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ABSTRACT 

This research attempts to provide a fundamental understanding into the 

relationship between the productivity of material handling equipment, specifically wheel 

loaders, and their ability to operate reliably when subjected to high overload conditions. 

The overall aim is to determine the effect of overloading the bucket on wheel loader 

reliability. The specific objectives of the research are to: 1) evaluate the effect of 

overloading the bucket on wheel loader productivity; 2) examine the effect of 

overloading the bucket on hydraulic pressures in the hoist cylinders (used as a proxy for 

forces on a wheel loader); and 3) investigate the effect of overloading the bucket on the 

reliability of structural components of a wheel loader.  

To achieve these objectives, the research used data from on-board equipment 

monitors from the global fleet of ultra-class wheel loaders for a specific original 

equipment manufacturer to test the various research hypotheses. The data included 

production data, failure and repair data, and hydraulic cylinder pressures, which were 

used as a proxy for stresses on structural components. ANOVA and Pearson and 

Spearman correlations tests were performed on data samples to test the hypotheses. Duty-

cycle relationships were established using linear life stress relationships ratios for the 

wheel loaders structural components. The research showed that, while higher bucket 

loads increase productivity, there is evidence that they slow down the loading cycle, may 

be detrimental to productivity. The hoist cylinder pressure increased with increasing 

payload weight. The reliability of the structural components was similar in both the 

standard and duty-cycle cases; although, the accuracy of the reliability models increased 

when the models accounted for duty-cycles. 
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1. INTRODUCTION 

1.1. BACKGROUND 

Wheel loaders are used as a preferred loading tool for their mobility, operational 

flexibility, and comparatively low capital costs (Hartman, 1992). A wheel loader is 

designed to load a truck or a hopper by driving a bucket into a pile of material, lifting a 

full bucket, reversing out of the pile, lifting the bucket to dump height while advancing 

towards the truck or hopper, dumping the bucket, and reversing from the truck while 

lowering the bucket to return to the pile for another load. The typical cycle time for a 

loader is 30 - 45 seconds depending on the size of the wheel loader (Heybroek, 2012). 

Additionally, the goal is to fill the bucket to its designed payload while not overloading 

it. Typically this “target weight” is 85 -105% of the designed payload (Gurganli, 2016). 

Parker Bay estimates the size of the global wheel loader fleet (i.e., 22 ton class 

machines and larger) at 3,700 active units (Parker Bay, 2017). The global wheel loader 

fleet capacity is more than 25 billion tons annually. Wheel loaders added an estimated 

$100 billion of value to mining operations in 2015 (Shields, 2017) by their abilities to 

maximize their comparatively-low capital costs and shorter duration maintenance outages 

coupled with a high degree of operational flexibility and mobility (Hartman, 1992).  

Wheel loader costs can be broken down into two separate ownership and 

operational costs, and these costs account for the machines’ total costs. First, the 

ownership costs of wheel loaders range from $2 to $12 million dollars to purchase 

depending on the size and configuration of the machine (Ryan, 2016). Second, the 

operational costs (i.e., fuel, operator labor, maintenance, repair, and rebuilds) can run 

between $175 - $500 per hour depending on the class size of the wheel loader 
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(Caterpillar, (2), 1997 Caterpillar, (5), 2014 and Fine, 2016). Maintenance, repair, and 

rebuild costs account for over 30% of the total costs within the mining industry 

(Montenego, 2003) (i.e., $50 to $175 per hour of operation) (Fleet, 2016). The ability to 

manage the operating costs of the wheel loader can be achieved by maintaining and 

reducing these costs through improving the machines’ reliability. Saving 5% on the 

wheel loaders’ maintenance cost may reduce the overall operational costs by 

approximately 2% or up to $50,000 per machine per year for the first ten years of the 

machine’s life. Improvements can be obtained in many areas: improving the volume of 

material produced during a defined period of time; decreasing the specific defined period 

of time; increasing the amount of production time available; and optimizing maintenance 

and repair time. Normally these forms of improvement are implemented one at a time, or 

in some cases, a combination of several or all of these factors may be integrated together. 

Improvement in one or several of these areas has the ability to lower production costs per 

unit while increasing the number of units produced. The increase in reliability through 

maintenance plans can increase the number of hours the wheel loader is available to 

perform its work. Typically these increases are between 50 to 100 hours per year, or 1 - 2 

% which can result in additional production capacity of 50,000 to 250,000 tons (Collis, 

2016). Once one area has reached an optimized level, the key will be to maintain this 

level of productive work while still striving to improve other areas.   

Reliability is a broad term focusing on the ability of a product to perform its 

intended function. Mathematically, assuming the system or system component is 

performing its intended function at time zero, reliability can be defined as the probability 

that it will continue to perform its intended function without failure in its present 
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operating context. Reliability is not a function in its own right.  It is a performance 

expectation which pervades all other functions (Moubray (1), 1997). The goal of 

reliability engineering is to evaluate the inherent trustworthiness of a product or a 

process, and then pinpoint potential areas for responsible improvement (Moubray (2), 

1997). 

The potential elimination of all failures from a design is not realistically possible. 

One purpose of reliability engineering (time zero case) is to identify the most likely 

causes of failure and address appropriate actions to mitigate the effects of these failure 

modes. Additionally, reliability engineering consists of a systematic application of time-

honored engineering principles and techniques throughout the product’s lifecycle. 

Essential components should be tracked as part of a Product Lifecycle Management 

(PLM or LCM) program (Weibull.com, 2017).  The method to achieve an LCM program 

is thought to be through the development of a Reliability Centered Maintenance (RCM) 

plan: a process used to determine what must be done to ensure that any physical asset 

continues to do what its users want it to do in its present operating context (Moubray, (1), 

1997). 

The significance of reliability for wheel loaders revolves around a few key 

factors.  These factors are: application; machine availability requirements; and 

maintenance support plan. First, it is necessary to examine any applications where wheel 

loaders operate.  These applications may include production, waste removal, stockpiling, 

shipping, and general utility tasks. Caterpillar defines three duty-cycle zones based on the 

machine’s application and the operating conditions (i.e., moderate, average, and severe.) 

Based on these definitions, mining applications loading shot rock and overburden fall in 



 

 

4 

the severe duty zone, while stockpile loading is an average usage activity, and shipping 

and utility operations are considered moderate duty (Caterpillar, (1). 1997). Individual 

mine haul road and work face conditions may vary and are subject to change throughout 

any shift depending on weather, traffic, and the utilization of support equipment to up 

keep their maintenance (Caterpillar AMA, 1998). 

The second factor where wheel loader reliability is linked to machine availability 

is the specific working requirement for the wheel loader, and the fleet to which it is 

assigned. Most large-scale mines operate multiple fleets where wheel loaders can be 

planned, scheduled, and rotated through its maintenance requirements while still 

maintaining its desired level of availability.  This is typically 85% - 90% availability for 

production service machines. Smaller mines operating one or two production fleets may 

focus on machine reliability while they schedule service to maintain their production 

goals. Generally, these operations maintain a secondary loader to supplement the 

production machine during service or downtime events. These secondary units typically 

are old machines which have been removed from front-line service and are good for part-

time or scheduled fill-in work. The reliability of the wheel loader for mines operating 

only one production machine is paramount. This situation occurs in small production 

mines, typically when the mine only operates part of the year and can ill afford outages. 

In this case, if the machine is down, there is no production until the machine is 

operational again.  

Once a downtime event occurs, scheduled or unscheduled, the maintenance 

support team and its plan affects the reliability of the machine by returning it to service as 

quickly as possible. Maintenance plans require that the correct people, parts, and facilities 
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are available to complete their specific tasks promptly. A good maintenance department 

acts similar to a hospital where the majority of services are taken with routine checks, 

monitoring, and scheduled repairs based on the equipment’s reliability, but it also 

requires the emergency department to handle unexpected breakdowns.   

Reliability affects the ownership and operating costs of a wheel loader in two 

ways.  Specifically, these are the cost of the service / repair, and the production loss 

occurring from tons not being mined during the machine downtime event. These 

unscheduled downtime events can increase the operation per unit cost over budgeted / 

forecasted amounts. Additionally, a rule of thumb for these downtime events is that it can 

reduce the machine’s availability by 0.25% per day based on a 24-hour day mining cycle, 

which is doubled if the mine only works one shift. Multiple unplanned reliability outages 

can significantly affect the machine’s availability over the course of a year making it 

difficult to achieve its forecasted operation’s targets. 

 

1.2. STATEMENT OF RESEARCH PROBLEM  

This research will investigate the effect overloading of the bucket has on a wheel 

loader’s available capacity (i.e., reliability and productivity). This represents a RCM 

planning and data analysis technique to reduce the overall machine’s operating costs 

(Moubray (2), 1997). With ultra-class wheel loaders only a few events tend to be the 

primary cause of failure for a component, and overloading of the bucket is perceived to 

be one of the major fundamental causes of component failure. It is hypothesized that 

overloading: (1) affects the life expectancy of the structural components of the wheel 

loader; and (2) is detrimental to the machine’s productivity. This study will provide 
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direction in determining when a structural component is likely to fail and encourage 

replacement before the actual failure, as part of a scheduled replacement program.  

One of the causes of structural component failure on wheel loaders is overloading 

the bucket during machine operation. The wheel loader is designed to hoist a specified 

payload. The machine’s bucket is sized to accommodate this weight based on the density 

of material being loaded and the skill of the operator to fill the bucket to the specified 

payload. Additionally, the structural components are designed to handle slight overloads, 

typically 105-110% of the maximum payload (DePorter, 2016). Increasing this stress per 

cycle, through overloading, on a machine may ultimately lead to failure of a component 

more quickly than if it is operated in a normal to a low stress environment. Mines are also 

focusing on how to operate at a high productivity level while not constantly pushing the 

equipment past its designed limits during the machine’s estimated life of several million 

bucket cycles. Continual overloading of the bucket, greater than 110% of design payload, 

during operations increases the stress per cycle on the machine’s structural components, 

thus reducing the life of each of these components (DePorter, 2016 & Chanda, 2011).   

Structural components are tracked through machine operating hours to determine 

the components’ life (Tomlingson (1), 1999). The use of hours to track structural 

components does not measure how hard the component is actually being used. It is only 

tracking how long it has been used. Moubray has proposed to supplement the primary 

unit of measurement (component hours) with other machine units of measures, i.e., 

number of stress cycles (Moubray (3), 1997).    

Equipment maintenance costs and the downtime associated with maintenance and 

repair activities are a significant concern for any business. In the mining industry over 
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30% of total costs are related to maintenance (Montenego, 2003). The availability and 

reliability of the equipment is key to controlling costs and optimizing the company’s 

return on investment. The proper role of maintenance is to provide the lowest cost in 

maintenance labor and materials, and to minimize production losses. The goal is to 

optimize equipment maintenance to achieve the lowest operating costs (Lowrie, 2002).  

The components’ lives and repair costs are normally the largest single 

maintenance cost chargeable to any machine. The structural components are part of a 

group of parts that require significant time and money to repair. Thus, any work which 

extends the life these components and reduces the amount of time spent on replacements 

will lead to significant cost savings. The operating conditions and applications affect the 

component’s life and cost the most; abuse of the components though overloading can 

lead to significant reduction of the structural components lives.  

Another significant factor to controlling component repair costs is whether the 

repair is performed before or after catastrophic failure. Actual repair of a component may 

cost between 33% - 50% and require less machine downtime and fewer man hours to 

repair versus the cost of a catastrophic failure, as shown in Figure 1.1 (Caterpillar (2), 

2014). The increased costs of a catastrophic failure results from additional damage to the 

component, secondary damage to other components or system parts, unsalvageable core 

charges, and / or additional labor hours. Additional operating costs are incurred because 

of the lost production associated with the increased downtime. Thus, it is important to use 

optimal component replacement schedules (in the quest to increase component lives) to 

prevent catastrophic failure.  
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                  Figure 1.1.  Repair Cost of Equipment Components  

Production and equipment datasets contain large amounts of production and 

machine operation data.  This data can be used to determine the frequency and severity of 

bucket overloading as well as the associated stress on the structural components. These 

datasets give a much broader picture of how hard the machine is working over a longer 

period and are useful in examining the effect of overloading on productivity and 

reliability.   

Tracking structural components generally takes place in a computerized 

maintenance management system (CMMS). This system allows for the accumulation of 

operating hours on components and equipment together as well as scheduling and 

forecasting maintenance and repair activities (Tomlingson (2), 1999). The CMMS also 

provides a repository for previous component histories and failures. A standard reliability 

failure analysis involves determining the parameters of a Weibull frequency distribution 

to determine the probability of failure (Moubray (5), 1997). 

Long component lives, time to component failures, and limited fleet size produce 

issues in this instance in building the datasets on individual components. The resulting 
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datasets consist of a relatively small number of points, and waiting on the next data point 

to be reached can take months, or, in some cases, up to a year to occur. These small 

datasets and resulting analysis can be pushed in order to draw a conclusion, and an 

additional data point or two may have a significant influence on changing the results. 

 

1.3. OBJECTIVE AND SCOPE OF STUDY 

The objective of this PhD research is to examine the effect of overloading the 

bucket and on the time and likelihood of structural component failure in ultra-class front-

end wheel loaders. Specifically, this dissertation strives to:  

1. Evaluate the effect of overloading the bucket on wheel loader 

productivity. 

2. Examine the effect of overloading the bucket on forces exerted on a wheel 

loader. 

3. Investigate the effect of overloading the bucket on the reliability of the 

structural components of a wheel loader. 

The first objective will be achieved by analyzing productivity data from a number 

of wheel loaders from the same manufacturer with machines operating around the world. 

The goal will be to quantify the cycle time and the tonnage of the wheel loader’s bucket 

loads in order to assess whether different classes of payloads lead to differences in 

productivity. 

The second objective will be achieved by analyzing the data from the wheel 

loader’s on-board equipment monitoring system to determine the maximum forces 

exerted on specific structural components and match these events to the production data 

from the first objective. The results will be used to determine the amount of forces the 
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structural components are being subjected to with different payloads. The goal is to 

determine whether there are significant differences due to overloading.  

The third objective will be achieved by using Weibull analysis performed on the 

structural components as a predictive tool to forecast future structural component failures 

based on bucket overload events. The characteristic life value will be calculated from 

Weibull’s prediction of future failures equation from the known failed components. The 

data analysis from objectives one and two will be used to determine the reliability of the 

components using Weibull functions. The goal is to determine the time of initial failure 

for each structural component and by using calculated data to determine the amount of 

overload events remaining before component failure. This will require modifying the 

probability of the item failure equation to determine the time at initial failure. The 

resulting information will be utilized for determining the ability to schedule structural 

inspections prior to failure and to also increase or decrease the interval of inspections 

based on operating conditions instead of using only a predefined time interval. 

 

1.4. RESEARCH METHODOLOGY 

Figure 1.2 shows the research methodology used to accomplish the three research 

objectives. Data for this work will be collected from a global fleet of wheel loaders from 

the same manufacturer. 

 

1.5. SCIENTIFIC AND INDUSTRIAL CONTRIBUTION 

This research contributes significantly to both literature and industrial practice. 

The knowledge acquired is applicable to engineering design, equipment productivity, and 

 



 

 

11 

 

                      Figure 1.2.  Methodology Used in this Research 

reliability as well as maintenance, repair, and rebuild planning and execution. This 

research used multiple techniques including equipment performance studies, statistical 

data analysis tools, and reliability analysis tools (Weibull distribution characterization 

and duty-cycle analysis) to facilitate increased wheel loader performance and reliability. 

1.5.1. Contribution to Literature. As far as this author can tell, no previous 

work can be found in the literature that examines the effect of payload (overloading) on 

wheel loader productivity (tons loader per cycle) and reliability. At least three journal 

papers can be published from this work, one each from the work in Sections 3, 4, and 5 of 

this dissertation. There is also opportunity to publish more papers by further research and 

analysis of the data and results presented in this dissertation.    

Objective #1 Objective #2 Objective #3

Identify wheel loaders with 

production data

Identify wheel loaders with 

monitoring data
Review structural repair orders 

↓ ↓ ↓

Obtain the downloaded 

production data

Obtain the downloaded 

monitoring data

Sort and validate structural repair 

orders by component

↓ ↓ ↓

Process the data Process the data
Perform Weibull analysis by 

component (hours)

↓ ↓ ↓

Determine the bucket production 

rate for each load

Determine the maximum hoist 

base pressure during hoist 

operation cycle

Perform Standard Weibull 

Analysis on Structural Component 

Failure Cases

↓ ↓ ↓

Assign data to bucket load 

categories

Assign data to bucket load  

categories
Duty-Cycle Reliability Analysis

↓ ↓ ↓

Perform ANOVA on sampled 

wheel loader dataset 

Perform Spearman and Pearson 

correlations sampled wheel 

loader dataset 

Perform Weibull Analysis Based 

on Duty - Cycle for Structural 

Component Failure Cases

↓ ↓ ↓

Determine bucket overload rates 

for wheel loader configurations

Determine hydraulic pressure 

rates and times for wheel loaders

Compare Standard and Duty-Cycle 

Weibull Analysis Results
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To the best of this author’s knowledge, no research has been published that 

critically examines the nature and extent of the effect of payloads on cycle time and 

productivity using real field data. This dissertation examines the nature and extent of 

these effects. Thus, this will make a significant contribution to the literature.  

Again, to the best of the author’s knowledge, no work has been published in the 

literature that scrutinizes the correlation between payload and the hoist cylinder pressure 

(hoist cylinder pressure can be used as a proxy for the force exerted on the lift arm) with 

field data (from machines on-board management systems). This successive step of this 

dissertation investigates the character and the magnitude of this correlation. Thus, the 

knowledge acquired will establish a consequential addition to the available literature.  

Finally, we need a means to account for the wheel loader’s duty-cycle (with 

respect to overloading) in the reliability analysis of its structural components. To the best 

of the author’s knowledge, this has not been done in the literature. This final segment of 

this dissertation scrutinizes and evaluates classical time based reliability analysis 

compared to reliability analysis that incorporates overloading. Thus, the end results and 

their findings will establish substantial contributions to the scholarship available within 

the literature. 

1.5.2. Contribution to the Mining Industry.  Components are typically designed 

to obtain a specific life expectancy (i.e., a maintenance life-cycle). The premature failure 

of any component leads to unscheduled downtime and additional cost. A machine’s 

structural components can significantly affect unscheduled down time due their long 

repair times. Mining operations and maintenance groups responsible for wheel loaders 

use inspections, repair, retrofit, and replacement activities to combat these issues. The 
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downside of these activities is that they take the wheel loader away from its primary 

function. Towards this end a successful approach includes acknowledging that each 

machine cannot be assumed to operate in the same conditions with the same level of 

operator efficiency (overloading practices). Incorporating the machine’s productivity and 

overloading practices, in addition to current practices, will facilitate guidelines for 

operations and maintenance departments to optimize the productivity and the 

maintenance of the machine by creating machine specific inspections and maintenance / 

repair plans for each machine based on its productivity and loading (overloading) 

practices. This research will help mines extend component life expectancy and rebuild 

lives by using machine specific data to drive the wheel loader’s overall reliability. In 

addition, the use of other on-board monitoring system data (i.e., hydraulic cylinder 

pressures) will be used to confirm the relationship between forces exerted on the wheel 

loader and its productivity. 

 

1.6. STRUCTURE OF DISSERTATION 

This dissertation comprises six section s, including this introductory section.  

Section 2 covers a detailed review of all relevant literature covering equipment operation 

and reliability to operational costs, wheel loader productivity and component stress 

analysis, and RCM plan setup and review analysis. Section 3 focuses on establishing the 

framework for the wheel loader productivity studies and the results of wheel loader 

model and configuration. Section 4 discusses work to evaluate the effect of overloading 

the bucket on the forces applied to the wheel loader. Section 5 chronicles the effect of 

overloading the bucket on the wheel loader’s structural components reliability. Section 6 

reports the conclusions of this study and presents recommendations for future work.  
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2. LITERATURE REVIEW 

This section encompasses a comprehensive review of the relevant literature 

involving earthmoving equipment, specifically wheel loaders with detailed focus on 

ultra-class wheel loader design, application, reliability, and the effect of machine 

operation and performance on their reliability. Additionally, the literature review 

examines maintenance practices for earthmoving equipment specifically, and how these 

systems are reviewed and revised to improve their performance and minimize any 

downtime.  

 

2.1. OVERVIEW OF THE WHEEL LOADER 

A wheel loader is a mobile piece of earthmoving equipment capable of loading 

any type of bulk soil (stripping) or rock (ore) in production operations or support capacity 

in conjunction with another production loading piece of mobile equipment (Kolte, 2015). 

Wheel loaders have a bucket capacity of up to 70 cubic yards of material (Joy Global, (1), 

2016). Additionally, wheel loaders are capable of transporting their payload over short 

distances, typically less than 600 feet, in order to achieve a productive cost (Komatsu, 

2009).  

Wheel loaders capitalize on several features over other loading equipment (i.e., 

hydraulic excavators and electric cable shovels). These characteristics include, but are not 

limited to, mobility, comparatively low capital costs, operational flexibility, and lower 

maintenance costs (Hartman, 1992). A wheel loader is very mobile and capable of 

tramming speeds of 10 - 15 miles per hour compared to other earthmoving loading 

equipment which generally have maximum tramming speeds of up to 3.0 miles per hour 
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(Caterpillar (1) & (2), 2015). The wheel loader’s rubber tires allow for this speed to travel 

around the pit with ease to reposition itself from one face to another, or from one bench 

or pit to another, depending on the mine’s production schedule (Gurgenli, 2016). This 

ability also makes the wheel loader flexible and able to blend out a production face with 

one piece of loading equipment by tramming from one part of the muck pile to another 

and back again while maintaining an acceptable production rate. The hydraulic excavator 

or electric cable shovel would require two or more loading units to accomplish this same 

task.  

Moving a wheel loader to a specific site is easily accomplished by on-highway 

trucks. Smaller wheel loaders, those with less than a 9 cubic yard capacity, can be moved 

with one transport truck. Larger wheel loaders, greater than 9 cubic yard machines, may 

require several transport truck loads to be moved to site. Assembly of the wheel loader on 

site can take between one to ten days to commission the unit (Fleet, 2017). The mine site 

should have a shop maintenance area setup and dedicated to work on wheel loaders. Mine 

maintenance crews work on electric cable shovels and hydraulic excavators in the field or 

pit and they may only be trammed out for major services or rebuild programs (Caterpillar 

AMA, 1998). 

Wheel loaders have comparatively low capital costs typically, less than $100,000 

per cubic yard of capacity. Hydraulic excavators and cable shovels typically start around 

$100,000 per cubic yard of capacity. Wheel loaders have a machine life similar to a 

hydraulic excavator, which is generally 12 to 20 years depending on the machine’s 

application and the commodity being mined. Electric cable shovels’ life expectancy is 

approximately two times that of the average wheel loader (Caterpillar, (3), 2014).   
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Wheel loaders’ maintenance programs are designed to keep the machines in 

operation and to ensure warranty coverage. The maintenance programs are designed and 

scheduled to withdraw the wheel loader from service for only short durations (usually, 12 

- 24 hours, i.e., 1 - 2 shifts) for preventative maintenance and inspections every 250 - 500 

hours (i.e., every 2 - 4 weeks). Generally, these maintenance programs are divided into 

modular maintenance schedules, with additional service items or services being grouped  

onto the base schedule at intervals of 500 hours, 1000 hours, 2000 hours, etc. (Joy 

Global, 2016). The wheel loader’s maintenance philosophy differs from that of the 

electric cable shovels or the draglines maintenance schedules as these are typically based 

around longer duration service intervals with longer duration outages (Collis, 2017).  

2.1.1. Parts of a Wheel Loader. A wheel loader generally consists of two 

separate frames (i.e., the front frame and the rear frame) joined at an articulation point in 

the center of the machine. The operator’s cabin sits atop the center of the machine over 

the articulation point of the wheel loader, as shown in Figure 2.1. The operator controls 

and monitors the wheel loader’s performance from this vantage point. Most wheel 

loaders are articulated in the middle of their body which separates the frame into two 

distinct sections, front and rear. The front frame sits forward of the articulation point 

connecting the bucket to the front fame by the lift arm structure. Typically, the 

components of the lift arm structure include the lift arms, the bellcranks, and level links. 

These components are used to manipulate the bucket to gather material from a pile, lift it 

above the dump point, before placing it into the said dump point (Kolte, 2015). The frame 

is made to be highly-rigid along with reinforced linkage to resist loading stress and shock 
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(Komatsu, (1), 1998). The bucket size for each wheel loader is determine by the weight 

(density of the material it will be expected to handle (Joy Global, (1), 2016). 

 

               Figure 2.1.  Wheel Loader Overview (Joy Global, 2017) 

The rear frame (i.e., the half of the wheel loader behind the operator’s cabin) 

houses the machine’s power unit, the drive system and other auxiliary systems required 

for the machine’s operation. The wheel loader’s power unit, which is generally a diesel 

engine, is mounted to the rear of the rear frame with the radiator / cooler at the back of 

the machine to achieve maximum airflow. The drive unit sits forward of the engine, 

either mechanical, transmission, or electrical, to power the final drive to propel the wheel 

loader forward or backward. Additional auxiliary systems (i.e., hydraulic / air and 
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electrical) support the machine’s functions. Hydraulic pumps and valves provide flow 

and pressure to actuate the hydraulic cylinders to hoist and to dump the bucket, and they 

also control the steering of the wheel loader. The electrical system can also provide 

power directly to the wheel trough, which is a set of motors.  

2.1.2. Wheel Loader Applications. Wheel loaders are rugged all-weather loading 

tools used in multiple industries and applications. Wheel loaders are utilized in the 

following industries including, but not limited to, base metals, coal construction, hard 

rock, industrial minerals, and other industries to load trucks, load and carry material, or 

load hoppers to transfer material from one are to another. Wheel loaders may work in 

support roles along with other loading tools (e.g., electric cable shovels, hydraulic 

excavators, and drills) to prepare, assist and /or clean up their work areas (Barksdale, 

1996). 

Wheel loaders are optimized to work on level and stable floors with low muckpile 

profiles. Normally the blasts for loader operations are shot forward and lay out over the 

bench floor. A photo of a wheel loader doing production loading into haul trucks is 

shown in Figure 2.2. This floor profile allows for loading the material, while continually 

cleaning the floor from spillage and loose rocks, without the use of support equipment. 

Additionally, the muckpile can be blended by loading from two or more areas within the 

shot area into the same truck. Loaders are capable of tandem loading a truck to decrease 

the loading time or actually blending the shot material in the truck for further processing 

(Caterpillar AMA, 1998). 

Establishing a good traffic pattern for the haul trucks entering the production face 

is essential for proper fleet interaction. An example of a recommended wheel loader 
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   Figure 2.2.  Wheel Loader in Production Operations (Achelpohl, 2010) 

traffic pattern is illustrated in Figure 2.3. An unloaded haul truck enters the production 

face (dig face) on a separate track from the loaded truck. The haul truck should execute a 

turn to be able to back into a loading position at the face or to be able to stop short and be 

prepared to back under the loader as required. In either case, the haul truck operator 

needs to maintain visual and radio contact to ensure safety of the production crew. After 

the wheel loader has completed the loading sequence, the truck should exit the production 

face and travel to the dump area (Caterpillar AMA, 1998).  

2.1.3. Wheel Loader Equipment Selection. Selection of a specific wheel loader 

requires that it be matched to the production requirements of the haulage fleet (i.e., size 

of the trucks, production rate to feed the hopper, or the load and carry production rate). 

The wheel loader’s buckets should be sized to complete a bucket target load weight and 



 

 

20 

 

   Figure 2.3.  Recommended Wheel Loader Traffic Pattern (KMC, 2017) 

to cycle the machine in a reasonable time (Barksdale, 1996). The loader is designed to 

match a truck payload capacity by usually placing 3 - 6 even bucket loads of material into 

the bed of the truck. Most mining applications accept 3 - 4 loads as being the optimal 

pass range. This in not to be confused with partial passes if the wheel loader is fully 

trucked up (Caterpillar AMA, 1998).  

The loader is conventionally the limiting factor in any production fleet, as there is 

usually only one wheel loader for multiple trucks. A mining or application engineer 

commonly designs excess capacity into all phases of the production system to account for 
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any and all unforeseen circumstances which can disrupt production. Any excess capacity 

has to be balanced with additional capital and operating costs for the wheel loader 

(Barksdale, 1996). 

 

2.2. EARTHMOVING EQUIPMENT DESIGN 

Material handling equipment (MHE) are tools to maneuver materials safely, 

smoothly and directly around a mine site at all times. Earthmoving equipment is designed 

and acquired in conjunction with the production requirements and cost. The MHE 

operator’s primary goals are safety and control of costs (i.e., create margin). Managers 

and engineers should put in places processes to control both of these goals. They should 

also use sensitivity analysis to identify any critical criteria during the selection process 

and adjust these items based on empirical operating data. (Parsad, 2015). Additionally, 

examining the equipment’s application and operation conditions determine if the selected 

equipment is optimal for the task. Equipment modification and / or replacement / 

upgrades may also be required to achieve production goals. The bottom line is that the 

right system is the one which meets your application’s needs at the lowest cost per ton 

(Caterpillar AMA, 1998).  

Wheel loaders conform to several of the Society of Automotive Engineers (SAE) 

definitions expressed in standards J732, J742, J818 and J1234. These standards focus on 

quantifying the design parameters of a wheel loader (i.e., hydraulic cycle time for raising 

and lowering the lift arms and dumping the bucket, breakout force, bucket capacity, 

dump height, etc.) (Caterpillar (3), 1996).  

One area of earthmoving equipment design that has received significant attention 

in academic literature is estimating the interaction forces between equipment and the soil 
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/ muckpile. The material’s properties such as particle shape, size, size distribution, 

stiffness, and density affect the dig performance of the equipment’s bucket. All of these 

properties affect the flow of material into the bucket. An example of this would be 

digging a blasted rockpile using ground engaging tools (GET) such as on a wheel 

loader’s rock bucket. The purpose of understanding all of these properties is critical to 

preparing and improving the digging conditions at the loading site. Optimal conditions 

can increase bucket loading efficiency and, therefore the productivity of the earthmoving 

equipment (Rasimarzabadi, 2016).  

Another area that has received considerable concentration is stress estimation for 

earthmoving equipment. This entails analysis of forces acting on the bucket which 

transfer through the frame during the multiple processes of the earthmoving equipment to 

retrieve material from a pile. First is the initial penetration of the pile by the bucket’s lip. 

Second, the bucket is raised via the lift arms and worked back and forth to fill the bucket 

based on the resistance on the bucket. At this time, the pile or bank may be exerting / 

transferring addition force onto the machine as material in the pile slides down the pile 

towards the bucket and the void being created. In the last step, the bucket is lifted, freed 

of the pile, and begins the hoist procedure to its dump height (Sharata, 2004). Each 

loading step has its own stress profile. Understanding each step and how one transfers 

from one to the next is critical. Additionally, the interaction of the pile can come into play 

with the material’s properties discussed in the previous point. 

The operator’s proficiency is a third area which has received a lot of attention in 

the literature. Operator practices may lead to inefficient use of earthmoving equipment 

which leads to increased downtimes which in turn results in higher maintenance costs. 
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Models are used to determine the optimal operator practices which thus provide an 

understanding of the impact of operator practices on equipment performance. This 

measurement of earthmoving equipment performance can be assessed by examining the 

resistant forces applied to loading the bucket, the digging (bucket) cycle time, and the 

material produced (payload) (Frimpong, 2010). By using the bucket cycle time and the 

payload measurement, the equipment’s productivity can be calculated to determine how 

the machine is performing. Operating practices for loading and hauling equipment in 

mines is a source of significant energy inefficiency based on evidence of energy 

efficiency and continuous improvement studies. According to Kwame Awuah-Offei 

(2016) to the best of his knowledge, no one has critically review all these studies to 

evaluate the extent which an operator’s practices affect energy consumption per unit of 

productivity (Awuah-Offei, 2016). 

For this PhD research, the three design elements that are the most critical are 

payload limits, load and overloading design, and equipment productivity. These are 

discussed in the next three sub-sections and followed by a discussion of performance 

assessment. 

2.2.1.  Design Payload Limits.  The design parameter most commonly utilized to 

select a wheel loader is the lifting capacity of the machine. Buckets are sized and 

designed according to general types, general purpose, multi-purpose, rock and coal. Rock 

and coal buckets specify specific applications in which the wheel loader will be used, and 

they have ground engaging tools (GET) and replaceable liners which are based on the 

rock’s abrasiveness. The GET parts increased weight parts reduces the size of bucket and 

conversely the payload weight that the machine can hoist (Caterpillar (3), 1996). 
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The Society of Automotive Engineers (SAE) standard J742 (FEB85) “Capacity 

Rating - Loader Bucket” defines rating the operating loads and the environment in which 

they are to be operated. The bucket’s capacity is defined for both struck and heaped loads 

as shown in Figure 2.4. The struck capacity is the volume contained within the bucket 

after the load is leveled by drawing a straight edge from the top to the bottom of the 

bucket.  Heaped capacities contain additional material on top of the struck capacity with a 

2:1 angle of repose with the struck line parallel to the ground, (SAE (3), 1998 and 

Caterpillar (4), 2014). 

 

           Figure 2.4.  SAE Bucket Capacity Examples (SAE (3), 1998) 

SAE J732 (JUN92) defines how the hoisting functions of the wheel loader are 

measured by loading the bucket and transferring the material to another location. The 

initial force a wheel loader must overcome retrieving material from the muckpile is the 

breakout force. Breakout force is the maximum sustained vertical upward force exerted 

100 millimeters (mm) behind the tip of the bucket’s cutting edge. The wheel loader’s 

lifting capacity is determined by using the maximum mass at the centroid of an SAE 

rated bucket volume that can be lifted to the maximum height when applying the 
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manufacturer’s specified working pressure (SAE (1), 1998). Figure 2.5 illustrates both a 

60 ton class wheel loader (left) and a 55 ton class wheel loader (right) dumping over the 

bed of 240 ton class haul truck.  The areas to particularly notice are: (1) does the wheel 

loader have enough reach to place the material in the center of the truck bed or does a 

special loading sequence (double side loading) need to be set to load the truck; (2) how 

much clearance does the lift arms have over the truck bed’s side rails; is everything there 

clear.  

SAE standard J828 (MAY87) “Rated Operating Load for Loaders” defines the 

rated operating loads and the environment in which they are to be operated. The rated 

operating load for an SAE loader is not to exceed 50% of the tipping capacity of the 

machine, and the hydraulic lift capacity of the machine should be no less than the rated 

operation load for all lift arm positions (SAE (2), 1998). The bucket should be sized to 

accommodate the material intended loaded, and a check should be performed to ensure 

the bucket are sized properly to the bucket’s capacity (i.e., volume is multiplied by the 

loose cubic density (LCD) of the material so that it does not exceed the wheel loaders 

designed lifting capacity) (Caterpillar (4), 2014). The standard works in conjunction with 

SAE J732.   

Baseline modelling for a wheel loader begins with the design engineer applying 

the forces of the design payload of the bucket to the machine. A component’s life is 

directly related to the gross machine weight and its associated payload. In theory, the 

bucket should never be overloaded as this will affect the life of a machines’ components 

by shortening them or degrading them to the point where the machine is unsafe to operate 

(Fernando, 2011). Mining equipment is designed with a safety factor to account for times 
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           Figure 2.5.  Dump Height of 55 - 60 Ton Class Wheel Loader  

                                over a 240 ton Truck (KMC, 2017) 

where the equipment is pushed over its design limits. These safety limits and overload 

policies are established to handle the variability and randomness of individual bucket 

loads as they are difficult to predict and control (Chanda, 2010).  

By Caterpillar’s 10/10/20 Policy, “the mean of the payload distribution shall not 

exceed the target payload and no more than 10% of payloads may exceed 1.1x the target 

payload and not a single payload shall ever exceed 1.2x the target payload.” Caterpillar’s 

10/10/20 policy defines the overload portion between 110% - 120% of the design payload 

weight and critical overloads are ≥120% of the design payload weight (Fernando, 2011). 

The remaining bucket categories, target loads and underloads, are not as well defined. 

The target load is generally defined by the mining or application engineer in specifying 

the fleet’s loading tool. The range for the target zone is set around the bucket fill factor.  

The typical bucket fill factor ranges from 80% - 90% for the fleet (Gurgenli, 2017). The 
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underloads are any bucket load which is below the target range. Mining operations will 

adjust these percentages based on their desired metrics to rate the operating performance 

of their equipment. They usually adjust them within ± 5% of these values.  

The direct collection of bucket data from wheel loaders is possible through the 

machine on-board equipment monitoring systems (Caterpillar VIMS, 2017 and Joy 

Global LINCS, 2017). These systems provide on-board feedback to the operator on 

bucket overloads and critical overloads. Additionally, these systems can record and make 

available, in real time, payload increases for each bucket loads (Chanda, 2010). 

Acknowledgment and proper actions for the overload alarm information can be useful in 

preventing further damage to the equipment and its components.  

2.2.2. Loader Design Modeling. Design modeling of individual wheel loaders 

and their components is an on-going process to refine and advance the design of the 

equipment. Essentially, the design of the equipment is the interdependence between its 

geometry and its strength parameters on one hand, and the working capacity of the whole 

machine on the other. The design process involves multi-criteria analysis of a function of 

many variables which makes the optimization problem a relatively complex and slowly 

convergent one (Bundy, 1988). A simple force diagram is shown in Figure 2.6 for a 

wheel loader lift arm design.  

A practical wheel loader design is based on machine behavior and visual 

derivations while seeing that the machine executes its function. Simulating the linkage 

motion in a 3D drawing finite elements analysis (FEA) program is an instrumental part of 

the design process. Figure 2.7 is an example of this. The FEA process requires that a 
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large number of iterations be performed in order to ensure that all criteria are fulfilled, 

and that there are not adverse results in the calculations (Kolte, 2015). 

 

Figure 2.6.  Wheel Loader Lift Arm Force Diagram - Example (Kolte, 2015) 

Modelling Steps 

1. Assembling the components into a current machine (i.e., mating the 

chassis, the bucket and the lift arms) 

2. Motion simulation and parameter verification 

3. Performing calculations derived from the first principles 

This part of the design requires valid kinematics and dynamics models of the 

earthmoving machine. Various researchers have modeled the kinematics and dynamics of 

electric cable shovels (Awuah-Offei, 2011; and Frimpong, 2005) and wheel loaders 

(Sarata, 2004 and Li, 2015). These kinematics and dynamics models are used to estimate 

the forces and the stresses on the various components during digging which are then used 

to evaluate the design using numerical techniques like FEA. 

Both the lift arms and the bucket are employed during digging operations. 

Operations of both the lift arm and the bucket produces a combination of movements  
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     Figure 2.7.  Example of FEA Model - Stress Changes of Key Nodes 

                                             (Napadow, 2013) 

during each bucket cycle. The specific force applied to the end of the bucket blade, which 

balances the forces of the active cylinder and the reactions of the ground equals the 

digging force (Bundy, 1988). Figure 2.8 exhibits the maximum stress in one of such 

model iterations. The maximum stress area appears as the red spot at the junction 

between the lift arm stiffener and the torque tube.  

Virtual prototyping combined with FEA can be utilized to estimate the stresses of 

loading the bucket (Raza, 2013). The loading capacity of a wheel loader is the maximum 

load generated during operation, which is statically permissible for the machine to carry. 

This term has been borrowed from the theory of limit load capacity for rigid / plastic 

bodies. The instance of stability loss due to forces in hydraulic cylinders being exceeded 

is analog to the plastic flow from the original theory. The resulting analysis equates 
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       Figure 2.8.  Location of Maximum Stress - FEA Model Example 

                                             (Napadow, 2013) 

equipment geometry and statics, and optimization of the digging forces in the machine 

working area (Bundy, 1988).  

2.2.3. Design of Equipment for Productivity and Performance. The design of 

the equipment fleet is based on the operational goal to deliver as much material as 

possible to its destination in the shortest time possible and at the lowest operating cost 

(Caterpillar (5), 2014). The movement of material from the loading point to the unloading 

point is accomplished by the mobile equipment fleet (i.e., a wheel loader and a number of 

trucks). The wheel loader is specified based on the capacity of the bucket, the work cycle 

of the loader which determines performance, and the ratio of the bucket capacity to the 

capacity of the truck bed or the hopper (Saderova, 2014). The equipment selection goal of 

the loading and hauling fleet is to have the right size and the correct number of pieces 
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available to perform the work in the environment at the lowest cost per ton (Corke, 

2006). 

Three specifications for selecting a loader (bucket capacity, work-cycle, and 

bucket to truck bed capacity) are used in matching the wheel loader to the truck fleet to 

optimize the equipment’s efficiency. The wheel loader’s bucket should be capable of 

loading a truck in a reasonable number of (usually 3 - 4) passes (Caterpillar AMA, 1998). 

The fleet design should be based on both methodical calculation from the OEM 

performance guides and empirical data from the fleet’s proposed operational work area 

(Saderova, 2014). In loader truck fleets, a common loading pattern for loader-truck 

operations is the V-shape pattern, shown in Figure 2.9. The five parts of a V-shaped 

loading pattern are: 1) the loader reverses from the pile creating the first leg of the V; 2) 

the loader switches direction advancing towards the truck sitting at a slight angle to the 

pile, 15 - 30 degrees from perpendicular to the pile; 3) dumping the bucket into the bed of 

the truck; 4) the loader backs away from the truck; and 5) the loader advances into the 

pile perpendicular to the face for the next bucket (Corke, 2006). 

The first step in the loading process (i.e., loading the bucket to its target weight) is 

the only step which affects the bucket load weight. This step must be executed 

consistently to achieve the target weight for the haul truck. There are several factors (i.e., 

swell of the material, muckpile fragmentation, and loading area floor conditions) affect 

the operator’s ability to fill the bucket. Figure 2.10 shows a bucket trajectory model for 

an even and uniform muckpile. The bucket should be placed on the ground and engage 

the pile at point A. The bucket penetrates the pile until forward motion is stopped at point 

B, where the resistance force is increased proportional to increasing the depth of the pile 
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                  Figure 2.9.  V-Shape Loading Pattern (Corke, 2006) 

at the tip of the bucket. The bucket can continue to be loaded by raising and working the 

bucket back and forth to point C, where the resistance force is less. Point D is where the 

bucket has broken free of the pile and has its bucket load. The cross-sectional areas of 

point A, B, C, and D are the area for a bucket load (Sarata, 2006 and Corke, 2006). The 

operator’s skill at penetrating the digface and the digability of the pile are critical in 

loading the bucket to achieve a targeted bucket loading.  

All five steps in the bucket loading process contribute to the bucket cycle time. 

Each operational step in loading the bucket can and should be evaluated to determine its 

duration in the fleet design. The operational steps should be performed with a minimum 

of movement and fluidly transitioning from one step to the next (Saderova, 2014). 
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                Figure 2.10.  Bucket Loading Trajectory Model (Sarata, 2006) 

2.2.4. Application of Equipment Performance and Productivity. The 

combination of the machine performance and the operator’s level of skill have the 

greatest effect on the wheel loaders productivity. Empirical examples for both the bucket 

load weight and cycle time for a month are shown in Figures 2.11 (load weight) and 2.12 

(cycle time) (Joy Global (4), 2016)). 

A review of Figure 2.11 shows the distribution of the average weights with a 

mode of 61 tons, while the design was for 85% of the bucket weight payload (i.e., 60 tons 

per bucket.) The bucket load weight distribution shows it to be weighted to the left of 

center.  This type of distribution should be expected due to the wheel loaders rated 

payload. The 7 ton difference between the design bucket payload versus the actual bucket 

load accounts for over 400 ton per hour or 105,000 tons in lost production and /or 

roughly an extra 42 hours (8%) of production time, along with $20,000 of additional 

costs to achieve the designed specified results.  

Figure 2.12 shows the cycle time distribution having a mode of 55 seconds, while 

the designed cycle time was 45 seconds per bucket. This 10 second difference from the 
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  Figure 2.11.  Sample Wheel Loader Monthly Load Weight Distribution  

    Figure 2.12.  Sample Wheel Loader Monthly Cycle Time Distribution  
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design time to the empirical data shows that the operator is not cycling the machine 

properly. An evaluation would be a good first step to determine which factors need to be 

addressed (i.e., operator training, improvement of the loading area, better matching / 

timing of the haulage units). The extra cycle time results in 34 hours (7%) of additional 

production and $15,000 of additional costs.  

The combination of the bucket’s load weight and the cycle time results equals the 

wheel loaders’ productivity.  This is expressed in Equation 2.1. The operator is the person 

who has the ability to affect the performance of the machine the most.  This includes 

bringing its productivity to between 50% - 120% of its OEM specified performance. The 

operator can run the machine poorly which cuts its performance in half, or (s)he can 

operate above its designed limits to increase production levels (Caterpillar AMA, 1998 

and Awuah-Offei, 2016).  Other factors including operating conditions, mine planning 

and design, and equipment characteristics also effect the performance of the loading 

equipment. Examining each of these factors which effect the equipment’s performance 

through the operator is generally the least expensive and the easiest one to change.  

(Oskouei, 2015). 

Productivity = Production (tons) / Time                                                                                                                                                                                                                                                                    (2.1) 

The combined productivity data from the wheel loaders’ bucket and cycle time 

examples is displayed in Figure 2.13, “Sweet Spot” analysis. This productivity analysis 

shows the merged distributions together resulting in a weighted scatter plot. The target 

zones for both the bucket load weight and the cycle time overlay the data in an offset tic-

tac-toe grid. The example results demonstrates the effect an operator can have on the 
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wheel loader’s productivity by lowering it 15% due to the underloaded buckets and the 

slower cycle times. The results show that the majority (75%) of all loads were in the 

lower right sector, underloaded and over the targeted cycle time. The production fleet, 

especially the wheel loader, should be constantly monitored to minimize wasted capacity 

and operating costs (Barksdale, 1996).  

 

Figure 2.13. Wheel Loader Monthly Productivity (Sweet Spot) Analysis  

2.3. EQUIPMENT RELIABILITY 

It is the goal of every mine to achieve superior equipment or system reliability. 

Hence, reliability should be assessed against a set of specifications to ensure the system 

meets the performance criteria. A production system consists of different types of 

equipment; all units, components and sub-components must have high availability and 

reliability in order to ensure a stable and a reliable process (Fredriksson, 2012). 
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Moubray’s view of reliability is that “reliability is not a function in its own right.” Instead 

it is a performance expectation which pervades all of the other functions. It is properly 

dealt with by handling appropriately each of the failure modes which could cause loss of 

function (Moubray, 1997). A piece of equipment’s reliability can be derived from its 

design which has been previously discussed, and how well it is maintained resulting in a 

unit’s availability to perform its designed function when scheduled at or below the actual 

cost of operation (i.e., operating, maintenance and repair costs.)  

2.3.1. Maintenance and Repair Philosophies and Practices. Maintenance is the 

combination of all technical, administrative, and managerial actions during the life cycle 

of an item which are intended to retain it in or restore it to the state in which it to the state 

in which it can perform its required function (Fredriksson, 2012). The tasks range from 

planning, scheduling, preparation, work, clean-up, and completing reports for activities 

ranging from daily inspections, preventative maintenance services, general repair tasks, 

component rebuilds to complete unit rebuilds (Wenz, 2013). There are numerous 

maintenance and repair philosophies and practices and variations of these are utilized to 

maintain equipment.  

• Run to Failure 

• Preventive Maintenance 

• Predictive Preventive Maintenance 

• Reliability Centered Maintenance 

These philosophies are developed into maintenance programs and policies which 

are used to standardize the maintenance of a piece of equipment all the way to an entire 

fleet. A maintenance program establishes general standards to follow and prescribes the 
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minimal level of service or inspections to be performed at any point or state in the 

equipment’s life. Individual pieces of equipment may have additional tasks or services 

added to their schedule based on their individual maintenance requirements (Smith, 

2004). A discussion and overview of escalating levels of maintenance and maintenance 

planning follows.  

2.3.1.1 Run to failure (RTF) maintenance. The simplest form of maintenance is 

run to failure (RTF) maintenance or reactive maintenance. RTF is doing zero preventive 

or planned maintenance and only repairing or replacing items after failure. This approach 

does make sense in certain situations (e.g., when inspections will not yield information 

about using the piece of equipment or component, the time and / or cost of inspections 

and preventive maintenance cannot be justified, and /or the part may be easy to replace). 

The use of the RFT maintenance objectives, and not a lack of planning on the part of the 

fleet / facility management (Eagle, 2017). Manpower shortages and /or lack of a budget 

for better monitoring and control are by far the most common reasons for selection of this 

method (Miltitrode, 2008). The RTF maintenance philosophy is the fallback strategy for 

all the following maintenance strategies. RTF brings the risk of increased repair costs, 

additional machine downtime, and the possibility of additional system failures to save 

cost today. 

2.3.1.2 Preventive maintenance (PM). Preventive maintenance (PM) programs 

are designed to avoid equipment failures and to extend the equipment’s life (Tomlingson, 

(3),1998). PM programs are listed in the maintenance schedule provided in the service or 

owner’s manual with the piece of equipment (Joy Global, (2), 2016). Typically, PM task 

consist of equipment / system / component inspections, specific testing and condition 
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monitoring to avoid premature failures. Additional PM items can include the changing of 

lubricants and filters, adjusting and replacing minor components to extend the life of the 

equipment (Tomlingson (3), 1998). 

2.3.1.3 Predictive preventive maintenance (PPM) or condition monitoring 

(CM). Predictive Preventive Maintenance (PPM) or Condition Monitoring (CM) can be a 

continuation of the PM program which requires additional tools and / or test procedures 

to ensure the health of the equipment. They utilize specific tools to identify the presence 

of a failure mode, so that action may be taken prior to total system failure. Examples of 

condition monitoring tests include: vibration analysis, infrared analysis, thermography, 

passive ultrasound, motor circuit analysis, lubricant analysis, stress / strain testing, and 

other forms of non-destructive testing (NDT) (Gehloff, 2013). Depending on the exact 

PPM test results, additional actions may be required (e.g., additional immediate repairs, 

scheduling of future repairs for the next scheduled down event, compiling data for 

trending and future PPM). 

2.3.1.4 Reliability centered maintenance (RCM). Reliability Centered 

Maintenance (RCM) is the process of determining the most effective maintenance 

approach for a piece of equipment. The RCM philosophy utilizes elements of the 

maintenance programs described previously in this section. RFT, PM, PPM and RCM 

techniques can be integrated together to increase the probability that the machine or 

component will function the required manner over its design life cycle with minimum 

maintenance. The relationship of the elements in the RCM is shown in Figure 2.14. The 

goal of an RCM plan is to provide the stated function of the machine with the required 

reliability and its availability at the lowest possible costs. RCM requires that maintenance 
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decisions be based on maintenance requirements supported by sound technical and 

economic justifications (Nowlan, 2002). RCM utilizes the understanding of equipment 

failures and the root cause of each for each individual failure to improve equipment 

performance by reducing the maintenance workload and increasing the economic benefit 

of maintenance by improving the equipment’s reliability (Ma, 2014). 

 

                      Figure 2.14. Elements of RCM (Nowlan, 2002) 

RCM plans ordinarily begin with the examination of the PM, PPM, and RTF 

maintenance items to identify modes of failure for components and systems on the 

machine. These failure modes are then traced back to determine their effects on the 

machine’s actual operation. Risk matrixes are used to quantify the severity of each failure 

mode (Nowlan, 2002). An example of a risk matrixes is shown in Figure 2.15. Most 

RCM analysis examines the risk of failure via multiple paths. This example uses four 
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separate risk paths (i.e., safety, environmental, operation, and financial). The assigned 

risk value for each path is independent of each other based on the exact failure 

(Reliability, 2015). 

 

                  Figure 2.15. Risk Matrix Example (Meridium, 2015) 

Following completion of the risk matrix based on the failure mode, plans are 

developed to mitigate the risk. The maintenance mode is determined depending on the 

equipment’s components having different degrees of reliability and assessing the degree 

of the hazard. This strategy emphasizes the equipment’s reliability and fault 

consequences as the main basis of the repair strategy. RCM eliminates any unreasonable 

part from the traditional maintenance mode, and then applies it to equipment maintenance 

P
ro

b
ab

ab
il

it
y

Consequence

Improbable 

(0.05)
0.05 0.5 5 25 50

Remote 

(0.1)
0.1 1 10 50 500

1000

Possible 

(0.3)
0.3 3 30 150 300

Very Low 

(1)
Low (10)

Medium 

(100)

High 

(500)

Very 

High 

(1000)

Probability 

(1)
1 10 100 500

Frequent (5) 5 50 500 2500 5000



 

 

42 

(Wu, 2014). The removal of non-productive services from maintenance programs reduces 

the maintenance time and the cost while increasing equipment reliability (Collis, 2016). 

2.3.1.5 Establishing inspection / maintenance intervals. The key to establishing 

inspection / maintenance intervals is to maintain the health of the equipment by 

minimizing the repair cost with the goal of achieving / extending the machines targeted 

life. Preventive maintenance, consisting of short- and long-term targets, are essential to 

move maintenance to a desired level of excellence (Montenegro, 2003). Several 

maintenance models are classified according to three types of system dependence: 1) 

economic, 2) structural, and 3) stochastic; where economic dependence occurs when 

simultaneous maintenance of multiple components can reduce cost; structural 

dependence occurs when components form a part (often known as a line replaceable unit 

that is maintained as a single subsystem); and stochastic dependence occurs when the life 

of one component influence another (Jafary, 2017). 

One way to begin establishing the maintenance intervals is from the PM service 

guide in the OEM maintenance manual (Joy Global (2), 2016). Cost models are another 

resource and can be obtained from the OEM to provide guidance on the life of major 

components (Caterpillar, 1996, Caterpillar, (6), 2014 and Komatsu, 2009). These are 

based on the reliability analysis and design life of the parts and components. The 

maintenance interval can further be influenced by regional support capabilities, skill level 

of mechanics and quality of replacement parts (Montenegro, 2003). 

2.3.2. Equipment Reliability Analysis. Reliability is the starting point in the 

reliability potential of a piece of equipment. It is the role of the OEM to understand how 

the design of the unit, in terms of reliability, will affect the equipment performance under 
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different operating conditions, how this will affect the installed components, subsystems, 

sub-components and ultimately, the overall unit reliability (Roux, 2011). 

Application and reliability engineers track the performance of the production 

system to monitor the production units, maintenance, and general health of the system. A 

system’s productivity, the volume of goods produced over a defined period of time, is the 

unit of measure for most production based systems. The ability to measure, track, and 

improve the system’s productivity is a corner stone of workflow management. 

2.3.2.1 Reliability analysis process. Reliability analysis is generally part of a 

larger asset management process established to monitor and maintain the equipment’s 

health. Asset management is a broad term referring to the systematic and coordinated 

activities and practices through which an organization optimally and sustainably manages 

its assets systems. Placing proper asset management systems in a mining environment 

and implementing the business plan leads to reliable plant and mobile equipment. Then in 

conjunction with mine planning forecasting, there is no reason why the planned 

maintenance activities cannot be followed religiously (Stephen, 2013). Six Sigma and 

lean thinking are processes concerned with improving quality by decreasing variability in 

the process in order to avoid poor quality or defects (as a form of waste). These processes 

are completed using workflow models to accomplish the tasks of planning, executing, 

and analysis (Ross, 2015). An example of a workflow model is the IPSECA (Identify, 

Plan, Schedule, Execute, Close, and Analyze) workflow management model, and an 

overview example is shown in Figure 2.16. Each stage of the IPSECA model can be 

broken down further into a continual loop process (Song, 2017). 
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The IPSECA workflow management model can be expanded into continuous 

improvement and sustained maintenance loops, as shown in Figure 2.17. Starting with the 

“Identify” part of the IPESCA model, a high level work can be prescribed to be 

completed. After identification of the high level work, detailed planning includes the 

identified tasks and is followed by scheduling the work, incorporating both resources and 

the time required to complete the planned tasks. Execution of the detailed plan is based 

on the scope of the identified work. A work follow-up review of the planning, 

scheduling, and execution parts of the IPSECA model unites the sustained maintenance 

loop. The last step analyzes the systems performance, closes the continuous improvement 

loop, and returns to identifying the new or reoccurrence work items. The use of workflow 

management models, specifically IPSECA, is one method employed to determine and 

improve the reliability and equipment health of a piece of production equipment and 

optimize its application.   

One goal of equipment health monitoring (EHM) is tracking the wellness of 

components to determine their condition and operating health to estimate the Potential-

Failure (P-F) curve. Most failure modes provide some sort of warning that they are in the 

process of failing or failure is about to occur (Moubray (2), 1997). There are three 

regions shown in the graphical representation of the of the P-F curve displayed in Figure 

2.18. The first region shows the time of installation to Point P where it is possible to 

detect failure by tracking the component. The time between these points is where the 

component is operating normally within its designed operating parameters. The point to 

the right of Point P is where the component begins to fail. The purposed of inspections 

and testing (e.g., oil sampling, vibration analysis, thermal imaging, etc.) is to detect this 
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initial stage of failure and begin tracking the potential failure. The inspection and sample 

analysis reports are useful in establishing operating baselines for each component to 

compare and place in context among its peers (Riddely, 2017). The net P-F interval is 

minimum interval likely to elapse between the discovery of the potential failure and the 

occurrence of the functional failure. 

 

Figure 2.16.  Example of the IPSECA Workflow Management Model  

                                                (Collis, 2017) 

Region two of the P to F identifies the potential failure at point P. Point P begins 

the first stages of failure and predicting the failure mode of the equipment so repairs can 

be made in a planned manner (Riddely, 2017). This is important in deciding on a 

component / parts inventory strategy and the allocation of repair personnel. The time 

between Point P and F can vary independently for each component and failure mode. The 

time can be very short (i.e., a few hours or days) or in other cases you may have months 

to plan and take corrective action. Additionally, it is important to determine the P-F 

interval consistency (i.e., given the failure mode, the time period between the points P 

and F on the curve and the time interval between the shortest and longest intervals) 

(Moubray (2), 1997).  This is important in the scheduling process and procurement 

process to get men and materials assigned using the least costly method possible. 
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Figure 2.17.  Assigned Tasks of the IPSECA Workflow Management Model  

                                                (Collis, 2017) 

 

Figure 2.18.  Probability Failure (P-F) Curve (Time is not linear in the graph)  

                                              (Riddely, 2017) 
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The last region is at point F on the curve, were the functional or catastrophe 

failure of the component has occurred. Point F generally marks the most downtime and 

cost for the asset. Additionally, functional failure can cause secondary damage or failure 

to other systems resulting in additional downtime and expense to correct (Moubray (2), 

1997).   

2.3.2.2 Failure analysis. There are multiple processes and methods used to 

identify failures and their causes and work to put in place actions to find, mitigate or 

eliminate their effects. Two methods are root cause failure analysis (RCFA and failure 

mode and effect analysis (FMEA). The RCFA examines the effects of the failure after 

they have occurred, while FMEA is a proactive approach. Both methods can be used to 

identify the second region of the P-F curve in order to prevent or delay the onset of Point 

P, potential failure point of the component. 

Root cause failure analysis (RCFA) or root cause analysis (RCA) is a reactive 

process investigating the incident after it occurs by capturing all factor that affect the 

operating performance and failure including front line personnel actions, failed part(s), 

work environment, and work process. The RCFA investigation systematically drills deep 

into the organization’s standards, policies and administrative controls to determine how 

those elements failed to prevent or eliminated causal factors associated with the incident. 

The RCFA process is resource intensive and typically reserved for high value casualty 

incidents where the cost of the investigation is justified in potential savings by prevention 

of recurrence (Krupa, 2004). RCFA is an efficient process placing priority on the item 

that experienced failure (Riddell, 2017). 



 

 

48 

The failure events are mapped to determine their root cause. The map provides a 

method to assign numeric values to each path to investigate each cause’s findings, usually 

with a frequency distribution of the major root causes. A downside of the RCFA process 

is lack of follow through on implementing recommendations which address true root 

causes and prevent future problems. Operations focused on returning their equipment 

back to service without implementing the root causes leads to repeated failures of the 

equipment by the same failure modes time over time (Krupa, 2004).  

Failure Modes and Effects Analysis (FMEA uses a systematic scientific technique 

of identifying, analyzing and preventing product and process problems before they occur 

(Silverman, 2013 & Moubray (4), 1997). FMEA should begin as early as possible, even 

before equipment is in operation and the process should be revaluated several times 

during the equipment’s life (Cassanelli, 2006). The failures that occurred should be 

reviewed and added into each subsequent FMEA process (Silverman, 2013).  

FMEA process is composed of several steps. First is evaluation and enumeration 

of the failure modes of the equipment, subsystem or a part. Second, the engineer should 

rate the severity of the failure. This can be done with a technique similar to the risk 

matrix shown in the Figure 2.15 of the RCM section. Third, the engineer should address 

these failure modes by either eliminating them or protecting the asset from damage in 

order or severity (Silverman, 2013).  

2.3.2.3 Distribution analysis. Conventional reliability analysis can utilize a 

number of different theoretical statistical distributions to analyze the failure hours of 

equipment components as a stochastic process. This facilitates changing the component 

over time due to failure of achieving their change out interval, (Barabady, 2007 & 
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Dhillion, 2008). Some of the distributions employed are exponential, lognormal, gamma 

and Weibull family distribution (Das, 2008; Waghmode and Sahasrabudhe, 2010; 

Barabadi, 2013; Moubray (5). 1997). Each of these distributions have their own strengths 

and weaknesses when applied to model equipment reliability and the optimal distribution 

to be used depends on data available for analysis and the particular circumstances 

(Barabady, 2013).  

The Weibull family distributions are by far the most common for reliability 

analysis (Barabady, 2013). In fact, sometimes reliability analysis is called Weibull 

analysis. Weibull analysis can be performed on failure datasets such as that for a 

component or a piece of equipment. Typically, the dataset is constructed around a 

common factor such as failure mode, though it can be expanded to operating conditions, 

application, and additional factors (e.g., equipment identification and hours on machine 

and component at failure). Reliability analysis using a two-parameter Weibull 

distribution probability density function, shown in Equation 2.2, can be performed using 

a component failure dataset to determine the mean time between failure (MTBF), 

characteristic life (η) and the failure pattern of a structural component (i.e. the shape 

parameter, β) (Moubray (5), 1997). The Weibull distribution is commonly used for its 

versatility and the ease with which the parameters of the distribution can be estimated 

(Barabady, 2013 & Usta, 2012). 
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                                                                                         (2.2) 

The two-parameter Weibull frequency distribution (probability density function) 

is versatile because of its variety of shapes, which enable it to fit many kinds of product 
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life data. The distribution is defined by the shape parameter beta (β) and characteristic 

life (η). Generally, Weibull distribution shapes for the shape parameter, β=1, is an 

exponential distribution, or constant (random) failures, shown by the green line in Figure 

2.19. When β is between 1 and 4, it represents an observed constant failure rate shown by 

blue line. Most of the failures will occur in the middle of the components life-span. As β 

increases towards a value of 4 or higher, wear out failures are observed (yellow dashed 

line). These should be checked against the design life of the component. Infant mortality 

(premature) failures are represented by β≤1 displayed in red (Moubray, (5), 1997, & 

Uptime, 2017).  

 

           Figure 2.19.  Failure Rate Curve Comparison (Uptime, 2017) 
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The main advantage of Weibull distribution analysis are its versatility (Barabady 

2013; Usta 2012). Murphy et al. (2004) documented over 40 distributions used for 

reliability analysis in the Weibull family distributions. This wide range means that 

different failure modes can be captured by one of the Weibull family distributions. Even 

just the two-parameter Weibull distribution can be used to capture a variety of failure 

modes. Some authors have also pointed out the limitations of the Weibull distribution 

(e.g., Todinov, 2009) 

This work chose to use the Weibull distribution because of its versatility. The 

candidate knew from his experience working with wheel loader failure data sets that 

Weibull distributions are able to capture the variety of failure modes. Also, the emphasis 

of the work was not to overcome the limitations of the Weibull distribution in reliability 

analysis.  

2.3.3. Maintenance Plan Schedules. As part of formulating an effective 

maintenance plan / strategy, scheduling the tasks is the most important part of the plan’s 

execution. Two types of schedules are typically developed. Both short-interval and global 

schedules are used to execute the maintenance plan. The short-interval schedule is used to 

schedule defined routine tasks, (e.g., engine oil change) and its duration (e.g., 250 hours). 

The schedule is continually updated based on current equipment performance data and 

the duration of previous service events. Short duration schedules are typically forecast 

and scheduled out a week to two months in advance. The global schedule has a forward 

looking focus of typically 6 to 24 months. It examines the long duration non-routine 

services (e.g., yearly inspections, component replacements, machine rebuilds, or plant 

shutdown events). Events which are on the global schedule typically require additional 
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planning to ensure that the required parts are ordered and on-hand before commencing 

the maintenance activity, scheduling an OEM or specialty contractor to perform the work, 

and coordination with other departments to assign tasks or make them aware that non-

routine work in commencing (Song, 2009). The maintenance plan intervals generally fall 

into two categories, time based (i.e., hours, days, months, etc.) or event / cycle based. 

2.3.3.1 Time based maintenance intervals / events. Time based maintenance 

intervals measure the service interval by hours run, days, operated, or calendar days (e.g., 

perform these tasks the 15th of the month). Time based maintenance intervals of tasks are 

typically based on design criteria or RCM analysis based on the failure range of FMEA 

analysis as part of the planning / implementation stage for the RCM plan (Huang, 2012). 

Multiple inspection services or tasks should be scheduled and conducted to detect the 

failure prior to a catastrophic failure event (Moubray (3), 1997). These inspections should 

be conducted in the first stage of the potential-failure (P-F) curve, discussed in Section 

2.3.2.1.1, prior to detection at Point P. The reason for these inspections in to establish a 

baseline of what is normal for this specific component and to identify premature failure, 

based on its populations normal failure window (Moubray, (3), 1997).  

Tracking these maintenance tasks generally takes place in a computerized 

maintenance management system (CMMS). This allows for the accumulation of 

operating hours on components and equipment together as well as scheduling and 

forecasting maintenance and repair activities (Tomlingson, (2),  1998). The CMMS 

provides a repository for previous component histories and failures. This information is 

critical in construction of datasets used in failure analysis tests and updates to the time-

based maintenance intervals. Additionally, age replacement PM is developed for both 
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system availability and expected system cost. The PM interval objective is to optimize 

the interval and minimized the cost, which also has a two-front purpose to extend the PM 

or inspection interval while not increasing the likelihood of component failure (Grida, 

2012). 

A limiting factor to time based maintenance intervals is it takes a simplified 

approach to scheduling the interval based on the collective failure of the group. This 

poses a danger to safety critical systems which suffer failures based on overworking the 

component beyond its designed duty-cycle (Jafary, 2017). This has led to industry 

looking for additional ways to quantify the duration of the maintenance plan based duty-

cycle of the equipment.  

2.3.3.2 Non-time based maintenance intervals / events. Non-time based 

maintenance intervals are gaining acceptance, though require additional resources to 

track and analyze additional accumulators to either hold off or trigger the maintenance 

event. Examples of this type of this service intervals follow: 1) the engine service should 

be scheduled when the engine has accumulated 150 hours of run time above 1500 rpm, or 

300 hour of run time whichever comes first (i.e., the engine is operating above the 

designed duty-cycle of 50% (Cortese, 2016) or 2) a machine structural inspection is 

scheduled every 500 overloads or 30 critical overloads (Dubberly, 2017). The first 

example shows a combine PM service scheduled logic where the service could be 

scheduled earlier based on increased duty-cycle of the machine based on application, 

operator, or both. The second examples uses just the non-time based accumulators to 
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schedule the service regardless of time. A structured method is necessary to choose the 

practices, which will help to achieve the objectives (Montenegro, 2003). 

Modern mining equipment is designed with various on-board equipment 

monitoring systems (e.g., Caterpillar’s Product Link and Vehicle Informational 

Management System (VIMS) (Caterpillar, 2017) and Joy Global’s LINCS and PreVail 

systems (Joy Global LCM, 2017). These systems monitor and report the health of the 

equipment to the operator through on-board monitors which display the results as well as 

save and transmit this information from the equipment to the cabin for further analysis. 

The data currently available from these on-board monitoring systems include production 

and operating system information.  

2.3.3.3 Reviewing and optimizing inspection / maintenance intervals and 

costs associated. Periodic auditing of maintenance plans is crucial to verify actions are 

undertaken according to the predicated patterns to bring about the improved results. The 

audit makes possible the identification of vulnerable points and specify countermeasures 

for the continuous improvement of the maintenance process (Montenegro, 2003). These 

plans are reviewed and updated to focus on specific fleets, company goals, or other 

factors in order to optimize the maintenance of the equipment. These updates focus on 

the short- and long-term targets are essential to move maintenance to a desired level of 

excellence (Montenegro, 2003). 

As the maintenance practices evolve through the use of RCM and other 

maintenance philosophies concerning system improvements, maintenance training, work 

planning, failure treatment and supplier / service purchase agreements (Montenegro, 

2003). The key to a successful maintenance strategy is to minimize the downtime, ensure 
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that the proactive maintenance tasks are properly being used, thus reducing / eliminating 

the reactive tasks, meaning less failures, minimized downtime events, lowered stress and 

higher quality, all working to increase profit (Fredricksson, 2012). 

Despite the large number of maintenance models and applications, relatively few 

studies consider the impact of correlation of dependence on the optimality of 

maintenance policies (Jafary, 2017). Changes to the organization evolve overtime as part 

of progressive maintenance strategy (i.e., changing practices to increase availability) by 

reliability predicting failures and maximizing the lives of components help to reduce cost 

per unit. The consolidation of these gains across the fleet allows for additional lower 

costs for other equipment or additional operations (Fredricksson, 2012). 

 

2.4. EFFECT OF MACHINE OPERATION AND PERFOMANCE ON 

RELIABILITY 

Most earthmoving equipment structures (e.g., equipment frames) are designed to 

last until a major rebuild or the entire working life of the machine. The reliability and the 

remaining useful life of a piece of equipment or its components depend on the stress and 

its load history. The structures are designed to suffer through loading conditions which 

are measurable, quantifiable, and not deterministic (Corbetta, 2014). The literature 

contains work that tries to solve one of multiple specific problems of the real-time 

prognosis of fatigue-induced damage propagation, and, thus, how to determine the 

residual amount of life remaining in the structural components (Corbetta et al., 2015).  

Corbetta et al. (2015) suggests looking at multiple real-time damage prognoses 

when dealing with random loading conditions, which are more complicated to model than 

the constant amplitude fatigue measurements. In cases where the structure is subjected to 
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random loads, the instantaneous value of the load is unknown, future loads are unknown 

as well which pose significant challenges. The next case involves uncertainties on the 

current load conditions. In these cases the load can be equated in statistical terms and 

estimated using a rainbow method, extracting the mean load and the range. However, 

rainbow load counting is an approximated extraction of the actual load affecting the 

damage, which remains unknown. In the third case, retardation and acceleration effects 

due to the load sequence can be scrutinized. The crack growth accelerates with overload 

events, thus reducing the life of the structural component(s). In the last case, there 

remains the uncertainty of future loads where damage may occur and propagation from 

the current state until a critical condition is reached. For all of these cases, the 

nonlinearity method of describing damage propagation prevents closed form solutions for 

the component’s residual time (Corbetta et al., 2015).  

The forces which earthmoving equipment are subjected can vary greatly 

depending on the equipment operator (i.e., angle of attack entering the pile, speed 

entering the pile, and manipulation of the bucket in the pile), site conditions, (i.e., floor 

conditions, fragmentation size, and pile conditions) (Oskouei, 2014), and environmental 

factors (i.e., weather, time of day). Examination of wheel loader production data in this 

study shows all of these factors to be in play. The data shows times of “normal 

operations” with a few to no overload events occurring for long periods of time, (i.e., 

multiple days with multiple operators). Conversely, the data also shows localized events 

with multiple overload events occurring back-to-back or in a small cluster, (i.e., 5 bucket 

overloads in a 10 bucket sample). In these digging conditions, each hour the equipment 

operates at a stress level higher than “normal use” or “designed use” is equivalent to 
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more than one hour of normal use. How much more can be determined by estimating a 

stress acceleration factor (Li, 2007).  

The examination of failure degradation of the structural components follows two 

paths: (1) gradual failure, where the failure occurs over time and can be tracked and acted 

upon to correct; or (2) sudden failure, which is generally catastrophic and requires 

complete replacement of the component (Beganovic, 2017). The stress and load history 

depends on the duty cycle, which can contribute to structural fatigue leading to failure or 

to the ultimate failure of the structure. That is, how the equipment is used determines the 

loads and stresses to which it will be subjected. Current practices for life time assessment 

are based on conservative design assumptions and simplifications due to uncertainties. 

This conservative approach potentially leads to under-estimation of actual fatigue life, 

and over monitoring for failures (Noppe, 2016). 

Structural components are monitored via inspections and on-board sensors. First, 

these inspections range from the daily operator inspections through complete frame 

inspections (Noppe, 2016 and Joy Global (3), 2016). The effects of the inspections are 

decreased availability and increased maintenance time to complete the checks. Mobile 

equipment can be installed with strain sensors for direct strain measurement at critical 

fatigue locations. The use of these sensors has limitations. The sensors are known to be 

unreliable over time due to damage from operations, loss of adhesion to the equipment, 

and maintenance and data analysis requirements (Noppe, 2016 and DePorter, 2017). 

For earthmoving equipment, the operator has a significant influence on how the 

equipment runs and the loads the equipment experiences (Oskouei, 2015). For example, 

Abdi Oskouei and Awuah-Offei (2015) show significant differences in dragline energy 
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efficiency due to differences in dumping height, drag distance, and spotting time, among 

others. Differences in operator practices, such as these, not only affect energy and 

production efficiency but also affect the loads and the stresses to which the equipment is 

subjected (Awuah-Offei, 2015). Again, a preliminary review of the production datasets in 

this research indicates that the loading times vary greatly from one bucket to the next due 

to the operator’s skill level (i.e., amount of distance covered by the loader, the activation 

of multiple commands, hoisting the bucket and moving the loader, and working the pile 

in relation to truck). 

For loading equipment, the payload is a key indicator of the loads and the stresses 

the equipment sustains. The frequency of overloading is an indicator of the higher than 

normal use that the loading machine endures, which could affect the remaining useful life 

and the reliability of the equipment. Hence, there is reasonable evidence to suggest that 

the extent of overloading should be accounted for in estimating the reliability of the 

machine. It is normal practice to use the current overload rate to supplement the time 

based hours of operation in establishing the maintenance inspection and replacement 

intervals. This is similar to identifying equipment idling too long and taking corrective 

actions (Akhavian, 2013).   

However, the author did not find any work in the English literature which 

accounts for using overloading in estimating loading equipment reliability. The ability to 

issue / reschedule maintenance tasks based on multiple parameters, (i.e., run hours and 

duty-cycle conditions, bucket overload events) could increase the likelihood of finding 

structural issues which will increase the equipment’s availability. This would be 

accomplished by tracking the number of overload cycles which would give the 
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maintenance department the ability to shorten the inspections and service intervals for 

machines when they are seeing increased high force (stress) events and extending these 

intervals when these events are occurring less frequently.  

 

2.5. RATIONALE FOR PHD RESEARCH 

The rational for this PhD research is to: (1) improve our understanding of the 

effect of payload on the forces incident on a wheel loader’s liftarms and bellcranks (using 

cylinder pressures as the proxy for forces); and (2) develop an approach to incorporate 

overloading (duty-cycle due to payload) into reliability analysis of the wheel loader’s 

structural components.  

Reviewing the literature around the first point (the effect of payload on the on the 

forces incident on wheel loaders) shows that some machines have been instrumented with 

stress / strain sensors for limited periods of time. The purpose of these measurements 

were to determine the stresses on the machines structural components in its working 

environment. While stress /strain sensors provide good data for this purpose, there are 

limitations of this approach. First, not all machines are instrumented and those that are 

require additional maintenance to keep the sensors on the machine and downloaded for 

analysis. Second, the stress data generated is considered proprietary information by 

OEMs. Hence, the literature does not provide much stress data from wheel loaders 

operating in the field. 

We need an alternate method to provide, say using a proxy that is non-proprietary, 

to determine the forces exerted on the wheel loader during operations. The hoist cylinders 

have been identified as part of the wheel loaders liftarms group and are instrumented in 

the on-board monitoring systems to display the pressures required to lift the bucket free 
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of the pile and hoist it to the tipping point. These sensors are monitored via the loader’s 

on-board monitoring systems and remote health monitoring (RHM) system (e.g. PreVail). 

This research seeks to provide a method, based on non-proprietary data, to understand the 

effect of payloads on forces exerted on the wheel loader during operations. 

The second rationale (develop an approach to incorporate payload duty-cycle into 

reliability analysis of the wheel loader’s structural components) was to bridge the 

knowledge gap between the parameters monitored by RHM systems and the 

accumulators used to operate preventative maintenance systems in order to increase the 

equipment’s availability. The research is to evaluate the feasibility of developing PM 

programs based on dual triggers (as opposed to just time) and to transition from the 

current inspection window of hours to hours and the payload duty cycle (i.e., account for 

the effect of overloads and critical overload events) without decreasing equipment 

reliability. Such an approach will allow maintenance engineers to establish PM inspection 

triggers and to have the service issued in a timely manner that accounts for the variability 

of the duty-cycle based on loading conditions. To the best of this candidate’s knowledge, 

there is no work that has attempted to account for payload duty-cycle in reliability 

analysis. And this is not currently part of industrial practice. 

Currently, the RHM system (e.g., PreVail) for wheel loaders has limitations and 

this research is to address and upgrade the some of these items in the system. The RHM 

systems does not use duty-cycle as monitoring factor in reliability analysis. Additionally, 

the RHM does not used monitor the relationship of forces (i.e., hoist cylinder pressures) 

exerted on the wheel loader and the payload being lifted. The knowledge gained from this 
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research will be used to improve the RHM system to better monitor equipment relating to 

its application and duty-cycle. 

Following completion of this research there will be multiple additional steps 

required to transition from the results to commercial application. First of these steps will 

be the new accumulators (determined from this research) will have to be built into the 

maintenance profiles of new machines in the maintenance system to track the overload 

events in order to issue structural inspections based on them. Currently, operating 

machines profiles will have to be edited with these new accumulators to provide the same 

functionality. Before this is done, there needs to be evidence that these accumulators can 

improve reliability estimates to justify the cost and effort. This is the focus of this 

research. 
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3. EFFECT OF OVERLOADING THE BUCKET ON WHEEL LOADER 

PRODUCTIVITY - A CASE STUDY 

3.1. INTRODUCTION TO WHEEL LOADER PRODUCTIVITY 

This section addresses the first objective of this dissertation. The work uses data 

from 20 ultra-class wheel loaders in mines around the world to examine the effect of 

overloading the bucket on wheel loader productivity. 

Tracking the impact that overloading the wheel loader bucket has on productivity 

was broken down into three tasks: (1) the raw datasets were separated into four bucket 

load categories based on their weight percentage: under loads (<85%), target weight (85-

105%), overloads (106-120%) and critical overloads (>120%); (2) the production rate for 

each cycle was determined by bucket categories; (3) the production rates were compared 

using an analysis of variance (ANOVA) to evaluate whether there is a statistically 

significant difference between the productivity of different sets of data. 

The first step was completed during the analysis of the information by separating 

the raw data load categories. Each data point was assigned to one of the four categories 

(under loads, target weight, over loads, critical overloads) based on the weight percentage 

(ratio of the payload to the rated bucket payload). The second stage determined the 

productivity of each load based on the cycle time and the payload. In the third step, the 

datasets were subjected to an ANOVA single factor test to evaluate whether the bucket 

cycle times and productivity rates were significantly different.  

 

3.2. EXPERIMENTAL EQUIPMENT & SITES 

The ultra-class wheel loaders provide a unique fleet to study due to high bucket 

capacity and small overall population of a few thousand machines operating around the 
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world (ParkerBayMining, 2016). These wheel loaders operate in mines all over the world 

in production, stripping, stockpiling, and support roles in all the major mining sectors 

which include coal, base and precious metals, industrial minerals, and gemstones. Table 

3.1 discloses the number of units in this study, commodities mined, regions, and 

applications in which the ultra-class wheel loaders operate. Table 3.2 details the number 

of loaders by the commodity they extract during their shift operations. The wheel loaders 

are matched to haul trucks to provide optimal loading in three to seven passes based on 

the trucks’ payload capacity (typically greater than 240 tons) (JoyGlobal.com). Wheel 

loaders provide great flexibility to mining operations because they are able to quickly 

relocate to different faces in the mine, blend ore in the pit, and provide a variety of other 

tasks (Hartman (1), 1992).  

   Table 3.1. Ultra-Class Wheel Loaders by Operating Class and Region  

Bucket 
Capacity (st) 

Unit in 
Study Commodity Location Application 

60 1 
Coal, iron ore, 
copper, and 
overburden 

Australia, North 
America, and 

South America 

Production, 
overburden, and 

stockpiling 

55 8 

80 5 

75 6 

 

Table 3.2. Ultra-Class Wheel Loaders by Operating Model and Commodity 

  Commodity  
TOTAL 

Class Coal Iron Ore  Metal 

55 - 60 ton 5 3 2 10 

75 - 80 ton  -  8 2 10 

TOTAL 5 11 4   
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This is a case study of ultra-class wheel loaders operating in multiple regions 

around the world mining several different commodities. An overview of the geology of 

these mining districts follows. 

3.2.1. Geology of the Australian Iron Ore Deposits. The largest number of 

wheel loaders which were studied operated in the iron ore deposits of Western Australia. 

All five of the 80 ton class wheel loaders and one 55 ton machine and 60 ton class 

machine operated in this region. The iron ore deposits in this region are banded iron 

formations. Banded iron formations (BIF) are heavy narrowly banded sedimentary rocks, 

which alternate with a variety of iron rich layers of fine grained quartz. Common 

minerals comprising the banded BIF include: hematite, magnetite, siderite, and 

stilpnomelane. Large BIF also occur in China while smaller deposits are mined in the 

United States and Canada (GSWA, 2017). 

The Hamersley province, known as Pilbara, of Western Australia contains the 

largest area of banded iron formations in the world. The Pilbara region was discovered in 

the early 1950s, and the iron was deposited 2.4 billion years ago during the late Archean 

to the early Proterozoic eras. This region extends over 150,000 square kilometers and 

contains approximately 300 trillion tonnes of iron. (Morris, 1998). 

3.2.2. Geology of Australia Bowen Basin Coal Deposits. Two of the 55 - 60 ton 

class wheel loaders in the study operate Queensland’s Bowen Basin. The deposition in 

the Bowen Basin began during the Early Permian to the Middle Triassic periods with the 

concentration coming from two north trending depocenters, the Taroom Trough in the 

east and the Denison Trough to the west. The deposition in the basin consisted of fluvial 

and lacustrine sediment and volcanics deposited in a series of half-graben structures in 
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the east while a thick succession of coals and non-marine clastics were deposited to the 

west. (A half-graben is a geological structure bounded by a fault along one side of its 

boundary.) Following rifting, thermal subsidence occurred during the mid-Early to Late 

Permian period. Foreland loading of the basin spread from east to west during the Late 

Permian period, which resulted in accelerated subsidence allowing for deposition of 

material. During the Late Permian a basin-wide event allowed depositions of deltaic and 

shallow marine sediments, which were predominantly clastic sediments as well as 

extensive coal formation. Deposited materials were a very thick succession of Late 

Permian clastics, along with coal deposited during the Early to the Middle Triassic 

periods. Sedimentation in the basin was terminated by a Middle to Late Triassic 

contractional event (AG GA, 2017). The coal seams in the basin typically dip steeply and 

limit surface pits to depths of approximately 300 meters (Hutton, 2009). Hutton (2009) 

estimated that the resources for this depth are approximately 23,200 million tonnes in 

2004. 

3.2.3. Geology of the South American Iron Ore Deposits. The remaining six 

iron ore wheel loaders studied operate in Brazil’s Carajas Mineral Province. This district 

has had several distinct periods of anorogenic ring complex cluster formations. The last 

formation took place roughly 1.90 to 1.75 billion years ago during the Paleo Proterozoic 

period, which produced massive iron oxide mineralization. The deposits, which were first 

thought to be BIF, are actually hydrothermal replacement iron oxide copper gold (IOCG) 

type deposits. Granitoids seem to be directly associated with the iron mineralization in 

the province (Lobo-Guerreo, 2008). The Carajas Mineral Province iron ore deposits 
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make-up an estimated eighteen billion tons of ore with a 66% iron content (Rosiére, 

2000).  

3.2.4. Geology of the North American Copper Deposits. One of the ultra-class 

wheel loaders in the study operates in the copper mines of Arizona’s porphyry-copper 

deposits. These are generally associated with intrusive igneous rocks. These deposits 

were formed below the surface from saline and metal-bearing fluids that were expelled 

from cooling magma. The saline fluid and heated groundwater interacted with rocks 

adjacent to the intrusion chemically altering the depositional area of the host rock. The 

deposit also commonly contains molybdenum and silver as co-products which were 

introduced via the saline fluids (Allison, 2017).  

Erosion and weathering over millions of years exposed these metal deposits. 

Additionally, weathering further concentrated the copper through secondary enrichment. 

Pyrite was oxidized, which dissolved in rainwater, then forming an acidic iron sulfate 

solution which dissolved the main copper-ore mineral, chalcopyrite (copper-iron sulfide). 

The dissolved copper was redeposited as principally chalcocite (copper sulfide) (Allison, 

2017). 

3.2.5. Geology of the North American Coal Deposits. Several ultra-class wheel 

loaders operate in two different North America coal deposits, the Powder River Basin 

(PRB) of northeastern Wyoming and southeastern Montana (Luppens, 2013), and the 

coal fields of northwestern Colorado (CGS (2), 2017).  

The Powder River Basin coal deposits began sixty million years ago as the bottom 

of a shallow sea of rich subtropical swampland. The plant layers formed peat beds, which 

when buried and compressed turned into low-sulfur bituminous and subbituminous coal 
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strata (Braasch, 2013). The PRB’s coal seams are known to be over 100 feet in thickness 

and are located close to the surface. The PRB basin consists of over forty coal beds, with 

the most significant resources being the Roland (Baker), Smith, Anderson, Dietz 3, 

Canyon, Lower Canyon, Werner/Cook, Otter, Gates/Wall, and Rosebud/Knoblock coal 

beds of the Tongue River Member of the Paleocene Fort Union Formation. The United 

States Geological Survey (USGS) estimates an in-place resource of 1.07 trillion short 

tons of coal with actual recoverable coal resources set at a 10:1 stripping ratio which 

equals approximately 162 billion tons. Luppens (2013) estimated the economically 

recoverable resources to be 25 billion tons in 2013.  

The surface coal deposits of northwestern Colorado are shallow enough to be 

extracted by open-pit methods. This coal was formed during the late Cretaceous and the 

Paleocene-Epoch of the Tertiary Period, between 55 to 100 million years ago, to form 

bituminous coal (CGS (1), 2017).  

 

3.3. DATA COLLECTION 

The machine data was collected from wheel loaders with an on-board equipment 

monitoring system at multiple sites around the world by mechanics, field service 

engineers (FSE), factory service representatives (FSR), and factory engineers as part of 

monthly maintenance procedures. One of the technician’s duties includes downloading 

the wheel loader’s production data file monthly and posting it online via the OEM’s 

portal or emailing it for review. The production data file was saved by the candidate to a 

directory on a laptop setup up with the model and loader ID number. The production data 

file consists of four data columns: event type, data / time, event, and the weight (in tons) 

of the event. A 30-minute sample of downloaded production data is shown in Table 3.3. 
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                  Table 3.3. Sample Wheel Loader Production Data -  

                                 Wheel Loader 8015 Date 1/16/16 

               (weight is color coded by load type located in Table 3.7) 

Event Type Date Event Weight (tons) 

Production 1/16/16 3:01 Bucket Load Weight: 84 84 

Production 1/16/16 3:01 Bucket Load Weight: 72 72 

Production 1/16/16 3:02 Bucket Load Weight: 79 79 

Production 1/16/16 3:04 Truck Load Weight: 235 235 

Production 1/16/16 3:04 Bucket Load Weight: 84 84 

Production 1/16/16 3:05 Bucket Load Weight: 83 83 

Production 1/16/16 3:06 Bucket Load Weight: 78 78 

Production 1/16/16 3:07 Truck Load Weight: 245 245 

Production 1/16/16 3:07 Bucket Load Weight: 74 74 

Production 1/16/16 3:08 Bucket Load Weight: 87 87 

Production 1/16/16 3:09 Bucket Load Weight: 75 75 

Production 1/16/16 3:10 Bucket Load Weight: 48 48 

Production 1/16/16 3:13 Bucket Load Weight: 80 80 

Production 1/16/16 3:16 Truck Load Weight: 364 364 

Production 1/16/16 3:19 Bucket Load Weight: 77 77 

Production 1/16/16 3:20 Bucket Load Weight: 80 80 

Production 1/16/16 3:21 Bucket Load Weight: 74 74 

Production 1/16/16 3:23 Truck Load Weight: 231 231 

Production 1/16/16 3:23 Bucket Load Weight: 78 78 

Production 1/16/16 3:24 Bucket Load Weight: 79 79 

Production 1/16/16 3:24 Bucket Load Weight: 78 78 

Production 1/16/16 3:26 Truck Load Weight: 235 235 

Production 1/16/16 3:26 Bucket Load Weight: 76 76 

Production 1/16/16 3:27 Bucket Load Weight: 85 85 

Production 1/16/16 3:28 Bucket Load Weight: 87 87 

 

The data was downloaded onto a Dell laptop running Windows 7 64-bit operating 

system. The laptop has an Intel® Core™ i7-4712HQ CPU processor operating at 

2.30GHz with 16.0 GB of installed memory (RAM). All of the data files were 

downloaded, stored, and processed using this laptop during the project. An additional 

copy of the dataset of files was maintained on a server as backup during the project. 
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3.3.1. Step 1: Compile the Wheel Loader Productivity Data. After the 

downloaded information was received or downloaded from the servers, it was compiled 

with previous downloads from the same wheel loader. Each wheel loader in the study 

was able to provide one to twenty monthly downloads worth of data. Each download was 

processed through the use of Joy Global’s LeTourneau Integrated Network Control 

System (LINCS) software versions 2.20 or 3.60. The data was then converted to a 

comma-separated variables (CSV) file which was used for further processing. 

The various monthly downloads were combined into one master machine file. 

Once the master file was assembled, the first task was to check to see if duplicated events 

where present in the file. Another check was performed to ensure only single unique 

events were present in the machine’s combined production record. The data was then 

sorted to produce a list of bucket loads for analysis. The list of bucket loads gives us the 

basis to make two calculations: (i) estimate cycle time; and (ii) estimate bucket 

productivity for each bucket in the file. The bucket cycle time and productivity (t/sec) 

were calculated using Equations 3.1 and 3.2 . 

Date n+1 – Date n = Bucket Cycle Time * 86400 seconds                                                                       (3.1) 

Weight (Bucket) / Bucket Cycle Time = Bucket Productivity                           (3.2) 

Sample results of both calculations can be seen in the Table 3.4. Additionally, the 

LINCS Bucket Overload channel data, which issues a bucket overload warning to the 

wheel loader operator, is also displayed in Table 3.4. The resulting dataset became the 

processed dataset for an individual wheel loader. 
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          Table 3.4. Sample Wheel Loader Processed Production Data -  

                                         WL 8015 Date 1/16/16 

                (weight is color coded by load type located in Table 3.7) 

Event Type Date 
Weight 
(tons) Time (sec) Warning 

 
Productivity 

Production 1/16/16 3:01 84 5.6 Overload   0.73 

Production 1/16/16 3:01 72 49.6    1.45 

Production 1/16/16 3:02 79 51.1    1.55 

Production 1/16/16 3:04 235 110.0      

Production 1/16/16 3:04 84 4.6 Overload   0.73 

Production 1/16/16 3:05 83 48.8 Overload   1.70 

Production 1/16/16 3:06 78 51.2    1.52 

Production 1/16/16 3:07 245 87.8      

Production 1/16/16 3:07 74 4.9    0.80 

Production 1/16/16 3:08 87 59.3 Overload   1.47 

Production 1/16/16 3:09 75 57.6    1.30 

Production 1/16/16 3:10 48 43.0    0.48 

Production 1/16/16 3:13 80 194.4    0.41 

Production 1/16/16 3:16 364 192.1      

Production 1/16/16 3:19 77 171.1    0.21 

Production 1/16/16 3:20 80 55.5    1.44 

Production 1/16/16 3:21 74 50.1    1.48 

Production 1/16/16 3:23 231 96.0      

Production 1/16/16 3:23 78 4.2    0.78 

Production 1/16/16 3:24 79 46.6    1.70 

Production 1/16/16 3:24 78 49.1    1.59 

Production 1/16/16 3:26 235 117.7      

Production 1/16/16 3:26 76 3.9    0.63 

Production 1/16/16 3:27 85 46.5 Overload   1.83 

Production 1/16/16 3:28 87 49.7 Overload   1.75 

 

The ultra-class wheel loader data was obtained from the time periods shown in 

Tables 3.5 and 3.6. The duration covered by the wheel loader datasets ranged from 2 to 

24 months, from June 2014 through June 2016, depending on the specific wheel loader 

reporting. The individual cycles in the data range from 10,000 to 200,000 cycles. The 

candidate believes the data is adequate given the number of cycles used in the analysis. 
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Table 3.5.  Time Periods for the 55 - 60 Ton Wheel Loader Class Datasets 

55 - 60 ton Wheel Loader Class 

    

Wheel 
Loader 

Begin 
Date 

End 
Date 

Duration 
(months) 

6001 Jan-16 Jun-16 6 

    

6011 Dec-15 Apr-16 5 

6012 Jun-14 Apr-16 23 

6013 Dec-15 Apr-16 5 

6014 Dec-15 Feb-16 3 

6015 Jan-16 Feb-16 2 

6016 Feb-15 Sep-15 8 

6017 Feb-15 Sep-15 8 

6018 May-15 Jan-16 9 

 

Table 3.6.  Time Periods for the 75 - 80 Ton Wheel Loader Class Datasets 

75 - 80 ton Wheel Loader Class 

Wheel 
Loader 

Begin 
Date 

End 
Date 

Duration 
(months) 

8001 May-15 Sep-16 17 

8002 Oct-14 Apr-16 19 

8003 Nov-14 Apr-16 18 

8004 May-15 May-16 13 

8005 Oct-14 May-16 20 

    

8011 Apr-15 Nov-15 8 

8014 Apr-14 May-15 14 

8015 Aug-15 Sep-15 2 

8016 Jan-15 May-15 5 

8017 Dec-15 Jan-16 2 

8018 Feb-16 Mar-16 2 
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3.3.1.1 Data quality control. The objective of this analysis is to evaluate the 

effect of overloading the bucket on wheel loader productivity. Table 3.7 shows the 

breakdown of bucket load types for the various ultra-class wheel loaders in the study. A 

series of data checks were performed on each processed wheel loader dataset before 

proceeding with the analysis. 

    Table 3.7. Breakdown by Bucket Load Weight by Bucket Load Type 

                                            (Joy Global, 2015) 

  Model 60 ton 55 ton 80 ton 75 ton 

Bucket Load 
% Bucket Load Type Bucket Load Weight (st) 

0 - 85% Underload 18 - 51 16 - 46 25 - 67 25 - 64 

85 - 100% Target Load 52 - 60 47 - 55 68 - 80 65 - 75 

101 - 105% Target Load 61 - 63 56 - 58 81 - 84 76 - 79 

106 - 120% Overload 64 - 72 59 - 66 85 - 96 80 - 90 

120+% Critical Overload 72+ 66+ 96+ 90+ 

 

The first step of the data check was to review each wheel loader’s processed 

dataset to determine if the bucket load is most likely to be a production bucket load, a 

clean-up load, a test load, or a lift arm articulation / maintenance check. The first data 

check is to determine whether the bucket load was greater than 30% of the design target 

bucket weight for the 55 - 60 ton class wheel loaders or greater than 25 tons for the 75 - 

80 ton class wheel loaders. Bucket loads which met the above criteria were retained in the 

dataset for the next data check.  

The second data check was based on bucket cycle time. Table 3.8 shows the 

classification of the bucket cycle times. The average target load cycle time for the 55 - 60 

and the 75 - 80 ton class wheel loaders is 40 seconds and 45 seconds per pass, 
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respectively. If the bucket cycle time was less than 25 seconds or greater than 180 

seconds, these loads were also eliminated from the processed wheel loaders dataset. 

                         Table 3.8. Bucket Cycle Time Classifications 

Model 60 ton 55 ton 80 ton 75 ton 

Bucket Cycle Category  Bucket Cycle Time (sec) 

Very Good -35 -35 -40 -40 

Target Load 35 - 45 35 - 45 40 - 50 40 - 50 

Below Target 46 - 60 46 - 60 51 - 60 51 - 60 

Need Improvement 60 + 60 + 60 + 60+ 

 

Once both data checks are completed, the wheel loader’s cleaned dataset was 

ready for evaluation. The clean dataset was then broken down into sample groups of 

10,000 bucket cycles starting with the oldest usable data point and proceeding to the most 

recent. These sample groups were used to produce the bucket weight, cycle time, and 

productivity frequency distributions presented in Sections 3.3.1.2. 

3.3.1.2 Overview of the data.  This section presents an overview of the payload 

and cycle time data from the different loaders in the study. The data is presented by the 

classification of loaders used in this study. This provides a quick overview of what is in 

the processed data prior to the ANOVA tests. The payloads (tonnages) are presented first 

and then the cycle times. This section is divided into two sections: the first presents the 

55 - 60 ton class loaders and the second presents the 75 - 80 ton class loaders. 

As shown in Table 3.1, only one 60 ton class wheel loader is included in this 

study because there are actually only a handful of units with this configuration operating 

in the global fleet. Figure 3.1 illustrates the operators’ ability to fill the bucket to within 
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the average of number of buckets for the given bucket weight. Loader 6001 operates as a 

production wheel loader in a Western Australia iron ore mine. The peak (mode) of its 

distribution is 47 tons per cycle. This is 4 tons less than the minimum target range of 51 - 

63 tons. The bucket count exceeds 400 buckets for the range of buckets between 32 - 54 

tons. The distribution shows 65% under loads, 34% target weight, 0.7% over loads, and 

0.3% critical overloads. The 60 ton class wheel loader configuration dataset will serve as 

a guide for the three other additional wheel loader configurations presented.   

 

Figure 3.1. Distribution of 60 Ton WL Class Bucket Tonnage by Load Count 

 There are more 55 ton class wheel loaders in this study than any other class of 

loaders. Eight machines have reported data for this study. Figure 3.2 shows the bucket 

weights of all the 55 ton class wheel loaders. This class of wheel loaders can further be 

broken down into two sub groups by their specific commodities which are coal and 
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metals (copper and iron ore). The results for the 55 ton class wheel loaders will be 

discussed within these commodity sub groups.  

 

Figure 3.2. Distribution of 55 Ton WL Class Bucket Tonnage by Load Count 

The number of bucket loads per group for all of the 55 ton class wheel loaders are 

displayed in Table 3.9. As shown in Figure 3.2, the fleet results show a wide range of 

values. These results are attributed to the actual bucket fitted to the specific wheel loader 

and operator proficiency in being able to fill the individual bucket.   

The bucket weight for 55 ton class wheel loaders operating only within coal is 

shown in Figure 3.3. There are five loaders in this sub group which work in two regions, 

Australia (4) and North America (1). These wheel loaders perform a variety of tasks 

including production, overburden removal, site clean-up, stockpiling, and loading coal 

into the preparation plant for processing. Loaders 6011 and 6014 primarily function as 
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production machines to extract coal from the face. Both of their distribution curves are 

very similar and they have modes within one ton of each other: at 44 tons (6011) and 43 

tons (6014), respectively.  

Table 3.9. 55 Ton WL Class Bucket Load Groups Averages by Load Type  

 

 

 

       Figure 3.3. Distribution of 55 Ton WL Class Bucket Tonnage by  

                                            Load Count - Coal 
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Loaders 6013 and 6016 which are also shown in Figure 3.3 perform multiple 

duties at their respective sites. Each of these loaders has rock size buckets attached which 

result in smaller volumes than a traditional coal bucket. Both loaders have distributions 

that are positively skewed with a inflection point (point where the slope changes) at 38 

tons showing bucket loads of mixed material, coal and overburden or just overburden. 

The amount of time each loader (Loaders 6013 and 5016) spends on each application is 

shown in the amplitude of the initial peak and flat bulge in the case of Loader 6013 and 

the change in the right hand tail for Loader 6016 after the hinge point. Examining the 

area under the curves for both wheel loaders shows Loader 6013 working with coal 61% 

of the time verses 79% of the time for Loader 6016. Additionally, Loaders 6013 and 6016 

spent 39% and 21% of their time working with mixed materials or overburden 

respectively. The resulting outcomes for all of the 55 ton class wheel loaders are 

presented in Table 3.9. 

Loader 6018 performs two functions as a stockpile / loadout machine and an 

overburden removal machine. This distinction is displayed in the bimodal (double peak) 

distribution plot (Figure 3.3). This distribution curve illustrates classic issues with 

machines operating with bucket specific loads for coal handling. The large volume coal 

buckets can be easily overloaded when used in an overburden stripping application. 

Typically, the overburden density can be greater than twice the density of the coal. The 

distribution curve for Loader 6018 (Figure 3.3) shows the tonnage for the coal loads to be 

between 25 and 42 tons, and the overburden or mixed materials loads tonnage to be 

between 43 and 69 tons. Loader 6018 operators overload the bucket at more than five 

times the rate of any loader studies, and they critically overload the bucket over seven 
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and a half times the rate of the other loaders studied. If Loader 6018 is compared against 

the same class loaders operating in metals, the overloads and critical overloads rate drops 

to three times for both load types.  

The three loaders in the 55 ton class wheel loader class study are each operating 

in different regions around the world. Loaders 6012, 6015 and 6017 comprise two 

machines which operate in iron ore (one in Australia (6012); and one in South America 

(6017)), and one machine operating in copper in North America (6015). Loader 6017 is 

the other iron ore wheel loader. Its operational role is to strip overburden to expose iron 

ore for production. Comparing the two iron ore wheel loader distribution curves discloses 

that there is a variance, which is caused by the different material the machines are 

handling with Loader 6017 peaking at 38 tons loading iron ore versus 47 tons for Loader 

6012 loading production ore. The data for Loader 6012 shows a near normal distribution 

curve. This machine operates in the pit in a typical operation in a production role. 

Similarly, Loader 6015, which also operates in a production role, has a near symmetric 

distribution with a mode about the same as Loader 6012. All of the distribution curves for 

the 55 ton class wheel loaders - metals are shown in Figure 3.4. 

The data set also includes data on the cycle time, which reflects the operators’ 

ability to cycle the loader efficiently. There are typically two distinct bucket cycle times 

in an analysis. The first is the cycle time of moving from the pile to the truck and back 

again. The second incorporates the cycle of the truck exchange (i.e., one haulage unit 

leaving the wheel loader filled with material and a second haulage unit moving into 

position to receive its first bucket of material) (Komatsu, (2), 1998). Typically, this 

exchange occurs every 4 to 5 bucket cycles and adds between 15 to 45 seconds to the 
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bucket cycle time for either the first or the last bucket cycle for a truckload (assuming the 

loader is not matched to fewer trucks than optimal). This exchange time was accounted 

for in the first bucket cycle by eliminating the truck load event time from the raw wheel 

loader dataset and recomputed the bucket cycle time in the processed dataset.   

 

      Figure 3.4.  Distribution of 55 Ton WL Class Bucket Tonnage by  

                                           Load Count - Metals 

The resulting cycle time distribution, shown in Figure 3.5, comprises all bucket 

cycles for Loader 6001. The mode of the distribution is 43 seconds per bucket cycle, 

which is within the target cycle time for a 60 ton class wheel loader. The distribution 

shows 3% of the cycles under the target time, 41% within the target time, and 56% over 

the target cycle time for this 60 ton class wheel loader. The right tail of the distribution 

details the results of numerous loads taking significantly longer than the target cycle time 

to complete.   
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              Figure 3.5. Distribution of 60 Ton WL Class Cycle Times 

The 55 ton class wheel loader operators are cycling their machines most 

consistently when they are compared to the target bucket cycle time of seven of the eight 

loaders presented. They are achieving their peak cycle times within the target windows. 

The distribution curves, shown in Figure 3.6, for the majority of the machines reveal 

normal distributions with right side extended tails accounting for increase cycle times 

relating to change out of haulage units (i.e., truck exchange.) Both wheel loaders, Loaders 

6014 (coal) and 6015 (copper) show more linear right hand tails indicating that a couple 

of factors might be present. These factors include the operator taking additional time to 

load the bucket, misplacement or further travel to deposit the bucket in the haulage unit, 

and / or inefficient truck exchange resulting in increased bucket time. 

The bucket cycle time group occurrences of the 55 ton class wheel loaders are 

exhibited in Table 3.10. for Figure 3.6. The Target Load Cycle times range for this class 

of wheel loaders are from 27% - 58% of the time for the fleet. The wheel loaders 
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operating at or above the Target Load cycle times account for 41% -76% of the loads 

analyzed.  

 

             Figure 3.6. Distribution of 55 Ton WL Class Cycle Times 

    Table 3.10. 55 Ton WL Class Cycle Times by Bucket Load Category  

    Wheel Loaders 

Bucket Cycle Category  6011 6012 6013 6014 6015 6016 6017 6018 

Very Good 213 290 307 520 116 317 205 508 

Target Load 2,837 4,990 4,053 3,756 2,705 4,947 4,839 5,792 

Below Target 4,662 3,076 3,227 3,398 4,259 2,985 3,245 2,656 

Need Improvement 2,289 1,644 2,413 2,326 2,920 1,750 1,712 1,045 

TOTAL 10,000 10,00 10,00 10,00 10,00 10,00 10,00 10,00 
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Coal applications for 55 ton class wheel loaders disclose normal distribution 

operating cycle times for the five machines, excludes Loaders 6012, 6015 and 6017. 

These are illustrated in Figure 3.7. All the coal sub group of loaders, except of Loader 

6011, are operating within the Target Load bucket cycle time of 35 - 45 seconds. Loader 

6011 bucket cycle time is at just above the desired time at 46 seconds. Loaders 6016, 

6017 and 6018 were able to achieved nearly double the number to target cycle times as 

the other two loaders in the sub group. Additionally, Loader 6018 exhibits its operators 

are capable of cycling the machine within the same bucket cycle times, as the unit splits it 

time between loading coal and overburden applications.  

 

         Figure 3.7. Distribution of 55 Ton WL Class Cycle Time - Coal  

The results of the cycle time distribution shown in Figure 3.8 shows cycle times 

42 - 44 seconds for the three wheel loaders in the 55 ton class. The wheel loaders 6012 
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and 6017 which operate in iron ore have an average cycle time of 42 seconds and have 

very similar distribution curves. Wheel Loader 6015 which operates in copper has its 

peak at 44 seconds with an intensity of 200 loads per group less than the iron ore 

machines. Additionally, Loader 6015 has a right-side skewed tail starting at a peak of 44 

seconds sloping linearly down to 70 seconds. This shows that the operator is taking more 

time to load the bucket, which may be caused by poorly fragmented material, subpar 

working conditions, an inefficient operator requiring additional supervision or additional 

training. Some or all of these factors may be at work in this situation, requiring an 

application study to determine which or a combination of these factors are at work.  

 

       Figure 3.8. Distribution of 55 Ton WL Class Cycle Time - Metals  

Bucket productivity is the result of dividing the bucket cycle time into the bucket 

weight.  In this study, bucket productivity is expressed in tons per second, which 
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corresponds to 3600 tons per hour for a bucket productivity of 1 ton(s) per second. Wheel 

loaders in the 55 - 60 ton class have a calculated production rate of 3,000 - 4, 000 tons 

per hour (Fleet, 2017). Wheel loader 6001 has a productivity of 0.77 tons per second or 

2,770 ton per hour, shown in Figure 3.9. 

 

      Figure 3.9. Distribution of 60 Ton WL Class Productivity - Bucket 

Figure 3.10 shows the distribution for all the 55 ton class wheel loaders’ bucket 

productivities. The wheel loaders in this class have a clearly defined productivity range 

based on the commodity of material being loaded. The average peak for the coal 

machines is 0.83 tons per second, while the wheel loader operating in metal shows 0.98 

tons per second, or a 600 ton per hour difference. Additionally, two curves show outlier 

trends in the coal machines. Loader 6016 displays nearly a double bucket occurrence at a 

significantly lower productivity, and Loader 6018 exhibits a double peak to correspond 
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with its double peak curve in bucket tonnage pulling double duty-coal and overburden 

loading applications.  

 

     Figure 3.10. Distribution of 55 Ton WL Class Productivity - Bucket 

Review of the productivity of the 55 ton class wheel loader operating in coal 

which is shown in Figure 3.11. Three distinct distribution curves are present. Three wheel 

loaders, 6011, 6013, and 6014 have similar normal distribution curves with peaks from 

0.77 - 0.88 tons per second. The effect of the lower bucket weight combined with a 

quicker cycle time is able to bring the bucket productivity for Loader 6013 back into a 

normal operating range of 2,800 to 3,200 tons per hour for these wheel loaders. Loader 

6016 displays the effect of the smaller (rock) bucket on a machine primarily being used 

in a stockpile and preparation plant loader application. This results in productivity being 

reduced 15% over the average of Loaders 6011, 6013, and 6014. The other extreme is 
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shown by Loader 6018 with its dual application of loading coal and overburden with a 

coal bucket. The first peak in the productivity curve loading coal falls in the range of the 

first three coal wheel loaders at 0.87 tons per second. The second peak at 1.22 tons per 

second loading overburden is 40% higher than the coal average, although we are starting 

to see the results of the higher bucket tonnage flatten out the productivity curve around 

the second peak.  

 

  Figure 3.11. Distribution of 55 Ton WL Class Loader Productivity - Coal 

The wheel loader operating in the metal mine in the 55 ton class demonstrated 

similar productivity results which are displayed in Figure 3.12. This specific machine’s 

productivity ranged from 0.96 - 1.04 tons per second or 3,450 - 3,750 tons per hour. The 

fluctuation in the productivity curve of Loader 6015 is due to the fact that there is only 
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one group sample for that particular machine compared to sixteen and fourteen group 

samples for Loaders 6012 and 6017 respectively.   

 

      Figure 3.12. Distribution of 55 Ton WL Class Productivity - Metals 

In reviewing all the production and productivity data for the 55 - 60 ton class 

wheel loaders, a couple of items become apparent, see Table 3.11.  First, the bucket 

weight shows that the machines are not being loaded to the wheel loader’s target zone 

based on the machine’s designed payload capacity. Only two of the nine loaders studied 

were able to achieve this parameter, and this includes Loader 6018 achieving this payload 

capacity only in consistently overloading the machine with a coal bucket moving 

overburden. The wheel loader operators have shown good skill in being able to cycle the 

machine within the target cycle time. Eight of the nine wheel loaders studied were in the 

target zone with the ninth just outside it by a second. This leads to the results that the 



 

 

88 

wheel loaders operating in metal productivity were 600 tons per hour more productive 

than their counterparts working in coal. The productivity results show that the variance in 

bucket weight to be the main difference within the wheel loaders studied.   

Table 3.11. Distribution Modes for the 55 - 60 Ton Wheel Loader Datasets 

Wheel 
Loader 

 Bucket Wt. 
(tons) 

Cycle Time 
(sec) 

Productivity 
(t/sec) Commodity 

6001 47 43 0.89 Iron ore 

         

6011 44 46 0.88 Coal 

6012 47 42 1.04 Iron ore 

6013 31 41 0.77 Coal 

6014 43 41 0.83 Coal 

6015 45 44 0.96 Copper 

6016 32 42 0.72 Coal 

6017 38 42 0.97 Iron ore 

6018 35 / 57 41 0.87 / 1.22 Coal 

          

  Peak in the Target Load     

 

The 75 - 80 ton class wheel loaders operate primarily in iron and copper 

production in Australia and South America. The same testing and evaluation methods 

were used as that for the 55 - 60 class wheel loaders. The minimum load tonnage and 

target cycle times were adjusted to account for the 20 ton difference in the wheel loader’s 

capacity. 

Figure 3.13 shows five 80 ton class wheel loaders operating in primary production 

roles in three Western Australian iron ore mines. Loader 8001 operates at one mine, 

Loaders 8002 and 8003 both operate at a second mine, while Loaders 8004 and 8005 are 

operating at a third mine.  
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Wheel loader 8001’s operators are loading the bucket to 72 tons per load (mode).  

This is within the Target Load zone for 80 ton class wheel loaders. Wheel loader 8001 is 

loading 44% of its buckets in the Target Load zone, while 2% are in the overload 

category. Additionally, the results show that the other wheel loaders operating in pairs 

have very similar production results. The mode for Loaders 8004 and 8005 is 62 tons per 

load. Loaders 8002 and 8003 have similar results with the mode of their distributions 

being at 62 and 64 tons, respectively. All four of these machines have their modes 4 - 6 

tons per bucket load lower than the minimum target load of 68 tons. These loaders are 

only filling their bucket 19 - 25% of the time in the target load zone, while overloading 

the wheel loader 0.5 - 1.0% of the time. An interesting note is that wheel loader 8001 is 

accumulating twice the target loads while keeping overloads at 2% and critical overloads 

at half the rate of the other wheel loaders in this configuration. All the bucket load 

category results are presented in Table 3.12. 

All of the 75 ton wheel loader class evaluated operate in South America in two 

different commodities and in a few different roles. The distribution curves are displayed 

in Figure 3.14. Loaders 8011, 8015, 8017 and 8018 all operate in the same iron ore mine 

in production roles. Loader 8016 operates in the same iron ore mine in an overburden 

removal capacity. Loader 8014 operates in a copper mine on the production face in a 

different region of South America, where it executes both primary loading and support 

activities for an electric cable shovel.   

The analyzed results (Figure 3.14) show that the four iron ore production wheel 

loaders are all filling their buckets into the target weight range of 64 - 78 tons. These 

wheel loaders are producing target weight buckets in 36 - 45% of their bucket loads. 
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         Figure 3.13. Distribution of 80 Ton WL Class Bucket Tonnage 

                                                by Load Count 

Table 3.12. 80 Ton WL Class Bucket Load Groups Averages by Load Type 

    Wheel Loaders 

Bucket Load Category  8001 8002 8003 8004 8005 

Under Loads 5,403 7,999  7,546  7,488  7,428  

Target Loads 4,403 1,920  2,358  2,400  2,507  

Over Loads 189       70       86       99        59  

Critical Overloads 5       12       10       13          6  

    10,000 10,000 10,000 10,000 10,000 

 

Wheel Loader 8014 shows a weak performance of 9% bucket loads in the target 

weight zone. This is due to an improperly sized bucket for its current application. The 

bucket on Loader 8014 is sized for loading iron ore instead of stripping material. These 
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results and the remaining breakdown of the Bucket Load Categories results are in Table 

3.13.  

 

Figure 3.14. Distribution of 75 Ton WL Class Bucket Tonnage by Load Count  

 

Table 3.13.  75 Ton WL Class Bucket Load Groups Averages by Load Type 

    Wheel Loaders 

Bucket Load Category  8011 8014 8015 8016 8017 8018 

Under Loads 4,556        9,074         5,952         9,534         5,561         4,639  

Target Loads 4,288           890      3,698         459      3,968        4,476  

Over Loads 1,128           28        342           5        460         864  

Critical Overloads 28           8           8             3           11           21  

    10,000 10,000 10,000 10,000 10,000 10,000 
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The cycle time for the 80 ton class wheel loaders range between 44 - 52 seconds 

per bucket as shown in Figure 3.15. All of the wheel loaders operating in the 80 ton class 

operate in the same region and commodity, although the operating method of the haul 

fleet differs. Loader 8001’s haulage fleet is operated by human drivers producing a cycle 

time mode of 44 seconds per pass. Loaders 8002 and 8003, both at the same mine, have 

similar cycle times. Their cycle time modes are only one second different from each other 

at 46 and 47, respectively. Both Loaders 8002 and 8003 operate with a mixed haulage 

fleet of autonomous and driver-operated trucks. Loaders 8004 and 8005, at the same 

mine, operating only with an autonomous truck fleet have a cycle time mode at 52 

seconds per pass.  

 

            Figure 3.15. Distribution of 80 Ton WL Class Cycle Times 
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With Loaders 8004 and 8005, one item which was discovered during an 

application review of the site and pit working conditions is that the wheel loaders were 

tramming farther than the recommended distance to load the truck. The crew was not 

updating the position of the wheel loader to account for the movement of the loader 

across the working face (Komatsu AHS, 2017), which were used to guide the 

autonomous haulage trucks, or resetting the stop point for the trucks quickly enough. The 

loaders began performing a short load and carry type operation to load the trucks. This 

resulted in the 5 - 6 additional seconds per load or 10 - 13% slower cycle times.  

The 80 ton class wheel loaders’ bucket cycle time summary in Table 3.14 shows 

that the target load cycle times range between 27% - 51% of the time for the fleet. Wheel 

loaders operating at or above the target load cycle times account for 37% - 71% of the 

analyzed loads.  

Table 3.14. 80 Ton WL Class Cycle Time Groups Averages by Load Type  

    Wheel Loaders 

Bucket Cycle Category  8001 8002 8003 8004 8005 

Very Good 1,018      1,408         493        191       148  

Target Load 5,066     4,881     4,304     2,856     2,694  

Below Target 1,708    1,902     2,797     3,788     3,753  

Need Improvement 2,207    1,809      2,407      3,164     3,405  

    10,000 10,000 10,000 10,000 10,000 

 

Figure 3.16 displays the bucket cycle times of the 75 ton class wheel loaders. Five 

of the six wheel loaders, which are all iron ore machines, operate in the same mine in 

South America and have similar cycle times ranging from 52 - 54 seconds. Wheel loader 
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8016, working in a copper mine in South America, has a cycle time mode that is 5 

seconds slower, at 58 seconds, than the iron ore machines. Additionally, the Loader 8016 

curve shows a right side tail, while the iron ore wheel loaders have more symmetric 

distributions.    

Cycle time summary for wheel loaders in the 75 ton class is displayed in Table 

3.15. This shows that the cycle times for target loads for these machines occur 5% - 23% 

of the time. This wheel loader class operates above the target load cycle time accounting 

for 77% - 95% of the time for the loads.  

 

            Figure 3.16. Distribution of 75 Ton WL Class Cycle Times 

The theoretical (calculated) production rate for wheel loaders in the 75 - 80 ton 

class is 4,000 - 5, 500 tons per hour (Fleet, 2017). Wheel loader 8001 has a productivity 

of 1.43 tons per second or 5,150 tons per hour (Figure 3.17). The productivity of Loader 
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Table 3.15. 75 Ton WL Class Cycle Time Groups Averages by Load Type  

    Wheel Loaders 

Bucket Cycle Category  8011 8014 8015 8016 8017 8018 

Very Good         153        72      147       10      150        102  

Target Load    2,279     1,839     2,660     664    2,477     2,362  

Below Target    3,627    4,266    3,705    2,408    3,397     3,474  

Need Improvement   3,906     3,823    3,488    6,918    3,976    4,062  

    10,000 10,000 10,000 10,000 10,000 10,000 

 

8001 confirms that the target intervals for the bucket weight and cycle time are 

achievable over long periods of time. Both are required to maximize wheel loader 

productivity. Loader 8001 presents a left skewed distribution curve.   

Loaders 8002 and 8003, which are at the same mine, are both achieving the same 

productivity of 1.25 tons per second. This is 12% less than Loader 8001 which is 

operating in the same region and in the same commodity. Examining the other pair of 

Loaders, 8004 and 8005, we see a further reduction in the productivity of these wheel 

loaders at 1.06 and 1.12 tons per second respectively. The reduced productivity of these 

units is directly correlated to the inability to properly spot autonomous trucks. This mine 

is 24% less productive than the mine where Loader 8001 operates, or a potential loss of 

1,225 tons per hour. 

The productivity of the 75 ton class wheel loader mirrors the bucket tonnage 

distribution curves presented earlier. As a reminder, all of the 75 ton class wheel loaders 

operate in South America in iron ore and copper mines. Their distribution curves are 

displayed in Figure 3.18. Loaders 8011, 8015, 8017, and 8018 work in production roles 

in an iron mine where their productivity is between 1.04 - 1.20 tons per second. Loader 

8016’s productivity is 0.69 tons per hour. This machine operates in the same iron ore  



 

 

96 

 

     Figure 3.17. Distribution of 80 Ton WL Class Productivity - Bucket 

mine as the previous wheel loaders reviewed in this section. The productivity of Loader 

8016 shows the effect that the different material densities have on their productivity, as 

the cycle times for the remaining machines are within 2 seconds of each other. Loader 

8014, operating in a copper production and production support activities, shows the 

effects of low bucket weights and weak cycle times on this machine’s productivity at 

0.70 tons per second.  

Table 3.16 presents an overview of all the 75 - 80 ton class wheel loaders results. 

The 80 ton class wheel loader shows Loader 8001 achieved both target values in bucket 

weight and cycle time. Additionally, Loaders 8002 and 8003 achieved bucket cycle times 

within the target zone. The second wheel loader class, 75 ton, had three machines that 

realized bucket weights in the target zone. Furthermore, none of the wheel loaders in the 
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75 ton class were able to achieve cycle times in the target zone. These results also show a 

wide variance in wheel loader productivities. The productivity of the machines varied 

almost 100% based on the skill of the operator, the commodity being loaded, and how 

long it took to cycle the individual wheel loader’s bucket.   

 

      Figure 3.18. Distribution of 75 Ton WL Class Productivity - Bucket 

  Table 3.16. Distribution Modes for 75 - 80 Ton Wheel Loader Datasets 

Wheel 
Loader 

Bucket Wt. 
(tons) 

Cycle Time 
(sec) 

Productivity 
(t/sec) Commodity 

8001 72 44 1.43 Iron ore 

8002 62 46 1.25 Iron ore 

8003 64 47 1.26 Iron ore 

8004 62 52 1.06 Iron ore 

8005 62 52 1.12 Iron ore 
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Table 3.16. Distribution Modes for 75 - 80 Ton Wheel Loader Datasets (cont.) 

Wheel 
Loader 

Bucket Wt. 
(tons) 

Cycle Time 
(sec) 

Productivity 
(t/sec) Commodity 

     
8011 69 54 1.04 Iron ore 

8014 49 54 0.69 Iron ore 

8015 68 52 1.11 Iron ore 

8016 51 58 0.70 Copper 

8017 64 54 1.20 Iron ore 

8018 73 53 1.15 Iron ore 

     

 Peak in the Target Load   
 

3.3.2. Step 2: Preparing Samples for ANOVA Tests. The test data was 

reviewed and sampled to determine the validity of the data. Each of the four ultra-wheel 

loader classes’ datasets was reviewed to determine the quantity of underloads, target 

loads, overloads and critical overloads. Following this review, it was determined that the 

overloads and critical overloads would need to be combined to produce larger data 

samples to in turn produce statistically valid results. This was necessary because of the 

small number of critical overloads within the datasets. 

The test data was reviewed and sampled to determine the validity of the data. 

Each of the four wheel loader classes’ datasets was reviewed to determine the total 

quantity of underloads, target loads, overloads, and critical overloads. Following this 

review, it was determined that the overloads and the critical overloads would need to be 

combined to produce larger data samples to produce in turn statistically valid results. This 

was necessary because of the small number of critical overloads within the datasets.   

Each of the wheel loaders’ datasets was organized into underloads, target loads, 

and overloads (which includes the critical overloads). The number of overload samples in 
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each dataset determined the number of samples for each test. The Excel random number 

generator was used to randomly select the same number of samples from each of the 

other three load types as the number of overload samples. The additional step was to 

ensure that the list contained no duplicate samples. Table 3.17 shows the number of 

samples obtained from the underload, target load, and overload datasets. 

Following the completion of the list, the complete line of sample data was used 

for Single Factor ANOVA testing (Gitlow, 2005). The ANOVA procedure compares the 

means of the groups which is achieved by analyzing three variances: the variance among 

groups, the variance within the group, and the total variance. The ANOVA tests were 

used to test the null hypothesis (H0) against the alternative (H1) shown in Equations 3.3 

and 3.4, respectively.  

       Table 3.17. Number of Samples for Wheel Loader Validation Tests  

Wheel Loaders # of Samples 

55 ton 800 

60 ton  250 

75 ton 300 

80 ton 1000 

 

H0: μunderloads = μtarget loads = μoverloads                                                                                                                                                                                                                                                                                               (3.3) 

H1: Not all the populations means are equal                                                                                                                                                                                                                              (3.4) 

Two different ANOVA tests were performed on each wheel loaders’ dataset to 

evaluate the cycle time and the productivity for each wheel loader within the four 

individual machine classes. The results of the ANOVA tests will be discussed in the next 
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two sections. Additionally, the significant figure (α) of 0.05 was used as the cutoff point 

in all of the ANOVA tests (Rumsey, 2015).  

3.3.2.1 ANOVA testing of 55 - 60 ton wheel loader class data. Starting with the 

60 ton class wheel loaders, a single wheel loader dataset exists for this machine 

configuration. Loader 6001’s results are in Table 3.18. The data has similar average cycle 

times for the underloads (51.1 seconds), target loads (52.3 seconds), and overloads (52.3 

seconds). The ANOVA rest results show that there is not enough evidence to reject the 

null hypothesis. Thus, we have to conclude that there is no statistically significant 

difference between the mean cycle times of the three load types for Loader 6001.  

        Table 3.18.  ANOVA Results - 60 Ton WL Class - Cycle Time  

SUMMARY STATISTICS            

Groups Count Sum Average Variance     

Underloads 250 12775 51.10 368.48     

Target Loads 250 13084 52.34 552.38     

Overloads 250 13071 52.28 627.77     

              

              

ANOVA             

Source of Variation SS df MS F 
P-

value F crit 

Between Groups 244.16 2 122.08 0.2365 0.7895 3.0078 

Within Groups 385610.78 747 516.21       

              

Total 385854.93 749         

 

Tables 3.19 and 3.20 shows the mean and variance, respectively, of the cycle 

times of the 55 ton wheel loader class machines, with eight machines reporting data for 

primary analysis. The outcome of the ANOVA analysis is presented in Table 3.21. 
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Loader 6015 did not have a sufficient number of overload values as compared to the 

other wheel loaders datasets and was, thus, excluded from the ANOVA test. Six of the 

seven wheel loaders reporting data in this class show enough evidence to rejected the null 

hypothesis (p-value < 0.05).  Their average cycle time increases with respect to tonnage. 

The last wheel loader’s (Loader 6018) results show the p-value was greater than the α 

value used, indicating that we cannot reject the null hypothesis for this machine.   

  Table 3.19.  Mean of Cycle Times by Load Type - 55 Ton WL Class  

            

    Load Types   

  
Wheel 
Loader Under Target Over    

  6011 56.9 57.8 62.4   

  6012 49.1 54.8 57.9   

  6013 55.4 60.6 63.5   

  6014 53.7 57.3 59.6   

  6015 Insufficient Data   

  6016 51.6 57.2 47.4   

  6017 54.0 54.0 66.0   

  6018 48.5 49.5 49.1   

            

 

The ANOVA results for the 60 ton class wheel loader’s productivity are displayed 

in Table 3.22. Wheel Loader 6001’s statistics show a mean productivity of 0.86 tons / 

second (underloads), 1.18 tons / second (target loads), and 1.36 ton / seconds (overloads). 

The productivity averages are in increasing order from underloads to overloads as 

expected. The ANOVA results show that there is enough evidence to reject the null 

hypothesis.   
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  Table 3.20.  Variance of Cycle Times by Load Type - 55 Ton WL Class   

            

    Load Types   

  
Wheel 
Loader Under Target Over    

  6011 639.7 348.4 529.1   

  6012 332.7 505.6 546.4   

  6013 594.6 521.6 612.3   

  6014 509.9 565.6 644.6   

  6015 Insufficient Data   

  6016 481.1 583.9 407.0   

  6017 518.5 542.5 991.7   

  6018 332.8 356.2 402.4   

            

 

      Table 3.21.  ANOVA Results of Cycle Times - 55 Ton WL Class  

  ANOVA - Cycle Time Results     

            

  Loader  F F-critical p-value   

  6011 13.8965 2.9995 0.0000   

  6012 34.7599 2.9995 0.0000   

  6013 23.3226 2.9995 0.0000   

  6014 12.5312 2.9995 0.0000   

  6015 Insufficient Data   

  6016 39.2047 2.9995 0.0000   

  6017 55.7622 2.9995 0.0000   

  6018 0.6167 2.9995 0.5398   

            

 

Tables 3.23 and 3.24 shows the mean and the variance, respectively, of the 

productivity for the 55 ton wheel loader class. The mean productivities show that there 
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are clearly defined breaks in the productivities rates between the Underload, Target Load, 

and Overload load types. This is similar to the 60 ton class productivity.  

       Table 3.22.  ANOVA Results - 60 Ton WL Class - Productivity  

SUMMARY             

Groups Count Sum Average Variance     

Underloads 350 302.88 0.87 0.07     

Target Loads 350 413.09 1.18 0.09     

Overloads 350 474.42 1.36 0.12     

              

              

ANOVA             

Source of 
Variation SS df MS F P-value F crit 

Between Groups 43.18 2 21.59 226.1927 2.25E-82 3.0043 

Within Groups 99.92 1047 0.10       

              

Total 143.10 1049         

 

   Table 3.23.  Mean of Productivity by Load Type - 55 Ton WL Class   

            

    Load Types   

  
Wheel 
Loader Under Target Over    

  6011 0.69 0.94 1.08   

  6012 0.83 1.03 1.19   

  6013 0.69 0.92 1.08   

  6014 0.74 0.99 1.16   

  6015 Insufficient Data   

  6016 0.70 1.00 1.58   

  6017 0.81 1.02 1.10   

  6018 0.79 1.16 1.39   

            

 



 

 

104 

The 55 ton wheel loader class, ANOVA productivity analysis results are given in 

Table 3.25. There is enough evidence to reject the null hypothesis for all the 55 ton class 

wheel loaders with enough data to perform the analysis. Again, Loader 6015 did not have 

a sufficient number of overload values compared to the other wheel loaders’ datasets and 

was excluded from the ANOVA test.   

  Table 3.24.  Variance of Productivity by Load Type - 55 Ton WL Class 

            

    Load Types   

  
Wheel 
Loader Under Target Over    

  6011 0.05 0.05 0.08   

  6012 0.05 0.07 0.12   

  6013 0.05 0.06 0.10   

  6014 0.06 0.08 0.12   

  6015 Insufficient Data   

  6016 0.03 0.10 0.19   

  6017 0.06 0.07 0.14   

  6018 0.04 0.07 0.12   

            

 

       Table 3.25.  ANOVA Productivity Source of Variation Summary -  

                                             55 Ton WL Class 

  ANOVA - Productivity Results     

            

  Loader  F F-critical p-value   

  6011 533.8625 2.9995 0.0000   

  6012 337.2589 2.9995 0.0000   

  6013 442.5103 2.9995 0.0000   

  6014 412.2871 2.9995 0.0000   

  6015 Insufficient Data   

  6016 1442.1497 2.9995 0.0000   

  6017 193.4389 2.9995 0.0000   

  6018 948.1146 2.9995 0.0000   
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3.3.2.2 ANOVA testing of 75 - 80 ton wheel loader class data. The wheel 

loaders in the 80 ton class have their cycle time man and variance, respectively, displayed 

in Tables 3.26 and 3.27. Only two of the five wheel loaders (8001 and 8003) in this class 

follow the trend of increasing cycle times as payload increases. The other three wheel 

loaders did not follow this trend. Loader 8002’s target load mean time was the fastest of 

the three load categories, and Loaders 8004 and 8005 sample datasets produced results 

opposite to the expected result.  

     Table 3.26.  Mean of Cycle Times by Load Type - 80 Ton WL Class  

            

    Loads   

  
Wheel 
Loader Under Target Over    

  8001 47.3 60.2 62.5   

  8002 53.6 51.3 51.5   

  8003 54.2 54.9 60.2   

  8004 59.7 56.7 53.4   

  8005 61.2 60.2 59.6   

            

 

     Table 3.27.  Variance of Cycle Time by Load Type - 80 Ton WL Class 

            

    Loads   

  
Wheel 
Loader Under Target Over    

  8001 1222.2 909.4 845.2   

  8002 474.4 429.6 553.8   

  8003 300.5 339.9 423.5   

  8004 357.8 406.9 587.1   

  8005 404.1 355.5 375.6   
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For all the 80 ton class wheel loaders except Loader 8005, there is enough 

evidence to reject the null hypothesis. Loader 8005 produced a p-value of 0.1762, as 

shown in Table 3.28.  

         Table 3.28.  ANOVA Results Cycle Time - 80 Ton WL Class 

  ANOVA - Cycle Time Results     

            

  Loader  F F-critical p-value   

  8001 67.9357 3.9171 0.0000   

  8002 3.3525 3.9171 0.0351   

  8003 30.3877 3.9171 0.0000   

  8004 2324.7090 3.9171 0.0000   

  8005 1.7373 3.9171 0.1762   

            

 

The mean and variance of cycle time for the 75 ton class wheel loaders are shown 

in Tables 3.29 and 3.30, respectively. Loaders 8014 and 8016 did not have a sufficient 

number of overload values compared to the other wheel loaders’ datasets in this class and 

were excluded from the ANOVA test. Loaders 8011 and 8017 data meet the expected 

result of average cycle time increases as the bucket weigh is increased. Loaders 8015 and 

8018 had their average cycle times out of order in their specific results. 

The ANOVA analysis results for the 75 ton wheel loader class (displayed in Table 

3.31), exhibits a two-way split of the results. For two wheel loaders, there is not enough 

evidence to reject the null hypothesis; for another two wheel loaders, there is enough 

evidence to reject the null hypothesis. For Loaders 8011 and 8018, there is not enough 

evidence to reject H0 with p-values at 0.1679 and 0.5036, respectively. For Loaders 8015 
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and 8017, there is sufficient evidence to reject the null hypothesis based on their ANOVA 

results. 

     Table 3.29.  Mean of Cycle Times by Load Type - 75 Ton WL Class  

            

    Load Types   

  
Wheel 
Loader Under Target Over    

  8011 64.0 65.8 67.4   

  8014 Insufficient Samples   

  8015 64.0 63.6 69.4   

  8016 Insufficient Samples   

  8017 64.9 71.5 75.8   

  8018 65.8 68.0 66.5   

            

 

  Table 3.30.  Variance of Cycle Time by Load Type - 75 Ton WL Class 

            

    Load Types   

  
Wheel 
Loader Under Target Over    

  8011 544.8 521.9 571.0   

  8014 Insufficient Samples   

  8015 591.5 485.4 561.1   

  8016 Insufficient Samples   

  8017 649.6 1011.5 859.7   

  8018 608.0 762.5 555.8   

            

 

The five wheel loaders in the 80 ton wheel loader class have their mean and 

variance displayed in Tables 3.32 and 3.33, respectively. The productivities averages 



 

 

108 

show the clearly defined breaks in the productivity rates between the Underload, Target 

Load, and Overload load types. This is similar to the 55 and 60 ton class productivity 

statistics. Table 3.34 shows the ANOVA results, which shows that for all 80 ton class 

wheel loaders there is enough evidence to reject the null (H0) hypothesis.  

       Table 3.31.  ANOVA Results of Cycle Time - 75 Ton WL Class 

  ANOVA - Cycle Time Results     

            

  Loader  F F-critical p-value   

  8011 1.7876 3.0043 0.1679   

  8014 Insufficient Samples   

  8015 6.7490 3.0043 0.0012   

  8016 Insufficient Samples   

  8017 12.5606 3.0043 0.0000   

  8018 0.6864 3.0043 0.5036   

            

 

    Table 3.32.  Mean of Productivity by Load Type - 80 Ton WL Class  

            

    Loads   

  
Wheel 
Loader Under Target Over    

  8001 1.05 1.42 1.50   

  8002 1.13 1.32 1.53   

  8003 1.09 1.23 1.41   

  8004 0.98 1.20 1.39   

  8005 0.95 1.21 1.32   
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  Table 3.33.  Variance of Productivity by Load Type - 80 Ton WL Class 

            

    Loads   

  
Wheel 
Loader Under Target Over    

  8001 0.13 0.16 0.24   

  8002 0.10 0.12 0.27   

  8003 0.08 0.09 0.23   

  8004 0.07 0.08 0.16   

  8005 0.06 0.07 0.16   

            

 

       Table 3.34.  ANOVA Results of Productivity - 80 Ton WL Class 

  ANOVA - Productivity Results     

            

  Loader  F F-critical p-value   

  8001 317.1514 2.9987 0.0000   

  8002 251.0378 2.9987 0.0000   

  8003 201.8676 2.9987 0.0000   

  8004 415.6726 2.9987 0.0000   

  8005 372.0415 2.9987 0.0000   

            

 

For the 75 ton wheel loader class, the productivity statistics are shown in Tables 

3.35 and 3.36. Again, the means and variances show the clearly defined breaks in the 

productivity rates between the Underload, Target Load, and Overload load types. These 

results are similar to the other wheel loaders’ classes presented in this study. Loaders 

8011 and 8017 results are very similar as both loaders operate in the same mine in 

production applications. The summary of the 75 ton class wheel loaders’ ANOVA 
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results, (shown in Table 3.37), confirms that all 75 ton class wheel loaders had enough 

evidence to reject the null (H0) hypothesis.  

     Table 3.35.  Mean of Productivity by Load Type - 75 Ton WL Class 

            

    Load Types   

  
Wheel 
Loader Under Target Over    

  8011 0.87 1.18 1.36   

  8014 Insufficient Samples   

  8015 0.87 1.20 1.30   

  8016 Insufficient Samples   

  8017 0.86 1.15 1.23   

  8018 1.10 1.18 1.36   

            

 

   Table 3.36.  Variance of Productivity by Load Type - 75 Ton WL Class 

            

    Load Types   

  
Wheel 
Loader Under Target Over    

  8011 0.07 0.09 0.12   

  8014 Insufficient Samples   

  8015 0.07 0.08 0.10   

  8016 Insufficient Samples   

  8017 0.08 0.13 0.14   

  8018 0.11 0.10 0.11   
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       Table 3.37.  ANOVA Results of Productivity - 75 Ton WL Class  

  ANOVA - Productivity Results     

            

  Loader  F F-critical p-value   

  8011 226.1927 3.0043 0.0000   

  8014 Insufficient Samples   

  8015 206.4689 3.0043 0.0000   

  8016 Insufficient Samples   

  8017 113.5374 3.0043 0.0000   

  8018 54.7568 3.0043 0.0000   

            

 

3.4. DISCUSSIONS 

All but two of the twenty wheel loaders studied in this case study conformed to 

the Caterpillar 10/10/20 rule, which states that not more than 10% of the loads should 

exceed 110% of the design weight, while no loads should exceed 120% of the design 

weight. In examining eighteen of the wheel loaders in this group, all but one wheel loader 

kept their overload occurrences below 5% of their load count and their critical overloads 

at less than 0.5%.   

Loaders 6018 and 8011 violated the Caterpillar 10/10/20 rule.  Loader 8011’s 

operators overloaded this wheel loader 11.5% of the time exceeding the 10% occurrence 

criteria of the Caterpillar 10/10/20 rule.  Loader 6018 violated both sections of the rule by 

overloading the machine 18.1% of the time with 1.5% critical overloads.  This is more 

than four times greater than any other wheel loader in the study. Loader 6018 is a wheel 

loader configured to load coal, and splits it duty-cycle stripping overboard. 

The results of the ANOVA analysis shows that in most cases, there is a 

statistically significant difference between the cycle times and the productivities of the 
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loaders when the bucket is overloaded compared to when it is loaded within the target 

payload range. The productivity ANOVA results, given in Table 3.38, show that for all 

four wheel loader classes the null hypothesis was rejected for all machines’ datasets. 

There exists a significant difference between the bucket productivity for underloads, 

target loads, and overloads for all the wheel loaders in the study.  

In the cycle time ANOVA, a mixed result was observed for the wheel loader data. 

For a majority, twelve of seventeen machines, of the wheel loaders there was enough 

evidence from the data to reject the null hypothesis, while there was not enough evidence 

to reject the null hypothesis for the remaining five wheel loader, as shown in Tables 3.39.  

                  Table 3.38.  ANOVA Productivity Results Summary 

Wheel 
Loader 
Class H0 H1 

Insufficient 
Data 

55 - 60 ton - 8 1 

75 - 80 ton - 9 2 

 - 17 3 

 

                   Table 3.39.  ANOVA Cycle Time Results Summary 

Wheel 
Loader 
Class H0 H1 

Insufficient 
Data 

55 - 60 ton 2 6 1 

75 - 80 ton 3 6 2 

 5 12 3 

 

Further review of the cycle time ANOVA analysis results show that twelve of the 

seventeen loaders in the group showed a pattern of increasing cycle times for greater 
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bucket weights (i.e., it took longer to overload the bucket than to target load the bucket) 

The 55 ton, 75 ton, and 80 ton class wheel loader datasets each had at least two sample 

datasets which followed this pattern. Additionally, the five other datasets did not follow 

this pattern and had their underload, target load, and overload cycles times similar with 

no clear distinction by bucket load type or out of sequence (i.e., the overload cycle time 

was less than the target load cycle time.) These results show that each wheel loader class 

had at least one machine where the null hypothesis was valid, with the 75 ton class group 

having two wheel loader meeting this criteria. 

These results indicate that while there is strong evidence that overloading the 

bucket will increase the productivity, it is also possible that overloading slows down the 

rate of loading. This may be why the cycle time ANOVA results are not as clear as the 

productivity results. Thus the gains in productivity may not be commensurate with the 

increased payloads. 

Additionally, the case study shows areas for improvement across the fleet to 

improve each wheel loaders’ productivity. The results show the bucket weight is the 

defining factor for wheel loader productivity (assuming the bucket is not overloaded). All 

four wheel loader classes need to improve their perception of bucket weight / bucket fill 

factor. The fleet cycle time is a secondary factor to improve the productivity of the wheel 

loader fleets. The 55 - 60 ton class wheel fleet consistently achieved their target cycle 

time of 35 - 45 seconds. The 75 - 80 ton class wheel loader fleet also needs to improve 

their cycle times to their target level of 40 - 50 seconds by cycle. In the 75 ton class 

wheel loader fleet there are three machines (Loaders 8011, 8015 and 8018) whose bucket 
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capacity were in the target load range, but their cycle times need to have a 20 -30 % 

improvement to reach the middle of the cycle time target zone. 

The case study confirms the industry’s general belief by operators that they can 

produce more if the bucket is overloaded. Continual overloading of the bucket can be a 

negative factor for the health, reliability and productivity of the wheel loader. Repetitive 

overloading of the bucket increases the likelihood of failure on the structural components 

and other systems, which could lead to their premature failure. This will be discussed in 

Sections 4 and 5.  

The analysis in this section may have certain limitations. These include the fact 

that the analysis does not explicitly account for the effect of the type of commodity the 

loaders are operating in, operator skill level, bucket configuration, or working conditions. 

All these factors could complicate the relationships between overloading and 

productivity. However, these factors may actually work to strengthen the conclusions in 

this section as they work to weaken the connection between overloading and cycle time 

and productivity rather than strengthen them. Hence, accounting for these factors may 

only make the conclusions of this section stronger. 

 

3.5. SUMMARY 

This research effort presents an understanding of the productivity of a global 

wheel loader fleet. The research used production data from more than twenty ultra-class 

wheel loaders to compare individual bucket production tonnage and cycle time data to 

determine each machine’s productivity. The case study examined over three million 

bucket loads to determine if the machines were being subjected to a significant amount of 

overloading. Each individual wheel loader’s results were compared against other loaders 
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in their respective class and against the design specifications. The data was also used to 

conduct ANOVA tests to determine whether there is a statistically significant difference 

in the productivity and cycle times of the same loader when the payload is Underload, 

Target Load or Overload.  

Based on the results of the wheel loaders reviewed, the following general 

conclusions can be drawn: 

• There is significant evidence to support the idea that higher payloads in the 

bucket increases the productivity of the loader even if the higher payloads lead 

to overloading of the bucket. In this work, all 17 loaders that had sufficient 

data to be tested for the effect of payload showed that payload affects the 

productivity of the loader. 

• The evidence in support of the hypothesis that higher payloads lead to slower 

loading rate is not as clear as that in support of the hypothesis that higher 

payloads lead to higher productivity. Twelve of the 17 loaders used in the 

ANOVA tests showed that payload indeed affects cycle times. For the 

remaining five loaders, there was no statistically significant difference 

between the cycle times of the loaders with different classes of payloads.  

• The analysis in this section confirms the general belief held by operators that 

they can produce more if the bucket is overloaded. However, the analysis also 

shows that overloading the bucket slows down loading rate and is detrimental 

to productivity in that regard. 
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• Overloading the bucket itself was not a major issue in any of the wheel loader 

fleets. Ninety percent (18 of 20) of the wheel loaders conformed to the 

overload policy.  

• Most of the wheel loaders (14 of 20) were being under loaded, with the mode 

of bucket tonnage occurring in the bucket underload zone. The operator’s 

ability to fill the bucket has the greatest effect on wheel loader productivity. 

• Half the wheel loaders were operating within the machine target cycle time. 

The wheel loaders’ bucket cycle time shows it has a secondary impact on the 

machine’s productivity. The bucket weight and the cycle time are independent 

of each other. 
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4. EFFECT OF OVERLOADING THE BUCKET ON BUCKET FORCES 

EXERTED ON A WHEEL LOADER - A CASE STUDY 

4.1. INTRODUCTION TO FORCES ON A WHEEL LOADER 

This section focuses on the second objective of this dissertation. The work uses 

data from three ultra-class wheel loaders in mines in Australia and South America to 

examine the effect of overloading the bucket on forces exerted on the wheel loader 

structural components. The work uses only these three loaders because the hydraulic 

pressures data was recorded from the on-board vehicle monitoring system and these were 

the only units that useable data was obtained from the machines studied in the Section 3. 

Vehicle monitoring data overwrites itself on a four-hour loop and is typically not 

downloaded and stored unless the wheel loader has experienced a significant issue 

requiring further analysis.  

The work evaluates the effect of overloading the bucket on the structural 

components of the wheel loader using hydraulic cylinder pressure data from three wheel 

loaders which were compared against the bucket overload dataset for the same time 

period. An instrumented wheel loader, for the OEM in this study, records large amounts 

of data on different channels while it is monitoring its systems. This work concentrates 

on the forces exerted on the lift arms structures (lift arms & bellcranks) because these 

structural components are more likely to be affected by overloading. This dissertation’s 

objective is to examine hydraulic system pressures from the hoist cylinders during 

loading. The hydraulic pressure should be a direct indicator of the force (i.e., stress) 

exerted on the lift arm as the hoist cylinders support the lift arms (action and reaction) 

(Kong, 2014). Using a proxy (such as hydraulic cylinder pressures) is necessary because 

the wheel loader does not include pressure transducers, and in cases where the machines 
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have been instrumented the data is considered proprietary information. Data from the 

hoist cylinder pressure will be synchronized with the bucket payload data. Based on this 

data, the work assesses the magnitude of pressures recorded during overloads versus 

those recorded during normal or optimal loading events. The effect of overloading on the 

lift arm is characterized using this information.  

The first step of this process identified wheel loaders with complete (all channel 

data) downloads archived. The next the data was synchronized with the production data 

used in the previous section for a given wheel loader. Next, the bucket hoist cycle was 

scrutinized to determine the maximum hoist cylinder base pressure and the time required 

to achieve it. The datasets were subjected to an ANOVA single factor test to evaluate 

whether the bucket hoist pressures were significantly different for overloaded and target 

load cycles.  

 

4.2. FRAMEWORK FOR INSTRUMENTED WHEEL LOADER CHANNEL 

DATA REVIEW 

Figure 4.1 shows the ultra-class lift arm and hydraulic cylinder configurations of 

these machines. The lift arm assembly is attached at four points to the wheel loader’s 

frame: two connections at Point O (left and right sides) and two connections (again on 

both sides) to the hoist cylinders at Point P. The articulation of the bucket is manipulated 

through a set of hydraulic cylinders. Each cylinder is connected to a bellcrank and level 

link assembly. Hydraulic pressure in both the hoist and the bucket cylinders is used to 

accurately guide the bucket through the pile in order to load the bucket.  
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    Figure 4.1. Typical Ultra-Class Wheel Loader Lift Arm Arrangement 

                                              (Napadow, 2012) 

 

All ultra-class wheel loaders are factory equipped with an on-board monitoring 

system. This on-board monitoring system records over one hundred data channels which 

are readings from various wheel loader systems’ sensors (e.g., engine performance, 

electrical, hydraulic, etc.). Typically, the system’s data logger is setup to log a sample 

every 20 milliseconds on a four hour continuous cycle loop (i.e., the channel data is 

recorded over every four hours.) The LINCS software allows one to isolate one to sixteen 

channels of data to be visually compared over time (LINCS, 2016).  

This work focuses on the hoist cylinder’s base pressure as a means to quantify the 

amount of force required to hoist a loaded bucket. In the analysis, three channels were 

examined to displayed, hoist cylinder base and rod pressures and hoist cylinder extension, 

to correlate the hoist cylinder base pressure in the hoist cycle interval. An example of a 
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plot showing the data from a complete bucket cycle for these three channels is shown in 

Figure 4.2.   

 

      Figure 4.2.  Example of Lift Arm Channel Data for Hoist Cylinders  

The first channel displayed is the hoist cylinder base pressure (psi). This measures 

the pressure which is required to lift the bucket and its payload. Two distinct pressure 

peaks are usually observed in the hoist cylinder base pressure channel. The first pressure 

peak comes from the operator working the bucket to obtain a full bucket load or breakout. 

The second peak is from lifting the load to dump. The second channel shown was the 

hoist cylinder rod pressure (psi). The hoist rod pressure channel was used as check to 

ensure the bucket circuit was operating properly, and this channel’s data is the opposite 

of the hoist cylinder base pressure (i.e., it is low when the machine is hoisting and high 

when the hoist cylinder) is being retracted to go into the pile for another bucket. The third 

channel shows the hoist cylinder extension, which is used to determine which of the two 
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pressure peaks is occurring. Loading the bucket is the first of these typically. The greater 

of the two pressure peaks comes in the first half of the bucket loading cycle. The second 

peak, resulting from lifting the payload, is generally marked by a pause in the hoist 

cylinder extension, indicating a transition from loading to hoisting. The hoisting portion 

of the cycle typically takes three to four times the length of the loading portion. Its peak 

frequently occurs in the last 25% of this cycle. The second channel shows hoist cycle rod 

pressure.   

Figures 4.3, 4.4, and 4.5 show examples of the underload, target load, and 

overload signals, respectively. Examples of the different load types specified in Sections 

3.3.1.1 are based on the bucket weight of the material actually loaded into the bucket. 

 

Figure 4.3.  Channel Data from Hoist Cylinders Base Pressure - Underload  

The maximum base hoist pressure reading for each of the three sample loads 

shown is displayed in the upper left corner of the top waveform. The hoist base pressure 
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can be calculated using Equation 4.1 (Milwaukee Cylinder, 2017). The middle waveform, 

maximum hoist rod pressure reading, should be minor because the pressure which is  

 

Figure 4.4.  Channel Data from Hoist Cylinders Base Pressure - Target Load 

 

Figure 4.5.  Channel Data from Hoist Cylinders Base Pressure - Overload 
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being exerted on the opposite side of piston, and is calculated by Equation 4.2 

(Milwaukee Cylinder, 2017). The third waveform shows how far the cylinder is 

extending. Typically this should range between 83 - 202 inches, fully retracted to fully 

extended.   

FORCE = Pressure (psi) x Net Area (in2)                                                              (4.1) 

FORCE = Pressure (psi) x (Net Area (in2) – Rod Area (in2)                               (4.2) 

 

4.3. DATA ANALYSIS & PROCEDURE  

This section of the PhD study was designed to examine the effect of overloading 

the bucket on forces exerted on a wheel loader. On-board equipment monitoring data was 

collected from three 75 - 80 ton class wheel loaders for this study specifically to examine 

the effects of overloading on the hoist cylinder pressures, which is a proxy for the stresses 

on the lift arm. Two of the three wheel loaders (8002 and 8016) are part of the fleet used 

in the analysis in Section 3. Wheel Loader 8019 was added for this case study as it has 

completed a 2016 factory refurbishment / rebuild program. Loader 8019 is paired with a 

Loader 8016 operating at the same copper mine in South America. 

4.3.1. Step 1: Compile the Wheel Loader Hydraulic Pressure Data. Data from 

the wheel loader’s on-board equipment monitoring system was downloaded and 

synchronized with the production reports data used in Section 3. The maximum hoist 

hydraulic cylinder pressure - base data and duration to achieve maximum hoist pressure 

was added to the production data for analysis. An example of the combined data is 

displayed in Table 4.1. 
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 Table 4.1. Example - Hydraulic Cylinder Pressures with Production Data 

               (weight is color coded by load type located in Table 3.7) 

          Hoist Cyl 

Event Type Date Tons 
Time 
(sec) 

Prod 
(t/sec) 

Base 
(psi) Time (sec) 

Production 
8/1/16 

11:30 78 70.2 1.11 4385 16.15 

Production 
8/1/16 

11:30 78 50.6 1.54 4105 13.70 

Production 
8/1/16 

11:31 77 47.6 1.62 3986 12.70 

Production 
8/1/16 

11:32 76 49.2 1.54 4153 13.15 

Production 
8/1/16 

11:33 70 46.3 1.51 3749 12.60 

Production 
8/1/16 

11:34 80 89.2 0.90 4135 14.05 

Production 
8/1/16 

11:35 67 54.9 1.22 3708 10.35 

Production 
8/1/16 

11:36 73 49.1 1.49 3956 13.20 

Production 
8/1/16 

11:37 77 50.6 1.52 4070 15.15 

Production 
8/1/16 

11:38 68 48.3 1.41 3927 12.65 

Production 
8/1/16 

11:39 78 84.1 0.93 4209 15.10 

Production 
8/1/16 

11:40 81 56.4 1.44 4272 14.55 

Production 
8/1/16 

11:41 75 49.3 1.52 4165 15.80 

Production 
8/1/16 

11:42 77 52.6 1.46 3932 11.50 

 

The wheel loader LINCS data was downloaded and sent via the CMMS system or 

transferred via memory sticks to the same Dell laptop used in the previous sections. Each 

of the datasets was downloaded, stored, and processed using the same protocol as the 

previous sections. Again, the data was added into the backup files from the other sections 

and the same procedure was followed.  
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4.3.1.1 Data quality control. The objective for this section was to determine if 

the maximum force exerted (as indicated by the maximum hoist cylinder pressure) 

generated on specific structural components is dependent to the amount of weight being 

hoisted by the wheel loader. Following the synchronization of the two datasets, each 

bucket load for a dataset was separated by bucket load type as shown in Table 4.2. This is 

the same breakdown used for the 75 - 80 ton wheel loaders in the bucket overloading 

wheel loader productivity study conducted in Section 3.  

Table 4.2. Breakdown of the Bucket Load Weights by Bucket Load Type 

                                            (Joy Global, 2015) 

  Model 60 ton 55 ton 80 ton 75 ton 

Bucket 
Load % 

Bucket Load 
Type Bucket Load Weight (st) 

0 - 85% Underload 25 - 51 25 - 46 25 - 67 25 - 64 

85 - 100% Target Load 52 - 60 47 - 55 68 - 80 65 -75 

101 - 105% Target Load 61 - 63 56 - 58 81 - 84 76 - 79 

106 - 110% Slight Overload 64  - 66 59  - 61 85  - 88 80  -83 

111 - 120% Overload 67 -72 62- -66 89 -96 83 -90 

120+% 
Critical 

Overload 72+ 66+ 96+ 90+ 

 

After the buckets in each dataset were classified by bucket load type, a data check 

was performed to ensure data quality. The time to achieve maximum hoist pressure was 

used to perform this data check. Typically, it should take 12 - 14 seconds to hoist a 

maximum payload bucket clear of the pile to maximum dump height. A ±4 second 

window was added to account for variations in the starting elevation of the hoist, the site 

conditions, and the operator’s ability. Bucket loads which did not reach their maximum 

hoist pressure between 10 - 18 seconds were eliminated from the dataset for analysis.   
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The hoist cylinder base pressure readings allow for a second analysis to compare 

the hoist base pressure value against the designed hoist circuit pressure for a specific load 

or group. The design hoist circuit pressure to hoist the maximum design payload of either 

75 or 80 tons, depending on the loader’s configuration, was estimated to be 4,000 psi 

(Richter, 2017). Table 4.3 exhibits the estimated hoist cylinder base pressures to hoist the 

bucket load types being studied. The hoist circuit typically requires a minimum pressure 

of 2,500 - 2,800 psi to operate with an empty bucket, and the pressure reliefs for the hoist 

circuit are set at 4,500 psi (Richter, 2017).   

           Table 4.3. Expected Hoist Pressure Readings (Richter, 2017) 

Bucket Load 
% 

Bucket Load 
Type 

Hoist 
Pressure - 
Base (psi) 

-85% Underload < 3400  

85-100% Target Load 3400 - 4000 

101 - 105% 
Slight 

Overload 4001 - 4200 

106 - 120% Overload 4201 - 4400 

120+% 
Critical 

Overload > 4400 

 

4.3.1.2 Overview of the data. The five ultra-class wheel loaders datasets 

consisted of 1 - 4 hours of event data. Table 4.4 displays when these downloads were 

collected. 

The hoist base hydraulic pressure results are arranged by bucket load type which 

consists of underload, target load, and overload for the specified machines in this study. 

Loader 8002 is an 80 ton class wheel loader operating in Australia, while Loaders 8016 

and 8019 are both 75 ton class machines operating at the same copper mine in South 
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         Table 4.4. 75 - 80 ton WL Class Monitoring Data Collection Dates 

    Sample 
Collection Date 

Sample 
Duration  (min) Loader Sample 

8002 1 
February 9, 

2015 120 

8016 1 July 17, 2016 25 

8019 1 August 1, 2016 90 

8019 2 
October 10, 

2016 25 

8019 3 
October 22, 

2016 45 

 

America. The wheel loader’s production statistics and hoist cylinder base pressure 

readings from the test datasets are shown in Table 4.5. The data presented in Table 4.5 

shows the average hoist base pressure and the average time required from initiation of the 

hoist command to reaching the maximum pressure reading for each sample in dataset. 

      Table 4.5.  75 - 80 Ton WL Class Wheel Loader Performance Data 

75 -80 ton Class Wheel Loader Performance     

            Avg. Hoist 
Cyl. 

Pressure  
(psi) 

Avg. Hoist 
Cycle Time 

(sec)  

    Average   

Loader # of Events Tonnage 
Time 
(sec) 

Prod 
(t/sec)   

8002 16 49 58.0 1.02   3252 10.15 

8016 52 66 64.3 1.20   4232 16.51 

8019 S1 110 76 64.2 1.31   4137 14.00 

8019 S2 17 60 50.3 1.23   3741 14.49 

8019 S3 68 58 65.3 0.95   3722 15.13 

 

The reader may observe that the performance results for the two wheel loaders’ 

(Loaders 8002 and 8016) datasets presented in previous section are not similar to the 

large dataset averages shown in Table 3.16. These wheel loaders’ productivity datasets 
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do, in fact, compare to individual short-time (i.e., 1 - 2 hours) periods from the wheel 

loaders’ master datasets. Loader 8002 bucket’s weight was 13 tons under its average 

while it was cycling 4 seconds slower than the targeted cycle time for the wheel loader 

during the period of the cylinder pressure sampling, resulting in an 18% decline in 

productivity. Loader 8016 results were better than the machine’s average values with a 

bucket weight of 15 tons greater than its average, although its cycle time was 6 seconds 

slower, resulting in a productivity increase of over 7% during the period of the cylinder 

pressure sampling. Loader 8019 is not part of the data presented in Section 3.  

The individual datasets here were further broken down into their respective 

bucket load types (i.e., underloads, target loads, and overloads, Tables 4.6 - 4.8). The 

results show that Loader 8002 was operating within its cylinder pressure ratings in the 

underload category per the guidance Table 4.3. Loader 8016 was operating with hoist 

cylinder pressures at the designed pressure for full bucket loads of 4,000 psi, while it was 

actually only hoisting payloads that are under the target payload of 63 tons. Loader 

8019’s cylinder pressures are in-between the other two while operating between 77% - 

82% of the designed bucket weight. The hoist cycle times for the loads were within 

accepted published operating ranges (SAE (3), 1998). 

The target load hoist cylinder base pressure results, given in Table 4.7, reveal the 

results of the target weighted buckets in the study.  Loader 8002 did not record any target 

weighted buckets in the period of the cylinder pressure sampling. The average hoist 

cylinder pressures for Loader 8016 target weight buckets were in the overload pressure 

range at 4,258 psi and had a hoist time in the upper part of the range. Loader 8019 results 
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were as expected with the target load weighted bucket producing results in the target load 

hoist pressures and hoisting loads in the middle of the expected cycle time. 

   Table 4.6.  Hoist Cylinder Base Pressure Dataset - Underload Results 

Underloads             

            
Avg. Hoist 

Cyl. 
Pressure  

(psi) 

Avg. 
Hoist 
Cycle 
Time 
(sec)  

    Average   

Loader 
# of 
Events Tonnage 

Time 
(sec) 

Prod 
(t/sec)   

8002 16 49 49.0 1.19   3,226 9.70 

8016 9 63 53.5 1.23   3,985 16.09 

8019 S1 38 62 52.9 1.17   3,767 12.45 

8019 S2 11 59 49.0 1.20   3,699 14.70 

8019 S3 67 58 65.3 0.89   3,722 15.13 

 

Table 4.7. Hoist Cylinder Base Pressure Dataset - Target Load Results 

Target Loads             

    Average   Avg. Hoist Pressure 

Loader # of Events Tonnage 
Time 
(sec) 

Prod 
(t/sec)   

Base 
(psi) Time (sec) 

8002 - No Target Loads in this dataset 

8016 42 67 59.3 1.20   4,258 16.77 

8019 S1 51 75 60.0 1.26   4,034 13.54 

8019 S2 6 66 54.4 1.21   3,842 13.96 

8019 S3 1 67 66.0 1.02   3,953 13.09 

 

All the datasets only yielded two overloaded weighted bucket pressure cycles. 

Loader 8016 had one data point (one cycle) with payload in the overload category. The 

maximum hoist pressure base was 4,145 psi and hoisting cycle time was 17.60 seconds. 
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Similarly, Loader 8019 also had one data point with payload in the overload category. 

The maximum pressure was 4,192 psi and took 14.73 second to achieve it.   

     Table 4.8. Hoist Cylinder Base Pressure Dataset - Overload Results 

Overloads             

            
Avg. Hoist 

Cyl. 
Pressure  

(psi) 

Avg. 
Hoist 
Cycle 
Time 
(sec)  

    Average   

Loader 
# of 
Events Tonnage 

Time 
(sec) 

Prod 
(t/sec)   

8002 - No Overloads in this dataset 

8016 1 80 123.3 0.65   4,145 17.60 

8019 S1 21 81 81.7 0.99   4,192 14.73 

8019 S2 - No Overloads in this dataset 

8019 S3 - No Overloads in this dataset 

 

4.3.2. Step 2: Correlation Testing. This used the Pearson linear and Spearman 

and Kendall rank correlation coefficients to evaluate the strength of the relationship 

between the bucket weight and the maximum hoist cylinder pressures from the data sets. 

In these correlation tests, the bucket weight was set as the dependent variable and the 

hoist cylinder pressure was set as the independent variable (Keller, 1994).   

The Pearson correlation is commonly used to express the strength of the 

relationship between two continuous variables. It generally assumes a linear relationship 

between the two variables, which are assumed to be normally distributed (Hauke & 

Kossowski, 2011; Chok 2010). This correlation is expressed with an r value between -1 

and 1, with values towards 1 indicating a strong linear positive relationship, values 

around 0 indicating no linear relationship, and values moving towards -1 indicate a strong 

linear negative relationship (Rumsey, 2009). Hence, it is possible to obtain Pearson 
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correlation values near zero for variables that are related in a nonlinear manner or have a 

bivariate distribution that is not normal (Chok 2010). Also, the Pearson correlation 

coefficient is prone to wrong inferences in the presence of outliers (Hauke & Kossowski, 

2011). 

One can also use rank correlations, such as Spearman and Kendall, to measure the 

degree of association between two variables. Spearman’s test is a rank-order correlation 

test that evaluates monotonic relationship between two variables (Hauke & Kossowski, 

2011; Chok 2010). Additionally, it is recommended that Spearman’s sample size be 

greater than 30 samples (Keller, 1994). The Spearman’s correlation coefficient, rs, ranges 

between -1 and 1, with values greater than zero indicating a positive monotonic 

relationship, values around 0 indicating no monotonic relationship, and values less than 

zero indicate a negative monotonic relationship (Chok, 2010). Hence, it is possible to 

obtain Spearman’s correlation coefficient near zero for variables that are related in a 

nonmonotonic manner. However, the Spearman correlation coefficient can be 1 not only 

for variables that are linearly related but also for variables that are related by nonlinear 

monotonic relationships (Chok 2010).  

Kendall’s rank correlation is better suited for smaller datasets of 20 samples or 

less, because it is resistant to the effects of outliers, and it is not affected by monotonic 

transformations of either variable (Keller, 1994). The Kendall correlation coefficient, 𝜏, is 

designed to measure the discrepancy between the number of discordant and concordant 

pairs in ordinal data. It can, however, be used for continuous variables. Similar to the 

other two coefficients, the values of the Kendall correlation coefficient ranges from -1 to 

1 with values greater than zero indicating a positive monotonic relationship, values 
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around 0 indicating no monotonic relationship, and values less than zero indicate a 

negative monotonic relationship. However, the Kendall correlation coefficient is likely to 

give a value greater than zero for a wider range of monotonic relationships (Chok, 2010).  

This research used all three correlations to take advantage of each tests strengths 

based on the number of data points within each dataset. Pearson’s correlation was chosen 

due to the belief there should be a linear relationship between the bucket weight and 

maximum hoist pressures based on scatter plots. The concern is the effect of outliers on 

the Pearson correlation especially with the number of concordance and discordance pairs 

observed in the distributions (Chok, 2010). The dataset from Loader 8016 has a majority 

of outlier events, exhibiting a 90-degree fan pattern versus the more linear patterns of the 

other datasets, observed in Figure 4.6. The number of outliers present in Loader 8016  

 

         Figure 4.6.  All Wheel Loader Hoist Cylinder Pressure Samples 
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dataset and their possible effect on Pearson correlation results was the reason to also 

include Spearman’s and Kendall’s correlations in the analysis (Chok, 2010). Both 

correlation methods were chosen based on number of samples in the respective datasets 

(Keller, 1994). The time to setup and run these tests was minimal and would allow for the 

interpretation of any discrepancies due to each tests limitations or limitations of the data. 

The Spearman and Kendall correlations results would be useful to compare and 

determine a confidence of the results.  

Each hoist cylinder data sample was processed to organize the hoist cylinder 

maximum pressure during the hoist cycle and the weight of each bucket load for 

correlation testing. The data was plotted in a scatterplot to look for possible relationships 

between the variables (Rumsey, 2009). Figure 4.6 shows the relationship of all the hoist 

cylinder pressure data samples to bucket weight. Loader 8019 had three separate 

sampling events over a three month period (August - October 2016). These samples were 

combined into the same scatterplot events in Figure 4.7.  

4.3.2.1 Pearson correlation analysis. Pearson’s correlation coefficient, defined 

in Equations 4.3, measures the strength and direction of the linear relationship between 

two quantitative variables (Rumsey, 2009). In this work, Pearson was used to assess the 

linear relationship between hoist cylinder hydraulic pressure and bucket weight 

(payload). An assumption of Pearson’s correlation coefficient estimates is that both 

variables should be normally distributed. Additionally, the data are linearly related and 

exhibit homoscedasticity (Rumsey, 2009).  
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           Figure 4.7. Loader 8019 All Hoist Cylinder Pressure Samples 

𝑟 =
(𝑁 ∑ 𝑥𝑦−∑(𝑥)(𝑦))

√(𝑁 ∑ 𝑥2−∑(𝑥2))(𝑁 ∑ 𝑦2−∑(𝑦2))
                                                                                                                                                                                                                                                                                                          (4.3) 

For hypothesis testing, Equations (4.4) and (4.5) describe the null and alternate 

hypotheses. The hypothesis test estimates the test statistics, the critical value, and the p-

value at a particular significance level. If the p-value is lower than the critical value, then 

there is enough evidence to reject the null hypothesis. Therefore we conclude that the 

correlation coefficient is non-zero at the specified confidence level. Otherwise there is 

not enough evidence to reject the null hypothesis. Hence, we have no basis to assume the 

correlation coefficient is not zero. We tend to then assume that there is no correlation 

between the variables. 
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H0: r = 0                                                                                                                     (4.4) 

H1: r ≠ 0                                                                                                                     (4.5) 

The Pearson coefficient correlation analysis was performed using Matlab and the 

results are shown in Table 4.9. The r for Loaders 8002 and 8019 datasets showed a strong 

relationship (Rumsey, 2009). As hoist pressure increases so does the weight of the 

material being hoisted. Additionally, the p-value for these datasets indicate that there is 

enough evidence to reject the null hypothesis. Loader 8016’s r value of 0.0903 was very 

low and the p-value is very high. Thus, we can infer, at even a confidence level of 90%, 

that there is no linear relationship between payload and hoist cylinder pressures for this 

dataset. 

                    Table 4.9 Pearson Coefficient Correlation Results 

Pearson Results     

        

Loader 
# 
Samples rho  P-value 

8002 16 0.7269 0.0014 

8016 52 0.0903 0.5245 

8019 S1 110 0.7270 0.0000 

8019 S2 17 0.8771 0.0000 

8019 S3 68 0.7087 0.0000 

 

4.3.2.2 Spearman correlation analysis. The Spearman rank correlation also is a 

non-parametric test which measures the degree of association between two variables. The 

Spearman rank correlation test does not make any assumptions about the distribution of 

the data. Spearman’s rho correlation assumption is that the date / time must be at least 

ordinal to the scores on the variable and must be monotonically related to the other 
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variable (Rumsey, 2009). The Spearman rank correlation formula is shown in Equation 

4.6 while the null and alternate hypothesis of the test are shown in Equations 4.7 and 4.8.   

𝜌 = 1 − 
6 ∑ 𝑑𝑖

2

𝑛(𝑛2−1)
                                                                                                      (4.6) 

H0: ρ = 0                                                                                                                    (4.7) 

H1: ρ ≠ 0                                                                                                                    (4.8) 

The Spearman rank correlation estimates and hypotheses tests were completed 

using Matlab, and the results are reported in Table 4.10. The Spearman test results are 

similar to the Pearson coefficient correlation tests which were shown previously. The 

datasets of Loaders 8002 and 8019 display a strong positive relationship between the 

hoist cylinder pressure and the weight of the material being lifted.  Additionally, the p-

value for these datasets is low indicating that there is enough evidence to reject the null 

hypothesis. Loader 8016’s p-value of 0.3142 indicates there is not enough evidence to 

reject the null hypothesis. We can thus infer that no relationship exists between hoist 

cylinder pressures and the payload for this dataset. This confirms the results of the 

hypothesis test for the Pearson correlation coefficient. 

                      Table 4.10 Spearman Rank Correlation Results 

Spearman Results   

        

Loader # Samples r P-value 

8002 16 0.6509 0.0063 

8016 52 0.1423 0.3142 

8019 S1 110 0.6588 0.0000 

8019 S2 17 0.6287 0.0069 

8019 S3 68 0.6437 0.0000 
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4.3.2.3 Kendall correlation analysis. The Kendal rank correlation is similar to 

Spearman’s rank correlation as a non-parametric measure of the correlation between two 

ranked variables. A positive correlation exists if both variables are increasing or 

decreasing, while a negative correlation occurs if one variable is increasing while the 

other is decreasing (Keller, 1994). This is illustrated in Equations 4.10 and 4.11. The 

difference of Kendall’s Tau represents a probability that the observed data is the same 

order versus the probability that the data is not in the same order. The data was ranked 

low to high which was based on the maximum hoist cylinder base pressure to determine 

the number concordant pairs or discordant pairs present in the sample from the bucket 

weight. The probability was calculated using Equation 4.9 to determine tau value 

(statisticssolutions, 2017).   

𝜏 =  
C−D

𝐶+𝐷
                                                                                                                    (4.9) 

H0: 𝜏 = 0                                                                                                                  (4.10) 

H1: 𝜏 ≠ 0                                                                                                                  (4.11) 

The Kendall rank correlation estimates and hypotheses tests were completed using 

Excel and the results are exhibited in Table 4.11. The Kendal test results are similar to 

both the Spearman rank correlation and the Pearson coefficient correlation tests. These 

results are compared in Table 4.12. The datasets of all loaders had a strong positive 

relationship between the hoist cylinder pressure and the weight of the material being 

lifted. This included a strong positive relationship for Loader 8016 to reject the null 

hypothesis.  
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                       Table 4.11 Kendall Rank Correlation Results 

Kendall Results     

          

Loader # Samples tau z-value P-value 

8002 16 0.5833 3.1516 0.0008 

8016 52 0.2232 2.3358 0.0098 

8019 S1 110 0.5567 7.7256 0.0000 

8019 S2 17 0.5441 3.0483 0.0012 

8019 S3 68 0.525 6.3309 0.0000 

 

                        Table 4.12. Summary of Correlation Results 

Loader # Samples Spearman Pearson Kendall 

8002 16 0.6509 0.7269 0.5833 

8016 52 0.1423* 0.0903* 0.2232 

8019 S1 110 0.6588 0.7270 0.5567 

8019 S2 17 0.6287 0.8771 0.5441 

8019 S3 68 0.6437 0.7087 0.525 
* Not statistically significant at α = 0.05 

 

4.4. DISCUSSIONS 

These examinations of hoist cylinder pressures versus bucket load weight data 

demonstrate a general relationship between them. Both the Pearson and the Spearman 

correlation tests confirm four of the five samples. For two of the three wheel loaders 

studied, they show a strong relationship where increasing the bucket weight leads to 

higher hoist cylinder pressures which were required to lift the load. Loader 8016 was the 

one loader for which there was no statistically significant correlation (p > 0.3) based on 

the Pearson and Spearman correlation tests. The Kendall results for Loader 8016 conflict 

with the Spearman and Pearson tests results, indicating that there was enough evidence to 

reject the null hypothesis. But even then, the correlation coefficient for the Kendall Tau is 
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still rather low (0.22). The results from the Kendall test indicates there may be a 

nonlinear relationship for Loader 8016, which the Pearson and Spearman test missed. A 

similar relationship between hoist cylinder pressures and the payload as seen in the other 

loaders datasets, though the relationship for Loader 8016 is not necessarily linear or 

monotonic. The scatter plot (Figure 4.6) of the Loader 8016 data was in fan type pattern 

versus the more linear patterns of the other loaders datasets.  

These results indicate that as the wheel loader’s bucket weight increases, it is 

likely to lead to higher hydraulic cylinder pressures. As higher cylinder pressures are 

indicative of higher forces on the lift arm. It is safe to assume that overloading the wheel 

loader is likely to lead to higher stresses (resulting from the higher forces) on the lift arm 

structure. Higher stresses are also transmitted to the other lift arm structures (i.e., the 

bellcranks, level links, and bucket). Additionally, the wheel loader’s front frame sees 

these collective stresses being transmitted back through the machine.  

Examining the differences in the hoist cylinder pressures of the three different 

bucket load classes (underloads, target loads, and overloads) explains further the 

relationship between the hydraulic pressure required to hoist greater bucket weights in the 

hoist circuit. Table 4.13 is a summary of the data presented in Section 4.3.1.2 for the 

three bucket load types. The results show that as the bucket weight increases so does 

hoist cylinder pressure required to lift it. Additionally, the average hoist cycle time 

required to lift the bucket load also increases as the weight of the bucket load increases. 

Overall the hoist cylinders and hydraulic circuit pressures behaved in accordance with the 

results of the expected hoist pressure readings in Table 4.3. 
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Table 4.13. Summary of the Hoist Cylinder Hydraulic Operating Data 

                                          by Bucket Load Type 

  Ranges 

Bucket 
Load Type 

Bucket Load 
Weight (tons) 

Avg. Hoist Cyl. 
Pressure (psi) 

Avg. Hoist 
Cycle Time 
(sec) 

Underloads < 64 3226 - 3985 9.70 - 16.09 

Target 
Loads 65 - 79 3842 - 4258 13.09 - 16.77 

Overloads > 80 4145 - 4192 14.73 - 17.60 

 

There are variations in the each of the individual wheel loaders datasets, and this 

transfers into the variability in the bucket load type data. For example, the 9.70 second 

average hoist cycle time for Loader 8002 is due to a combination of the fact that it loads 

smaller trucks (240 ton class haul trucks) and the inclusion of several clean-up / re-handle 

buckets in the 16 bucket dataset. Wheel Loader 8016 accounted for the highest average 

hoist cylinder pressure readings for the underload and target load bucket types, and they 

accounted for the highest average hoist cycle times in all three bucket load types.  

There are several other factors that may be influencing the results and causing 

variances in the reported data. There are confounding factors in the analysis. These 

factors include the effects of operator skill, the wheel loaders hydraulic system, and the 

application, site / working conditions. This is a limitation of the analysis in this work 

because this analysis did not isolate the effects of these confounding factors. However, it 

is expected that isolating these confounding factors will actually increase the observed 

strength of correlation between payload and hoist cylinder hydraulic pressures. 
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4.5. SUMMARY 

The research in this section evaluates the effect of overloading the wheel loader 

bucket on the structural components. The work evaluated the effect of overloading on the 

lift arm since it is the structural component most likely to be affected by overloading. The 

work uses the hoist cylinder pressures (force exerted) as a proxy for the stress events on 

the lift arm. The work presents an approach based on reviewing on-board vehicle 

equipment monitoring systems to extract data from hoist cylinder pressures and match 

them with production data for this analysis. Data from three 80 ton class wheel loader 

hoist systems was used to evaluate the effect bucket weight might have on the required 

hoist pressure.  

Based on the results of this work, the following general conclusions can be drawn: 

• The hoist pressure increases as the bucket weight increases. 

• The majority of the hoist circuit pressure readings were within the 

expected operating ranges for the bucket loads lifted. 

• Typically, the observed hoist circuit pressure readings tended to be on the 

higher side of the expected hoist pressure range for any given bucket. 

The following recommendations are for future work which could improve and 

increase the body of knowledge from this research: 

• Increase the amount of hydraulic system information by acquiring data 

from additional ultra-class wheel loaders to better understand wheel loader 

operating conditions. 

• Examine individual operators in order to determine how individual 

operators affect the results. 
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5. EFFECT OF OVERLOADING THE BUCKET ON WHEEL LOADER 

STRUCTURAL COMPONENT RELIABILITY - A CASE STUDY 

5.1. INTRODUCTION TO STRUCTURAL COMPONENT RELIABILITY 

This section addresses the third objective of this dissertation. The goal of this 

section is to characterize the effect of overloading the bucket on wheel loader reliability. 

The work uses Weibull analysis to establish a time based point of reference for overloads 

in order to establish the reliability of the structural components. This was achieved by 

reviewing the data on wheel loader failure modes, along with the component hours, 

payloads, and other data relating to machine operation in order to build a failure dataset. 

Reliability analysis using a two-parameter Weibull Distribution Probability Density 

Function was performed using such a failure dataset in order to discover the mean time 

between failure (MTBF) and each structural components specific failure pattern 

(Moubray, (5), 1997). This was done with and without payload as a factor to examine the 

effect of accounting for payload in the reliability models. 

First, the candidate identified the part numbers of the structural components to be 

included in the study and built a template to record information from the computer 

maintenance and management system (CMMS) cases. Second, each structural 

component’s dataset was built from downloaded and reviewed cases from the CMMS 

database. The CMMS database was searched by part number and wheel loader serial 

number to ensure that all cases referenced were captured for this analysis. Third, Weibull 

frequency distribution analysis was performed on all structural component datasets that 

contained enough information to perform the analysis. Finally, Weibull results were 

analyzed to determine the general reliability of the ultra-class wheel loaders structural 

components in relation to the frequency of overloading.  
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5.2. EXPERIMENTAL EQUIPMENT & SITES 

The experimental equipment fleet was expanded to include all current generation 

ultra-class wheel loaders. This expanded fleet also increased the number and types of 

mine sites from around the globe. The units in the study are performing production, 

stripping, stockpiling, and support roles in all the major mining sectors including coal, 

base and precious metals, industrial minerals, and gemstones (ParkerBayMining, 2016). 

Table 5.1 displays the number of wheel loaders by region in this study. Table 5.2 details 

the number of loaders in this study by the commodity they extract during their shift 

operations.  

Table 5.1.  Ultra-Class Wheel Loaders by Operating Class and Region  

  Commodity    

Class Coal Ind. Min. Iron Ore  Metal TOTAL 

55 - 60 
ton 11 2 16 12 41 

75 - 80 
ton 2 0 18 14 34 

TOTAL 13 2 34 26   

 

Table 5.2.  Ultra-Class Wheel Loaders by Operating Class and Commodity 

  Region   

Class Africa Australia Eurasia S. America N. America TOTAL 

55 - 60 
ton 3 7 2 19 10 41 

75 - 80 
ton - 5 1 26 2 34 

TOTAL 3 12 3 45 12   
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5.3. DATA COLLECTION 

This structural case failure data was collected from the CMMS system. The 

information was entered into the CMMS system to track product issues and process 

warranty claims by mechanics, field service engineer (FSE), factory service 

representative (FSR), service engineers, regional product support representatives, and 

factory service representatives as part of the maintenance and repair process to track 

issues with the fleet. It is the duty of these individuals to report initial observations of 

cracks or other structural defects as part of various inspection processes, which are 

conducted during preventative maintenance of the equipment. A report of a crack or 

“initial failure” or failure of a structural component begins the process to access and 

analyze / propose a solution, and to take action to correct the reported issue. All these 

elements are recorded in the CMMS system for each structural part. An example of 

CMMS data is shown for one of these structural cases in Figure 5.1.  

Table 5.3 lists the structural components that where reviewed and used to build 

the reliability data in this analysis (highlighted components are shared between different 

model and wheel loader classes). Several of these structural components are used in 

multiple wheel loader classes. The front and rear frames along with the rear axle for both 

the 55 - 60 ton and the 75 - 80 ton class machines are the same. The roll-over protective 

structure (ROPS) structure is the same for all wheel loaders in this study. Additionally, 

the lift arms and the bellcranks are the same for the 55 ton and the 80 ton machines. The 

part numbers sharing components across two or more classes are highlighted with the 

same color. These results yielded thirteen unique structural component part numbers to 

begin building reliability datasets for analysis.  
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    Figure 5.1.  CMMS Structural Case Data Example (Joy Global, 2016) 
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               Table 5.3. List of the Structural Components Examined 

Structural 
Component Wheel Loader Model Class 

Front Frame 60 ton 55 ton 80 ton 75 ton 

Rear Frame 60 ton 55 ton 80 ton 75 ton 

Rear Axle 60 ton 55 ton 80 ton 75 ton 

Lift Arm 60 ton 55 ton 80 ton 75 ton 

Bellcrank 
(LH) 60 ton 55 ton 80 ton 75 ton 

Bellcrank 
(RH) 60 ton 55 ton 80 ton 75 ton 

ROPS 60 ton 55 ton 80 ton 75 ton 

 

The CMMS data was downloaded and stored on the same Dell laptop used in the 

previous sections. The datasets were downloaded, stored, and processed using the same 

protocol as the previous sections. Again, the repair data was added to the data backup 

files the same as previous sections, and the same procedure was followed.  

5.3.1. Step 1: Compile Wheel Loader Structural Component Failure Data. 

The CMMS database was queried and searched multiple times to find all of the 

appropriate structural cases. First, the CMMS database was search for all current 

generation machines’ structural cases via the Subtype field. Second, a list of part numbers 

was compiled for the structural components to be reviewed. This part number list was 

sorted to eliminate duplicates, as some structural parts are used on multiple wheel loader 

class machines. Each parts list was compared against the first as a check to confirm that 

all structural component reports were included in the dataset. Third, cases from the first 

two queries, those which reported multiple cases, or a parent / child case link, were traced 

to insure that all of the cases were present. Finally, the list of wheel loaders from Section 

3 with their production data were double check against their individual machine history 
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cases to confirm that all structural cases were included in dataset. An example of the data 

gathered for a 55 - 60 ton class wheel loader rear axle is shown in Table 5.4 (see next 

page).  

Typically, structural repairs are identified during various machine inspections.  

These inspections include but are not limited to the daily machine pre-shift walk around, 

daily maintenance inspection, engine oil service (250 - 500 hour), or a specific structural 

inspection. All of the wheel loaders in this study are scheduled to have structural 

inspections every 1,000 hours. The 1,000 hour structural inspections require that the 

wheel loader be cleaned, typically by power washing, to examine the frame at a 

predetermined number of points (>160) on the Structural Inspection Report Form. The 

report requires written notes and photographs for further review to better examine and 

determine how the structural component’s health is changing.  

During these inspections, the most common observations are to discover a crack 

in a structural component. The level of response depends on the crack’s location and the 

specific size (length, width, and shape) and the affected component. A response may 

range from marking and monitoring the crack thus allowing the wheel loader to return to 

work, to schedule a weld / structural repair, or to withdraw the machine from operation 

for service. The specific structural component determines if it will be repaired or 

exchanged / replaced. The structural component’s life varies from 25% - 100% of the 

wheel loaders life as shown in Table 5.5. 

Typically, structural repairs are identified during various machine inspections.  

These inspections include but are not limited to the daily machine pre-shift walk around,  
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daily maintenance inspection, engine oil service (250 - 500 hour), or a specific structural 

inspection. All of the wheel loaders in this study are scheduled to have structural 

inspections every 1,000 hours. The 1,000 hour structural inspections require that the 

wheel loader be cleaned, typically by power washing, to examine the frame at a 

predetermined number of points (>160) on the Structural Inspection Report Form. The 

report requires written notes and photographs for further review to better examine and 

determine how the structural component’s health is changing.  

During these inspections, the most common observations are to discover a crack 

in a structural component. The level of response depends on the crack’s location and the 

specific size (length, width, and shape) and the affected component. A response may 

range from marking and monitoring the crack thus allowing the wheel loader to return to 

work, to schedule a weld / structural repair, or to withdraw the machine from operation 

for service. The specific structural component determines if it will be repaired or 

exchanged / replaced. The structural component’s life varies from 25% - 100% of the 

wheel loaders life as shown in Table 5.5. 

  Table 5.5.  55 - 60 ton Class Wheel Loader Expected Component Lives 

  Wheel Loader Est. Life by Component (Hours) 

Structural 
Component 60 ton 55 ton 80 ton 75  ton 

Front Frame 50,000 50,000 60,000 60,000 

Rear Frame 50,000 50,000 60,000 60,000 

Rear Axle 25,000 25,000 30,000 30,000 

Lift Arm 25,000 25,000 30,000 30,000 

Bellcrank (LH) 25,000 25,000 15,000 15,000 

Bellcrank (RH) 25,000 25,000 15,000 15,000 
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5.3.2. Step 2: Validation of the Structural Case Sample Data. The review of 

the CMMS database yielded over 300 structural component records on thirteen individual 

component’s parts numbers. Each component’s (part number) dataset was then reviewed 

to identify and highlight duplicate cases. For example, parent / child cases in which two 

or more cases for the same wheel loader have be recorded for on event. Another example 

of multiple cases existing for the same repair occurs when two or more people enter 

information for an event and did not check to see if a case has already been created. 

Duplicate cases were marked in the dataset and a parent (master) cases created for the 

analysis. Parent cases were assigned to the initial case event and all information was 

tagged back to the first case. Additional information from the child (subsequent) cases 

were added to the parent case so all the data from the event was contained there.  

The opposite of the duplicate case occurs when a single case is used for multiple 

repairs. That is, a structural inspection finds a crack in two or more structural components 

but the service engineer or planner only opens one case. In this circumstance, if the case 

is open the repairs will be split, and a case for each component will track the repair or 

replacement of the component.  Cases in which all the work has been completed for all of 

the individual components may appear multiple times in the various datasets to track all 

of the opened cases.  

The data in each component dataset was reviewed to fill in any missing pieces 

(e.g., commodity being mined or updating failure modes from the comment section or 

attached reports). This review was to insure that as complete a picture as possible could 

be obtained from all the existing information. Next, each dataset was reviewed further to 

eliminate cases which did not contain enough information to be used in the Weibull 
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analyses. Examples of cases that were eliminated were instances where the component 

(part) hours were not recorded or the reason why the cases were created was not a failure 

or failure related.  

After completing the review of all of these cases and the removal of non-failure, 

child, and missing information cases, the number of structural component failure cases 

was reduced to 176 total cases. A high-level breakdown of the quantity of structural 

component cases is shown in Table 5.6. The majority of the structural cases which passed 

validation for the models were in the 75 - 80 ton class wheel loaders. The ROPS structure 

was removed from the review because all of the cases in the CMMS database were for 

informational purposes.  

      Table 5.6.  Quantity of Structural Component Cases by Component 

Structural Component 
# of 

Cases 
55 ton 
class 

60 ton 
class 

75 ton 
class 

80 ton 
class 

Front Frame 6 1   1 4 

Rear Frame 43 8 1 25 9 

Rear Axle 43 14 1 21 7 

Lift Arm 71 20   45 6 

Bellcrank (LH) 9 3   2 4 

Bellcrank (RH) 4 1   1 2 

TOTAL 176 47 2 95 32 

            

% of Cases by Class   96% 4% 75% 25% 

% of Fleet Population   93% 7% 68% 18% 

 

5.3.3. Step 3: Perform Weibull Analysis based on Failure Hours. The Weibull 

frequency distribution (probability density function) is widely used in instance like this 

because of it variety of shapes, which enable it to fit many kinds of data, especially data 
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relating to product (component) life. The distribution is defined by the shape parameter 

beta (β). The shape parameter defines the spread of the distribution and corresponds to 

the 63rd percentile of the cumulative distribution, characteristic life. Generally, Weibull 

distribution shapes for the shapes for β=1 is and exponential distribution, or random 

failures. When β≥3.5, it closely approximates a normal distribution and for β≤1it tends to 

infant mortality to premature failures (Moubray (5), 1997, & Uptime, 2017). An example 

of Weibull frequency distribution for the 75 - 80 ton class wheel loaders rear axle dataset 

is shown in Figure 5.2. 

A data summary for the 75 - 80 ton class wheel loader rear axle dataset and its 

corresponding Weibull analysis are displayed in Table 5.7.  The dataset contained 40 

cases which produced 28 validated cases on which the Weibull was based. The MTBF 

was calculated at 9,508 hours with a characteristic life expectancy of 10,666 hours. The 

shape parameter (β) equaled 1.7147 and the R2 value was 0.9637 to determine the slope 

of the best fit line. 

                    Table 5.7. Weibull Distribution Data - Example 

75-80 ton class Wheel 
Loader 
    

# of Cases 28 

MTBF (hrs) 9,508 

Beta 1.7147 

Characteristic Life 10,666 

R2 0.9637 
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Figure 5.2 Weibull Probability Distribution Plot - Rear Axle 75-80 ton WL Class 
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The Weibull Reliability Plot and Probability Density Function are shown in 

Figures 5.3 and 5.4, respectively. The Reliability Plot calculates the failure time values 

based on the β from the Weibull Probability Distribution (with the selected parameters). 

These failure points represent the moving failure point left or right until they intersect the 

best fit straight line in the Weibull Probability Plot (Reliabilityanlyticstoolkit, 2017). The 

Probability Density Function, again based on the β value of 1.7147, is beginning to 

approximate a normal distribution, although it is skewed to the left which represents 

premature failure of the rear axle. 

 

     Figure 5.3 Weibull Reliability Plot - 75 - 80 ton WL Class Rear Axle  
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               Figure 5.4. Weibull Probability Density Function Plot -  

                                  75 - 80 ton WL class Rear Axle  

5.3.3.1 Presentation of 55 - 60 ton class wheel loader Weibull results. The 

results of the Weibull analysis of the 55 - 60 ton class wheel loaders’ structural 

component cases are presented in Table 5.8. There was only a single case reported from 

the front frame and bellcrank (RH) and, hence, the candidate was unable to perform a 

Weibull analysis for these parts. The rear axle and lift arms produced a β value of ~ 1.23 

exhibiting a random failure pattern. The bellcrank (LH) β=1.81 reveals that the failure 

pattern is beginning to normalize but may still fail prematurely over all. The rear frame  

record β=3.49, showing a normalized distribution of failures with the failure window 

occurring between 14,000 - 16,000 hour timeframe. 
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Table 5.8.  Weibull Results Summary for 55 - 60 ton Wheel Loaders Class 

55-60 ton Class         

Wheel Loader         

           

Structural 
Component 

# of 
Cases MTBF Beta 

Characteristic 
Life R2 

Front Frame 1      14,000        

Rear Frame 9      14,018  3.4898             15,592  0.9225 

Rear Axle 15      13,108  1.2275             14,034  0.9070 

Lift Arm 20      15,758  1.2340             16,870  0.7317 

Bellcrank (LH) 3      15,877  1.8116             17,862  0.9813 

Bellcrank (RH) 1      24,189        

  49      14,198    1.5608              15,800  0.9310 

 

Most of the data used in the analysis shown in Table 5.9 are cases from the 55 ton 

class wheel loaders. For the 60 ton class wheel loaders, with only three machines in the 

analysis, operating with this configuration, CMMS data search produced only two 

cases(one each for the rear frame and rear axle). Hence, the candidate is unable to run a 

Weibull analysis exclusively for the 60 ton class wheel loaders. However, it is possible to 

run an exclusive analysis for the 55 ton class loaders because there is adequate data.   

For the 55 ton class wheel loaders structural components, the Weibull results are 

almost identical to the 55 - 60 ton class results (since most of the data is the same).  As 

with the overall data, the front frame and the bellcrank (RH) had only one case each 

reported.  The rear axle β value was slightly less at 1.18 vs. 1.23 for the overall group, 

while the lift arms β value of 1.23 remained unchanged.  Both the rear axle and the lift 

arm still disclose a random failure pattern.  The bellcrank (LH) β=1.81 stays the same 

along with its failure pattern beginning to normalize but may still fail prematurely over 

all.  The rear frames β value increases to 4.5 tightening normalized distribution on 
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failures around 13,000 - 14,000 hours timeframe. The complete summary for all of the 55 

ton class wheel loader components is displayed in Table 5.9. 

     Table 5.9.  Weibull Results Summary for 55 ton Wheel Loaders Class 

55 ton Class WL         

            

Structural 
Component 

# of 
Cases MTBF Beta 

Characteristic 
Life R2 

Front Frame 1     14,100        

Rear Frame 8     12,831  4.5196             14,052  0.9690 

Rear Axle 14     13,058  1.1801             13,809  0.8941 

Lift Arm 20     15,758  1.2340             16,870  0.7317 

Bellcrank (LH) 3     15,877  1.8116             17,862  0.9813 

Bellcrank (RH) 1     24,189        

  47     14,258  1.6039             15,915  0.9277 

 

5.3.3.2 Presentation of 75 - 80 ton class wheel loader Weibull results. The 

results of the Weibull analysis of the 75 - 80 ton class wheel loaders structural component 

cases’ are presented in Table 5.10. A summary of the results shows that all the 

components have random failure with β values ranging from 1.27 - 2.14. The MTBF and 

characteristic life values are approximately 67% of the 55 - 60 ton class wheel loaders, or 

in 9,000 - 12,000 hour timeframe.   

Unlike the 55 - 60 ton class, the data was much more evenly distributed and 

therefore the candidate was able to conduct exclusive analysis for the 80 and 75 ton class 

loaders separately. 

The 80 ton class wheel loaders structural components’ Weibull outcomes were 

similar to the combined 75 - 80 ton class results. The rear frame and the lift arms had β  
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Table 5.10.  Weibull Results Summary for 75 - 80 ton Wheel Loaders Class 

75-80 ton Class  
Wheel Loader         

            

Structural 
Component 

# of 
Cases MTBF Beta 

Characteristic 
Life R2 

Front Frame 5 10,524 1.1710 11,130 0.9526 

Rear Frame 34 10,509 2.1422 11,867 0.9486 

Rear Axle 28 9,508 1.7147 10,666 0.9637 

Lift Arm 51 8,661 1.5379 9,622 0.9633 

Bellcrank (LH) 6 9,330 1.3000 10,100 0.8600 

Bellcrank (RH) 3 10,010 1.2900 10,807 0.8800 

  127       8,956  1.5876            9,982  0.9703 

 

values similar to the 75 - 80 ton class results, although the MTBF and the characteristic 

life windows increased between 2,000 - 5,000 hours, respectively. The front frame and 

the rear axle MTBF’s and characteristic lives values decreased 2,000 - 3,000 hours while 

the β value remained relatively constant. The bellcrank (LH) β value was the most 

improved by over 100% to 2.61 with its MTBF and its characteristic life adding 2,000 - 

3,000 hours. The bellcrank (RH) had only two cases reported, and the candidate was 

unable to perform a Weibull analysis. A complete summary for all the 80 ton class wheel 

loader components is given in Table 5.11. 

For the 75 ton class wheel loaders, the candidate was only able to conduct 

Weibull analysis on three structural components: the rear frame, rear axle, and lift arms. 

The front frame and both of the bellcranks only had one or two valid cases which is 

insufficient to perform a Weibull analysis. The results of these components can be seen in 

Table 5.12. The rear axle has a β value of 1.75 and the MTBF and a characteristic life of 

11,000 - 12,000 hours. The lift arms MTBF is 8,000 - 9,000 hours with a β value of 1.53. 
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For the lift arms this is relatively comparable to the 80 ton class. The 75 ton rear frame 

showed the closest results with the 80 ton class wheel loaders with a β value of 2.04 and a 

component life range of 10,000 - 11,000 hours.  

Table 5.11.  Weibull Results Summary for 80 ton Wheel Loaders Class 

80 ton Class WL         

            

Structural 
Component 

# of 
Cases MTBF Beta 

Characteristic 
Life R2 

Front Frame 4 8,738 1.1437 9,181 0.971 

Rear Frame 9 12,217 2.1528 13,795 0.9355 

Rear Axle 7 6,572 1.6789 7,356 0.9788 

Lift Arm 6 14,126 1.3153 15,332 0.8034 

Bellcrank (LH) 4 11,556 2.6110 13,006 0.8398 

Bellcrank (RH) 2 17,446    
  32 10,538 1.7565 11,834 0.9687 

 

Table 5.12.  Weibull Results Summary for 75 Ton Wheel Loaders Class 

75 Ton Class WL     

      

Structural 
Component 

# of 
Cases MTBF Beta 

Characteristic 
Life R2 

Front Frame 1 15,714    
Rear Frame 25 9,990 2.0435 11,276 0.9348 

Rear Axle 21 11,016 1.7519 12,370 0.9469 

Lift Arm 45 8,159 1.5317 9,065 0.9516 

Bellcrank (LH) 2 2,779    
Bellcrank (RH) 1 3,374    

 95 8,529 1.5561 9,491 0.9620 
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5.3.4. Step 4: Perform Standard Weibull Analysis of Structural Component 

Failure Cases. The next step compared the component operating dates and failure dates/ 

time periods of the structural cases in Step 2 against the production data / time periods 

used in Section 3 to identify cases where structural component failures coincided with 

production data. The structural failure cases which over lapped both time periods were 

then selected for further analysis. These cases were rerun against the production 

databased in order to calculate the number of bucket loads, cycle time, and productivity 

for each of the failure cases. Each of the performance variables was further separated and 

analyzed by it bucket load type (underload, target load, and overload). A review of the 

structural cases for which there were both structural and production data is shown in 

Table 5.13. Only two of the wheel loader classes, 55 and 80 ton, had a sufficient number 

of cases to proceed with further analysis.  

Table 5.13. Number of Structural Cases by Wheel Loader Class 

Wheel 
Loader  # Cases 

55  ton class  5 

60  ton class  0 

75  ton class  2 

80  ton class  17 

 

The Weibull analysis results for the 55 ton and 80 ton class wheel loaders are 

shown in Tables 5.14 and 5.15. Furthermore, two of the 80 ton class wheel loaders had 

enough data to perform individual Weibull analyses on these loaders. The 75 ton class 
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wheel loader presented only two cases covering the two datasets, while the 60 ton class 

wheel loader had no cases in common. 

Table 5.14.  55 Ton Wheel Loader Class Weibull Results - Structural Cases 

Wheel 
Loader 

# of 
Cases MTBF Beta 

Characteristic 
Life (hrs)  Eta R2 

6011 1 Insufficient data 

6012 1 Insufficient data 

6013 1 Insufficient data 

6014 0 Insufficient data 

6015 0 Insufficient data 

6016 2 Insufficient data 

6017 No cases found 

6018 No cases found 

TOTAL 5 1,212 2.2782 1,369 0.8464 

 

The 55 ton class wheel loader analysis resulted in an MTBF of 1,212 hours, a 

characteristic life of 1,369 hours, and a β of 2.2782. The β value of 2.2782 indicates early 

wear-out failures of the 55 ton classes structural components (Meridium, 2015). 

Table 5.15.  80 Ton Wheel Loader Class Weibull Results - Structural Cases 

Wheel 
Loader 

# of 
Cases MTBF Beta 

Characteristic 
Life (hrs)  Eta R2 

8001 3 Insufficient data 

8002 7 1,186 2.1069 1,339 0.8623 

8003 5 1,052 0.6460 1,216 0.9177 

8004 0 Insufficient data 

8005 2 Insufficient data 

TOTAL 17 1,410 0.8510 1,294 0.9552 

 



 

 

162 

The 80 ton class wheel loaders analysis shows infant mortality failures for the 

fleet with a β value of 0.8510 (Table 5.15). This is also indicated by the characteristic life 

being lower than the MTBF at 1,186 hours and 1,052 hours respectively. Loaders 8002 

and 8003 had sufficient cases to run Weibull analysis on the individual loaders. Loader 

8002’s MTBF was 1,186 hours and its characteristic life was 1,339 hours which produced 

a β of 2.1069 indicating an early wear-out failure pattern. Loader 8003 analysis produced 

a β of 0.6460, infant mortality failure with the MTBF and characteristic life values of 

1,052 hours and 1,216 hours, respectively.   

5.3.5.  Step 5: Duty-Cycle Reliability Analysis. The overlapping cases’ data 

examined to determine the severity of use, or the duty-cycle to which the wheel loader is 

being subjected to during the course of normal operations. The duty-cycle depends on the 

life stress relationship (LSR) of the wheel loader of the component being examined. 

Linear LSR was assumed to be the duty-cycle with the ratio of the load on the 

component. The duty-cycle can be expressed as the ratio of load on the component (V2) 

to the rated load (V1), which is shown in Equation 5.1 (Reliability HotWire, 2017).  

   dc = V2 / V1                                                                                                             (5.1) 

The duty-cycle for each wheel loader was calculated in three categories: 

underloads and target loads together, overloads, and all loads. The recorded bucket 

weights were totaled (total production during the time between failures) and divided by 

the product of number of bucket loads and the designed bucket weight (i.e., the estimated 

production if each wheel loader excavated the rated payload for each cycle). Underloads 

and target load were combined because these loads did not exceed the design bucket 
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weight, thus returning values less than one. The overloads exceeded the design target and 

returned values greater than one. The results of the duty-cycle analysis can be seen in 

Tables 5.16 and 5.17 for the 55 ton and 80 ton class wheel loaders.  

The last column in both Tables 5.16 and 5.17 shows the ratio of all loads for each 

given class compared against themselves. The wheel loader with the highest duty-cycle 

was set to 1.0000 and all remaining duty-cycle values were compared against this 

machine to produce their ratios (Hudak, 2011). Loader 6012 set as the hardest duty-cycle 

in the 55 ton class wheel loader group operates in a copper mine, while the other three 

loaders all work in coal mines. The four wheel loaders comprising the 80 ton class group 

all work in iron mines. 

             Table 5.16. 55 Ton Wheel Loader Class Duty-Cycle Based  

                                          on Maximum Payload 

Wheel 
Loader 

Underloads / 
Target Loads 

(V2 / V1) 
Overloads 
(V2 / V1) 

All Loads 
(V2 / V1) 

All Load 
Ratio 
(Top) 

6011 0.7491 1.1823 0.7580 0.9322 

6012 0.7974 1.1134 0.8131 1.0000 

6013 0.6378 1.1051 0.6382 0.7849 

6014         

6015         

6016 0.6135 1.2226 0.6143 0.7555 

6017         

6018         

 55 ton class 0.6817 1.1393 0.6822 0.8390 
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             Table 5.17. 80 Ton Wheel Loader Class Duty-Cycle Based 

                                          on Maximum Payload 

Wheel 
Loader 

Underloads / 
Target Loads 

(V2 / V1) 
Overloads 
(V2 / V1) 

All Loads 
(V2 / V1) 

All Load 
Ratio 
(Top) 

8001 0.7694 1.1657 0.8173 1.0000 

8002 0.7294 1.147 0.7338 0.8978 

8003 0.6912 1.1237 0.7468 0.9137 

8004         

8005 0.7431 1.1209 0.7457 0.9124 

80 ton class 0.7314 1.1463 0.7475 0.8978 

 

5.3.6. Step 6: Perform Weibull Analysis Based on Duty-Cycle for Structural 

Component Failure Cases. The wheel loader duty-cycle ratio computed in the previous 

step was used to adjust the failure hours for each structural component case in Step 4. In 

other words, each time between failure is adjusted by using the duty-cycle values as a 

weighting factor per Equation 5.2. These new times between failure data points were 

used to run a second Weibull analysis for comparison. The results of the second Weibull 

analysis that account for the duty-cycle are shown in Tables 5.18 and 5.19. 

2

1

V
t t

V
                                                                                                                     (5.2) 

The 55 ton class wheel loader results shows an MTBF of 1,054 hours and a 

characteristic life of 1,189 hours. Both the hours for the MTBF and characteristic life 

values are lower than the standard Weibull.  This was expected due to the “All Load” 

ratio reducing the hours at failure in the calculation. The β value of 1.9697 decreased 
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from the previous analysis, but it still indicates early wear-out failures of the 55 ton 

classes structural components. 

                 Table 5.18.  55 Ton Wheel Loader Class Duty-Cycle 

                                Weibull Results - Structural Cases 

Wheel 
Loader 

# of 
Cases MTBF Beta 

Characteristic 
Life (hrs)  Eta R2 

6011 1 Insufficient data 

6012 1 Insufficient data 

6013 1 Insufficient data 

6014 0 Insufficient data 

6015 0 Insufficient data 

6016 2 Insufficient data 

6017 No cases found 

6018 No cases found 

TOTAL 5 1,054 1.9697 1,189 0.9384 

 

                  Table 5.19.  80 Ton Wheel Loader Class Duty Cycle  

                                 Weibull Results - Structural Cases 

Wheel 
Loader 

# of 
Cases MTBF Beta 

Characteristic 
Life (hrs)  Eta R2 

8001 3 Insufficient data 

8002 7 1,065 2.1063 1,203 0.8624 

8003 5 961 0.6455 1,111 0.9176 

8004 0 Insufficient data 

8005 2 Insufficient data 

TOTAL 17 1,442 0.8907 1,365 0.9578 

 

The 80 ton class wheel loaders’ Weibull analysis based on duty-cycle still shows 

premature mortality failures for the fleet with a β value of 0.8907. The β value increased 

over the prior analysis presented in Step 4. This is also indicated by the characteristic life 
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being lower than the MTBF which is 1,442 hours and 1,365 hours respectively. Loader 

8002’s MTBF was 1,065 hours and its characteristic life was 1,203 hours, which 

produced a β of 2.1063 indicating an early wear-out failure pattern (Meridium, 2015). 

Loader 8003’s analysis produced a β of 0.6455 with its infant mortality failure having an 

MTBF and characteristic life of 961 hours and 1,111 hours, respectively.  

The results of the 80 ton wheel loader fleet and the individual machines show a 

tightening up of the results. This appears to be the result of applying the duty-cycle ratio. 

The β value for the fleet increased slightly by 0.0400 over the standard Weibull analysis 

β value. The individual loaders saw no significant change in their β values between the 

two separate Weibull analyses.   

5.3.7. Step 7: Comparing the Standard and Duty-Cycle Weibull Analysis 

Results.  The last step of the process was to compare the results of both Weibull analyses 

to determine whether accounting for payload is the Weibull analyses improves the 

predictive power of the model. Weibull analysis can be compared based on their slope, 

“R2” value or Weibull modulus (Hudak, 2011). The 55 ton and 80 ton class wheel loader 

results are summarized in Tables 5.20 and 5.21 from Section 5.3.4 (Step 4) and 5.3.6 

(Step 6). The 55 ton class wheel loader fleet shows a significant improvement with an 

increase of 0.0920 from a R2 value of 0.8464 for the standard Weibull analysis to a R2 

value of 0.9384 from the duty-cycle based Weibull analysis. The 80 ton class wheel 

loader fleet R2 results were 0.9552 for the standard Weibull analysis and 0.9578 on the 

duty-cycle based Weibull analysis, and improvement of 0.0026. 
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The results from the two 80 ton class wheel loaders, Loader 8002 and Loader 

8003, show no difference in the Weibull R2 values with both loaders results being within 

0.0001 of each other. These loader results are shown in Table 5.22. 

Table 5.20.  55 Ton Class Structural Cases Weibull Results - Comparison 

Weibull Summary Results 55 Ton Class Wheel Loaders 

 
MTBF Beta 

Characteristic Life 
(hrs)  Eta 

R2 

Standard 1,212 2.2782 1,369 0.8464 

Duty-Cycle  1,054 1.9697 1,189 0.9384 

 

Table 5.21.  80 Ton Class Structural Cases Weibull Results - Comparison  

Weibull Summary Results 80 Ton Class Wheel Loaders 

 
MTBF Beta 

Characteristic Life 
(hrs)  Eta 

R2 

Standard 1,410 0.8510 1,294 0.9552 

Duty-Cycle (Top Down) 1,442 0.8907 1,365 0.9578 

 

The higher R2 values indicate that the Weibull distribution parameters determined 

by accounting for duty-cycle (based on payloads) provide a better fit to the observed time 

between failures that those parameters determined without regard to the duty-cycles. This 

confirms the research hypothesis that accounting for overloading (how hard the machine 

is worked with higher payloads) will lead to better predictions of failures. 
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                 Table 5.22.  Individual 80 Ton Class Structural Cases  

                                   Weibull Results - Comparison 

Weibull Summary Results Loader 
8002 

 
 

 

MTBF Beta 
Characteristic 
Life (hrs)  Eta 

R2 

Standard 1,186 2.1069 1,339 0.8623 

Duty-Cycle (Top Down) 1,065 2.1063 1,203 0.8624 

     

     

Weibull Summary Results Loader 
8003 

 
 

 

MTBF Beta 
Characteristic 
Life (hrs)  Eta 

R2 

Standard 1,052 0.6460 1,294 0.9177 

Duty-Cycle (Top Down) 961 0.6455 1,111 0.9176 

 

5.4. DISCUSSIONS 

This examination of the global ultra-class wheel loaders’ fleet structural 

component failure cases along with the subgroup of cases with additional production data 

sought to determine the severity of the wheel loaders duty-cycle and to show a general 

relationship between that and the reliability analysis. This highlighted subgroup of data 

illustrates the standard and the duty-cycle based Weibull distribution failure analysis 

between these groups. The results of the standard Weibull and the duty-cycle Weibull 

analysis were similar. The duty-cycle Weibull analysis showed an improvement in the 

slope modulus (R2) for both the 55 ton class and the 80 ton class wheel loader fleets. The 

limited number of cases and test samples in the subgroup is an area of concern. 

Additional samples added to the analysis (when available,) may significantly influence 
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the results. Additionally, several other factors may be influencing the results and causing 

variances in the reported data. These factors include operator skill, wheel loader / 

component manufacture, frequency of the wheel loader structural inspections, the 

maintenance and the repair operations of the wheel loader, and the application, and site / 

working conditions, such as pit geology, blasting relating to floor conditions and 

fragmentation of the pile, weather, road conditions and pit flor maintenance, etc.)   

The complete OEM fleets reliability analysis results of the wheel loader fleets’ 

structural components indicate that there may be random linear to early wear-out failure 

patterns for all of the components except for the rear frame of the 55 ton class machines. 

The Weibull β values for individual structural components ranged from 1.1710 to 2.1422. 

The failure pattern for the 55 ton class wheel loader rear frames was rapid wear-out 

failures based on a Weibull β value of 4.5196 with a failure time window occurring from 

10,000 -14,000 hours. 

5.4.1. Effect of Payloads on the Reliability of Structural Components.  

Examination of the reliability analysis assessing the effect of duty-cycles on the 

performance of the structural components demonstrated mixed results in the fleet 

analyses. Two wheel loader fleets, 55 ton and 80 ton class machines, had sufficient data 

to perform duty-cycle reliability analysis. The results showed that both of these fleets had 

significantly reduced MTBF compared to the respective OEM fleet analyses. The 55 ton 

class wheel loaders’ duty-cycle effected analysis had an MTBF of 1,212 hours between 

failures versus the OEM fleet average of 14,258 hours. The 80 ton class wheel loaders 

duty-cycle studied had an MTBF of 1,410 hours compared to the OEM fleet value of 

10,538 hours. The β values results were also mixed for both fleets. The 55 ton class 

wheel loader’s β value increased from 1.5608 (OEM) for the fleet to 2.2782 for the duty-
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cycle based results. The 80 ton class wheel loaders β values decrease from 1.7565, early 

wear-out failure patterns in the OEM fleet to infant mortality failures with a β value of 

0.8510 in the duty-cycle based analysis. Based on the OEM structural component failure 

data and duty-cycles, these results give the impression that the duty-cycle wheel loader 

samples were less reliable compared to the entire OEM fleet. The limited number of test 

samples (22) and the short time duration (i.e., less than one year) could be affecting the 

results. 

5.4.2. Effect of Accounting for Payload Duty-Cycle on the Reliability of 

Structural Components.  The duty-cycle analyses for both the 55 ton and the 80 ton 

class wheel loaders were adjusted by applying a duty-cycle ratio as a weighting factor to 

account for increased (overloading) loading of the machines. The55 ton and 80 ton wheel 

loader classes results show that applying the ratio to the failure hours linearized the 

failure rates predicted by the Weibull analysis. The Weibull results for both wheel loader 

classes had their respective β valves approaching a β value of 1, a linear failure rate. The 

55 ton class wheel loader’s β values are decreasing towards a β value of 1, while the 80 

ton wheel loader class machines β values were increasing to the linear β value.  

The Weibull results for the 55 ton and 80 ton class wheel loaders where mixed 

based on adding duty-cycle ratio comparison. The results of the 55 ton class wheel 

loaders showed a decrease in MTBF from 1,212 hours to 1,054 hours for adjusted duty-

cycle ratio comparison, with the β value decreasing from 2.2782 to 1.9697, respectively. 

The 80 ton class wheel loaders MTBF results increased from 1,410 hours to 1,442 hours 

for the duty-cycle ratio tests. The β values for the tests also increased from 0.8510 to 

0.8907 for the duty-cycle ratio tests. 



 

 

171 

The ability to determine the wheel loaders’ duty-cycle ratio allows for better 

maintenance planning by adjusting the structural components inspection interval from a 

one-size fits all approach to a customized approach based on the wheel loaders duty-

cycle. The ability to split out sections of the structural inspections by structural 

component allows us to gather data on these sections to plan repair actions before failure 

(see the Point-Failure curve), but eliminate recreational maintenance (Collis, 2017) items, 

where no changes are occurring over the inspection interval. This allows the ability to 

plan tasks; that is, schedule repair crews and parts, while decreasing the number of 

machine down hours required for maintenance inspections which allows for additional 

availability / production time. 

This research into the severity of use of the structural components could be 

extended to additional equipment systems such as hydraulic cylinders and circuits and 

drive line components. These systems are designed based on the wheel loader’s target 

load to cycle a number of times per hour (e.g., every 45 seconds for a hoist cylinder or 80 

times per hour or to be utilized at a specified duty-cycle, the engine operates above 1,650 

rpm 45- 55% of the time). This analysis of the equipment’s duty-cycle evaluates how 

severely the machine is being operated (above, below, or within its design parameters). 

The equipment duty-cycle detail brings an added dimension to the reliability analysis and 

provides additional context to the analysis based on current delineations by model, 

configuration, region, and commodity being handled.  

Additionally, this allows the ability to evaluate reliability centered maintenance 

(RCM) plans to revise the individual tasks or adjust individual intervals to keep the 

programs optimized for the plans or groups based on the schedule. Also, this provides a 
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means to re-evaluate these systems and adjust the maintenance hours or the tasks to 

maximize operating hours and minimize downtime. The analysis results can point to 

other RCM plans, bringing in new engineering solutions to modify or redesign 

components / systems to extend life expectancy and simplify maintenance tasks and 

reduce maintenance time thus improving machine availability.  

5.4.3. Analysis Limitations. There are certain limitations to this analysis. These 

include the fact that the analysis does not explicitly account for all the structural repairs 

for each of the wheel loaders in the study. A majority of the structural cases presented 

were factory involved repairs. As such this level of repairs provides additional procedural 

controls, observations, and documentation. Regional or mine level repairs may have been 

done to allow the wheel loader to operate until such a time proper repairs were possible. 

Additionally, the analysis does not overtly account for the effect of the type of 

commodity the loaders operate in, operator skill, bucket configuration, or application due 

to the limited samples. Any or all of these components could complicate the relationship 

between overloading the bucket and the failure of any of the structural components.  

However, the candidate believes these factors actually work to reinforce his 

conclusions in this section as they strengthen the connection between overloading and 

structural component failures. Hence, accounting for these factors will only make the 

conclusions of this study stronger. 

 

5.5. SUMMARY 

This research effort presents a methodology to account for wheel loader 

overloading (duty-cycles) into structural component reliability analysis. The case study of 

8 wheel loaders, four 55 ton and four 80 ton class machines, structural component 
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failures comprising over 20 cases was examined to determine the effects of adding the 

duty-cycle to the analysis. The results of Weibull analysis on these two methods show an 

improvement in the predictive power of the models.   

Based on the results of the eight wheel loaders reviewed, the following general 

conclusions can be drawn: 

• The Weibull shape modulus for the standard analysis and the duty-cycle 

based analysis showed little variance. The failure method expressed by the 

shape of the Weibull distribution for the standard analysis was repeated in 

the duty-cycle based Weibull analysis. 

• Applying the duty-cycle ratio to the failure hours linearized the data for 

the Weibull analysis. This is shown in the β value of the 55 ton class 

wheel loaders decreasing while it increased in the 80 ton class wheel 

loaders. The results of both wheel loader classes are approaching a β value 

of a linear failure rate of 1.   

• The accuracy of the duty-cycle based Weibull analysis was increased over 

the standard analysis for both the 55 ton and the 80 ton class wheel loaders 

as shown in the R2, the slope variable of the Weibull plot. 

The candidate makes the following recommendations for future work, which 

could improve and increase the body of knowledge in this area: 

• Conduct a similar study with more extensive datasets to evaluate whether 

these conclusions to hold true with more extensive data. 
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• Use cumulative damage models analysis to study the effect of ever 

increasing overload cycles and determine if their effects on the reliability 

can be quantified (Weibull, 2012).  

•  Study the use of accelerated life tests and life models on the structural 

components in order to determine the differences in overstressing the 

machine by progressive stress, cyclic stress and / or random stress in order 

to reduce the failure threshold (Pulido, 2015) and move the failure models’ 

curves to long - duration constant failure modes.  

• Look at changing the Weibull analysis time parameter from hours to 

bucket loads and specifically bucket overloads. 
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6. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK  

6.1. SUMMARY 

A wheel loader’s productivity is affected by multiple factors including its working 

conditions, the operator’s skill level, and the health of the machine. The operator’s skill 

and practices affect the material weight handled and the machine’s cycle time, which in 

turn controls the machine’s productivity. The bucket weight and the cycle time may each 

influence the wheel loader’s performance independent of the other.  

This research examined the effect of overloading the bucket on a wheel loader’s 

productivity and its reliability through tracking the total number of bucket overloads and 

the failure of the wheel loader’s structural components. These bucket overloads 

(excessive duty-cycle) contribute to premature aging and wear of a wheel loader’s 

structural components. The long lives of the wheel loader’s structural components and 

the limited fleet size was challenging to this research. This research provides a basis to  

update RCM plans based on the likelihood of a structural component failure and 

encourage replacement prior to failure.  

The goal of this research was to determine the effect of overloading the wheel 

loader’s bucket on the machine’s productivity and reliability. In accordance with the 

overall goal of this research, the specific objectives were: 

1. Examine the effect of overloading the bucket on wheel loader productivity. 

2. Examine the effect of overloading the bucket on forces exerted on a wheel 

loader. 

3. Investigate the effect of overloading the bucket on the reliability of the 

structural components of a wheel loader. 
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The first objective determined the productivity of the wheel loader and discovered 

the amount of overloading which is occurring in the global fleet of a major OEM. The 

wheel loader classes were also compared against their OEM specified operating 

parameters. The candidate used an ANOVA test to investigate the hypothesis that bucket 

payload class (underloaded, target and over load) had a significant impact on cycle time 

and productivity.  

The second objective examined the effect of payload on the forces placed on the 

wheel loader by examining its hydraulic system, (i.e., the hoist cylinder pressures). 

Again, the candidate collected data and examined Spearman and Pearson correlations to 

check test the hypothesis that payload was correlated to the hoist cylinder pressures.  

The final objective was achieved by first establishing the reliability of the 

structural components for the global fleet using a standard Weibull analysis. Second, the 

case study’s fleet Weibull analysis dataset hours were adjusted based on each wheel 

loader’s duty-cycle (based on payloads), and the Weibull analysis was run again to show 

the effect of the duty-cycle on the structural components reliability.   

 

6.2. CONCLUSIONS 

Based on the work done in this dissertation several conclusions are drawn: 

1.  With respect to the first objective (evaluate the effect of overloading the 

bucket on wheel loader productivity): 

a. The evidence in support of the hypothesis that higher payloads lead to 

slower loading rate (higher cycle times) is not as clear as that in 

support of the hypothesis that higher payloads lead to higher 

productivity. 
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b.  The analysis in this dissertation confirms the operators’ general belief 

that they can produce more if the bucket is overloaded. However, the 

analysis also shows that overloading the bucket slows down the 

loading rate and is detrimental to productivity in that regard. 

c.  Overloading the bucket itself was not a major issue in any of the 

wheel loader fleets considered in this work.  Most of the wheel loaders 

(14 of 20 or seventy percent) were being underloaded.  

d.  Half of the wheel loaders were operating within the machine’s target 

cycle time. The wheel loaders’ bucket cycle time shows it has a 

secondary impact on the machine’s productivity. The bucket weight 

and the cycle time are independent of each other. 

2.  With respect to the second objective (examine the effect of overloading the 

bucket on forces exerted on a wheel loader): 

a. The work shows that the maximum hoist pressure during the wheel 

loader cycle increases as the bucket weight increases. 

b.  The majority of the hoist circuit pressure readings were within the 

expected operating ranges for the bucket loads lifted. However, the 

machines in the study appear to be operating in the upper range of the 

expected hoist cylinder pressures.  

3. With respect to the third objective (investigate the effect of overloading the 

bucket on the reliability of the structural components of a wheel loader): 

a.  The Weibull shape modulus for both the standard analysis and the 

duty-cycle based analysis showed little variance. The failure method 
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expressed by the shape of the Weibull distribution for the standard 

analysis was repeated in the duty-cycle based Weibull analysis. 

b.  The effect of applying the duty-cycle ratio to the failure hours 

linearized the data for the Weibull analysis. This is shown in the β 

value of the 55 ton class wheel loaders decreasing while it increased in 

the 80 ton class wheel loaders. The results of both wheel loader classes 

are approaching a β value of a linear failure rate of 1. 

c.  The accuracy of the duty-cycle based Weibull analysis was increased 

over the standard analysis for both the 55 ton and 80 ton class wheel 

loaders as shown in the R2 of the slope variable of the Weibull plot. 

 

6.3. CONTRIBUTION OF THE PHD RESEARCH 

The results of this research advance the understanding of the wheel loader 

maintenance and reliability by using empirical equipment generated performance data in 

conjunction with maintenance data to understand structural component lives. The goal of 

this research was to increase wheel loader productivity and structural component lives by 

emphasizing the effects of overloading the bucket and focus operations towards the use 

of proper operational techniques. The research: (i) expands the research frontier by 

furthering our understanding of the effect of overloading on the reliability and the 

productivity of a wheel loader’s structural components; and (ii) contributes to mining 

engineering in relation to optimization of maintenance practices for wheel loaders. The 

research results will be broadly disseminated to facilitate its adoption in industry and 

further research based on these findings. 
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6.3.1. Expansion of Research Frontier. This research has expanded our 

understanding of the effect of overloading the wheel loader’s bucket on productivity and 

the effect of this excessive duty-cycle of the machine’s structural component lives. This 

research confirmed the hypothesis that higher bucket payloads lead to a slower loading 

rate (high bucket cycle times) and the general belief that the loader will be more 

productive if the bucket is overloaded.  

Correlations showing the connection between hydraulic system pressures 

presented and wheel loader payload do not exist in the literature. This research shows the 

expected result that the hydraulic pressure increases to lift greater bucket weights. While 

the hoist cylinder hydraulic pressure reading was still in the operating range, it was in the 

higher end of the range. The results presented were for a handful of wheel loader all of 

one class. However, they show the existence of such correlation and should prompt 

further studies with more wheel loaders and wheel loaders in other operating classes. 

Additionally, other studies examining the duty-cycle of the hydraulic cylinders would be 

beneficial in determining if other components (cylinder or drive components) show the 

same correlation. These would serve as better indicators to accelerate maintenance 

activities based on harder duty-cycle usage.  

6.3.2. Contributions to Mining Engineering Practices. Mining engineering 

practices should see two primary areas for improvement maintenance plans based on 

multiple data inputs (i.e., machines / component hours and machine cycles / duty-cycles), 

and operating training / follow-up / retraining. The failure of a structural component leads 

to lengthy and costly repairs. The ability to understand the wheel loader’s duty-cycle is 

primary to determine usage based on application and an operator’s skill level. The ability 
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to add in a secondary measure, (i.e., duty-cycle) to establish, confirm, and validate 

inspection and maintenance intervals is paramount to improving the overall maintenance 

plan. Knowledge and understanding of the wheel loader’s duty-cycle allows for the 

customization of the wheel loader’s reliability centered maintenance (RCM) plan. This 

includes the ability to adopt individual maintenance plans for the mine and even down to 

the machine level. In the future, constant monitoring of the duty-cycle may also lead to 

refining the plan based on changes to the duty-cycle in addition to time based reviews. 

This new approach may conceivably lead to additional improvements in maintenance 

department operations with a more proactive approach to equipment health monitoring. 

The other main contribution involves training of the equipment operators. 

Operator training, evaluation, and re / follow-up training focusing training resources to 

improve operator training / retraining to a more consistent loading of the bucket, 

including reinforcing general housekeeping at the working face and mine site. This 

technique will incorporate using performance metrics to evaluate operator productivity 

(Awuah-Offei, 2016) and the effect that bucket overloading has on overall equipment 

health. This research assimilates the ability to link unhealthy operations practices (bucket 

overloading) to increases in downtime and repair costs, through shortened structural 

component rebuild and the replacement lives with expansion of this concept to 

encompass the complete wheel loader.  

6.3.3. Dissemination of Research Results. The results from this research will be 

disseminated to relevant peer groups within Komatsu Mining Corp., specifically the 

Wheel loader Engineering and Product Support Groups. Additionally, the results may be 

used by the Life-Cycle Management (LCM) groups to update component lives in fleet 
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management contracts. The information will be used to update RCM plans and as 

discussion points for future RCM workshops. There are plans to publish in the future to 

encourage better maintenance plans and repair activities with customers and with the 

industry. Additionally, there are opportunities to continue this research with additional 

follow on / follow-up equipment and maintenance research opportunities to advance the 

results presented in this dissertation. 

 

6.4. FUTURE WORK 

The following recommendations for future work have the capability to improve 

and to add to the body of knowledge from this research: 

1.  This research should be continued in order to track the studied fleet of wheel 

loaders and to add data from other machines in the current fleet and future 

OEM builds. The results of these additions will allow a better understanding 

of how wheel loader payloads (duty cycle) affects the structural reliability of a 

wheel loader.  

2.  This research project should be expanded to include other wheel loader 

systems, i.e., major components, hydraulics, and other systems.  Similar 

methodology would be used to compare how overloading the wheel loader 

affects the reliability of these components and systems. Further analysis 

should examine the usefulness of the wheel loader’s duty-cycle to supplement 

time-based maintenance intervals.  

3.  Further research should develop and incorporate this process into an IPSECA 

workflow model, and the research results shared with design engineers. This 
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will facilitate updated / new designs to increase the target lives of the 

structural components.  

4.  This research project should be expanded to examine the relationships 

between productivity and structural component lives, presented in this 

dissertation, to other loading tools, (i.e., electric cable shovels, draglines, and 

hydraulic excavators).  

5.  In the longer term, further research should attempt to develop rigorous 

parametric and non-parametric reliability models for mining loading 

equipment which directly accounts for the duty cycle. For example, such work 

could follow the example of Adekpedjou, et al. (2010) who formulated 

models for hospital visits (same as machine breakdowns) where the nature of 

previous visits are incorporated into estimates of the next visit. The analogy 

here is that the equipment history (beyond the time between failures), such as 

the history of overloads, can be incorporated into the reliability. 
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