∗ and µ) 

and the predictor macro-properties (𝐸𝑦𝑚, 𝐸𝑟𝑚, 𝑣𝑝𝑟, µ𝑓, 𝐸𝑠𝑚, 𝐸𝑦𝑚
2, 𝐸𝑠𝑚

2, 𝐸𝑟𝑚
2, µ𝑓

2 and 

[µ𝑓 ∗ 𝐸𝑟𝑚 ∗ 𝐸𝑦𝑚 ∗ 𝑣𝑝𝑟]). Utmost care was taken to ensure that none of the original model 

training data points were repeated in the 170 test samples. The predictive performance of 

the XGBoost model is then compared to that of the polynomial regression model. It is 

Objective:
To evaluate XGBoost calibration model performance on a 

wide range of material parameters.

Parameters [Scope]:

(i) Friction coefficient: [0.25 to 0.50]                                           

(ii) Poisson ratio: [-0.8 to -0.2]                                        

(iii) Young's modulus: [0.15 to 0.40 GPa]                                  

(iv) Shear modulus: [0.1 to 1.4 GPa]

Number of experimental tests: 170

Significance:

The convention in DEM parameter calibration of earth 

material has always been to both calibrate and evaluate the 

model using a few experiments. This study will seek to 

determine whether a data-driven calibration process holds 

more promise for model reliability and extensibility.

Expected results:
The XGBoost model is expected to perform much better 

than convental calibration methods at large scale testing. 

Experiment IV: Large Scale Performance of XGBoost Calibration Model
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expected that the XGBoost model will outperform the more traditional polynomial 

regression model.  

3.4.2. Effects of Formation Properties on DEM Micro-Parameters. Like most 

machine learning models, the XGBoost calibration model is a black box. Therefore, 

beyond new predictions, the model does not improve current knowledge about the nature 

of the relationships between formation properties and the DEM micro-parameters. 

Currently, there is no study which has comprehensively investigated the relationship 

between formation macro- and micro-parameters.  

Therefore, an extensive study will be conducted to investigate this relationship 

using the 20% test data (i.e. 170 samples). From these samples, partial dependence plots 

will be developed for each formation property and each DEM micro-parameter. Partial 

dependence plots will reveal the dependence between any given DEM micro-parameter 

and a formation property, when all other properties are held constant. Table 3.8 

summarizes the details of the designed experiment. 

3.4.3. Effects of Formation Characteristics on Bucket Filling. Two 

experiments were conducted to investigate the effects of   (i) material fragmentation and 

(ii) material density on dragline bucket loading performance. 

In some situations, blasting is required to improve dragline excavation 

performance by breaking the formation into sizes that can easily be scooped by the 

bucket. Good fragmentation during blasting is important for excavation efficiency. When 

the overburden is poorly fragmented, multiple attempts may be required to remove 

boulders, thereby increasing cycle time and reducing productivity. 
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Table 3.8. Formation parameter experiments 

 

While over-fragmentation will increase the ease of excavation, it is not practical 

to achieve only fines through blasting. Even if the entire overburden is over-fragmented 

(powdered) by blasting, the material will flow out of the rear of the bucket without 

heaping and this reduces the payload [142]. Therefore, it is necessary to establish how 

large rock fragments can be without adversely affecting excavation performance. The 

Objective:
To investigate the underlying relationships between DEM 

microparameters and the formation properties.

Parameters [Scope]:

(i) Friction coefficient: [0.25 to 0.50]                                           

(ii) Poisson ratio: [-0.8 to -0.2]                                        

(iii) Young's modulus: [0.15 to 0.40 GPa]                                  

(iv) Shear modulus: [0.1 to 1.4 GPa]

Experimentation:

(i) Large Scale experimentation to evaluate the calibration 

performance of the XGBoost model.                                                                     

(ii) Experimentation to investigate the underlying 

relationships between DEM micro-parameters and 

formation properties.

Number of experimental tests: 170

Significance:

There is currently no study that extensively investigates the 

relationship between DEM microparameters and the 

properties of the formation. This experiment will seek to 

explore that space.

Expected results:

The relationships between DEM microparameters and earth 

material properties have not been previously studied at such 

a large scale. It is expected that this study will expose some 

limitations of the current paradigm in material calibration 

research.

Experiment V: Effects of Formation Properties on DEM microparameters
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question about which particle size range (from blasting) guarantees the best excavation 

outcome is still an open one and the answer may differ from one setup to the next.  

No previous studies have explored fragmentation effects on dragline bucket 

efficiency specifically. However, a clearer understanding of these effects holds a lot of 

promise for optimum excavation efficiency. For a given excavation environment, this can 

be achieved by observing bucket performance for different fragmentation simulations. 

The optimum bucket performance output from model simulations can then be used as 

input for blast design. An experiment will therefore be carried out to evaluate whether the 

dragline simulation model provides a suitable platform for investigating the possible 

excavation outcomes of different fragmentation targets during blast design. Table 3.9 

summarizes the details of the designed experiment.    

An experiment was designed to evaluate the effects of material densities on 

dragline bucket excavation performance. Table 3.10 summarizes the details of the 

designed experiment. This study will investigate whether there is any correlation between 

material density and bucket performance. The experiment will also explore how different 

material densities affect bucket fill factors. It is expected that bucket payload will 

increase with increasing material density. However, it is unclear how this will affect the 

bucket fill factor in volumetric terms.    

3.4.4. Material Density Variations during Bucket Loading. The nature of the 

formation failure process during dragline bucket excavation has been studied empirically 

by Rowlands (1992) in what is now accepted as the Shear Zone Theory. Through field 

experiments, O'Beirne [35] also observed the presence of different density zones in the 
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dragline bucket during loading (Figure 3.31). However, this observation has neither been 

studied nor confirmed by other investigators. 

 

Table 3.9. The effects of formation fragmentation on excavation performance 

 

 

The researcher suspects that the observations in these two separate dragline 

excavation studies are somewhat connected. Therefore, an experiment will be conducted 

to explore the development of density zones within both the undisturbed material and the 

material in the bucket as excavation progresses. Throughout the bucket loading 

simulations, the material density in nine regions (Figure 3.32) will be monitored 

continuously after every 1000 iterations.  

Objective:
To evaluate the effects of fragmentation on dragline bucket 

excavation performance.

Number of Experimental tests: 5 tests

Material Size Distributions 

(radius):

(i) 2.5 to 25cm    (ii) 2.5 to 50cm    (iii) 20 to 25cm             

(iv) 45 to 50cm   (v) 95 to 100cm

Significance:                      

No previous studies have explored fragmentation effects on 

dragline bucket efficiency specifically. A good understanding 

of these effects will help to connect the dots between good 

blast designs and optimum excavation bucket performance.

Expected results:                  

While no specific studies have been carried out about 

fragmentation effects on dragline efficiency, available 

empirical evidence (Lumley, 2014) suggests that a material 

size distribution from fines to one-third of the bucket width 

is desirable. 

Experiment VI: Formation Fragmentation & Excavation Performance
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Table 3.10. The effects of material density on excavation performance 

 

 

 

Figure 3.31. Payload zones and densities [35] 

 

These density zones will be tracked to identify whether there are any density 

variations with time as the bucket progresses. It is expected that a material density 

distribution will exist within the bucket, as was observed by O'Beirne [35]. However, it is 

unclear whether this effect extends ahead of the bucket as well. It is also expected that 

Objective:
To evaluate the effects of material densities on dragline 

bucket excavation performance.

Number of Experimental tests:  5 tests

Material Densities (kg/m^3): [1200, 1300, 1400, 1900, 2100]

Significance:                                
This study will investigate whether there is any correlation 

between material density and bucket performance. 

Expected results:                                

It is expected that bucket payload will increase with 

increasing material density. However, it is unclear how this 

will affect the bucket fill factor in volumetric terms.

Experiment VII: Material Density & Excavation Performance
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this study will provide findings that help to further explain the dragline bucket - material 

failure development processes which have been observed in previous studies (Rowlands, 

1992). Table 3.11 summarizes the details of the designed experiment. 

 

  

Figure 3.32. Density zone monitoring during dragline bucket loading 

 

3.5. SUMMARY 

The first part of this section described the development of a predictive calibration 

model for determining DEM parameters of earth material. The DEM modeling approach 

and its implementation in PFC 5.0 was discussed. The Hertzian contact modeling 

approach was used for constitutive modeling of the earth material. The theory behind the 

linear model [32], chosen as the constitutive model, was also discussed in detail. Since 

DEM model parameters do not have any direct relationship with physical material 

properties, there is the need for parameter calibration.  

Virtual simulations were conducted  in PFC 5.0 to generate 1500 triaxial test data 

for model calibration and evaluation. The extreme Gradient Boosting algorithm [34] was 

used to train a predictive model for material calibration. Initial comparisons with a 



100 

conventional curve-fitting method suggests that the XGBoost model is a significantly 

better calibration model. The XGBoost calibration model was verified and validated 

using mechanical property data of the Rangal formation at Newlands Mine in 

Queensland, Australia.  

The second part of the section described the development of a simulation model 

for dragline bucket – formation interactions in PFC 5.0, using the Distinct Element 

Method. The simulation for model verification and validation was setup like the 

Newlands Mine experiment, reported by O'Beirne [35]. The model was verified and 

validated using available experimental data from the Newlands Mine. The Rangal 

formation was used as the overburden and its DEM parameters were determined using 

the XGBoost calibration model. The Bucyrus Erie 1370W (BE 1370) dragline and the 

Esco Mark IV dragline bucket were used in the actual experiment. Therefore, a full-scale 

CAD model of the 47𝑚3 capacity Esco Mark IV dragline bucket was developed for the 

simulation using Solidworks 2014 and Rhinoceros 5.0.  

The PFC 5.0 code was modified by defining FISH functions to calibrate the 

material’s bulk density and to measure the bucket payload at pre-defined intervals. The 

simulation model was verified by visual impression and its behavior was found to be 

consistent with typical bucket loading processes. Model validation was achieved by 

comparing simulation results to typical bucket filling rates as well as payload results from 

O'Beirne [35]. Further experiments will be carried out to determine the effects of the 

formation properties, material density distribution and material size distribution on the 

bucket loading process.  
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Table 3.11. Investigating material density variations during bucket loading 

 

 

 

 

 

 

 

Objective:

To investigate the formation failure process using material 

density distribution in different zones, both inside and ahead 

of the dragline bucket.

Number of density zones: 9

Significance:                       

The nature of the formation failure process during dragline 

bucket excavation has been studied empirically by 

Rowlands (1992) in what is now accepted as the Shear 

Zone Theory. O'Beirne (1997) also observed the existence 

of density distributions within the bucket during material 

loading. The researcher suspects that these two 

observations are connected and will seek to explore the 

development of  density zones within both the material and 

the bucket as the material fails.   

Expected results:

It is expected that a material density distribution will exist 

within the bucket. However, it is unclear whether this effect 

extends ahead of the bucket as well. Also, it is expected 

that this study will provide findings that help to further 

explain the dragline bucket - material failure development 

processes which have been observed by a previous study 

(Rowlands, 1992).

Experiment VIII: Material Density Distribution
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4. DRAGLINE VISION MODELING 

The ideal dragline vision model is one that takes into consideration the most 

routine operator vision tasks in a typical operation cycle. Among others, common 

operator vision tasks include: 

• detecting and tracking bucket position continuously, especially during fill and 

dump phases; 

• identifying different terrains for digging strategy adjustments; 

• identifying big rocks and boulders in bucket path; 

• visualizing bucket filling difficulties for digging strategy adjustments; and 

• visualizing the entire excavation environment for collision prevention, especially 

during bucket swing phase and for dragline movements to new working areas.     

Generally, operator vision tasks fall largely under two umbrellas, namely: (i) 

object recognition, and (ii) object detection (localization and tracking). Therefore, the 

dragline vision portion of this research focuses on developing a deep learning model for 

simultaneous recognition, localization and tracking of objects in mine environments 

during dragline operations.  

4.1. THE CONVOLUTIONAL NETWORK 

Convolutional Neural Networks (CNNs) are unique multi-layer neural network 

for processing grid-like data, such as pixel data of images. They are able to recognize 

visual patterns directly from pixel data with very little processing required. Like other 

neural networks, CNNs are trained with some form of the error back-propagation 
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algorithm [143].  The concept of convolutional networks was introduced by LeCun et al. 

[144] as a solution for image recognition problems. It is not entirely clear why CNNs 

work where artificial neural networks and some other deep neural networks with general 

back-propagation have failed.  

The most widely-accepted notion is that the modeling approach used in CNNs 

present a unique advantage over other models. For instance, unlike competing deep 

network models [145, 146], CNNs do not require complex image preprocessing or 

manual engineering of image feature vectors. Therefore, raw images can be fed into the 

learning network, which presents endless opportunities in model scalability. This also 

creates the possibility for real-time applications over a wide range of image recognition 

problems.  

In addition, CNNs use the principle of weight-sharing. This means that all the 

neurons, in any given feature, share the same parameters. In this way, the same feature 

can be detected over and over, even when it occurs at different positions in an image. 

Weight-sharing reduces the number of model parameters, which in turn reduces model 

complexity, as well as model training time.  

Therefore, CNNs are more computationally-efficient than fully-connected 

networks, which implies that it is easier to run multiple experiments for hyper-parameter 

tuning [147]. The general CNN model training process is best explained by Figure 4.1. 

Once a CNN architecture is selected, model weights are initialized and images are 

randomly selected for training, based on the pre-determined batch size. 
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Figure 4.1. Flowchart for model training using ConvNets 



105 

Using the initialized model weights, a forward pass is propagated through the 

neural network to obtain an object class prediction. The model error at the current 

iteration is computed from the difference between actual object classes and model-

predicted classes over the entire batch of images. The gradient of the error function is 

then computed and the error is propagated backwards through the network from the final 

layer to the first layer to modify the initial model weights. The process is repeated 

iteratively to reduce the total error between actual object classes and model-predicted 

classes over 250,000 epochs. Model training is carried out in Tensorflow [148], which is 

an open-source python and C++ package for dataflow programming.  

 

4.2. COLLECTION OF INPUT DATA  

In training the deep neural network, data has been collected for eighteen (18) 

object classes, comprising of eight (8) mobile mine equipment classes (Figure 4.3), nine 

(9) terrain classes (Figure 4.2) and one (1) additional class for site personnel (Figure 4.4). 

The terrain data was obtained from three Capital Quarries Co. sites and two Lafarge 

Aggregates Co. sites near the Saint Louis area in Missouri. The equipment data was 

obtained from the quarry sites as well as from online literature. In all, 2400 images were 

collected across the 18 object classes. In machine learning, it is typical to use 80% to 

90% of the entire data set for model training and the remaining data for model evaluation. 

Therefore, 2100 images were randomly selected for batch training and cross-validation. 

The remaining 300 images were used for testing the model.  
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Figure 4.2. Excavation terrain object classes  

 

The main goal of model training is to reduce the total error until model 

predictions are acceptable. Therefore, a high imbalance of data across object classes 

during training may result in a relatively-weaker classifier. To prevent such model 

skewing, the train data was kept fairly balanced across all 18 object classes. For each 

object class, the train images ranged between 115 and 120. Also, test images ranged 

between 15 and 20 for each of the 18 object classes. 
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Figure 4.3. Mobile mine equipment object classes [149, 150]  
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The collected images, which vary in dimensions, are automatically resized during 

the preprocessing stage of model training. This ensures that the trained deep network 

model can be used on new images of variable dimension.  For very robust CNN models, 

it is typical to use 5,000 or more images in each object class for network training. 

Therefore, various data augmentation techniques were used to produce an infinite dataset 

from the 2100 original training images. 

 

 

Figure 4.4. Site personnel object class [151] 

 

4.3. IMAGE DATA PROCESSING AND PREPARATION 

4.3.1. Image Annotation. Image data was labelled using the LabelImg code by 

Tzutalin [152]. LabelImg is a python library that uses Qt graphical user interface to help 
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with image annotations. For each image in the dataset, rectangular bounding boxes are 

used to identify the position of all object classes within the image (Figures 4.5 and 4.6). 

 

  

Figure 4.5. The labelImg interface 
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All annotations and object location coordinates are saved as Extensible Markup 

Language (XML) files in PASCAL VOC [153] format. Tensorflow uses the Tfrecord file 

format. Hence, the XML annotation files are first converted into CSV format, and then 

used to produce Tfrecord files using a modification of the Tfrecord-generation python 

code by Tran [154].   

  

 

Figure 4.6. Image annotation using labelImg 
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4.3.2. Data Augmentation Techniques. A good machine vision model should be 

able to recognize and detect objects of interest under varying conditions. In neural 

network modeling, it is therefore critical for the training data to include all conceivable 

scenarios if the model is to be able to generalize well. For excavation environments, this 

implies that the data set must be diverse enough to capture the objects of interest under 

varying orientations, sizes, environmental conditions and lighting conditions, among 

others. Since it is almost impossible to obtain a complete dataset that encompasses all 

scenarios, data augmentation methods were applied to the 2100 training images as a 

remedy.  

Data augmentation methods are image transformation processes, which are used 

to generate an infinite set of unique images from a small data set, by constantly and 

randomly varying the properties of images in the small data set. By implementing random 

preprocessing, new images are generated, which vary slightly from the original (Figures 

4.7 and 4.8).  At each iteration during model training, a random number (0, 1 or 2) of 

augmentation methods are picked from a finite set of augmentation techniques and 

randomly applied to all batch images to varying extents. The randomness of the process 

ensures that no two sets of input batch images are exactly the same. This augments the 

size of the training data infinitely and also prevents the problem of overfitting, where the 

network simply memorizes the data from all training scenarios.  

The applied augmentation methods include image rotation, scaling (resizing), 

translation, horizontal flipping, vertical flipping, lighting and salt and pepper noise. For a 

3-channel image, the transformation equation for noise addition is given by equation (3.1) 

where nx, ny and nz are the noise vectors. 
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Figure 4.7. Some data augmentation processing 
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Figure 4.8. More data augmentation processing 
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Similarly, the scaling transformation is given by equation (4.2) where sx, sy and 

sz are the scaling vectors. Clockwise rotations of θ degrees about the x-, y- and z- axes 

are given by equations. (4.3), (4.4) and (4.5), respectively. Shearing transformation is 

given by equation (4.6) where sxy, syx, sxz, szx, syz, and szy are the shearing vectors. 

Translation transformation is also given by equation (4.7) where tx, ty and tz are the 

translational vectors. Reflection (flipping) transformation is given by equation (4.8). 

(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 , 3) =  (𝑥𝑖, 𝑦𝑖, 𝑧𝑖 , 3) + (

𝑛𝑥 0 0 0
0
0
0

𝑛𝑦
0
0

0
𝑛𝑧
0

0
0
1

) ∗ √𝑣𝑎𝑟(𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 3)

+ 𝑚𝑒𝑎𝑛(𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 3)      

 

  (4.1) 

(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 , 3) =  (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖, 3) ∗  (

𝑠𝑥 0 0 0
0
0
0

𝑠𝑦
0
0

0
𝑠𝑧
0

0
0
1

)     

   

 (4.2) 

(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 , 3) =  (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖, 3) ∗  

(

 
 

1 0         0       0

0
0
0

𝑐𝑜𝑠(𝜃)

𝑠𝑖𝑛(𝜃)
0

−𝑠𝑖𝑛(𝜃)

𝑐𝑜𝑠(𝜃)

0

0
0
1
)

 
 
      

   

 (4.3) 

(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 , 3) =  (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖, 3) ∗  

(

 
 

𝑐𝑜𝑠(𝜃) 0 𝑠𝑖𝑛(𝜃) 0

0
−𝑠𝑖𝑛(𝜃)

0

1

0

0

0
𝑐𝑜𝑠(𝜃)
0

0
0
1
)

 
 
      

  

 (4.4) 
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(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 , 3) =  (𝑥𝑖, 𝑦𝑖, 𝑧𝑖 , 3) ∗  

(

 
 

𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 0 0

𝑠𝑖𝑛(𝜃)
0
0

𝑐𝑜𝑠(𝜃)

0

0

0
1
0

0
0
1
)

 
 
      

  

(4.5) 

(xj, yj, zj, 3) =  (xi, yi, zi, 3) ∗  

(
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(4.6) 

(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 , 3) =  (𝑥𝑖, 𝑦𝑖, 𝑧𝑖 , 3) ∗  (

1 0 0 0
0
0
𝑡𝑥

1
0
𝑡𝑦

0
1
𝑡𝑧

0
0
1

)      

  

(4.7) 

(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 , 3) =  (𝑥𝑖, 𝑦𝑖, 𝑧𝑖 , 3) ∗  (

1 0    0  0
0
0
0

1
0
0

  0
−1
  0

0
0
1

)     

  

(4.8) 

 

4.4. DRAGNET MODEL ARCHITECTURE 

The CNN is implemented for model training using Tensorflow [148], which 

provides an interface for executing deep neural networks and other machine learning 

algorithms. The DragNet model consists of the following types of layers: (i) 

Convolutional layers (ii) Pooling layers (iii) Fully-Connected layers. 

4.4.1. Convolutional Layers. Convolutional networks are deep neural networks, 

which explicitly assume image inputs and use convolutions instead of general matrix 

multiplication in one or more layers. Convolutions are a special type of linear operation 

[147], which transform input images into feature maps of localized regions. Each feature 

map is computed from the dot product of initialized weights and pixel data in a small, 
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local region of the image. Therefore, each map stores information about where a specific 

feature occurs in the image. In a typical deep network, several convolutions are 

performed in parallel to produce a set of feature maps using convolution filters / kernels. 

Each kernel detects a specific feature which may occur at multiple regions in the input 

image. Convolutions use weight-sharing among network neurons to reduce the overall 

number of parameters, which need to be trained, thereby speeding up the training process. 

For a two-dimensional image, 𝐼(𝑚, 𝑛), the convolution operation by a two-dimensional 

kernel, 𝐾(𝑖, 𝑗) is given by [147] as Equation (4.9). The 𝑖𝑡ℎ feature map output, from a 

convolution layer, 𝑙, is given by Equation (4.10). 𝑛, 𝑏𝑖
(𝑙) 𝑎𝑛𝑑 𝐾𝑖,𝑗

(𝑙) are respectively the 

number of kernels, the bias matrix and the kernel connecting 𝑖𝑡ℎ feature map in layer, 𝑙, 

and the 𝑗𝑡ℎ feature map from the previous layer (𝑙 − 1).      

𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗) = ∑∑𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛)

𝑛𝑚

   

   

  (4.9) 

𝑂𝑖
(𝑙) = 𝑏𝑖

(𝑙) + ∑ 𝐾𝑖,𝑗
(𝑙) ∗ 𝐼𝑗

(𝑙−1)

𝑛(𝑙−1)

𝑗=1

      

   

(4.10) 

4.4.2. Pooling Layers. A pooling function further modifies a layer output by 

performing downsampling operations along the height and width of the feature map. It 

shrinks the spatial size of activation maps and this reduces the number of parameters to 

be trained. It can be considered as the ‘summary’ of the representation in a small, local 

region of the image. The most widely used pooling functions include Max pooling, 

Average pooling and L2-norm pooling. The DragNet model uses the average pooling 

function, which simply outputs the average of the input activations. One key role of 
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pooling is that it introduces translational invariance into the model, which helps to 

prevent overfitting and creates a more robust model.  

4.4.3. Fully-Connected Layers. Fully-connected layers map activation volume 

output from multiple layers into a class probability distribution. Therefore, it is used, 

together with the softmax activation function to output classification results. In the 

DragNet model, the fully-connected layer is defined by Tum [155] as Equation (4.11). 

 𝑚1
(𝑙−1)

, 𝑚2
(𝑙−1)

, 𝑚3
(𝑙−1)

 denote the activation volume from the previous layer, 𝑓 denotes 

the non-linearity function in the layer and 𝑤𝑖,𝑗,𝑟,𝑠
(𝑙)

 is the weight parameter matrix. The 

output of the fully-connected layer, 𝑦𝑖
(𝑙), is always a probabilistic representation of the 

likelihood of each object class based on the final activation volume fed to it.  

𝑦𝑖
(𝑙) = 𝑓( ∑ ∑ ∑ 𝑤𝑖,𝑗,𝑟,𝑠

(𝑙)
(𝑌𝑖

(𝑙−1))
𝑟,𝑠

𝑚3
(𝑙−1)

𝑠=1

𝑚2
(𝑙−1)

𝑟=1

𝑚1
(𝑙−1)

𝑗=1

)     

   

 (4.11) 

4.4.4. Activation Functions. Typically, the layers in neural networks would be 

connected by activation functions, which perform non-linear operations on the feature 

map output from one layer before it is passed on as input into the next layer. The DragNet 

model uses two types of activation functions: (i) Rectified Linear Units (RELUs) and (ii) 

Softmax functions. RELUs are used between the convolutional layers and the softmax 

function is used at the end of the network to output classifications. A RELU function is a 

piecewise linear function, which is given by equation (4.12). 

Yi
(l) = max(0, Yi

(l−1))        (4.12) 
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The zero lower threshold solves the cancellation problem, which arises from 

having both positive and negative activations. Also, RELUs are computationally efficient 

and result in a sparse activation volume, which increases model robustness to noise. The 

softmax function normalizes the output from the fully-connected layer into the 0 to 1 

range such that the sum of all output units is always equal to 1. The softmax function 

outputs the equivalence of a categorical probability distribution, which tells you the 

probability by which a given image is likely to belong to any object class. For an input 

vector, 𝑧, with 𝑗 neurons, the output of the softmax function is given by Equation (4.13). 

𝑆(𝑥)𝑗 =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

      
(4.13) 

4.4.5. Batch Normalization. In training deep neural networks, the distribution of 

input parameters for each layer relies on the parameters of preceding layers. As the 

parameters of the previous layer change at each iteration, the input distribution of all 

successive layers also change accordingly. This phenomenon is known as internal 

covariate shift and it makes network training tedious. It slows down the training process 

because each layer has to constantly adjust its parameters to a constantly-changing input 

distribution after each iteration.  

Two ways of dealing with internal covariate shift is by using very low learning 

rates and by carefully choosing initial parameter values for the network. A much better 

approach is Batch Normalization (BN), which was proposed by Ioffe and Szegedy [156]. 

BN is based on the assumption that all input features are independent of one another. 

Therefore, it is possible to normalize each feature to have unit variance and zero mean. 
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Also, normalization is performed only for the input batch of a single iteration and not 

across the entire training data set [157].  

For any given layer with n-dimensional input, 𝑥 =  (𝑥(1)…𝑥(𝑛), each feature can 

be normalized as follows, using the mini-batch mean and variance Yin et al. [158] as 

given by equations (4.14), (4.15) and (4.16). �̅�𝑘, 𝜎𝑘
2 𝑎𝑛𝑑 �̂�𝑘 are the respective mean, 

variance and normalized 𝑘-th feature. Similarly, 𝑚, 𝑥𝑖,𝑘 𝑎𝑛𝑑 휀 are, respectively, the mini-

batch size, the 𝑘-th feature of the 𝑖-th sample in the mini-batch, and a small number to 

ensure numerical stability.  

One issue that arises with BN is that, the original representation of a given layer 

can be lost in the normalization process. To address this problem, two learnable 

parameters, 𝛾𝑘 and 𝛽𝑘 store the representation power of the network and they are used to 

scale and shift the normalized feature as given by equation (4.17). When 𝛾𝑘 and 𝛽𝑘 are 

set to √𝜎𝑘
2 +  휀 and �̅�𝑘 respectively, the original activations can be recovered. 

�̅�𝑘 = 
1

𝑚
 ∑𝑥𝑖,𝑘

𝑚

𝑖=1

     
(4.14) 

𝜎𝑘
2 = 

1

𝑚
 ∑(𝑥𝑖,𝑘 − �̅�𝑘)

2                 

𝑚

𝑖=1

      
(4.15) 

�̂�𝑘 = 
𝑥𝑘 − �̅�𝑘

√𝜎𝑘
2 +  휀

      
(4.16) 

𝑦𝑘 = 𝛾𝑘�̂�𝑘 + 𝛽𝑘     (4.17) 
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4.4.6. Distance Measurement Model. The distance of objects from the dragline 

can be determined using the triangulation method in Figure 4.9. The method involving 

two cameras, fitted on the dragline. In the past, tilt sensors have been used on cranes to 

determine boom angle. Therefore, the inclined angles, 𝜃1 and 𝜃2, are measured from tilt 

sensors, which are fitted at Cam 1 and Cam 2 positions respectively. If the two cameras 

are a fixed distance, 𝒙, apart, then the distance, 𝑺,  from the mid-point of 𝒙 to any object 

of interest is given by equation (4.18).  

 

  

Figure 4.9. Distance measurement using triangulation 

 

The object distance, 𝑆, is only measured when both Cams 1 and 2 are focusing at 

the same area on the object. This is detected using the Jaccard Index [159], also known as 

Intersection over Union (IoU). IoU (Figure 4.10) is used to measure the similarity 

between the two images within a pre-defined similarity score threshold. Mathematically, 

the Jaccard Index is given by Equation (4.19). 
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Figure 4.10. Jaccard’s index  [159] 

 

𝑆 =  

{
 
 
 
 
 
 

 
 
 
 
 
 
√𝐻2 + (0.5𝑥 +

𝑥𝑡𝑎𝑛𝜃2
tan(180 − 𝜃1) − 𝑡𝑎𝑛𝜃2

)
2

 ∀ (𝜃1 > 90⁰, 𝜃2 < 90⁰)

∗
∗

√𝐻2 + (0.5𝑥 −
𝑥𝑡𝑎𝑛𝜃2

tan 𝜃1 + 𝑡𝑎𝑛𝜃2
)
2

                 ∀ (𝜃1 < 90
0, 𝜃2 < 900)

∗
∗

√𝐻2 + (0.5𝑥 +
𝑥𝑡𝑎𝑛𝜃1

tan(180 − 𝜃2) − 𝑡𝑎𝑛𝜃1
)
2

 ∀ (𝜃1 < 900, 𝜃2 > 900)

     

 

 

 

(4.18) 

𝐽(𝐴, 𝐵) =  
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=  

|𝐴 ∩ 𝐵|

|𝐴| + |𝐵| − |𝐴 ∩ 𝐵| 
 𝑓𝑜𝑟 0 ≤  𝐽(𝐴, 𝐵) ≤ 1     

(4.19) 

4.4.7. DragNet Base Architecture. The architecture used for the DragNet model 

in Figure 4.12 combines the first fourteen (14) layers of the Howard et al. [160] feature 

extraction method in Table 4.1 with the object detection method of Liu et al. [161]. The 

feature extraction system consists of fourteen (14) alternating convolution, batch 
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normalization and Rectified Linear Unit (RELU) layers. The convolution kernels / filters 

are mainly 3 ∗ 3 in size with variable depths of 3 to 1024 and strides of 1 or 2. Where 

necessary, zero padding was also used to control the size of the output. The size of the 

feature map from any layer is computed as in equation (4.20). 𝑊,𝑆, 𝑃, 𝐾 are the input 

dimension, stride, padding and filter size respectively. 𝑃 takes a value of 1 when there is 

zero padding and a value of 0 otherwise.  

For a convolutional layer with filter size, 𝑛 ∗ 𝑚, if the input image and expected 

layer output have 𝑙 and 𝑘 feature maps, respectively, the number of learnable parameters 

in the layer is given by Equation (4.21). Similarly, the number of learnable parameters 

in the fully-connected layer is given by equation (4.22). DragNet’s object detection 

system is based on the Single Shot MultiBox Detector (SSD) method by Liu et al. [161], 

which is currently one of the fastest algorithms in the field of object detection. 

𝑂 =  
𝑊 − 𝐾 + 2𝑃

𝑆
 + 1     

(4.20) 

𝑝𝑐 = ((𝑛 ∗ 𝑚 ∗ 𝑙) + 1) ∗ 𝑘      (4.21) 

𝑝𝑓𝑐 = (𝑙 + 1) ∗ 𝑘     (4.22) 

The SSD method uses feed-forward CNNs to generate bounding boxes and scores 

for the presence of object class instances. The feature extractor predicts the class labels 

and the object detector predicts anchor boxes at multiple scales (Figures 4.11 and 4.12). 

Finally, a non-maximum suppression step is used to select only anchor box detections 
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that achieve a pre-defined loss threshold. The DragNet model has a total of over 3.0 

million parameters, which need to be properly tuned during model training.  

 

Table 4.1. Feature extraction system 

Depth Layer Type Stride Filter Shape Input Size Parameters 

1 Convolution 2 3 x 3 x 32 224 x 224 x 3 864 

2 
D/w 

Convolution 
1 3 x 3 x 32 112 x 112 x 32 2336 

3 
D/w 

Convolution 
2 3 x 3 x 64 112 x 112 x 64 8768 

4 
D/w 

Convolution 
1 3 x 3 x 128 56 x 56 x 128 17536 

5 
D/w 

Convolution 
2 3 x 3 x 128 56 x 56 x 128 33920 

6 
D/w 

Convolution 
1 3 x 3 x 256 28 x 28 x 256 67840 

7 
D/w 

Convolution 
2 3 x 3 x 256 28 x 28 x 256 133376 

8 
D/w 

Convolution 
1 3 x 3 x 512 14 x 14 x 512 266752 

9 
D/w 

Convolution 
1 3 x 3 x 512 14 x 14 x 512 266752 

10 
D/w 

Convolution 
1 3 x 3 x 512 14 x 14 x 512 266752 

11 
D/w 

Convolution 
1 3 x 3 x 512 14 x 14 x 512 266752 

12 
D/w 

Convolution 
1 3 x 3 x 512 14 x 14 x 512 266752 

13 
D/w 

Convolution 
2 3 x 3 x 512 14 x 14 x 512 528896 

14 
D/w 

Convolution 
2 3 x 3 x 1024 7 x 7 x 1024 1057792 

15 Avg Pooling 1 Pool 7 x 7 7 x 7 x 1024 - 

16 
Fully-

Connected 
1 1024 x 18 1 x 1 x 1024 - 

17 Softmax 1 Classifier 1 x 1 x 18 - 

     3185088 
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4.4.8. Model Training. The model training process combines two tasks: (i) 

classification of images into object classes and (ii) regression of bounding boxes for the 

correct localization of the images [160]. The objective cost function is the weighted sum 

of the confidence loss (conf) and the localization loss (loc). For a default bounding box 

with center (𝑐𝑥, 𝑐𝑦), width (𝑤) and height (ℎ), Liu et al. [161] gives the overall objective 

loss function, 𝐿(𝑥, 𝑐, 𝑙, 𝑔), as Equation (4.23), Equation (4.24), Equation (4.25) and 

Equation (4.26). 𝛼 and 𝑁 are localization weight and the number of matched default 

boxes, respectively. The first term of the cost function is the confidence error from the 

classification task, which is the softmax loss over confidences (𝑐) of multiple object 

classes. The second term is the localization error from the regression task, which is a 

Smooth L1 loss between the ground truth box (𝑔) and the predicted box (𝑙). The 

localization error is determined using the Jaccard Index in Figure 4.10, which matches 

the default boxes with ground truth detection for similarity measurements. The 

optimization method, RMS Prop, by Hinton et al. [162] was used to minimize the 

objective cost function. Hinton et al. [162] proposed this gradient-based method as a 

solution to Adagrad’s diminishing learning rate problem. RMS Prop uses a quotient of an 

exponentially decaying mean of squared gradients to produce an adaptive learning rate. 

The RMS Prop optimization algorithm is shown in Figure 4.13.  

𝐿(𝑥, 𝑐, 𝑙, 𝑔) =  
1

𝑁
{(− ∑ 𝑥𝑝𝑖𝑗 log(�̂�

𝑝
𝑖) − ∑ log(�̂�0𝑖)

𝑖𝜖𝑁𝑒𝑔

𝑁

𝑖𝜖𝑃𝑜𝑠

)

+  𝛼 (∑ ∑ 𝑥𝑖𝑗
𝑘 smooth𝐿1(𝑙𝑖

𝑚 − �̂�𝑖
𝑚)

𝑚𝜖{𝑐𝑥,𝑐𝑦,𝑤,ℎ}

𝑁

𝑖𝜖𝑃𝑜𝑠

)}     

 

 

(4.23) 
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�̂�𝑖
𝑝 = 

exp (𝑐𝑖
𝑝)

∑ exp (𝑐𝑖
𝑝)𝑝

      
(4.24) 

�̂�𝑗
𝑐𝑥 = 

(𝑔𝑗
𝑐𝑥 − 𝑑𝑖

𝑐𝑥)

𝑑𝑖
𝑤 , �̂�𝑗

𝑐𝑦
= 
(𝑔𝑗

𝑐𝑦
− 𝑑𝑖

𝑐𝑦
)

𝑑𝑖
ℎ      

(4.25) 

�̂�𝑗
𝑤 = 𝑙𝑜𝑔 (

𝑔𝑗
𝑤

𝑑𝑖
𝑤) , �̂�𝑗

ℎ = 𝑙𝑜𝑔 (
𝑔𝑗
ℎ

𝑑𝑖
ℎ)     

(4.26) 

  

Figure 4.11. DragNet architecture  

 

 

Figure 4.12. SSD principle 
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Figure 4.13. RMS prop algorithm [147] 

4.5. MODEL VERIFICATION AND VALIDATION  

The experiments for model verification and validation use the data in Table 4.2 

and Table 4.3. These initial parameter values were chosen based on what has been 

observed to perform well on other object detection tasks. A model fine-tuning experiment 

was later designed to further optimize the model, based on the most significant 

parameters. An initial model (Model 1) was developed using all the data augmentation 

techniques in section 4.2.2. However, the best model (Model 2) was obtained from using 

only a combination of horizontal image reflections (flipping), random image cropping 

and pepper and salt noise addition. The main idea in the model verification process was 

to establish that the patterns-of-interest, within the data, was being learned by the model. 

This was achieved using the optimization problem in equation (4.15). In order to 

establish that the proper model weight training was taking place, the error function was 

tracked over 1000 epochs and 200,000 iterations of training. 
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Table 4.2. Model input parameters 

INPUT PARAMETERS VALUE 
    

Batch Normalization   

batch_norm_decay 0.9997 

batch_norm_epsilon 0.001 

    

Feature Extractor   

minimum_depth 16 

depth multiplier 1.0 

regularizater L2_norm 

regularization_weight 0.00004 

activation RELU 

classification loss weight weighted_sigmoid 

    

Multi-box Detector   

similarity calculator IOU 

dropout probability 0.8 

unmatch threshold 0.5 

match threshold 0.5 

kernel size 1 

number of layers 6 

minimum scale 0.2 

maximum scale 0.95 

aspect ratios 0.33, 0.5, 1.0, 2.0, 3.0 
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Table 4.3. More model input parameters 

INPUT PARAMETERS VALUE 
    

Losses   

classification weight 1.0 

localization weight 1.0 

classification loss weight weighted_sigmoid 

localization loss weight weighted_smooth_L1 

    

Non-Max Suppression   

iou threshold 0.6 

score converter sigmoid 

score_threshold 1x10**-8 

max_total_detections 100 

max_detections_per_class 100 

    

Training Configuration   

train batch size 10 

Training epochs 1000 

optimization RMS_Prop 

learning rate 0.004 

decay steps 800720 

decay factor 0.95 

training steps 250000 

test data size 120 

momentum_decay 0.9 

momentum_epsilon 1.0 

momentum_optimizer_value 0.9 

 

For binary problems, random classification will achieve a loss reduction rate of 

about 50% on average. However, the dragline vision model is an eighteen (18) object-

class problem, which places random classification performance at about 5.56% loss 

reduction rate. Therefore, if the minimum loss reduction rate from the model is 

significantly higher than 5.56%, this implies that the model is not “guessing” image 

classes but is actually “learning” through the training process. This would imply that the 

model is behaving the right way. A threshold of 70% is significantly higher than 5.56% 
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from random classification. Therefore, the model was considered to be sufficiently 

verified if the initial training error is reduced by at least 70%. For comparison, Figure 

4.14 shows the training speed of both models. Model 2 trained slightly faster at about 3.0 

iterations per second, as compared to 2.1 iterations per second for Model 1.  

 

 

Figure 4.14. Model training speed over 200,000 epochs 

 

From the training results in Figure 4.15, the loss function of the final model, 

Model 2 (as well as Model 1) dropped from an initial 75.0 to below 10.0 within the first 

20,000 iterations. It then tapered off to under 1.0 over 200,000 iterations, signifying a 

loss reduction rate of over 98.7%, which is well above the 5.56% naïve classification rate 

as well as the 70% verification threshold. Therefore, the model was considered verified 

and acceptable.  
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The model validation process involved testing Model 2 on new image data sets to 

evaluate how well it performs using both object recognition and object detection tasks on 

unseen data. Figure 4.16 shows the confusion matrix from the evaluation of Model 2. In 

machine learning, a confusion matrix (or error matrix) is a tabular layout that is used to 

describe and visualize the performance of a classification model. The error matrix results 

shows that the model averages 82.6% classification accuracy across all 18 object classes 

with only 2 class accuracies falling below 70%. Also, there were only 25 no-detection 

cases out of a total of 288 test cases, giving the model a 91.3% detection accuracy. 

Generally, the model performs both classification and detection tasks considerably well. 

Further experimentation will investigate its suitability for real-time applications, as well 

as its sensitivity to certain hyper-parameters.     

 

Figure 4.15. Model training results 
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Figure 4.16. Confusion matrix from model 2 tests 

 

4.6. EXPERIMENTATION 

Three experiments were conducted on the DragNet vision model to fine-tune 

some hyper-parameters and to investigate its usefulness for real-time application.  

4.6.1. DragNet Hyper-parameters. The 39 input parameters, used to train the 

DragNet model are given in Tables 4.2 and 4.3. The values for these parameters were 

chosen based on domain knowledge and on parameter choices which have been 
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Shovel - - - - - - - - - - - - - - - - 1 22 2 88.0

Loader - - - - - - - - - - - - - - - - 13 1 1 86.7

Human - - - - - - - - - - - - - - - 4 - - 1 80.0

Haul 

Truck
- - - - - - - - - - - - - 1 8 - - - 2 72.7

Grader - - - - - - - - - - - - - 13 - - - - 2 86.7

Fmn_J - - - - - - - - - - - - 10 - - - - - 3 76.9

Fmn_H - - - - - - - - - - 1 11 3 - - - - - 4 57.9

Fmn_G - - - - - - - - - - 20 - - - - - - - - 100.0
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successful for similar image classification and detection problems. An experiment was 

designed to fine-tune three of the DragNet parameters, that typically have the most 

impact on performance for image detection problems. Table 4.4 shows a summary of this 

experiment. 

 

Table 4.4. DragNet hyper-parameters experiment 

 

4.6.2. Bucket Pose Estimation. The study of dragline bucket pose estimation is 

significant for multiple reasons. It has been used to prevent bucket collisions on dragline 

swing-automated systems using image segmentation [7] as well as for quantifying 

payload by reducing digital images to digital terrain models in real-time during bucket 

Objective:
To investigate the effects of three model hyper-parameters 

on model performance.

Parameters [Scope]:

(i) Localization weight: [0.5, 1.0, 2.0]                                           

(ii) Transfer function: [RELU, RELU_6, NONE]                                 

(iii) Similarity Calculator: [IOU, IOA]

Number of experimental tests: 6

Model Training time (epochs): 50,000

Significance:

The proposed DragNet model is based on an arbitrary 

choice of localization weight (1.0), transfer function 

(RELU_6) and similarity calculator (IOU). This experiment 

will help to determine whether model performance will 

benefit from further optimization of these parameters.

Expected results:

Based on domain knowledge and previous image 

recognition studies, the base DragNet model is expected to 

perform well. However, it is unclear whether a different 

combination of these three parameters will yield better  

performance.

Experiment I : DragNet Parameters
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loading [35]. As previously discussed, both image segmentation and digital terrain 

modeling methods have major limitations in active environments where multiple objects 

need to be recognized in the same image sequence. Therefore, a bucket pose estimation 

experiment was conducted to test the performance of the DragNet perception model on a 

single loading cycle of dragline excavation. The model was tested on a publicly-available 

dragline excavation video and the video output saved. The model was evaluated based on 

its detection performance in the following five phases: (i) Swinging (pre-loading), (ii) 

Bucket loading, (iii) Hoisting, (iv) Swinging (post-loading), and (v) Dumping. The 

model’s detection rate was then evaluated by retrieving images from the video results at 

0.2 frames per second. Table 4.5 gives a summary of this experiment. 

Table 4.5. DragNet bucket pose experiment 

 

Objective:
To evaluate the performance of the DragNet model on 

bucket detection tasks

Experimental tests: Bucket Pose Estimation: 1 test video                               

Significance:

The bucket pose estimation video test will evaluate the 

capability of the DragNet model for real-time bucket 

position detection through all the phases of a dragline 

operation cycle. Over 99.0% model performance is 

required for low collision / accident risk, especially during 

the bucket swing phase. 

Expected results:

The DragNet model is expected to perform well on the 

bucket detection task. However, it is unlikely to meet the 

over 99.0% performance threshold. A more expansive data 

collection and extended model training will be required to 

exceed the performance threshold for safe operation.

Experiment II: DragNet Application - Bucket Pose Estimation
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4.6.3. Terrain Recognition. Up to date, the most comprehensive study involving 

automated terrain recognition was reported by Kim et al. [163]. However, their 

automated system requires a pre-planning stage during which a 3D laser scanner is used 

to scan the entire excavation area for obstacles and for terrain analyses. Therefore, the 

model is incapable of real-time application with an intelligent excavator. An experiment 

was conducted to evaluate the performance of the DragNet perception model for real-

time terrain recognition. The model was tested on a terrain video, which contains all the 

nine (9) terrain classes used in the development of the model. Both classification 

performance and detection rate were evaluated by retrieving images from the video 

results at 0.2 frames per second. Table 4.6 gives a summary of this experiment. 

Table 4.6. DragNet terrain recognition experiment 

 

Objective:
To evaluate the performance of the DragNet model on 

terrain recognition tasks.

Experimental tests: Terrain Recognition: 1 test video

Significance:

The terrain recognition video test will evaluate the ability of 

the DragNet model to accurately recognize different 

excavation terrains and environments. The ability to 

differentiate between terrains, in real-time, will allow an 

autonomous excavator to adjust its digging strategy 

accordingly for optimum excavation efficiency.

Expected results:

The DragNet model is expected to perform well on terrain 

recognition tasks. However, it is unlikely to meet the over 

99.0% performance threshold. A more expansive data 

collection and extended model training will be required to 

exceed the performance threshold for safe operation.

Experiment III: DragNet Application - Terrain Recognition



135 

4.7. SUMMARY 

This section describes the development of the DragNet perception model. The 

Convolutional Neural Network (CNN) was briefly discussed and the general pipeline for 

model training using CNN was explained. The image data collection, annotation and 

augmentation procedures were also discussed in detail. The DragNet model combines the 

feature extraction system of Howard et al. [160] with the Single Shot object detection 

method of Liu et al. [161]. The final model was verified using the change in error loss 

over 200,000 iteration cycles. Model evaluation showed good results with the DragNet 

model averaging over 80% in accuracy. Experiments have been designed to further 

explore the application of the model to excavation videos. 
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5. RESULTS AND DISCUSSION 

This section discusses the results of all the experiments, outlined in the previous 

sections. A total of eight experimental programs were carried out, involving five bucket 

excavation simulation experiments and three dragline vision model experiments. The first 

ezperiment was conducted to evaluate the performance of the XGBoost model on a wide 

range of new material properties. This was done to show that the proposed XGBoost 

model significantly outperforms conventional curve-fitting methods. The new material 

properties, used in this experiment, were taken from 20% of the original data (170 

samples), which had been reserved for model evaluation.  

Using the same dataset, a second experiment was carried out to gain some insight 

into the underlying relationships between formation properties and DEM 

microparameters. Also, two experiments were carried out, using the bucket simulation 

model, to determine how some formation characteristics influence excavation 

performance. The formation characteristics which were considered were the formation 

bulk density and the material size distribution. Finally, an experiment was carried out to 

investigate some current theories on formation failure and material density variations 

during dragline operations.  

For the dragline vision model, one experiment was conducted to investigate the 

sensitivity of model performance to three DragNet hyper-parameters. The hyper-

parameters of interest were the localization weight, the activation function and the 

similarity calculator. Two experiments were also conducted to evaluate the performance 
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of the DragNet model on actual excavation automation tasks. These included a bucket 

pose estimation video test and a terrain recognition test. 

5.1. LARGE SCALE PREDICTIONS USING THE XGBOOST MODEL 

In this study, the predictive power of the XGBoost calibration model was 

evaluated on 170 triaxial tests. For comparison, the predictive ability of the polynomial 

regression model was also tested on the same data set. These new data points were not 

involved in the original model training. Figures 5.1 to 5.6 and Table 5.1 show a summary 

of the experimental results. 

Table 5.1. RMSE and r-squared model evaluation results  

Performance 

Metric 

fric emod 

Non-Linear 

Regression 
XG Boosting 

Non-Linear 

Regression 
XG Boosting 

RMSE 4.0000 0.3462 2.0555 1.6072 

R Squared -43.4603 0.6670 0.2497 0.5413 

 

Figures 5.1 and 5.2 show plots of the actual fric (µ) values from the 170 triaxial 

tests against fric value predictions of the XGBoost and polynomial regression models 

respectively. For these plots, the ideal calibration model will have a line of best fit with a 

slope of 1.0 and very little variance in the spatial position of data points along the line. 

From Figure 5.1, the results of the XGBoost model predictions demonstrate a lot of the 

desired outcomes. On the 170 tests, its line of best fit has a slope of 1.04. By comparison, 

the polynomial regression model has a slope of 0.05 (Figure 5.2). 
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Figure 5.1. XGBoost model: fric (µ) prediction performance on new data set 

 

Generally speaking, the XGBoost model predictions miss the actual fric values 

only narrowly, which is reflected in the relatively low RMSE score of 0.3462 over 170 

tests, compared to an RMSE score of 4.0 in the case of the polynomial regression model. 

Also, the 𝑅2 value of 0.6670 suggests that the XGBoost model is able to account for 

66.7% of the variability in fric values. This is significant because, for the same data set, 

the more traditional polynomial regression was unable to account for fric value variability 

(𝑅2 = -43.46).  
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Figure 5.2. Polynomial regression model - fric (µ) prediction performance 

 

To provide a better visual aid of model performance, the cumulative gains chart 

approach was implemented for both models using the 170 test results (Figure 5.3). 

Cumulative gains charts paint a better picture of model performance by averaging model 

results over a number of predictions. The chart was created by first ordering the actual 

parameter values in ascending order. The results are then grouped into bins of 10 

successive data points. For each bin, the mean of the 10 points are plotted as a single 

point on the graph. This then continues progressively in increasing order up to the bin 
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containing the 10 largest parameter values. In simple terms, the cumulative gains chart 

plots the prediction performance of a model by considering the average of its predictions 

over a number of data points, which are very close in terms of numerical value.  

The model prediction plots in Figures 5.1 and 5.2 show the actual model 

performance for several specific, individual cases. On the other hand, the cumulative 

gains chart in Figure 5.3 paints a more holistic picture of the kind of model performance 

which can be expected within any small range of parameter values. From the plot, it can 

be seen that the XGBoost model predictions closely mirror actual fric values from 0.3 to 

0.55 over the first 25 bins. For fric values in the 0.55 to 1.1 range, the model only slightly 

over-predicts actual parameter values. From 1.1 to 1.4, the model is able to predict near-

exact fric values. Finally, from 1.4 to 2.25, the model slightly under-predicts actual fric 

values. Generally, the XGBoost model performs significantly well across all parameter 

value ranges.  

By comparison, the polynomial regression model significantly over-predicts fric 

values in all cases. Particularly, the cumulative gains chart does a very good job of 

exposing the limitations of the polynomial regression model. From the results scatter plot 

in Figure 5.2, it would seem that the polynomial regression model is able to produce 

acceptable predictions in some individual cases. However, when its performance in a 

small value range is averaged over 10 data points, Figure 5.3 shows that the average 

model prediction is way off the mark in all cases. Figures 5.4 and 5.5 show plots of the 

actual emod (𝐸∗ ) values from the 170 triaxial tests against emod value predictions of the 

XGBoost and polynomial regression models, respectively. From the two plots, both 

models produce a line of best fit with slope close to 1.0 over the 170 tests. However, the 
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XGBoost model predictions are much closer to the actual emod values. This can be seen 

from the low variance in the XGBoost prediction scatter plot (Figure 5.4), relative to the 

high variance in the polynomial regression results (Figure 5.5).  

 

 

Figure 5.3. Cumulative gains chart for actual and predicted fric values 

 

The superior performance of the XGBoost model is also reflected in the relatively 

lower RMSE score of 1.6072, compared to 2.0555 in the case of the polynomial 

regression model. Also, the 𝑅2 value of 0.5413 suggests that the XGBoost model is able 

to account for 54.13% of the variability in emod values. This is significant because, for 

the same data set, the more traditional polynomial regression is only able to account for 

24.97% of the emod value variability. 
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Figure 5.4. XGBoost model: emod prediction performance 

 

 

Figure 5.5. Polynomial regression model: emod prediction performance 
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Figure 5.6. Cumulative gains chart for actual and predicted emod values 

 

Figure 5.6 shows a cumulative gains chart, comparing actual and predicted emod 

values for the two models. From the plot, it can be seen both models perform sufficiently 

well for emod value predictions. From emod values of 1.2 to 4.2 GPa, both models over-

predict actual values. However, the XGBoost model predictions are much closer to the 

actual values. In the 4.2 to 6.0 GPa emod range, both models closely mirror actual emod 

values with the XGBoost model, performing slightly better. Finally, for emod values in 

the 6.0 to 9.2 GPa range, both models under-predict actual parameter values. Again, the 

XGBoost model performs slightly better than the polynomial regression model in this 

range.  
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Figure 5.7. Comparison of training data and prediction performance for fric 

 

One significant observation from the two cumulative gains charts was that the 

XGBoost model generally produced very accurate predictions in the middle portion of 

both the fric and emod data sets. A comparison between the original training data and the 

model prediction performance for both fric (Figure 5.7) and emod (Figure 5.8) further 

revealed that the distribution of the data significantly impacted the results. Generally, the 

best predictive performance on the test data was obtained in the value ranges, which had 

a lot of occurrence in the original training data. On the other hand, parameter value 

ranges with low occurrence in the training data set, also recorded less accurate 

predictions in the test data. This observation is very encouraging as it suggests that, with 

significantly more data and a more even train data distribution, the XG Boost algorithm 

can be used to train a calibration model with even more accurate predictions.   
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Figure 5.8. Comparison of training data and prediction performance for emod 

 

5.2. EFFECTS OF FORMATION PROPERTIES ON DEM PARAMETERS 

An experiment was carried out to investigate the effects of formation properties 

on the DEM micro-parameters. The relationships between DEM micro-parameters and 

earth material physical properties have still not been clearly defined by any previous 

study. While the XGBoost calibration model, proposed in this study, produces quite 

accurate predictions, it remains a black box approach and therefore, reveals very little 

about the underlying DEM parameter – material property relationships. One way to 

investigate these underlying relationships is through the use of partial dependence plots 

(PDPs).  PDPs are graphical visualizations which will reveal the partial effects of a given 
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material property (𝐸𝑦𝑚, 𝐸𝑠𝑚, 𝑣𝑝𝑟 or µ𝑓) on a DEM micro-parameter (µ and 𝐸∗), when all 

the other material properties are held constant. The R package, ‘pdp’, which was 

introduced by Greenwell [164], was implemented in RStudio to graphically examine 

these relationships. Figure 5.9 shows the complex relationship between the formation 

friction coefficient (µ𝑓) and DEM micro- parameters, emod (𝐸∗) and fric (µ).  

 

 

Figure 5.9. The effects of friction coefficient on DEM parameters 

 

From the plot, both 𝐸∗ and µ remain fairly constant when µ𝑓 is in the 0.25 to 0.30 

range. When µ𝑓 ranges from 0.30 to 0.40, both µ and 𝐸∗ generally rise steadily, with 

maximum variations of 0.15 and 0.5GPa respectively. Beyond a µ𝑓 value of 0.40, 𝐸∗ 

remains fairly constant whilst µ generally continues to rise. Figure 5.10 shows the effects 

of poisson ratio on DEM micro-parameters. From the plot, 𝐸∗rises steadily with 

increasing 𝑣𝑝𝑟 up to a value of -0.55, where it begins to decline steadily with some value 

fluctuations. On the other hand, µ generally declines with increasing 𝑣𝑝𝑟 up to a 𝑣𝑝𝑟 value 
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of -0.4, beyond which it remains fairly constant. Figure 5.11 also shows the relationships 

between Young’s modulus (𝐸𝑦𝑚) and micro-parameters, 𝐸∗ and µ. Generally, both 

relationships are very irregular, unpredictable and provide very little insight for future 

modeling. 

 

 

Figure 5.10. The effects of poisson ratio on DEM parameters 

 

On the other hand, there appears to be a more well-defined relationship between 

𝐸𝑠𝑚 and DEM micro-parameters (Figure 5.12). For 𝐸𝑠𝑚 values below 0.6 GPa, both 𝐸∗ 

and µ constantly fluctuate and are unpredictable. However beyond 0.6 GPa, 𝐸∗ and µ take 

on fairly constant values with maximum variations of 0.2 GPa and 0.2, respectively. This 

observation is particularly interesting because it reveals one major limitation of most 

previous earth material calibration studies. For both 𝐸∗ and µ, two studies may arrive at 

different conclusions about their relationships with 𝐸𝑠𝑚, depending on the range of 𝐸𝑠𝑚 

values, which are used in each study. For example, if a study only considers 𝐸𝑠𝑚 values 
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between 0.8GPa and 1.4 GPa, it will be erroneously concluded that the 𝐸𝑠𝑚 relationships 

with 𝐸∗ and µ are both linear. However, tests over a wider range of values tell a different 

story. This explains one limitation of the current material calibration paradigm of limited 

testing.   

 

 

Figure 5.11. The effects of Young’s modulus on DEM parameters 

 

 

Figure 5.12. The effects of shear modulus on DEM parameters 
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Overall, the partial dependence plots show that the relationships between DEM 

parameters and material properties are neither clear nor predictable. This further 

emphasizes the need for calibration methods, like the XGBoost model, which are able to 

learn complex, abstract patterns that cannot be revealed from the data by simpler 

methods.  

 

5.3. EFFECTS OF MATERIAL CHARACTERISTICS ON BUCKET LOADING 

Experiments were carried out to investigate the effects of material physical 

characteristics on bucket loading. Two main material characteristics were considered, 

namely: (i) material size distribution  (ii) material density 

5.3.1. Material Size Effects on Bucket Loading. Figure 5.13 shows the results 

of material size distribution on dragline loading performance for three bucket lengths 

(15m) of dragging. Generally, the loading behaviors of the various material size 

distributions follow the expected trends. After about half a bucket length of dragging 

(2.5m), the formation with the smallest material size range (2.5 to 25cm) recorded the 

highest payload (42 tons), whilst the formation with the largest material size distribution 

(95 to 100cm) recorded the lowest payload (5 tons). Similarly, the initial payload for the 

other three tests decreased with increasing material size distributions (2.5 to 50 50cm, 20 

to 25cm, and 45 to 50cm).   

For granular earth materials, this observation corresponds to normal behavior. 

This is because finer discrete particles will generally offer less resistance to excavation, 

as compared to larger, blocky particles. The same trend was observed at one bucket 

length (5m). However, after a drag distance of 1.5 times the bucket length (7.5m), the 
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formation with the largest size distribution only achieves a 34% bucket fill factor (24 

tons). By contrast, the other four formations achieve and exceed 100% fill factor within 

the same drag distance (Figure 5.14). Overall, the observations in this experiment support 

the theory that bucket loading behavior is strongly influenced by the material size 

distribution of the formation. Generally, the smaller the material size distribution, the 

better the loading performance. 

 

  

Figure 5.13. Bucket payloads for different material size ranges 

 

For a bucket width of 3.9m, all the formations which had material sizes within 

26% of the bucket width (50cm radius) were able to reach full bucket capacity in 

relatively the same amount of time. On the other hand, the formation with material sizes 

greater than the 26% threshold required considerably more time to reach full bucket 
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capacity. In an earlier study, Lumley [142] proposed that good blasting fragmentation is 

achieved when the formation consists of fines up to about 33% of the bucket width. The 

observations in this study generally support the assertions of Lumley [142] and show that 

the threshold may lie between 26% and 33%.  

 

 

  

Figure 5.14. Bucket fill factors for different material size ranges 

 

5.3.2. Material Density Effects on Bucket Loading. Figures 5.15 and 5.16 show 

the results from the material density experiment. From Figure 5.15, the bucket payload is 

strongly influenced by material density. As expected, the bucket payload, in tons, 

increases with increasing material density. This effect was very pronounced at lower 

densities (1200 to 1400 𝑘𝑔𝑚−3) but became less marked at relatively higher densities 

(1900 and 2100 𝑘𝑔𝑚−3). In contrast, the bucket fill factor appears to have an inverse 
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relationship with material density. From Figure 5.16, it was observed that the bucket fill 

factor decreases as the material density increases. 

 

 

Figure 5.15. Effects of material density on bucket loading 

 

 

Figure 5.16. Comparison of bucket fill factors for different material densities 
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5.4. DENSITY ZONE VARIATIONS DURING BUCKET LOADING 

An experiment was carried out to investigate the development of density zones 

during bucket loading, as previously reported by O'Beirne [35]. In this experiment, nine 

(9) density zones (Figure 5.17), both inside and ahead of the bucket, were tracked for four 

bucket lengths of simulation (18m). The tracking results are shown in Figure 5.18.  

 

 

Figure 5.17. Plan and side view of density zones  

 

From Figure 5.18, there appears to be high compression action in the three density 

regions ahead of the bucket (i.e. Regions I, II and III). Being 5m ahead of the bucket, 

Region I experiences the least impact of bucket dragging of the three regions. Starting 

from an initial zone density of 1.01 𝑡𝑜𝑛/𝑚3, the Region 1 density rises quickly to 1.25 

𝑡𝑜𝑛/𝑚3 over 1 m of bucket dragging. This is expected behavior as the initial bucket 
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movement further compresses the material ahead of the bucket, thereby increasing the 

Region 1 density. However, the compression action reaches a threshold and the zone 

density is seen to plateau for the rest of bucket dragging.  

 

 

Figure 5.18. Density zones development, observed during simulations 

 

In the case of Regions II and III, the initial material compression at the start of 

bucket dragging was more drastic as these zones are much closer to the bucket action. 

From an initial 1.0 𝑡𝑜𝑛/𝑚3 zone density, the Region II and III densities climbed rapidly 

to 1.9 𝑡𝑜𝑛/𝑚3 and 2.5 𝑡𝑜𝑛/𝑚3 respectively over the first 1m of bucket dragging. For 

Region II, which is 3m ahead of the bucket, the initial surge in zone density began to fall 

quickly over the next 5m of dragging, reaching a plateau of 1.2 𝑡𝑜𝑛/𝑚3 after 6m of 

dragging. Region III, which is 1m ahead of the bucket, experienced the highest impact of 

bucket dragging with a sustained zone density of 2.2 to 2.6 𝑡𝑜𝑛/𝑚3 throughout bucket 

dragging. Inside the bucket, the upper zones (VII, VIII and IX) experienced the least 
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density variations, as expected. This is because these zones are the last to fill during 

loading. Regions IV and V, inside the bucket, also experienced very high compression, 

resulting in maximum zone densities of 2.0 and 2.1 𝑡𝑜𝑛/𝑚3, respectively. However, this 

effect diminishes towards the back of the bucket (Region VI), where the highest density 

recorded was 1.4 𝑡𝑜𝑛/𝑚3. 

In Figure 5.18, there appears to be cyclic changes in material density, especially 

in the bucket frontend zones (Regions I, II and III). This behavior is best explained by the 

studies of Payne [76] on wide excavation tools. As the bucket digs through the formation, 

a wedge-shaped block of material is formed in front of the bucket frontend and moves 

forward with it. Therefore, material compression increases in these zones, resulting in 

high local densities. However, when the material failure plane of the wedge-shaped block 

fully develops, the block of material collapses into the bucket. Consequently, the 

compression effect diminishes, leading to relatively lower local densities. The process is 

repeated when the next wedge-shaped block is formed, as the bucket progresses. This 

explains the fluctuating material densities in Figure 5.18. 

During the simulation, the average material bulk density was 1.2 𝑡𝑜𝑛/𝑚3. 

Therefore, any region which records densities greater than 1.5 times the average bulk 

density, was considered a high density zone. Figure 5.19 summarizes the highest 

recorded densities in each zone throughout the bucket dragging. The figure confirms the 

existence of a material density distribution inside the bucket as initially proposed by 

O'Beirne [35]. It also shows that a similar density distribution develops ahead of the 

dragline bucket. From the observations of O'Beirne [35], the density distribution inside a 

fully-loaded bucket decreases towards the rear of the bucket (Figure 5.20). A similar 
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observation was made in the 3D simulations as the bucket rear (Regions VI and IX) 

recorded some of the lowest densities during loading.   

 

 

Figure 5.19. Material density variations during loading 

 

Earlier investigators of dragline bucket filling [88, 89] observed the development 

of shear zones during the loading process (Figure 5.21). The observations in this 

experiment generally support the existence of very active zones (II, III, IV and V) along 

with less active zones (I, VI, VII, VIII and IX) inside and ahead of the bucket. The Shear 

Zone Theory suggests that the virgin and undisturbed material begins at the teeth of the 

bucket and extends ahead. However, the observations from this study indicate a lot of 

material disturbance occur ahead of the bucket teeth, especially within a distance equal to 

two-thirds of the bucket length (Regions II and III).   
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Figure 5.20. Payload zones and densities [35] 

 

 

Figure 5.21. The shear zone theory [88] 

5.5. INVESTIGATING EFFECTS OF MODEL HYPER-PARAMETERS  

An experiment was conducted to investigate the effects of various model hyper-

parameters on the performance of the DragNet model using Table 5.2. The experiment 

investigated the effects of three hyper-parameters: (i) the localization-classification 

weight ratio, 𝛼, (ii) the activation / transfer function  (iii) the similarity calculator 

function. Figure 5.22 shows results of the localization weight experiment. From the three 
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tests, the highest validation error was recorded for Model_1, where the localization-

classification weight ratio, 𝛼 was kept at 0.5. Model_2, with an 𝛼 value of 2.0, performed 

slightly better.  

However, the lowest error was obtained in the case of the base model (Model 0), 

where 𝛼 was kept at 1.0. This suggests that, for the current dataset, the optimum 𝛼 value 

lies between 0.5 and 2.0, converging towards the neighborhood of 1.0. Therefore, future 

DragNet model improvements may focus on extensive tests within the 0.5 to 2.0 𝛼 value 

range. Figure 5.23 shows the results of the transfer function experiments.  

From the graph, the worst model performance was from Model_4, where no 

activation / transfer function was used. There was very little difference in performance 

between the models with RELU (Model_4) and RELU_6 (Model_0) activation units. 

However, both activation units produced better results than when no activation function 

was used. In terms of the choice of activation function, the graph suggests that the base 

model (Model_0) is optimum since there was no real difference in performance between 

the RELU and RELU_6 units.  

 

Table 5.2. Model experiments 

 
Model 0 Model 1 Model 2 Model 3 Model 4 Model 5 

Localization 

weight, 𝜶 

1.0 0.5 2.0 1.0 1.0 1.0 

Transfer 

function 

RELU_6 RELU_6 RELU_6 RELU NONE RELU_6 

Similarity 

calculator 

iou iou iou iou iou ioa 
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Figure 5.22. Results of localization weight experiment 

 

Figure 5.24 shows the effect of two similarity calculator functions, IOU and IOA, 

on model performance. From the graph, the base model with IOU (Model_0) outperforms 

the IOA model (Model_5). Figure 5.25 shows the combined results of the hyper-

parameter tuning experiment. Of the three hyper-parameters, the one with the least 

impact on model performance was found to be the localization-classification weight ratio, 

𝛼. Within a 0.5 to 2.0 range, the choice of 𝛼 value only slightly affected model 

performance. From the graph, the choice of a similarity calculator function is seen to be a 

bit more significant than the 𝛼 value. However, the highest difference in performance, 

relative to the base case (Model_0), occurred with Model_4, where no activation units 

were used. Very drastic improvements in model performance were achieved with both 

RELU and RELU_6 activation units. This suggests that, the most significant impact on 

model performance was the choice of an activation function. 
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Figure 5.23. Results of transfer function experiment 

 

 

 Figure 5.24. Effects of similarity calculator function 
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Figure 5.25. Results of model hyper-parameter tuning experiment 

 

5.6. DRAGNET PERFORMANCE ON BUCKET POSE ESTIMATION 

An experiment was conducted to investigate the performance of the DragNet 

model on bucket pose estimation tasks. Figures 5.26 to 5.29 show some detection results 

for the loading, hoisting, swinging and dumping phases respectively. 

 

Figure 5.26. Some loading phase detection results 
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Figure 5.27. Some hoisting phase detection results 

 

Figure 5.30 summarizes the detection rate results for the entire video. Perfect 

detections (100%) were achieved during the hoisting and material dumping phases. The 

lowest detection rate was recorded during the pre-loading bucket swing phase (72.62%). 

Interestingly, a relatively high detection rate of 90.63% was recorded in the post-loading 

swing phase. One possible explanation of this stark difference in swing phases 

performance is that the pre-loading swing phase is the only phase where the bucket has 

no payload material. Also, the video quality appears to be relatively poor during the 

swing phases (Figure 5.28) when the bucket moves a bit faster than in the other phases. 

From Figure 5.28, it appears that during the swing phases, the dragline bucket blends into 

the excavation environment and especially so, when the bucket is empty. 

 

  

Figure 5.28. Some swinging phase detection results 
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A better detection rate could be achieved with better video quality and with a 

sharper contrast in color between the dragline bucket and the excavation environment. 

The loading phase recorded the next lowest detection rate of 73.33%. To an extent, this 

can be explained by Figure 5.26 which shows that the bucket is partially covered by the 

excavation material during bucket loading. From the experimental results, it is clear that 

bucket detection rates can be greatly enhanced by simply painting the bucket with colors, 

that highly contrast with the excavation environment / material. With the advent of 

autonomous excavation, bucket manufacturers may need to consider bucket colors, which 

would be easier to detect in different excavation environments.  

 

Figure 5.29. Some dumping phase detection results 

 

On the average, the DragNet model achieves an 87.32% detection rate across the 

entire video. While this can be considered very good performance, a vision model will 

need to achieve over 99.0% performance across all tasks for safe deployment. Therefore, 

future model improvements may consider including object images from a wide range of 

designs, colors, orientations and excavation environments.  
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Figure 5.30. Detection rate results from the bucket pose estimation test 

5.7. DRAGNET PERFORMANCE ON TERRAIN RECOGNITION 

Figure 5.32 shows some correct terrain classification from the DragNet 

application test. Generally, the DragNet model correctly classified the terrain in most 

instances with a few wrong classifications. Figure 5.31 shows some of the wrong 

detections during the terrain recognition test. Figure 5.33 shows the DragNet model 

detection rate by terrain class. The model achieves very high detection generally, with 

relatively low rates in only two terrain classes (Fmn_H and Fmn_J). Overall, the DragNet 

model achieves a high average detection rate of 90.5% across all terrain classes.  

 

 

Figure 5.31. Some inaccurate DragNet terrain detections 
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Figure 5.34 shows a breakdown of the precision and recall performance of the 

model in the terrain classification task. From the results, the DragNet model achieved 

100% precision and 100% recall on terrain F (Fmn_F). In simple terms, this implies that 

all the Fmn_F image frames in the video were correctly recognized by the DragNet 

model as belonging to Fmn_F (i.e. recall). Also, the model did not wrongly classify 

another terrain as being Fmn_F (i.e. precision). For terrains A, B, C, E and H, the model 

correctly recognized and classified all such image frames in the video sequence, resulting 

in a 100% recall for each of these classes. 

 

 

Figure 5.32. Some accurate DragNet terrain detections 
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Figure 5.33. DragNet detection rate on terrain recognition video test 

 

However, the model also incorrectly classifies images from other classes as 

belonging to these classes, resulting in precision rates of 58% to 85%. In the case of 

terrain G, the model does not correctly recognize all the Fmn_G images in the video 

sequence (77% recall) but it never misclassifies another terrain as Fmn_G (100% 

precision).  The lowest model performance was recorded for Fmn_J terrain classes with 

both model precision and recall falling under 80%. On the average, the model performs 

better in recall (91.3%) than in precision (80.9%) across all terrain class predictions. 

Model improvement efforts may include increasing the size of the dataset as well as 

increasing the model training time. 
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Figure 5.34. DragNet performance on terrain recognition video test 

 

5.8. SUMMARY 

This section presented the results of eight experimental programs, involving three 

dragline vision model experiments and five bucket excavation simulation experiments. 

The first experiment was conducted to investigate the effects of three DragNet hyper-

parameters on model performance. The hyper-parameters of interest were the localization 

weight, the activation function and the similarity calculator. Of the three hyper-

parameters, it was observed that the choice of an activation function had the biggest 

impact on model performance. On the other hand, the localization weight, 𝛼 had the least 
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impact on model performance. Ultimately, the optimum combination of localization 

weight, activation function and similarity calculator was found to be 1.0, RELU_6 and 

IOU respectively. 

Two experiments were also conducted to evaluate the performance of the 

DragNet model on actual automation tasks. These included a bucket pose estimation 

video test and a terrain recognition test. On the bucket pose estimation task, the DragNet 

model achieved 100% detection rates in the hoisting and dumping phases and 90.63% in 

the post-loading swing phase. The lowest detection rates were recorded in the pre-loading 

bucket swing phase (72.62%) and the loading phase (73.33%). On the terrain recognition 

task, the DragNet model achieves variable performance across all terrains, ranging from 

55% to 100% in recall and 58% to 100% in precision. On average, the model achieves an 

87.32% detection rate across all the operation phases for the bucket pose estimation task. 

It also achieves 91.3% average recall and 80.9% average precision for the terrain 

recognition task. However, further model improvements will be required to achieve the 

over 99.0% threshold for safe model implementation.  

A total of 170 triaxial simulation tests were also conducted to evaluate the 

XGBoost calibration model performance on a wide range of material parameters. For 

comparison, the predictive performance of a polynomial regression model was also tested 

on the same data set. From the results, it was observed that the XGBoost model 

predictions closely mirror actual DEM parameters. Generally, the XGBoost model 

performs significantly well across all parameter value ranges. By comparison, the 

polynomial regression model significantly overpredicts DEM parameter values in most 

cases. 
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The 170 test data set was also used to investigate the underlying relationships 

between formation properties and DEM microparameters. The formation properties, of 

interest, included the friction co-efficient, Poisson ratio, Young’s modulus and the shear 

modulus. Overall, the relationship between the formation properties and DEM micro-

parameters was found to be neither clear nor unpredictable. For each formation property, 

it was observed that DEM parameter values vary only slightly locally (across a narrow 

value range) but highly globally ( over a wide range of formation property values). 

Also, two experiments were carried out to determine the effects of formation 

characteristics on excavation performance. The formation characteristics which were 

considered were the formation density and the material size distribution within the 

formation. Material density was found to correlate directly with bucket performance. It 

was also observed that bucket loading behavior is strongly influenced by the material size 

distribution of the formation. Generally, the smaller the material size distribution, the 

better the loading performance. However, for optimum bucket performance, material size 

should be kept between 1% to 26%.  

Finally, an experiment was carried out to investigate the formation failure process 

using the material density distribution in nine different zones, both inside and ahead of 

the bucket. The density distribution inside the bucket was found to decrease towards the 

rear of the bucket, as initially observed by O’Beirne et al. (1997). In contrast to initial 

belief (Rowlands, 1992), a lot of material disturbance was found to occur ahead of the 

bucket, especially within a distance equal to two-thirds of the bucket length. 
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6. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

This section highlights the significant results, conclusions and contributions of this 

research to the existing body of knowledge. It also includes a summary of all methods 

and procedures, used to achieve the research objectives, as well as recommendations for 

further research which was not covered in this study.  

6.1. SUMMARY 

Across the world, coal contribution to energy generation is expected to remain 

above 30% through 2030. Draglines remain the equipment of choice in most surface 

mines, where coal production is achieved through the stripping method. Most previous 

dragline studies have focused on improving dragline productivity. This is justified as a 

10% improvement in productivity has been estimated to be equivalent to $2 million in 

savings per dragline per year [17].  

In recent years, the two major areas of interest in dragline productivity research 

have concerned (i) bucket design improvements and (ii) autonomous excavation, as an 

improvement on the highly variable human operator performance. Most of the existing 

research in bucket design have focused extensively on improvements through 

experiments with physical scale bucket models. However, bucket design testing through 

computer model simulations presents a cheaper and more time-efficient alternative to 

physical scale model testing. At the least, computer simulations may be used for 

preliminary testing of different bucket design ideas before the most promising designs are 
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built physically. This will help to reduce the current opportunity cost of discarding bucket 

designs without any form of testing. 

Towards autonomous excavation, the efforts by ACARP have already resulted in 

the development of an excavator that is able to automate hoisting, swinging and dumping 

tasks [50]. The current efforts towards automating the dragline digging phase have been 

limited to image segmentation methods for bucket detection during the digging process. 

However, the method involves a crude means of identifying bucket edges through color 

filtering. The main weaknesses of the suggested method are: 

(i) The model only deals with one dragline vision problem (bucket pose 

estimation) 

(ii) It requires all buckets to be painted in a specific color (green) for the edge 

detection model to work. 

(iii) The detection model fails at full bucket loading when the green paint is 

covered by the earth material. 

(iv) It involves crude color filtering processes which do not allow for scalable, 

real-time application.  

Therefore, the main objective of this research effort was to propose computer 

models to address these two significant challenges in dragline productivity studies. The 

components of this primary objective include:  

(i) developing a scientific method for calibrating the formation’s constitutive model 

using discrete element parameters.   

(ii) developing a virtual prototype of an industry-standard dragline bucket for formation 

failure analysis and bucket design comparison. 
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(iii) developing a machine vision model for autonomous dragline excavation.   

All three components of the objective have been achieved. Firstly, a machine 

learning approach to earth material calibration has been proposed in this study. The 

model, which is based on the eXtreme Gradient Boosting algorithm [34], was verified 

and validated using laboratory data. It was found to sufficiently predict material 

properties with 80.6% to 95.54% accuracy.  

Secondly, this study has also presented a dragline excavation model, which 

simulates bucket – formation interactions during material loading and predicts excavation 

performance (payload). The model has been verified and validated and was found to 

produce bucket payload, which fall in the ball park of experimental results. Thirdly, a 

machine vision model, based on the mobilenet convolutional neural network architecture 

[160] and on fast single shot multibox detection [161], has been proposed for the 

autonomous dragline. The DragNet model has been verified and validated, with an 

average of 82.6% classification accuracy and 91.3% object detection rate.  

6.2. CONCLUSIONS 

From the XGBoost material calibration experiments, the following conclusions 

are drawn: 

1. The XGBoost model significantly outperforms conventional curve-fitting 

methods. 

2. Unlike previous calibration models, the XGBoost model was designed to 

generalize performance over a wide range of material property values. 
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3. The relationships between DEM microparameters and formation properties are 

more complex than can be explained by simple calibration models. 

4. The relationships between DEM microparameters and formation properties are 

not constant. They are unpredictable at worst or vary between finite value ranges 

at best. 

From the dragline excavation simulation experiments, the following conclusions 

are drawn: 

1. The formation particle size distribution has a significant impact on dragline 

performance. The optimum material size distribution ranges from fines up to 

about a quarter of the bucket width.  

2. Generally, material density has a positive effect on bucket loading. As material 

density increases, payload typically increases. 

3. There is a material density distribution which develops inside and ahead of the 

bucket during loading. The density distribution decreases towards the rear of the 

bucket. The “virgin” material ahead of the bucket teeth (i.e. regions II and III), is 

actually disturbed material because of the compression action of the bucket. 

4. The most active material zones during loading are the areas close to the bucket 

teeth, typically the zones within a distance equal to two-thirds of the bucket length 

(i.e. regions II, III, IV and V).  

From the DragNet vision model experiments, the following conclusions are 

drawn: 

1. For future DragNet model improvements, the choice of an activation  transfer 

function has the most significant impact on performance. Typically, selecting 
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either RELU or RELU_6 activation units promises high model performance 

whilst using no activation units usually produce low performance. 

2. The optimum localization weight for the DragNet model converges towards 1.0. 

3. For the DragNet model, using the Intersection over Union (IOU) similarity 

calculator usually produces better results than the Intersection over Area (IOA) 

alternative. 

4. The DragNet model is able to achieve perfect bucket pose detection during the 

hoisting and dumping phases. 

5. The DragNet model is able to achieve over 90% detection during the post-loading 

swing phase. 

6. The lowest detection rates for the model occur during the pre-loading swing phase 

(72.62%) and the loading phase (73.33%). 

7. The model is able to achieve an 87.32% average detection rate across all 

operation phases on bucket pose estimation tasks. 

8. The DragNet model is able to achieve 80.9% precision and 91.3% recall 

performance on terrain recognition tasks. 

9. While the DragNet model performs considerably well, future improvements will 

be required to meet minimum performance thresholds for safe operation. 

6.3. CONTRIBUTIONS OF PHD RESEARCH 

The following outline the major contributions of this study. 

1. This research initiative introduces a novel approach for geomaterial micro-

parameter calibration. In this new approach, extensive laboratory test simulation 
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is first used to generate significant amounts of data. A powerful machine learning 

algorithm, the eXtreme Gradient Boosting method, is then used to train and 

evaluate a model on the data set. The new approach has been shown to 

outperform conventional curve-fitting methods. 

2. This is the first study to investigate the predictive performance of a geomaterial 

micro-parameter calibration model over a wide range of parameter values.  

3. This study is the first attempt to investigate dragline bucket loading at both full-

scale and in three dimensions using the Discrete Element Method. 

4. This study constitutes the first attempt to investigate the material density 

distribution ahead of the dragline bucket during loading. 

5. This study is also the first attempt at investigating the density distribution inside 

the dragline bucket using the Discrete Element Method. 

6. This study represents the first attempt at correlating blast design and 

fragmentation (material size distribution) to dragline bucket loading performance. 

7. The dragline simulation model, developed in this study, complements current 

bucket design research by providing a cheap and time-efficient tool for comparing 

different bucket geometries for design improvements. 

8. This research effort included over 1500 DEM simulations of typical geomaterial 

triaxial tests. The experimental results (Appendix A) present the actual DEM 

parameter values that may be obtained from a given combination of formation 

property values. This provides a valuable dataset for future material calibration 

studies. 
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9. This study represents the first attempt to develop a multi-purpose vision model for 

the dragline. Earlier models only addressed single and specific vision tasks. 

10. This study introduces a scalable and faster solution to bucket pose estimation 

using the Single Shot MultiBox Detector (SSD) method [161]. 

11. This study is the first attempt to propose a terrain recognition model using the 

Depthwise-Separable Convolutional Neural Network method [160]. 

6.4. RECOMMENDATIONS 

The following areas currently present some of the most promising opportunities 

for research frontier advancement in dragline excavation engineering. 

1. The XGBoost calibration model was developed using the same material size 

distribution and material density. For any given setup, the material bulk density 

was calibrated iteratively in this study since it is a relatively simple task. Future 

research should investigate whether a wide range of densities and particle sizes 

will further improve the model calibration process. 

2. One major challenge that was faced in this study was the unavailability of 

material property data in reported dragline excavation experiments. In order to 

replicate physical excavator-formation interactions in a simulation model, data on 

bucket properties (i.e. geometry, weight, velocity), formation properties (i.e. 

density, porosity, poisson’s ratio, elastic modulus, friction coefficient, particle 

size disstribution), and excavation outcome (i.e. payload or forces) are all 

required. However, it appears that most mines do not record data on most of the 

formation properties which influence dragline bucket behavior during excavator 
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interactions. While such information may not be relevant to the actual excavation 

operation, its unavailability limits any study that can be made into the material 

behavior and failure. On the other hand, when material property data is available, 

an indepth study of formation failure can be carried out with the aim of 

optimizing excavation efficiency. 

3. The dragline simulation model, developed in this study, provides a good tool for 

future dragline excavation studies. An area of major contribution is in bucket 

design studies where different bucket geometries are compared. Unlike real life 

where no two bucket filling tests are exactly the same, this simulation platform 

provides a very good avenue for comparing bucket performance without bias or 

operational inconsistencies. Future work should consider the capacity of the 

model bucket design experiments.  

4. Future studies may consider the use of several, smaller density zones to better 

understand the formation failure, both inside and ahead of the dragline bucket. 

5. In this study, it was found that optimum excavation performance is possible when 

blasting results in fragmentation, ranging from fines up to a quarter of the dragline 

bucket width. Future work should investigate whether this range changes for 

different bucket geometries or for different material poperties.  

6. Detection of big rocks for secondary blasting: There is a huge research 

opportunity in improving the DragNet vision model to be able to detect poorly 

blasted rocks for secondary blasting. The current DragNet model only achieves 

55% recall and 78% precision performance on big rocks / boulder detection. Since 

the current DragNet model was trained with only 120 boulder images, it can be 
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improved for boulder detection by re-training on a much larger and more diverse 

set of boulder images.  

7. The DragNet vision model only involved 9 different terrains for terrain 

recognition. As a proof of concept, the model performs well on terrain recognition 

tasks. Future studies may extend the model to include several different classes of 

earth materials, which are typically found in surface mine environments.   

8. Generally, the current DragNet vision model was only trained for 250,000 epochs 

over several weeks at a cost of $20/day on a 16GB P5000 GPU. Training the 

model for magnitudes of epoch higher will significantly improve model 

performance. This may be attempted when better and more cost-effective model 

training options become available. 
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HYPER-PARAMETER TUNING FOR XGBOOST MODEL 
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eta 

max 

dept

h 

gamma 

colsam

ple 

bytree 

Min 

child 

weig

ht 

sub 

samp

le 

nrou

nds 

Model Performance 

RMSE R^2 MAE 

0.0013 5 1.7530 0.3789 13 0.970 71 4.723 0.1960 4.103 

0.0020 5 7.8238 0.3165 10 0.533 263 3.497 0.1821 2.852 

0.0071 4 8.0076 0.4382 5 0.879 424 2.073 0.2745 1.714 

0.0076 5 2.6855 0.4754 17 0.575 587 2.057 0.2619 1.694 

0.0078 8 6.9895 0.4947 9 0.847 845 1.859 0.3956 1.483 

0.0084 7 9.9351 0.6933 4 0.439 337 2.014 0.3225 1.643 

0.0158 1 5.4297 0.5475 0 0.294 586 2.218 0.1378 1.851 

0.0161 4 2.1963 0.6665 11 0.418 402 2.018 0.2835 1.653 

0.0189 3 6.1450 0.4807 1 0.526 821 1.903 0.3658 1.545 

0.0225 9 3.7443 0.5980 2 0.811 153 1.766 0.4721 1.368 

0.0235 7 7.6862 0.4624 8 0.597 843 1.835 0.4074 1.439 

0.0298 2 1.4342 0.3635 19 0.417 375 2.154 0.1854 1.783 

0.0315 3 3.7780 0.4786 2 0.388 344 1.980 0.3124 1.617 

0.0332 4 9.0799 0.6172 17 0.763 679 1.920 0.3502 1.542 

0.0359 7 2.3534 0.6820 1 0.405 204 1.756 0.4560 1.344 

0.0388 9 5.2939 0.4665 11 0.828 363 1.827 0.4118 1.402 

0.0433 3 8.5885 0.3423 10 0.560 877 1.919 0.3516 1.541 

0.0453 7 5.8142 0.4688 12 0.707 539 1.825 0.4112 1.412 

0.0458 10 7.8668 0.4773 16 0.967 738 1.860 0.3881 1.462 

0.0476 9 7.4355 0.3318 9 0.570 877 1.854 0.3923 1.444 

0.0577 8 3.4463 0.3173 6 0.310 772 1.804 0.4298 1.324 

0.0610 3 7.7213 0.6445 12 0.361 101 2.126 0.2036 1.759 

0.0669 8 6.8467 0.3969 8 0.467 108 1.927 0.3433 1.546 

0.0730 6 1.7396 0.6149 8 0.726 499 1.696 0.4962 1.202 

0.0736 1 6.6507 0.5549 18 0.885 961 2.121 0.2102 1.761 

0.0773 3 3.9079 0.5876 4 0.617 783 1.801 0.4289 1.371 

0.0900 1 0.7893 0.3967 10 0.842 506 2.147 0.1887 1.786 

0.0952 4 4.0977 0.3010 2 0.319 388 1.808 0.4241 1.368 

0.0994 4 5.9284 0.3880 7 0.383 348 1.887 0.3712 1.461 

0.0997 6 3.2596 0.6650 3 0.302 871 1.761 0.4590 1.262 

0.1005 7 6.9431 0.5493 11 0.442 664 1.840 0.4047 1.402 

0.1005 6 9.1073 0.5904 8 0.756 284 1.832 0.4096 1.433 

0.1086 6 7.6054 0.4400 19 0.597 373 1.878 0.3755 1.466 

0.1123 9 9.1228 0.5793 20 0.385 212 1.982 0.3115 1.592 

0.1149 7 4.8610 0.4851 14 0.998 851 1.818 0.4183 1.402 
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0.1156 10 0.1314 0.6928 11 0.901 197 1.686 0.5117 1.091 

0.1165 10 4.7456 0.4509 9 0.602 353 1.774 0.4457 1.333 

0.1208 3 8.4466 0.3366 4 0.571 930 1.859 0.3922 1.449 

0.1211 9 7.5609 0.5164 8 0.834 498 1.794 0.4304 1.364 

0.1232 10 2.2389 0.3494 8 0.435 663 1.813 0.4358 1.271 

0.1243 5 5.9867 0.4696 7 0.882 405 1.811 0.4203 1.387 

0.1256 7 2.9893 0.6783 16 0.949 967 1.776 0.4472 1.301 

0.1274 1 2.7158 0.5753 2 0.785 292 2.145 0.1902 1.789 

0.1310 7 9.9099 0.6566 1 0.381 837 1.846 0.4014 1.423 

0.1324 8 6.6971 0.3390 13 0.852 284 1.855 0.3929 1.441 

0.1339 4 6.0692 0.3405 4 0.323 271 1.850 0.3998 1.438 

0.1354 1 8.0175 0.6519 12 0.291 944 2.061 0.2539 1.672 

0.1375 5 7.2333 0.4815 3 0.378 869 1.806 0.4267 1.382 

0.1430 5 4.7380 0.3544 17 0.739 466 1.826 0.4131 1.397 

0.1455 5 8.6275 0.3435 19 0.933 695 1.895 0.3645 1.500 

0.1455 7 9.8395 0.3793 15 0.400 352 1.939 0.3371 1.536 

0.1463 6 4.8930 0.4919 3 0.550 488 1.792 0.4356 1.332 

0.1492 8 3.3214 0.3314 2 0.288 166 1.883 0.3850 1.398 

0.1496 4 5.8466 0.4438 16 0.539 515 1.888 0.3765 1.458 

0.1498 4 0.5172 0.4593 6 0.391 192 1.825 0.4190 1.355 

0.1552 3 2.9623 0.3338 6 0.276 580 1.869 0.3988 1.369 

0.1587 4 7.1727 0.3113 15 0.712 126 1.942 0.3357 1.556 

0.1627 2 3.2701 0.6684 13 0.619 158 2.003 0.2922 1.633 

0.1651 1 6.2443 0.6876 7 0.789 1000 2.043 0.2639 1.684 

0.1670 6 4.4459 0.5561 0 0.385 141 1.861 0.3997 1.371 

0.1671 2 2.5061 0.6327 19 0.997 256 1.948 0.3319 1.578 

0.1679 5 6.9628 0.4994 10 0.486 947 1.800 0.4282 1.373 

0.1724 5 0.2544 0.6597 16 0.649 74 1.879 0.3730 1.471 

0.1881 6 6.1387 0.3179 6 0.377 85 1.934 0.3452 1.499 

0.1914 3 9.3985 0.4916 2 0.715 835 1.847 0.3975 1.458 

0.1930 5 5.0940 0.5108 5 0.379 302 1.882 0.3896 1.403 

0.1954 6 1.3995 0.6824 12 0.649 422 1.790 0.4574 1.212 

0.2021 10 4.4422 0.3581 15 0.437 520 1.823 0.4195 1.360 

0.2102 1 1.1423 0.6987 13 0.697 522 2.040 0.2702 1.683 

0.2118 10 9.2844 0.5107 2 0.412 69 1.921 0.3530 1.493 

0.2136 9 8.5102 0.6337 6 0.530 425 1.860 0.3936 1.406 

0.2186 3 3.5211 0.3755 1 0.775 323 1.761 0.4527 1.315 

0.2262 3 2.4253 0.6313 13 0.382 107 2.010 0.2908 1.604 

0.2299 4 3.2253 0.3361 10 0.749 894 1.835 0.4205 1.326 
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0.2314 7 4.4475 0.6834 8 0.539 444 1.786 0.4472 1.290 

0.2327 3 5.3718 0.5551 15 0.423 74 2.025 0.2753 1.640 

0.2337 5 8.2303 0.3887 5 0.390 755 1.944 0.3537 1.479 

0.2454 5 3.3691 0.3109 16 0.259 334 1.970 0.3423 1.474 

0.2532 4 0.1680 0.5495 6 0.663 295 1.772 0.4761 1.098 

0.2537 2 3.9664 0.6569 7 0.535 167 1.957 0.3286 1.545 

0.2566 7 3.3328 0.5981 3 0.941 558 1.739 0.4689 1.257 

0.2572 2 0.8200 0.6325 4 0.445 458 1.832 0.4212 1.346 

0.2573 8 2.2586 0.3176 15 0.776 19 1.949 0.3372 1.567 

0.2617 5 6.1002 0.4486 15 0.737 396 1.864 0.3913 1.409 

0.2618 9 5.5979 0.4285 19 0.701 634 1.816 0.4215 1.359 

0.2651 4 0.7733 0.3256 19 0.350 933 1.884 0.4227 1.229 

0.2699 8 2.5242 0.5214 15 0.661 997 1.774 0.4615 1.233 

0.2762 3 5.9917 0.3174 10 0.269 722 2.027 0.3251 1.499 

0.2785 8 2.5097 0.4478 14 0.765 489 1.796 0.4449 1.269 

0.2803 8 1.6006 0.5709 19 0.755 464 1.780 0.4582 1.214 

0.2808 7 0.2387 0.5956 20 0.713 604 1.767 0.4811 1.097 

0.2810 4 4.7305 0.3338 16 0.570 750 1.859 0.4059 1.358 

0.2918 9 9.8884 0.5922 20 0.266 243 2.047 0.2706 1.620 

0.2966 9 1.0944 0.6330 20 0.362 969 1.848 0.4388 1.205 

0.2990 10 6.8075 0.5376 19 0.712 481 1.845 0.4056 1.385 

0.3010 4 3.1232 0.6610 20 0.712 901 1.815 0.4329 1.307 

0.3015 9 2.1192 0.3701 3 0.895 250 1.699 0.4924 1.171 

0.3017 9 0.7761 0.5775 5 0.628 943 1.697 0.5111 1.077 

0.3037 10 2.6167 0.3676 18 0.962 916 1.782 0.4459 1.275 

0.3083 3 6.8831 0.4562 15 0.628 517 1.909 0.3690 1.461 
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APPENDIX B 

MODEL PREDICTIONS – XGBOOST vs POLYREG  
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FORMATION 

PROPERTIES 

DEM 

PARAMETERS 
MODEL PREDICTIONS 

Yng 

modu

lus 

 Psn 

ratio 

Shear 

modu

lus 

(GPa) 

Fric 

coeff 

emod 

(10^9) 
fric 

emod 

Poly

Reg 

emod 

XGB

oost 

fric 

Poly

Reg 

fric 

XGB

oost 

0.261 -0.58 0.312 0.419 1 1.73 3.773 8.088 3.773 1.352 

0.256 -0.68 0.403 0.427 1 2.75 3.929 5.891 3.929 1.756 

0.188 -0.49 0.184 0.351 10 0.58 5.507 5.375 5.507 0.720 

0.252 -0.45 0.231 0.389 3.5 0.3 5.495 4.078 5.495 0.549 

0.195 -0.42 0.167 0.241 4.5 0.3 3.937 4.501 3.937 0.382 

0.313 -0.22 0.202 0.286 6.5 0.3 5.518 6.166 5.518 0.193 

0.199 -0.42 0.171 0.296 8.5 0.3 4.394 7.919 4.394 0.549 

0.217 -0.57 0.253 0.366 2.5 0.4 4.271 2.504 4.271 0.342 

0.182 -0.39 0.149 0.258 4.5 0.4 4.293 4.537 4.293 0.451 

0.219 -0.41 0.186 0.323 5.5 0.4 5.339 5.417 5.339 0.464 

0.206 -0.48 0.199 0.357 8.5 0.4 5.598 7.884 5.598 0.609 

0.215 -0.46 0.198 0.298 1.5 0.5 4.032 1.550 4.032 0.483 

0.216 -0.48 0.207 0.342 5.5 0.5 5.384 5.324 5.384 0.486 

0.385 -0.51 0.394 0.435 7.5 0.5 6.854 7.328 6.854 0.631 

0.251 -0.69 0.411 0.382 1.75 2.15 3.459 1.741 3.459 2.009 

0.303 -0.85 1.001 0.446 2.5 2.15 3.473 2.974 3.473 2.032 

0.231 -0.76 0.476 0.358 3 2.15 2.258 2.725 2.258 1.850 

0.238 -0.53 0.252 0.369 5.5 0.65 5.411 4.674 5.411 1.443 

0.295 -0.52 0.309 0.422 6 0.65 4.792 6.325 4.792 0.896 

0.241 -0.49 0.236 0.39 8.5 0.65 5.538 7.985 5.538 0.576 

0.181 -0.59 0.220 0.305 1.5 0.75 3.110 2.554 3.110 1.054 

0.255 -0.72 0.458 0.367 2.5 0.75 3.399 1.476 3.399 1.324 

0.202 -0.46 0.188 0.301 5 0.75 4.770 4.989 4.770 0.700 

0.307 -0.60 0.383 0.471 6 1.25 6.640 5.966 6.640 1.317 

0.304 -0.61 0.392 0.467 7.5 1.25 7.992 5.369 7.992 1.272 

0.273 -0.56 0.307 0.43 8.5 1.25 7.171 8.087 7.171 1.254 

0.292 -0.58 0.350 0.449 9 1.25 6.326 8.943 6.326 1.250 

0.327 -0.58 0.391 0.393 5.5 1.35 5.263 8.003 5.263 1.269 

0.338 -0.72 0.594 0.416 7 1.35 4.246 6.842 4.246 1.449 

0.226 -0.64 0.314 0.398 1.75 1.45 4.570 1.942 4.570 1.446 

0.243 -0.73 0.456 0.379 3 1.45 3.015 2.941 3.015 1.567 

0.310 -0.63 0.416 0.47 3.5 1.15 5.798 3.687 5.798 1.236 
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0.254 -0.63 0.346 0.413 5.5 1.15 5.871 5.456 5.871 1.209 

0.281 -0.43 0.248 0.403 6.5 1.15 6.157 6.474 6.157 1.051 

0.331 -0.54 0.361 0.399 8 1.15 5.996 7.856 5.996 1.298 

0.302 -0.61 0.383 0.427 9 1.15 5.543 9.019 5.543 1.136 

0.229 -0.60 0.288 0.361 1.5 1.95 3.658 1.794 3.658 1.849 

0.245 -0.57 0.283 0.354 1.75 1.95 4.212 1.980 4.212 1.869 

0.236 -0.66 0.350 0.398 2 1.95 4.256 2.414 4.256 1.758 

0.349 -0.56 0.392 0.461 3.5 1.95 3.689 3.697 3.689 1.784 

0.241 -0.62 0.315 0.41 1.5 1.65 3.726 1.625 3.726 1.572 

0.234 -0.62 0.308 0.393 2 1.65 5.115 2.015 5.115 1.642 

0.275 -0.67 0.416 0.438 5.5 1.65 6.537 5.259 6.537 1.648 

0.321 -0.66 0.467 0.445 9.5 1.65 5.697 8.818 5.697 1.583 

0.199 -0.65 0.288 0.34 1.5 1.75 2.648 1.562 2.648 1.489 

0.259 -0.73 0.481 0.397 2 1.75 4.043 5.657 4.043 1.917 

0.253 -0.64 0.356 0.392 5.5 1.75 5.785 5.478 5.785 1.652 

0.241 -0.51 0.248 0.387 8.5 1.75 5.611 3.088 5.611 1.076 

0.370 -0.86 1.352 0.43 7 2.25 7.462 6.849 7.462 2.166 

0.302 -0.58 0.356 0.384 8.5 2.25 5.606 8.237 5.606 2.089 

0.278 -0.79 0.668 0.406 3 2.35 3.752 2.896 3.752 2.061 

0.270 -0.32 0.199 0.308 1.25 0.3 2.766 1.371 2.766 0.345 

0.202 -0.47 0.188 0.343 1.75 0.3 4.079 2.197 4.079 0.427 

0.212 -0.64 0.296 0.345 2.5 0.3 3.813 2.180 3.813 0.680 

0.186 -0.32 0.137 0.252 5 0.3 4.344 5.025 4.344 0.258 

0.397 -0.37 0.315 0.3 9.5 0.3 7.256 9.392 7.256 0.297 

0.240 -0.36 0.187 0.293 1.25 0.4 3.145 1.386 3.145 0.350 

0.236 -0.50 0.234 0.406 3.5 0.4 5.601 3.502 5.601 0.493 

0.206 -0.37 0.164 0.316 6.5 0.4 4.765 6.563 4.765 0.519 

0.206 -0.48 0.199 0.357 8.5 0.4 5.598 7.884 5.598 0.609 

0.201 -0.46 0.186 0.346 1.75 0.5 4.291 1.647 4.291 0.580 

0.215 -0.50 0.216 0.371 2 0.5 4.816 2.150 4.816 0.637 

0.234 -0.30 0.167 0.28 5 0.5 5.038 4.975 5.038 0.474 

0.173 -0.50 0.172 0.252 1.5 0.3 3.711 1.408 3.711 0.459 

0.202 -0.47 0.188 0.343 1.75 0.3 4.079 2.197 4.079 0.427 

0.212 -0.64 0.296 0.345 2.5 0.3 3.813 2.180 3.813 0.680 

0.252 -0.45 0.231 0.389 3.5 0.3 5.495 4.078 5.495 0.549 

0.195 -0.42 0.167 0.241 4.5 0.3 3.937 4.501 3.937 0.382 

0.313 -0.22 0.202 0.286 6.5 0.3 5.518 6.166 5.518 0.193 

0.199 -0.42 0.171 0.296 8.5 0.3 4.394 7.919 4.394 0.549 

0.191 -0.47 0.180 0.34 1.75 0.4 4.582 1.971 4.582 0.478 
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0.191 -0.36 0.148 0.276 5 0.4 4.331 5.074 4.331 0.289 

0.210 -0.55 0.234 0.368 1.75 0.65 3.689 2.407 3.689 0.806 

0.221 -0.58 0.262 0.363 3 0.65 4.132 3.368 4.132 0.872 

0.220 -0.47 0.206 0.329 4 0.65 4.932 4.148 4.932 0.916 

0.238 -0.53 0.252 0.369 5.5 0.65 5.411 4.674 5.411 1.443 

0.181 -0.59 0.220 0.305 1.5 0.75 3.110 2.554 3.110 1.054 

0.255 -0.72 0.458 0.367 2.5 0.75 3.399 1.476 3.399 1.324 

0.247 -0.43 0.216 0.348 4 0.75 4.108 3.828 4.108 0.887 

0.175 -0.47 0.164 0.298 4.5 0.75 3.938 4.536 3.938 0.785 

0.269 -0.65 0.381 0.418 2 1.25 5.401 2.335 5.401 1.267 

0.292 -0.65 0.411 0.367 3 1.25 4.054 3.112 4.054 1.096 

0.275 -0.50 0.276 0.393 6.5 1.25 5.859 6.460 5.859 1.125 

0.304 -0.61 0.392 0.467 7.5 1.25 7.992 5.369 7.992 1.272 

0.300 -0.55 0.337 0.433 8 1.25 6.062 7.998 6.062 1.196 

0.271 -0.62 0.355 0.432 3.5 1.35 5.617 3.640 5.617 1.457 

0.327 -0.58 0.391 0.393 5.5 1.35 5.263 8.003 5.263 1.269 

0.279 -0.59 0.340 0.451 3.5 1.45 5.463 3.565 5.463 1.353 

0.200 -0.43 0.175 0.326 5 1.45 4.460 5.478 4.460 1.237 

0.259 -0.62 0.342 0.409 2 1.15 5.122 1.899 5.122 1.145 

0.230 -0.72 0.404 0.379 3 1.15 4.182 3.289 4.182 1.290 

0.277 -0.62 0.362 0.458 7.5 1.15 7.668 7.746 7.668 1.401 

0.249 -0.57 0.290 0.42 9.5 1.15 5.225 9.841 5.225 1.413 

0.241 -0.56 0.271 0.346 4.5 1.95 3.665 4.552 3.665 1.799 

0.302 -0.71 0.516 0.467 5.5 1.95 7.356 5.460 7.356 1.951 

0.236 -0.52 0.244 0.439 6.5 1.95 5.850 6.654 5.850 1.660 

0.305 -0.74 0.583 0.44 3.5 1.65 5.417 4.141 5.417 1.467 

0.222 -0.49 0.219 0.324 4.5 1.65 3.761 4.399 3.761 1.469 

0.260 -0.68 0.405 0.447 9 1.65 6.324 9.027 6.324 1.695 

0.259 -0.73 0.481 0.397 2 1.75 4.043 5.657 4.043 1.917 

0.356 -0.78 0.815 0.401 3 1.75 5.127 3.234 5.127 1.718 

0.241 -0.51 0.248 0.387 8.5 1.75 5.611 3.088 5.611 1.076 

0.298 -0.68 0.463 0.466 9 1.75 5.772 8.937 5.772 1.540 

0.379 -0.66 0.563 0.443 6 2.25 6.081 6.164 6.081 1.887 

0.367 -0.51 0.372 0.423 6.5 2.25 5.336 6.580 5.336 2.034 

0.267 -0.63 0.355 0.447 9.5 2.25 6.370 9.413 6.370 1.895 

0.263 -0.67 0.394 0.367 3.9 0.92 4.356 4.646 4.356 1.463 

0.296 -0.44 0.265 0.329 5.65 0.92 4.574 3.076 4.574 1.094 

0.309 -0.56 0.349 0.354 6.25 0.92 3.500 5.946 3.500 1.514 

0.269 -0.65 0.380 0.394 7.25 0.92 4.926 6.541 4.926 1.267 
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0.220 -0.50 0.220 0.386 3.2 1.16 5.685 6.671 5.685 0.805 

0.242 -0.46 0.224 0.351 4.2 1.16 4.073 5.280 4.073 0.948 

0.240 -0.67 0.359 0.392 6.65 1.16 5.454 3.802 5.454 1.620 

0.217 -0.55 0.239 0.371 3.2 1.23 5.315 6.024 5.315 1.044 

0.274 -0.45 0.249 0.391 4.95 1.23 5.470 4.429 5.470 0.599 

0.288 -0.73 0.540 0.397 6.95 1.23 2.582 6.787 2.582 1.724 

0.309 -0.67 0.471 0.416 3.9 2.13 5.160 3.656 5.160 1.522 

0.248 -0.54 0.270 0.393 4.95 2.13 5.842 4.810 5.842 0.607 

0.248 -0.66 0.359 0.394 6.25 2.13 3.591 8.547 3.591 1.302 

0.351 -0.63 0.477 0.438 7.55 0.63 7.650 6.245 7.650 1.247 

0.234 -0.35 0.181 0.329 4.55 0.84 5.199 4.476 5.199 0.684 

0.184 -0.38 0.147 0.3 4.85 0.84 4.265 4.775 4.265 0.727 

0.211 -0.48 0.204 0.349 5.35 0.84 4.497 5.547 4.497 0.735 

0.196 -0.57 0.226 0.363 6.35 0.84 5.269 4.099 5.269 0.933 

0.241 -0.63 0.326 0.348 6.75 0.84 4.655 7.084 4.655 0.931 

0.246 -0.50 0.248 0.367 7.74 1.06 4.964 5.101 4.964 1.295 

0.288 -0.60 0.359 0.372 8.13 1.06 5.046 5.962 5.046 1.475 

0.323 -0.66 0.472 0.431 8.37 1.06 5.297 6.763 5.297 1.273 

0.234 -0.51 0.240 0.344 2.83 1.34 5.316 5.989 5.316 1.485 

0.331 -0.66 0.491 0.405 7.93 1.34 6.836 5.135 6.836 1.634 

0.319 -0.68 0.498 0.455 8.37 1.34 6.924 7.463 6.924 1.593 

0.287 -0.54 0.313 0.375 2.83 1.53 5.430 4.961 5.430 1.293 

0.339 -0.64 0.467 0.41 7.53 1.53 4.124 3.916 4.124 1.711 

0.199 -0.51 0.202 0.358 7.74 1.53 5.276 6.416 5.276 0.965 

0.267 -0.53 0.284 0.378 2.83 1.43 6.420 4.435 6.420 1.356 

0.242 -0.60 0.301 0.386 7.53 1.43 4.257 3.456 4.257 1.154 

0.333 -0.61 0.425 0.372 4.57 1.83 5.778 6.051 5.778 1.426 

0.344 -0.69 0.551 0.442 3.38 1.89 6.426 7.155 6.426 1.404 

0.362 -0.75 0.728 0.443 3.38 1.94 6.926 7.200 6.926 1.819 

0.246 -0.59 0.297 0.384 3.87 1.94 6.308 3.938 6.308 1.085 

0.284 -0.58 0.340 0.438 5.87 1.94 5.535 3.755 5.535 1.106 

0.218 -0.49 0.212 0.317 7.08 1.94 5.526 6.465 5.526 1.111 

0.357 -0.54 0.384 0.393 4.57 2.03 4.224 4.210 4.224 1.246 

0.299 -0.69 0.481 0.422 3.38 1.18 4.812 4.651 4.812 1.507 

0.339 -0.49 0.333 0.39 3.87 1.18 6.508 4.801 6.508 1.082 

0.331 -0.42 0.287 0.34 4.93 1.22 6.911 4.542 6.911 0.963 

0.211 -0.56 0.237 0.348 5.17 0.98 5.367 4.872 5.367 0.868 

0.265 -0.50 0.264 0.411 5.87 0.98 4.608 6.155 4.608 0.872 

0.265 -0.54 0.289 0.345 7.74 1.73 4.708 7.176 4.708 1.745 
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0.236 -0.59 0.285 0.364 8.48 1.73 4.154 8.059 4.154 1.598 

0.290 -0.73 0.545 0.415 8.13 1.73 5.500 7.444 5.500 1.711 

0.267 -0.43 0.236 0.359 3.2 0.63 4.328 5.177 4.328 1.169 

0.319 -0.40 0.267 0.277 5.25 0.63 4.635 4.827 4.635 0.567 

0.237 -0.52 0.249 0.321 6.25 0.63 3.343 4.665 3.343 1.633 

0.239 -0.59 0.290 0.375 2.6 1.67 5.209 4.610 5.209 1.722 

0.288 -0.54 0.316 0.393 4.65 1.67 7.557 6.408 7.557 0.937 

0.273 -0.50 0.271 0.404 4.95 1.67 5.928 2.102 5.928 1.592 

0.215 -0.57 0.248 0.338 5.25 1.67 3.753 2.715 3.753 0.831 

0.255 -0.58 0.307 0.37 2.9 1.83 4.886 3.390 4.886 1.335 

0.258 -0.67 0.393 0.424 3.6 1.83 5.013 6.974 5.013 1.417 

0.196 -0.57 0.226 0.363 6.35 0.84 5.269 4.099 5.269 0.933 

0.195 -0.54 0.211 0.302 5.17 0.84 4.692 4.788 4.692 0.668 

0.274 -0.71 0.473 0.364 4.35 1.06 2.520 4.342 2.520 1.124 
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Step Model_0 Model_1 Model_2 Model_3 Model_4 Model_5 

0 76.751 165.703 80.977 111.014 383.684 54.715 

425 4.437 5.973 4.815 4.819 8.954 9.351 

881 3.899 7.932 2.802 3.059 11.665 6.759 

1322 2.369 6.885 2.424 3.648 42.038 5.547 

1772 2.901 3.176 3.871 3.949 7.211 8.314 

2217 4.217 3.867 4.166 1.823 6.281 6.877 

2646 3.245 2.184 2.763 2.346 37.804 4.177 

3081 2.571 10.820 4.419 1.904 11.925 5.386 

3542 3.027 3.047 2.919 1.994 8.127 5.208 

3991 1.546 5.323 2.195 2.383 9.595 3.858 

4450 2.370 4.295 2.429 2.431 15.489 3.017 

4877 2.062 3.388 2.156 2.265 23.823 3.573 

5334 2.963 3.419 3.057 1.859 5.877 3.724 

5791 1.388 1.697 2.651 2.149 13.708 3.586 

6231 2.720 5.186 1.604 4.675 6.038 3.652 

6660 1.695 1.295 2.071 3.173 6.778 3.682 

7078 1.349 3.280 2.179 2.797 8.294 2.616 

7463 1.946 4.563 2.528 1.519 33.200 4.682 

7844 1.375 2.780 1.424 1.994 5.706 3.196 

8233 1.585 2.391 1.378 1.243 6.851 2.886 

8624 2.352 3.104 2.107 1.494 8.046 3.141 

9014 1.451 1.583 3.551 1.374 6.662 3.255 

9402 1.443 3.300 2.960 2.523 5.673 3.146 

9782 2.992 2.200 1.632 3.011 7.046 4.722 

10197 1.154 2.121 2.144 1.397 8.803 2.872 

10602 3.057 3.767 1.206 2.278 6.713 1.632 

10995 2.487 2.778 2.085 2.040 7.196 2.401 

11371 2.033 1.672 1.740 2.289 7.282 3.200 

11747 1.649 2.327 2.236 0.916 8.131 3.730 

12131 1.059 1.818 2.093 1.285 7.850 2.729 

12522 1.705 2.465 1.291 1.819 7.480 2.918 

12881 2.224 4.158 2.094 1.606 6.686 3.874 

13262 1.365 13.454 1.192 1.652 18.792 3.055 

13650 1.772 4.022 1.223 3.664 6.548 1.968 

14040 0.988 2.948 1.640 1.891 9.282 2.438 

14425 1.127 2.806 1.480 1.871 11.189 3.074 

14815 1.379 4.826 2.584 1.458 6.825 2.333 

15221 2.324 5.262 1.516 2.794 19.986 2.348 
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15604 0.825 1.010 0.951 3.078 4.959 2.426 

15982 1.880 2.145 2.245 3.005 17.596 2.607 

16370 2.266 3.802 1.872 1.015 7.494 3.561 

16780 1.349 1.599 2.136 1.107 5.475 1.899 

17191 2.607 2.164 1.503 2.169 5.850 2.435 

17592 1.679 3.416 2.644 1.523 6.152 2.667 

17980 1.467 2.802 1.398 0.857 6.550 2.490 

18409 0.692 3.955 1.668 1.684 8.163 3.207 

18817 1.646 2.074 1.300 1.135 6.680 1.787 

19233 1.381 2.210 1.438 1.313 7.059 3.048 

19643 2.219 1.445 2.207 2.348 7.170 2.657 

20078 1.454 2.663 2.250 1.392 5.114 2.356 

20506 1.397 3.026 1.791 1.077 7.708 1.598 

20919 1.121 3.137 2.324 1.941 7.434 2.599 

21327 1.353 2.473 1.972 1.402 8.713 1.989 

21735 1.738 3.362 0.998 2.742 7.819 1.962 

22132 1.356 2.470 1.296 0.894 7.590 2.212 

22518 0.982 4.428 3.339 2.858 8.326 2.735 

22877 1.649 3.550 1.152 0.798 10.336 2.526 

23260 1.837 3.064 2.083 2.094 25.195 1.839 

23654 0.755 1.797 0.899 1.041 6.303 2.736 

24044 1.655 1.849 2.084 1.676 5.914 2.487 

24420 0.971 3.644 1.716 2.973 4.463 2.793 

24799 2.002 4.275 1.555 1.260 8.184 2.458 

25182 1.966 5.282 2.296 2.309 6.615 1.741 

25570 3.301 4.285 2.430 2.962 6.641 3.754 

25956 0.617 4.500 1.953 4.178 18.004 1.579 

26381 1.077 2.499 1.032 0.667 8.054 2.409 

26812 1.205 3.092 0.984 0.921 6.996 1.853 

27244 1.803 3.017 3.887 2.896 5.049 1.999 

27663 1.344 3.814 1.986 1.339 5.839 3.255 

28092 1.403 1.811 1.986 1.514 7.977 1.959 

28539 1.010 2.669 1.027 0.797 7.066 2.050 

28972 2.384 1.969 2.290 1.178 7.954 2.055 

29398 1.843 0.987 1.281 1.750 7.784 2.240 

29822 2.355 2.245 1.147 3.079 5.407 2.077 

30265 2.018 4.427 0.960 2.214 6.220 1.930 

30706 1.747 1.346 1.193 1.304 6.662 1.413 

31121 1.218 3.016 1.693 1.019 9.363 1.679 
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31562 1.101 3.975 1.008 1.127 6.535 1.707 

32019 1.591 1.082 1.622 1.938 5.848 1.749 

32455 1.446 0.833 1.046 0.794 5.434 1.567 

32891 1.275 3.583 1.594 1.259 26.535 1.653 

33334 1.385 8.267 0.713 1.032 6.163 2.551 

33788 1.940 1.598 2.410 2.178 7.315 2.064 

34236 1.925 1.471 1.554 0.825 6.495 1.946 

34680 1.341 5.650 1.224 1.037 5.087 2.147 

35130 1.282 1.165 3.171 2.455 5.536 1.084 

35575 1.612 3.168 1.895 1.010 5.282 1.716 

35997 1.524 2.968 2.199 1.143 5.345 1.492 

36435 0.959 2.897 0.881 1.586 5.227 1.489 

36874 1.041 1.832 1.720 1.228 5.863 1.723 

37316 1.229 3.069 1.093 0.738 5.558 3.071 

37719 2.039 1.772 0.725 1.552 4.107 2.148 

38163 1.041 5.312 1.248 1.382 4.039 2.096 

38602 1.356 1.759 1.235 1.710 11.894 2.418 

39053 0.948 1.489 2.939 0.913 4.464 2.068 

39491 1.438 1.908 2.223 1.545 12.726 1.294 

39937 1.080 3.042 1.624 2.224 4.845 1.960 

40390 1.813 1.913 0.783 1.177 6.757 1.639 

40834 1.163 2.290 0.780 1.178 5.898 1.237 

41302 1.153 2.810 1.737 2.628 7.641 1.157 

41763 1.650 1.825 1.601 1.962 5.409 2.403 

42218 1.009 3.299 0.818 1.108 8.605 2.190 

42660 1.477 1.482 1.663 1.698 11.006 1.516 

43119 1.722 1.171 0.816 1.790 6.910 1.625 

43565 0.683 1.000 1.150 1.512 5.528 1.600 

44017 1.813 3.118 2.493 1.374 6.818 1.403 

44443 1.172 5.851 1.143 1.716 6.818 2.038 

44897 1.161 2.376 1.338 0.813 6.818 1.200 

45350 0.507 1.765 1.549 2.376 6.818 3.301 

45791 2.319 2.841 2.161 0.849 6.818 3.301 

46236 2.470 4.382 2.161 1.476 6.818 3.301 

46672 1.107 3.763 2.161 0.877 6.818 3.301 

47126 1.553 3.019 2.161 0.988 6.818 3.301 

47558 1.228 3.019 2.161 2.111 6.818 3.301 

48010 0.884 3.019 2.161 1.671 6.818 3.301 

48448 1.594 3.019 2.161 0.903 6.818 3.301 
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48888 0.640 3.019 2.161 0.903 6.818 3.301 

49323 2.778 3.019 2.161 1.717 6.818 3.301 

49781 1.334 3.019 2.161 0.802 6.818 3.301 

50000 0.840 3.019 2.161 0.802 6.818 3.301 
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