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ABSTRACT  

This research sought to facilitate improved community (stakeholder) analysis by 

providing further insight on the determinants of local community acceptance using 

discrete choice theory.  Specifically, the goals were to: (1) Identify, classify, and verify 

the important project characteristics and key demographic factors which affect local 

community acceptance of a mining project; (2) Account for the large number of relevant 

factors inherent in discrete choice experiments for mining community acceptance 

evaluation; and (3) Examine discrete choice models to select the most appropriate model 

for mining community consultation. The research will test the hypotheses that various 

discrete choice models can describe the local community’s acceptance of mining projects. 

Surveys were used to validate a classification of important mining project 

characteristics and demographic factors. Sixteen project characteristics and four 

demographic factors were identified as important for individual preferences for mining 

projects. A mixed style, blocking scheme, fractional factorial without interaction discrete 

choice experiment was proposed to overcome the challenge posed by the large number of 

relevant factors. The design was validated, revised, and implemented in Salt Lake City, 

UT to illustrate the usefulness of discrete choice theory in mining stakeholder analysis. 

Three candidate discrete choice models were evaluated to select the best model for 

mining stakeholder analysis. The results show that the conditional logit model, stratified 

by question, is the most suitable. The proposed approach has been demonstrated to 

answer three important questions for enhanced stakeholder analysis: (1) what are the 

factors that affect stakeholders’ decision and how do these affect their preferences? (2) 

what is the effect of demographics on individual preferences? (3) what is the value of 

environmental and social impacts to individuals in the community?   
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1. INTRODUCTION 

1.1. BACKGROUND 

Human development has been supported by metal and mineral products 

throughout human history and will continue in the future. Mining provides important 

products to meet society’s needs, including raw materials for shelter, infrastructure, and 

manufacturing, and energy resources. World-wide, there are over 6,000 formal mining 

companies and 15 to 20 million artisanal and small scale miners operating in 30 countries 

(Ericsson & Löf, 2011; ICMM, 2012b). In the United States of America (USA), more 

than 14,000 mines mine for coal, metal ores and non-metallic minerals, according to 2012 

data (National Mining Association, 2014).  

The economic impact of US mining is summarized in Table 1-1. At the local level, 

mining provides a significant employment opportunity to the local community. In 2012, 

U.S. mines provided more than 634,000 jobs directly, and 1.27 million indirectly or 

induced. Thus, there is a total over 1.9 million full-time and part-time jobs created by US 

mining (National Mining Association, 2014). In addition, the direct labor income created 

by U.S. mining is over $46 billion with the total (direct, indirect and induced) exceeding 

$118 billion. At the national level, mining provides government revenues, foreign and 

domestic investment. According to National Mining Association (2014), mining activity 

(direct and indirect) generated total taxes of $46 billion. The contribution of US mining 

to the gross domestic product (GDP) is over than $225 billion in 2012. 

 

 

Table 1-1. Economic contribution of U.S. Mining 

Item Direct Indirect and Induced Total 

Employment 634,600 1,268,800 1,903,440 

Labor Income (billions of dollars) $46.2 $71.0 $118.2 

Contribution to GDP (billions of dollars) $102.1 $123.0 $225.1 

Taxes Paid (billions of dollars) $18.9 $26.9 $45.8 

Source: Calculation based on IMPLAN modeling system (2012 database) 
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While there is no doubt that mineral and metal products make a significant 

contribution to development, the juxtaposed adverse impacts cannot be ignored. The 

negative environmental and social impacts of mining have attracted attention from 

governments, non-governmental organizations, the general public, and other stakeholders. 

In the past decade, concerns over sustainable development1 have increased over the world 

(Dechant, Altman, Downing, & Keeney, 1994; Epstein & Roy, 2003; Freeman & Gilbert, 

1988; Friedman & Miles, 2001; Gao & Zhang, 2006; Mathews, 1997; Rotheroe, 

Keenlyside, & Coates, 2003; Rowe & Enticott, 1998; Schaefer, 2004; Shrivastava, 1995). 

Mining companies cannot proceed with mining as in the past since global expectations 

have changed the role of business. How to contribute to sustainable development has 

become a key challenge for mining.  

The industry has moved from environmental compliance (and associated 

standards like ISO 14001), to corporate social responsibility (CSR) programs, to social 

license to operate, and now to sustainability reporting with standards like the Global 

Reporting Initiative (GRI) (Brown, de Jong, & Lessidrenska, 2009; Browne, Stehlik, & 

Buckley, 2011; Hedberg & Malmborg, 2003; Thomson & Boutilier, 2011; A. Willis, 

2003; Wood, 1991, 2010). Currently, most of the major mining houses produce audited 

annual sustainability reports that document their sustainability impacts (Fonseca, 2010). 

Additionally, there are calls for mines and mining businesses, like their counterparts in 

other sectors, to operate in a way that creates shared value for all stakeholders (Porter & 

Kramer, 2011). All these show that mines and mining businesses have a role to play in 

sustainable development of their host communities and the world at large. However, this 

can only be done with a concerted effort to develop and operate mines sustainably. 

While the whole world benefits from mining’s contributions, most of the resulting 

detrimental impacts on the environment and society fall on the local community or 

communities. Compared to other stakeholders, protecting the local communities’ interests 

has been a key element of sustainable development efforts in mining (R Hamann, Patel, 

& Pressend, 2002; Ralph Hamann, 2003). Hence, community engagement is the key to 

sustainable development in mining, and also the main challenge for mines. 

                                                 
1 The ability of current generations to meet their needs without compromising the ability 

of future generations to meet their own needs (Brundtland, 1987) 
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There are numerous examples of mining projects that have been postponed, 

interrupted, and even shut down due to poor community  engagement (Browne et al., 

2011; Davis & Franks, 2011; Moffat & Zhang, 2014; Prno & Scott Slocombe, 2012; 

Thomson & Boutilier, 2011). Stakeholder-related risk has been shown to be one of the 

major non-technical risks responsible for these delays (Ruggie, 2010; Davis and Franks 

2011). Davis and Franks (2011) estimates the delay cost to be approximately 

US$ 10,000/day, during the exploration stage of a new mine. These costs are even higher 

during production when the costs of labor, equipment ownership, and deferred production 

are much higher. From a company’s standpoint, community engagement is the best way 

to mitigate these community-related risks and achieve sustainable development. 

 

 

1.2. STATEMENT OF PROBLEM 

A key part of community engagement is community consultation, which includes 

three main parts: stakeholder identification, stakeholder analysis and iterative 

consultation (ICMM, 2012a; IFC, 2007).  Stakeholder analysis is one of the key 

challenges since misunderstanding stakeholders will misguide the whole community 

consultation effort. 

Discrete choice theory, based on the Nobel winning work by McFadden (1974), 

has transformed the world of market research. Discrete choice theory analyses an 

individual decision marker's preferences in discrete choices. Discrete choice theory, has 

been successfully used in econometrics and other disciplines to understand behavior in 

choice situations (Dimitropoulos & Kontoleon, 2009; Walekhwa, Mugisha, & Drake, 

2009; K. Willis, Scarpa, Gilroy, & Hamza, 2011; Winslott Hiselius, 2005). IBM used 

discrete choice theory to study of the demand for laptop computers and reconfigure their 

product line to target various country-specific market segments. AT&T wireless used this 

modeling framework to assess demand for proposed wireless communication services 

(StatWizards LLC, n.d.). Also, choice theory has been used to evaluate community 

acceptance of renewable energy projects (K. Willis et al., 2011) and assess people’s 

preferences for railway transportation of hazardous materials (Winslott Hiselius, 2005).  
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In mining, as far as the author is aware, only Ivanova, et al. have used discrete 

choice theory to understand the decision-making process of local communities regarding 

preferred mineral project development options (Ivanova, Rolfe, Lockie, & Timmer, 2007; 

Ivanova & Rolfe, 2011). The author hypothesizes that discrete choice theory can provide 

a framework for describing community acceptance of mining projects. This will provide 

additional information, hitherto unavailable, for stakeholder analysis and issue 

identification. With the increasing conflicts between mining companies and host 

communities (Hodge, 2014), it is crucial to develop methods to provide more insights for 

community engagement. Research is required to provide a general framework for 

including discrete choice theory (discrete choice experiments and modeling) into 

improved community consultation in mining. This will provide further insight on the 

determinants of local community acceptance and the relationships between those 

determinants. 

Successful application of discrete choice theory will allow mining companies to 

better understand what kind of mining project the community prefers and which 

demographic factors are crucial in dividing opinions. Discrete choice experiments can be 

used to obtain, from respondents, preferred mine developments from several choice sets. 

By identifying patterns in these choices, discrete choice models how different individuals 

respond to different mine development options. Discrete choice modeling allows a 

mining company to examine the effect of each mining project attribute (or characteristic) 

on individual and community preferences. Compared to traditional stakeholder analysis 

methods, a mining company will have quantitative tool for planning, designing, and 

managing a mining project. This data driven community consultation could facilitate 

better community engagement, enhance social license to operate, and, hopefully, lead to 

reduced conflicts between mines and the host communities.  

The three main challenges of a discrete choice theory framework for stakeholder 

(community) analysis are: (1) How do you identify, classify, and verify the important 

factors (attributes of the mining project) that may affect local community acceptance of a 

mining project? (2) How do you design effective discrete choice experiments with large 

number of relevant factors, without overloading respondents? (3) How do you select the 
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most appropriate discrete choice model to describe the local community’s acceptance of 

mining projects? 

The first challenge can affect the success of the whole discrete choice experiment 

and model. The factors considered need to be broad enough to cover the key issues that 

might be important to different respondents, and easy enough to provide useful feedback. 

Ivanova et al. (2007) and Ivanova & Rolfe (2011) tracked five and seven mining project 

characteristics, respectively (Ivanova et al., 2007; Ivanova & Rolfe, 2011). Further work, 

with emphasis on identifying the key mining project characteristics from the plethora of 

candidate characteristics, is required to improve the reliability of discrete choice models 

and further refine how this approach can be used in community analysis. Pursuant to this 

challenge, three further questions have to be answered: (1) How do you identify the 

important mining project characteristics for discrete choice experiments? (2) How do you 

find the key demographic factors, which are significant vis-à-vis people’s perception of 

the importance of the mining characteristics? (3) Is there a difference between attitudes of 

people who live in mining and non-mining communities (i.e. people with and without 

significant mining experience)? Without answers to these three important questions, 

discrete choice experiments and modeling would not be efficient and effective, nor 

produce valid models to help with community analysis. 

The second huddle of incorporating discrete choice modeling into mining 

community analysis is how to design good discrete choice experiments (DCEs) for 

mining community consultation. For effective and efficient discrete choice experiment 

design, there are three important questions that cannot be ignored: (1) What is the 

optimum number of factors to consider in one choice set? (2) How do you design discrete 

choice experiments for mining community consultation? (3) How do you validate the 

discrete choice experiment design? Without answers to these questions, discrete choice 

experiment design would not yield useful data to help with community analysis. 

The final challenge is how to select the most appropriate discrete choice model to 

describe local community’s acceptance of mining projects. This task involves: (1) 

conduct a comprehensive literature review of discrete choice models; (2) identify the 

candidate discrete choice models for mining community acceptance modeling; and (3) 
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evaluate the goodness-of-fit of the candidate discrete choice models to select the most 

suitable discrete choice model for mining community acceptance.  

This PhD study sought to overcome the above mentioned technical challenges of 

applying discrete choice theory to community consultation for mining projects. This work 

will be a significant contribution to knowledge and the literature on community analysis 

in mining. The research provides a framework for effective and efficient discrete choice 

experiments and modeling. 

 

 

1.3. RESEARCH OBJECTIVES AND SCOPE 

The goal of this PhD research is to facilitate improved community (stakeholder) 

analysis by providing further insight on the determinants of local community acceptance 

using discrete choice theory. Pursuant to the overall goal of this study, the specific 

objectives are to:  

(1) Identify, classify, and verify the important mine characteristics and key 

demographic factors which affect local community acceptance of a mining project;  

(2) Account for the large number of relevant factors inherent in discrete choice 

experiments for mining community acceptance evaluation; and 

(3) Examine discrete choice models to select the most appropriate model for 

mining community consultation.  

The research will test the hypotheses that various discrete choice models can 

describe the local community’s acceptance of mining projects. 

The research has two main limitations that need to be clarified. First, this research 

provides a general framework for including discrete choice theory into improved 

community consultation in mining. In the case study, discrete choice experiment (survey) 

is designed for a specific mining community (Salt Lake City, Utah, USA) to illustrate 

how to conduct such experiments. Thus, the resulting model applies to the target mining 

community only. However, the general framework and research approach can be used for 

other mining communities and even other fields. Secondly, the discrete choice modeling 

advocated in this framework treats all participants, equally. Thus, this model can be 

applied for the groups in which individuals have equal rights to support or reject a project. 
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If other researchers want to employ this framework for multi-stakeholders (employees, 

customers, affected communities and the general public) at the same time, a possible 

approach is to establish one discrete choice model (DCM) for each group, and combine 

the results. 

 

 

1.4. RESEARCH METHODOLOGY 

Figure 1-1 presents the research framework adopted in this work.  

  

Figure 1-1. Activities/tasks in this research 

 

To achieve objective (1), critical literature review was used to identify and 

classify the potential important mining characteristics and demographic factors that affect 

community acceptance of mining project. Online surveys were used to capture 

respondents’ perception of the level of importance of the identified factors in their 

decision to support a mining project. Relevant statistical analysis is used to determine the 
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important demographic factors and verify the classification of the mining characteristics. 

The research also explored differences in the level of importance data from respondents 

from mining and control populations.  

For objective (2), surveys were designed with choice sets that had the number of 

factors varied from three to six. An online survey was used to identify the optimum 

number of factors to be included in each choice set (set of alternatives) for respondents in 

mining community consultation. Then, a “blocking scheme” discrete choice experiment 

(DCE) was designed using the determined optimum number factors and the verified 

classification of factors from the results of objective (1). To address DCE validation, 

which is a major challenge, a focus group study was used to capture respondents’ 

perception of the difficulty, clarity, reliability and validity of the DCE. Statistical analysis 

was used to analyze the level of difficulty and clarity from the focus group results.  

Finally, the main research hypothesis was tested with data from the discrete 

choice experiments to achieve objective (3). The survey was conducted in Salt Lake City 

with more than 600 participants. The Statistical Analysis System (SAS) procedures were 

used to fit the DCE data to the conditional logit, strata conditional logit, and mixed logit 

models. Then, the results of different models were compared to determine the most 

suitable discrete choice model for mining community consultation.  

 

 

1.5. STRUCTURE OF THE DISSERTATION 

This dissertation contains seven sections. The rest of the dissertation is structured 

as follows. Section 2 presents a review of relevant literature. Section 3 discusses research 

on how to identify and classify critical factors for discrete choice experiment. Section 4 

presents research on how to determine the optimum number of factors for mining 

community consultation using discrete choice experiments. An approach for discrete 

choice experiment design for mining community acceptance is provided in Section 5. A 

case study of discrete choice experiment and discrete choice modeling is presented in 

Section 6.  Section 7 provides the conclusions of this study and recommendations for 

future work. 
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2. LITERATURE REVIEW 

2.1. SUSTAINABILITY AND COMMUNITY ENGAGEMENT 

Sustainable development is defined as the ability of current generations to meet 

their needs without compromising the ability of future generations to meet their own 

needs (Brundtland, 1987). Since sustainable development includes social, economic and 

environmental impacts, these have been referred to widely as the triple bottom line 

(Munashinge, M. and Shearer, 1995). Also, sustainable development has been defined in 

relation to social, natural, human, physical, and financial capital (the five capitals) 

(Goodwin, 2003). Sustainable development has been said to be ‘an ambitious new project 

intended to act as the focus of human endeavor in the twenty-first century’  (Meadowcraft, 

2000). 

In the past decade, concerns about corporate sustainability have increased over the 

world (Dechant et al., 1994; Epstein & Roy, 2003; Freeman & Gilbert, 1988; Friedman & 

Miles, 2001; Gao & Zhang, 2006; Mathews, 1997; Rotheroe et al., 2003; Rowe & 

Enticott, 1998; Schaefer, 2004; Shrivastava, 1995). Besides the bad publicity from 

environmental misadventures and the resulting stricter government legislation and public 

pressures, poor sustainability performance affects the triple-bottom line and long-term 

profitability of a business. Thus, businesses have both an interest and a responsibility to 

incorporate sustainable development into their long-term business strategy (Elkington, 

1997; Gao & Zhang, 2006; Grant, 1997; Johnson & Scholes, 1993; Russo & Fouts, 1997). 

Sustainable development can only be given real meaning by investigating the 

ideas through a multi-stakeholder approach (Rotheroe et al., 2003). A stakeholder is any 

group or individual who can affect or is affected by the achievement of the organization’s 

objectives (Freeman, 1984). The Institute of Social and Ethical Account Ability (ISEA, 

1999) defines stakeholder engagement as “the process of seeking stakeholder views on 

their relationship with an organization in a way that may realistically be expected to elicit 
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them.” A mining project and its stakeholders are interdependent. This relationship is 

confirmed by Rotheroe (2003), who indicates that industry has to engage stakeholders in 

the decision-making process and throughout the whole project to achieve sustainable 

development (Cheney & Christensen, 2001).  

In recent years, mining has witnessed an increasing demand for sustainable 

development from the public and regulators, as well as internal advocates who cite the 

sector’s own long-term benefit (Hodge, 2014). Many mining companies realize the 

important role of other stakeholders and emphasize stakeholder engagement in the 

process of mine planning and design, operation, and closure. For the mining sector, 

ICMM (2012) defines stakeholders as a comprehensive list of people and groups who 

may be affected by, can affect, or have an interest in a project. Examples include the local 

and indigenous groups, employees and contractors, labor unions, suppliers, governments 

and regulators, media, non-governmental organizations, and investors (BHP Billiton, 

2014; Rio Tinto, 2012). In mining industry terms, the community is generally defined as 

the inhabitants of the immediate and surrounding areas who are affected by a company’s 

activities (MCMPR, 2005). Actually, local communities are the first stakeholder on the 

International Council on Mining and Metals (ICMM) Checklist of possible stakeholders 

(ICMM 2012).  

It is increasingly evident that mining community engagement is important for 

successful of mining operations (indeed, for all industrial activity). The examples of 

mining projects that have been disrupted due to lack of community support, cited earlier 

are proof of this (Browne et al., 2011; Davis & Franks, 2011; Moffat & Zhang, 2014; 

Prno & Scott Slocombe, 2012; Thomson & Boutilier, 2011). Community engagement is 

critical for obtaining permits prior to commencing mining. Actually, community 



11 

 

 

acceptance is a requirement for the permitting process in some jurisdictions (e.g. Peru2). 

In the USA, the local community’s acceptance is not necessarily a requirement for 

granting a permit. However, public participation is required during environmental impact 

assessment (EPA, 1998). 

This concept of community approval of mining operations and its relationship to 

socio-political risk has been formalized as the social license to operate, in the last decade 

(Thomson & Boutilier, 2011). The social license to operate (SLO) is defined as a 

community’s perceptions of the acceptability of a company and its local operations 

(Thomson & Boutilier, 2011). SLO is inversely proportional to the level of socio-political 

risk faced by a mining operation. For instance, it has been shown that the time it takes for 

the major international oil companies to bring a project online nearly doubled in the 

decade preceding 2008, with the delay adding significant extra costs to projects (Davis & 

Franks, 2011). Community-related risk has been shown to be one of the major non-

technical risks responsible for these delays (Davis & Franks, 2011). For a mining project, 

the cost of delays can be equally significant. As stated earlier, Davis and Franks (2011) 

estimates the delay cost to be approximately US$ 10,000/day, during the exploration 

stage of a new mine. Good community engagement is the best way to mitigate these 

community-related risks.  

Currently, some mines are gradually coming to understand the special importance 

of the host community, and are attempting to address this issue by referring to local 

communities as ‘primary’ or ‘key’ stakeholders. However, even with increased effort 

the mines and mining businesses still struggle to avoid community conflict. In fact, there 

appears to be a rise in conflict in the face of increased community engagement from 

mines (Hodge, 2014). 

                                                 
2 Peru passed a Law on the Right of Consultation of Indigenous Peoples in 2011 in 

accordance with various international conventions they had ratified. 
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2.2. COMMUNITY ENGAGEMENT IN MINING 

The decision-making process is greatly impacted by the characteristics of 

stakeholders, whether individuals, groups or organizations. Stakeholder analysis is the 

tool to analyze this impact and has gained increasing popularity in the last decade. 

Stakeholder analysis approaches have a long history in business management applications 

starting from the 1930s (Clarkson MBE, 1995). However, not until the 1990s, the 

techniques were not considered useful for analyzing the policy making process 

(Anonymous, 1996). In the last few decades, the usefulness of stakeholder analysis has 

been investigated by a number of researchers (Brugha & Varvasovszky, 2000; Clarkson 

MBE, 1995; Gregory & Keeney, 1994; Hill & Jones, 1992; Thomas & Palfrey, 1996; 

Thompson, 1996).   

Stakeholder analysis is the process of understanding the behavior and interests of 

a group of targeted stakeholders, who have the potential to influence an organization, 

project, or policy direction, through surveys and data analysis (B Crosby, 1992; R. Mason 

& Mitroff, 1981; Walt, 1994). The results are used to manage stakeholders by knowing 

and satisfying their preferences and facilitating the decision making processes. 

Stakeholder analysis is also helpful for policy makers or managers to better understand 

stakeholders as a basis for formulating better policies or management strategies. 

The basic analysis technique is described by Bryson (1995). It offers a quick and 

useful way of: identifying stakeholders and their interests, clarifying stakeholders’ views 

of a local organization, identifying some key strategic issues and beginning the process of 

identifying coalitions of support and opposition. Bryson describes how this technique was 

used to bring about major change in a state department of natural resources in the United 

States, because it showed participants how existing strategies ignored important 

stakeholders – who refused to be ignored – as well as what might be done to satisfy the 

stakeholders. The technique involved nine steps, starting with brainstorming to find the 
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list of potential stakeholders and ending with identifying and recording longer-term 

issues with individual stakeholders and with stakeholders as a group (Bryson 1995). 

Currently, the most accepted stakeholder analysis method was published by Reed 

et al. (2009), which has been cited 165 times in the literature. The method, shown in 

Figure 2-1, has three main steps: (i) identifying stakeholders; (ii) differentiating between 

and categorizing stakeholders; and (iii) investigating relationships between stakeholders.  

 

 

Figure 2-1. Schematic representation of rationale, typology and methods for stakeholder 

analysis (Reed et al., 2009) 

 

In mining, organizations like the International Finance Corporation (IFC) and 

International Council on Mining & Metals (ICMM) have discussed stakeholder 

engagement in varying degrees (ICMM, ICRC, IFC, 2011; ICMM, 2008, 2009, 2010, 

2012a; IFC, 1998, 2007, 2009, 2010a, 2010b). The literature contains many contributions 

in this area (Azapagic, 2004; Davis & Franks, 2011; Gunningham & Sinclair, 2009; 

Jenkins & Yakovleva, 2006; Kempe, 1983; Moffat & Zhang, 2014; O’Faircheallaigh, 

2012; Thomson & Boutilier, 2011). There is a burgeoning method that has developed for 

stakeholder engagement in the mining industry, which includes three main parts, as 
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recommended by Reed et al. (2009): stakeholder identification, stakeholder analysis and 

iterative consultation (ICMM, 2012a; IFC, 2007).   

This stakeholder analysis procedure, currently in practice, is likely to remain the 

key evaluation process through which stakeholder opinions are assessed in a mining 

project. The most widely used method for stakeholder analysis is suggested by the 

International Council on Mining & Metals (ICMM, 2012a). This method requires the 

analyst(s) to evaluate each stakeholder’s view of the project (positive, neutral, negative), 

how influential they are (high, medium, low) and how greatly they will be impacted by 

the project (high, medium, low). Stakeholders’ information is filled in a stakeholder 

analysis matrix (Table 2-1), and then classified into three groups: highly influential 

supporter of the project, neutral about the project, and highly influential opponent of the 

project. The result of stakeholder analysis is critical and provides the key to evaluating 

stakeholder opinions of a mining project during the iterative consultation process. Thus, 

stakeholder analysis affects the whole stakeholder engagement process.  

 

Table 2-1. Stakeholder analysis matrix (ICMM, 2012a) 

 

 

While the local communities are listed first in ICMM (2012) checklist of possible 

stakeholders, their special status does not lead to any special attention in the stakeholder 

analysis procedure. Compared to other stakeholders (such as government, internal 

company stakeholders like employees and unions, and regulators), the local community is 
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the most voiceless group but, often, has the most diverse opinions and diversity in 

demands. This is heightened in cases where mining occurs on land belonging to 

indigenous people (Native Americans), and poor and disadvantaged communities. This 

particularity makes community engagement in mining difficult, requiring special 

attention and unique methods for stakeholder analysis (IFC, 2007).  

Current stakeholder analysis processes for engaging local communities (ICMM, 

2012a) are mainly qualitative, using public forums, surveys, analysis of comments to 

public announcements of permit application and others. The goal for the stakeholder 

analysis is to understand the local community by classifying community into three groups: 

highly influential supporter, neutral, and highly influential opponent of the project (Table 

2-1). This is not enough to ensure the success of the whole consultation process. The 

goals of community analysis should include: (1) what are the factors that affect 

stakeholders’ decision and how these affect the decision? (2) what is the effect of 

demographics on individual preferences? (3) what is the value of environmental and 

social impacts to individuals in the community? 

Current qualitative community analysis methods alone may not provide enough 

insight into the community’s needs, concerns, and level of acceptance to achieve the 

goals of community analysis process. Additional methods (qualitative or quantitative) 

that provide unique insight can be helpful in providing information that is not currently 

available. This will ensure mines and mining businesses target the right people in the 

community and focus on the right issues, in their community engagement. There is a need 

for some quantitative methods, including computer modeling, to augment the current 

qualitative methods. Results obtained by such analysis should, however, be 

complemented by the insights gained through other methods of analyzing communities’ 

preferences.  
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Discrete choice theory, based on the Nobel winning work by McFadden (1974) 

has transformed the world of market research. As a statistical analysis method, discrete 

choice theory aims at analyzing individual decision marker's preferences. Discrete choice 

modeling can help us understand what kind of mining project individuals in a community 

prefer by comparing different hypothetical options.  By identifying patterns in these 

choices, discrete choice models will provide insight into how different individuals 

respond to different mining options. DCM will allow mining companies to examine the 

significance of different mining impacts (including social, economic, and environmental) 

and other aspects of a project on the preferences of different groups of in the local 

communities. Compared to traditional stakeholder analysis methods, the mining company 

will have a quantitative tool for planning, designing, operating, and managing the mining 

project to facilitate better community engagement.  

As far as this author is aware, only Ivanova, et al. have used discrete choice 

theory to understand the decision-making process of local communities regarding 

preferred mineral project development options (Ivanova et al., 2007; Ivanova & Rolfe, 

2011). Discrete choice theory can provide a framework for successfully describing 

community acceptance of mining projects, which can be incorporated into community 

engagement activities in mining. This area of research is under-explored and further 

research is required to formulate such a framework. 

 

 

2.3. FACTORS THAT AFFECT COMMUNITY ACCEPTANCE 

There are many factors that can affect an individual’s perception of a mining 

project, which in turn affects whether he/she supports the mine or not. There is a lot in 

the literature on this subject. Generally, the factors that affect community acceptance are 

the impacts of the mine on the environment and host community, the mine owner (the 

corporate reputation etc.) and governance issues, and demographics of the community. 
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2.3.1. Mining Impacts. The mining impacts have positive impacts, negative 

impacts, and other impacts. 

2.3.1.1. Positive impacts. Mining operations can result in three obvious positive 

impacts: job opportunities, income increase, and infrastructure improvement.  

The impact of job opportunities and related economic impacts (income increases) 

were introduced in Section 1 and summarized in Table 1-1. In 2012, U.S. mines provided 

more than 634,000 jobs directly, and 1.27 million indirectly or induced (National Mining 

Association, 2014). ICMM (2012a) describes job opportunities as the first issue and most 

often asked question by members of local communities is, “how many jobs will go to 

their community members”, when they hear that a mine may be developed in their 

community. Income increases due to higher paying jobs and/or the unemployed joining 

the mine’s supply chain is another important impact of mining (ICMM, 2012a; Petkova, 

Lockie, Rolfe, & Ivanova, 2009).  The direct labor income created by U.S. mining is over 

$46 billion with the total (direct, indirect and induced) exceeding $118 billion in 2012  

(National Mining Association, 2014). Petkova et al.(2009) indicate that the relatively 

high incomes of people working in the mining and allied industry were seen, by the local 

community, to generate positive impacts on all towns. 

Infrastructure improvement is another obvious positive impact of mining, and it 

includes educational institutions, health services, power and water supply, sewerage and 

sanitation, transport infrastructure including roads, rail, air and sea transport and the 

accessibility of services  ICMM (2012a). Some of this investment in infrastructure is for 

business purposes (for instance, a quarry needs to improve roads so their product can be 

transported efficiently to market). However, a significant portion also comes through 

corporate social responsibility programs that invest in the host community. For example, 

in BHP Billiton’s 2014 sustainability report, the company reports that its commitment to 
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invest 1% of pre-tax profits in community programs resulting in $241.7 million invested 

in community programs (BHP Billiton, 2014).  

2.3.1.2. Negative impacts. However, mining also has juxtaposed adverse impacts, 

including environmental pollution, increases in housing costs, labor shortages for other 

businesses, traffic and crime increase. The environmental issue is the main issue of the 

anti-mining movement and the first reason for rejecting mining. The environmental 

impacts include water use and pollution, air, land, and noise pollution.  

The United States Geological Survey (USGS) estimates a drop of 300 meters in 

the water table of the areas surrounding open-pit mines in Nevada, due to the mining 

water demand (Rockwell, 2000). The Betze-Post mine alone pumps out 380,000 cubic 

meters (100 million gallons) of groundwater per day (Solley, Pierce, & Perlman, 1999). 

Acid mine drainage at the Summitville gold mine in Colorado alone destroyed all the 

biological life within seventeen miles of the Alamosa River. The place was designated a 

Federal Superfund site and the Environmental Protection Agency (EPA) spent $30,000 a 

day in treating the drainage (Earthworks and Oxfam America, 2004). Opponents of 

mining are concerned about potential environmental impacts, in particular, possible water 

contamination (ICMM, 2010). 

The contaminated water will contaminate the land, resulting in significant impacts 

to terrestrial ecosystems, including accumulation of toxic elements in soil, soil 

acidification, damage to soil biota, loss of soil fertility, plant contamination, plant toxicity, 

and food chain contamination (Dudka & Adriano, 1997). Solid waste is another big issue, 

since mining products are, mostly, a small fraction of total excavated mass. In gold 

mining, one ton ore may be refined into only 1 gram gold, with the rest being waste. In 

addition, several tons of barren rock may be mined to expose the ore or valuable material. 

The amount of solid waste tends to increase with time since improved mining technology 

makes it possible to exploit low-grade deposits with time.  
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Air pollution is another important impact. The major area of concern is dust – 

from excavation and transportation, causing air quality degradation (ICMM, ICRC, IFC, 

2011).  In addition, the processing (including refining) of material produces pollutants 

(e.g. oxides of nitrogen and sulfur) that pollute the air. Worldwide, smelters add 142 

million tons of sulfur dioxide to the atmosphere every year—13 percent of global 

emissions (Earthworks and Oxfam America, 2004). 

Noise pollution results from traffic, blasting and operating heavy machinery 

(ICMM, ICRC, IFC, 2011). Noise pollution is the single largest type of community 

complaint (ICMM, 2009). BHP Billiton reports that out of 536 complaints in 2008, 200 

were related to noise (BHP, 2008). Ivanova & Rolfe (2011) also identified noise impacts, 

together with vibration and dust, as a significant factor (90% confidence) in explaining 

community members’ preferences for mining developments.  

Beside the environmental issues, increases in housing costs and labor market 

shortages are juxtaposed negative impacts of mining projects. Petkova et al. (2009) did a 

qualitative social impact assessment of post-development impacts of mining on six 

communities in the Bowen Basin in Queensland, Australia, following the boom in coal 

prices between 2003 and 2008. The result of accommodation and staff shortages are 

shown in Table 2-2. The ten years growth rate of median weekly rents from 1998 to 2008 

were all at least 160% for the five studied communities with reported data. The found 

accommodation in short supply and expensive in all six surveyed communities. Also, 

Ivanova and Rolfe (2011) found ‘housing and rental prices’ were significant at 5% level 

for explaining preferences for mine development options. Mining can lead to labor 

shortages, especially for other businesses in the local community that cannot compete 

with large mines for talent. Labor shortage for other business is listed as ‘staff shortages’ 

in Petkova et al., (2009), which occurred at five from six assessed mining communities. 
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Table 2-2. Accommodation and staff shortages (Petkova et al., 2009) 

Median 

weekly rents 
1998 2003 2008 

Growth 

rate 1998-

2008 

Accommodation in 

short supply and 

expensive 

Staff 

shortages 

Moranbah 137 235 680 +393% X X 

Nebo 117 220 450 +283% X X 

Rolleston 80 85 220 +175% X X 

Blackwater 145 140 380 +162% X X 

Springsure 100 137 260 +160% X X 

Coppabella N/A N/A N/A N/A X N/A 

 

The tendency of traffic and crime increase in mining regions should also be 

encapsulated in the analysis. Two social impact assessment (SIA) studies of Central 

Queensland's Coppabella coal mine were undertaken in 2002–2003 and 2006–2007 to 

provide a reference point for predictive assessments of proposed resource extration 

projects (Lockie, Franettovich, Petkova-Timmer, Rolfe, & Ivanova, 2009).  The study 

reports that residents have the perception of increased crime risk and believe that crimes 

against property and general anti-social behaviour were accelerating in the community. 

Although, the police reported that any increase in criminal activity was proportional to 

population growth from 2003 to 2006, it still represent an absolute increase in the 

criminal activity. This criminal activity increase is supported by other research results. 

Hajkowicz et al. (2011) suggests that the indicators on crime, domestic violence, and 

alcohol abuse reflect serious social problems in mining communities. The norms for 

acceptable levels of alcohol consumption are higher within the mining workforce, for 

example (Midford et al., 1997). 

Traffic increase has also been observed in the two social impact assessment (SIA) 

studies (Lockie et al., 2009).  Residents believed that traffic volumes and accidents have 

increased, including the large trailers and mining equipment. Road use statistsics indicate 

that traffic volumes did increase with the bulk of additional traffic associated with miners 

traveling between their places of employment and residence area. In addition, the 
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increased road traffic and incidence of drivers travelling home while fatigued following 

end of shift were documented in the mining communities by comparing the impacts 

identified in independent studies of Coppabella Coal Mine and eight other EIA studies in 

the Bowen Basin (Ivanova et al., 2007; Lockie et al., 2009).  

2.3.1.3. Other impacts. Besides the obvious positive and negative impacts, 

mining projects can also cause population increases and culture impacts. Also, two 

additional attributes of the mine affect the communities perception of the intensity and 

duration of impacts: mine buffer (how far the mine is from the community) and life 

(duration of mining operation). 

A consequence of a boom in mining is the  associated population growth, 

especially in small community without enough skilled labors (Lockie, Franetovich, 

Sharma, & Rolfe, 2008). Resource exploitation can be directly linked to local population 

changes as there is often population growth from migrants looking for job opportunities. 

This is shown by the population census of four mining communities in the Bowen Basin, 

Queensland, Australia in Table 2-3 (Petkova et al., 2009).  The mining boom started at 

2001 and the population growth is apparent in four of six studied communities. The six 

years population growth from 2001 to 2006 are varied from +2.4% to 18.5%.   

 

Table 2-3. Description of case study communities 

No. permanent residents Blackwater Moranbah Nebo Springsure 

2001* 4,913 6,124 238 770 

2006** 5,031 7,133 282 829 

Growth rate 2001-2006 +2.4% +16.5% +18.5% +7.7% 

*ABS (2001); ** ABS (2006) 

 

A new mining company and migrants looking for job opportunities have impacts 

on the community’s way of life, culture and traditions. Indigenous populations have been 

particularly affected and their traditional ways of life changed, sometimes, without their 

consent. The diverse cultural backgrounds of the mining communities and management 
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styles of the mining companies are a factor in determining the extent of this impact 

(Sassoon, 1998). ICCM specifically identifies cultural (heritage) impacts as a factor in 

community engagement (ICMM, 2012a). Cultural impacts include any effects on the 

cultural norms and practices, which include effects on intangible and tangible cultural 

heritage, and access to and vibrancy of cultural facilities. This will be of critical 

importance when indigenous peoples are present within the area of impact for the mining 

project. 

Beside the above two factors, mine buffer and life affect the mining community’s 

perceptions of the impacts of the mine. Community opposition to a mining operation is 

an all too familiar picture, and this phenomenon has been called the ‘not in my backyard 

syndrome’ or NIMBY-ism (MPE, 2011). The key to NIMBY opposition is the location of 

the proposed construction. The ‘backyard’ has grown so vastly that, today, NIMBY-ism 

affects companies all over the world. Ivanova and Rolfe (2011) found ‘buffer for mine 

impacts’ to be a significant (at 5% level) factor that explains community preferences for 

mine developments. The mine life is a measure of the persistence of all impacts (positive 

and negative). So it determines how long the job opportunities and noise impacts, for 

example, will last. It is a measure of the ‘length contract’ of contract, which has been 

found to be a significant factor (at 1% level) for explaining local acceptability of 

renewable energy adoption in an ageing population (K. Willis et al., 2011).  
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2.3.2. Mine Owner and Governance. While indigenous peoples are custodians 

of the land, the mine owner and government regulators decide how to design, plan, 

process and manage the mine. The way these decisions are made have a significant 

impact on the communities perception of the mine’s owners and government. Hence, a 

key factor is governance, including the mechanism for making permit decisions and 

availability of transparent information.  

The decision making mechanism and availability of independent and transparent 

information are complement each other. Local communities need to have the right to be 

engaged in the decision making mechanism first, then independent and transparent 

information is meaningful for them. And available independent and transparent 

information is the foundation for them to make meaningful decisions in the engagement. 

The decision making mechanism describes how decisions are made when disagreements 

arise on the impacts (positive and  negative) of mining. The information refers to all 

information relevant to the decision to permit a mine including reports mining impacts 

and baseline studies as will be contained in an environmental impact assessment (EIA), 

for example. These decision making mechanisms vary from the purely legal (i.e. the 

mining company meets the regulatory requirements) to those that take cognisance of the 

SLO and seeks legitimacy (Muradian, Martinez-Alier, & Correa, 2003). The information 

is provided by the mining company and/or government currently. The local community 

often does not trust the available information on the potential impacts from both sources 

(ICMM, 2012a). The information should be independent and transparent, and should be 

provided by multiple groups with technical expertise but no commercial stake in the 

industry. The information should cover both the broad industry and also relating to 

specific proposals, which can facilitate local community participation in the decision-

making and help the community develop.  
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2.3.3. Community Demographics. Compared to the mining project 

characteristics, there is much less in the literature that discusses demographic factors that 

affect an individual’s likelihood to support a (proposed) mining project in their 

community. Four demographic factors (age, gender, income and number of children) are 

used in the only previous choice experiment in a mining community (Ivanova & Rolfe, 

2011). These four demographic factors were identified as significant at 1% or 5% level, 

and the coefficients are shown in Table 2-4. The positive coefficients of female (gender), 

number of children, and age mean that the individuals who are female, older, or have 

more children are more likely to support the mining project than individuals who are 

male, younger, or have fewer children.  

Dimitropoulos & Kontoleon (2009) showed that the level of education was 

significant for local acceptability of wind-farm investment at 5% level. This author 

hypothesizes that the level of education will be important for mining decisions, as well. 

The negative coefficient of education, shown in Table 2-4, means that there is a higher 

probability that people with higher education level will be opponents of the mining 

project than the people with lower education level.  

 

Table 2-4. Demographic factors  (Dimitropoulos & Kontoleon, 2009; Ivanova & Rolfe, 

2011) 

Factors Coefficient Standard error 

Female1 1.243** 0.259 

Number of children1 0.261** 0.098 

Income1 0.000*                 0.000 

Age1 0.037* 0.015 

Education2 - 0.422* -2.293 

**significant at the 1% level 

  *significant at the 5% level 
1Ivanova & Rolfe 2011 
2Dimitropoulos & Kontoleon 2009 
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A survey was done to understand the local community after a massive 

demonstration and violent conflict (Muradian et al., 2003). Gender, level of education, 

and age were used as important background characteristics. Beside these three, the main 

economic activity (job field) is also included as background information at Muradian et 

al.(2003). In addition, job field as a factor is confirmed by Mason, Paxton, Parr, & 

Boughen (2010) in their study of community perceptions of seafloor exploration. In the 

surveyed community, differences in opinions were observed based on how closely the 

respondent’s job was related to seafloor exploration and mining.  

 

 

2.4. DISCRETE CHOICE THEORY AND MODELS 

Discrete choice analysis can be employed to describe the influence of the 

characteristics of decision makers (demographics) and the attributes of alternatives and 

choices they are presented with. Discrete choice models take many forms, including: 

binary logit, binary probit, multinomial logit (MNL), conditional logit (CL), nested 

logit(NL), generalized extreme value(GEV), multinomial probit (MNP), mixed logit (ML) 

models (Train, 2002).  

In this section, the author discusses the two most popular discrete models: the 

multinomial logit and conditional logit models. In addition, a special case of the CL 

model in which the data is stratified by question or choice set (referred to in this work as 

the “conditional logit model stratified by question”) as well as the multinomial probit and 

mixed logit models are discussed. 
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2.4.1. Discrete Choice Theory. The basic theory of discrete choice modeling is 

random utility maximization (Marschak, 1959). The individual decision maker’s overall 

preference of a choice alternative is a function of the utility, which the alternative holds 

for the individual.  This individual’s utility (
ni

U ) for an alternative is separable into two 

components, as shown in Equation (2-1): (i) the component which can be explained by 

the observed (by a researcher) variables; and (ii) the component, which can be explained 

by unobserved variables – often, deemed random. 

 

ni ni ni
U V                                                                                (2-1) 

ni
U : utility of alternative i to individual n 

ni
V : observed component measured for alternative i of individual n 

ni
 : unobserved random component for alternative i of individual n 

 

It is postulated that an individual will prefer the choice alternative perceived to 

have the greatest utility. The probability that individual n prefers the mining project or 

plan i of choice set J, is shown in Equation (2-2). 

 
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V V i j i j J

V V i j i j J

 

 

    

      

      

                                    (2-2) 

j: alternatives (other than i)  

J: the total number of alternatives. 

nj
U : utility of alternative j to individual n 

nj
V : observed component measured for alternative j of individual n 

nj
 : unobserved random component for alternative j of individual n 
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2.4.2. Multinomial Logit Model. In the multinomial logit (MNL) model, also 

called multinomial logistic regression, the observed utility of each alterantive Vni is a 

linear function of Xn and the random component (εni). The utility and probability are 

shown in Equations (2-3) and (2-4). The utility for each alternative depends on the same 

variables, 𝑿𝒏, but the coefficients are different for different alternatives. Xn is a vector of 

characteristics specific to the n-th individual and the variables contain only individual 

characteristics. 𝜷𝒊 is a vector of coefficients specific to the i-th alternative. Thus, this 

model involves choice-specific coefficients and only individual specific repressors. The 

error terms, 𝜺𝒏𝒊, are assumed to be independently and identically distributed (iid) with a 

type 1 extreme value distribution. 

 

ni ni ni i n ni
U V X                                                                       (2-3) 

 

i
 : a vector of coefficients specific to the ith alternative 

n
X : characteristics specific to the nth individual 

ni
 : iid extreme value 

 

The probability of choice i to individual n is: 

 

 
1

exp

exp

i n

ni J

j nj

X
P

X









                                                                                      (2-4) 
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2.4.3. Conditional Logit Model. The conditional logit model (CL), sometimes 

also called the multinomial logit model, was first formulated by McFadden in the 1970s 

(Daniel McFadden, 1974). In this model, the observed utility of each alternative, Vni, is a 

linear function of Xni and the random component (εni). The error terms, 𝜺𝒏𝒊, are assumed 

to be independently and identically distributed (iid) with type 1 extreme value 

distribution. 𝑿𝒏𝒊 is a vector of attributes specific to the ith alternative as perceived by the 

nth individual. The utility and probability are shown in Equations (2-5) and (2-6). 

  

ni ni ni ni ni
U V X                                                                                   (2-5) 

 : a coefficient vector for 𝑋𝑛𝑖 

ni
X : a vector of attributes specific to the ith alternative as perceived by the nth 

individual 

The probability of choice i to individual n is: 

 

 
1

exp

exp

ni

ni J

njj

X
P

X









                                             (2-6) 

 

The Equation (2-5) is quite similar to Equation (2-3) for the MNL model. 

However, the explanatory variables 𝑋𝑛𝑖 do not only include characteristics specific to the 

nth individual, but also describing the relationship between the chooser (nth individual) 

and the option (ith option). It is an important feature that distinguishes the conditional 

logit model from the MNL model. In addition, the MNL model has separate coefficient 

vectors, 𝛽𝑖, for each of the possible outcomes. Compared to the MNL model, there is only 

one coefficient vector but different X vectors, for each outcome in the conditional logit 

model. 
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As a result of these two characteristics, the conditional logit model has an 

important advantage over the MNL model. The model has significantly fewer parameters 

than the MNL model. While each factor of the CL model has one coefficient, that of 

MNL model has the number of coefficients equal to the number of its levels minus one. 

2.4.4. Conditional Logit Model Stratified by Question. The conditional logit 

model stratified by question (SCQ), sometimes also called stratified logistic model, is a 

special instance of the CL model. 

In this instance of the CL model, at least one variable must be specified to invoke 

a stratified analysis. In SAS, the variable can be either character or numeric, but the 

procedure treats them as categorical variables. The STRATA statement  partitions the 

input data set into non-overlapping subgroups (SAS, 2014). The stratified logistic model 

has the form shown in Equation (2-7). 

  '
logit

hi h hi
x                                                                              (2-7) 

Where 
hi

  is the event probability for i th observation in stratum h  having 

covariates '

hi
x , and where the stratum-specific intercepts 

h
 are the nuisance parameters 

that are to be conditioned out. 

The SCQ model does not have an intercept, as can be understood from Equation 

(2-6). An intercept can be included by transforming Equation (2-6) to Equation (2-8). 

From Equation (2-8), we can see that the standard CL model can be transformed into a 

special case of the conditional logit model by appropriate coding of the explanatory 

variables. 
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  

   
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Compared to the CL model, the stratified analysis in the CLQ model makes it 

possible to compare the options in each choice set of the DCE. In the following discrete 

choice experimental design, all the possible combination of these 16 mining 

characteristics will be divided into non-overlapping subgroups. In the CL model, the 

fitting algorithm can only analyze the local mining communities’ preference by 

comparing all possible combinations at the same time. However, in the real DCE, 

participants were answering questions one by one, and each question has limited options. 

The stratified analysis instructs the algorithm to consider the data by choice set, which 

makes it more practically applicable. It better represents the way respondents considered 

the choices. Based on this, the CLQ model appears more suitable for mining stakeholder 

analysis. 

Despite these apparent differences, the multinomial logit and conditional logit 

models have the same three shortcomings. First, the coefficient vector, β, is fixed in the 

MNL and CL models. This means different individuals with the same surveyed 

characteristics will make the same choice given the same choice set. In reality, 

individuals with the same characteristics might make different choices. Thus, the fixed 

coefficient, β, is not reasonable.  

Second, the MNL and conditional logit models have the independence of an 

irrelevant alternatives (iia) property, since the error terms, εni, are assumed to be 

independently and identically distributed (Train, 2002). The probability ratio of 

alternatives i and k only depend on alternatives i and k in the MNL and conditional logit 

models and does not depend on the other alternatives (see Equation 2-9, which is based 

on Equations 2-4 and 2-6).  
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                                              (2-9) 
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The iia property means that there is no cross elasticity among the alternatives. If 

an attribute of one alternative j is changed, the changes in the other alternatives’ 

probabilities are not dependent on the changed alternative j. Yet, this is not true in some 

choice situations. For example, assume there are three kinds of vehicles in a market: large 

gasoline cars, small gasoline cars and small electric cars. Their current market shares are 

66%, 33% and 1%, respectively. Also, assume that a government subsidy increases the 

market share of the small electric car from 1% to 10 %. Using the MNL and conditional 

logit model, the market share of the other two cars would be predicted to drop while still 

maintaining the same ratio. The market share of large gasoline cars would drop from 66 % 

to 60%, and that of small gasoline cars would drop from 33% to 30% (maintaining the 

2:1 ratio). The ratio of the market share of these two vehicles have to be 2:1 since their 

utility rate is 2:1, and is not dependent on any other alternatives. However, this prediction 

is unrealistic. Since the electric car is small, subsidizing it can be expected to draw more 

from small gas cars than from large gasoline cars.  

Thirdly, the MNL and conditional logit models have the potential to capture 

dynamics of repeated choice. However, the repeated choice has to be independent over 

time since the error terms, εni, are assumed to be independently and identically distributed 

(iid) in the MNL model. Thus, the MNL and conditional logit models cannot handle 

repeated choice situations if the choices are correlated over time.  

2.4.5. Multinomial Probit Model. While the multinomial probit model (MNP) is 

not a popular model, it is an important model in the history of discrete choice model 

development. The first binary probit model was derived by Thurstone (1927). Hausman 

and Wise (1978) and Daganzo (1979) employed and developed it for choice behavior 

(Daganzo, 1979; Hausman & D.Wise, 1978).  

The utility equation is the same as the conditional logit model (Equation 2-5), but 

the εni are assumed to be normally distributed with mean of zero and covariance matrix, 
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Ω. The probability density function (pdf) of εn and probability of choice are shown in 

Equations (2-10) and (2-11), respectively. 

 

The probability density function (pdf) of εn is: 

 
 
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Where I(•) is an indicator function: it equals 1 when the expression inside the 

parenthesis is real and 0, otherwise.  

 

Compelling progress to the MNP was made by Haaijer et al. (1998). They 

accounted for random variation in the coefficients β over decision-makers, instead of 

having it be fixed as before. The coefficients β were assumed to be normally distributed 

in the population with mean b and covariance W. And the parameters b and W can be 

estimated by the MNP model. 

Thus, the three limitations of the MNL model are all relaxed in the MNP model. 

Firstly, two people who have the same surveyed characteristics can make different 

choices since there is a covariance W between the normally distributed coefficients, βn. 

Secondly, MNP does not have the iia property and can represent any substitution pattern, 

because εn are assumed to be normally distributed with mean 0 and covariance matrix Ω. 

In the previous example, the large gasoline and small gasoline cars’ market shares would 

not have to maintain the 2:1 ratio after the small electric car’s market share changes. 
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Their market share will be relative to the change in small electric car’s market share. 

Finally, the MNP model can handle repeated choice situation where choices are 

correlated over time by expanding the covariance matrix Ω of the errors εn. The details 

are not explained here since the current research does not include dynamic choice 

modeling of mining local community acceptance, the details can be found at Train (2002). 

2.4.6. Mixed Logit Model. The mixed logit (ML) model, also called random 

parameters logit model, was proposed by Mcfadden and Train (2000). In the ML model, 

the distribution of coefficents,  f  , is not limited to the normal distribution like in the 

MNP model. The ML model can utilize any distribution for the random coefficients. The 

most popular distributions of the random parameters are uniform, triangular, normal and 

lognormal distributions. The probability of choice and logit probability are shown in 

Equations (2-12) and (2-13). Mixed logit probabilities are the integral of standard logit 

probabilities over the coefficents distribution function,  f  .  

 

   ni ni
P L f d                                                    (2-12) 

 ni
L  : the logit probability evaluated at parameters β 
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 f  : any distribution of parameters β  

 

McFadden and Train (2000) show that any choice model can be approximated by 

the ML model with appropriate specification of the observed variables and distribution of 

coefficients (Mcfadden & Train, 2000). The MNP is a special case of the ML model 

where the coefficent distribution function,  f  , is a normal distribution.  
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While the ML model is the most advanced discrete choice model available, its 

practical application is challenging. First of all, the modeling algorithm, MDC PROC, in 

the general statistics software, SAS, cannot estimate the coefficients of demographic 

factors in the ML model. This is because MDC PROC can only compare the responses 

one question or choice set at a time. Since for each choice set, the demographic factors 

are the same (i.e. the same individual chose one choice and did not choose the others), the 

algorithm cannot help predict the influence of demographics factors on the choice. Train 

(2002) provides advanced methods to estimate the coefficients of demographic factors. 

However, this method is computationally expensive and not implemented in widely used 

statistical packages, like SAS. This makes it difficult to apply this model in mining 

stakeholder analysis.  

What is more important, the ML model is more suitable for factors with 

continuous levels since the coefficients will be estimated as distributions. However, the 

continuous levels are difficult to include in choice experiments. The literature review of 

factors that affect community acceptance in Section 2.3, show that factors such as “job 

opportunities”, “income increase” and “mine life” could have continuous levels. However, 

in discrete choice experimental design, their levels will have to be selected as several 

representative levels, or there will be too many combinations in the DCE. Once the levels 

of these factors are limited to representative levels for meaningful solicitation of 

information, it is difficult to estimate the coefficient distributions in an ML model at any 

significant level. As anexample,  K. Willis et al. (2011) studied four factors (“capital 

cost”, “energy bill per month”, “maintenance cost”, and  “contract length”) that  have 

continuous levels in monetary units and years. The authors designed the discrete choice 

experiment with four levels each for these fours factors, and were able to estimate the 

coefficient of only one factor as a distribution at the 1% significance level (K. Willis et 

al., 2011).  
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2.4.7. Model Discussion. The conditional logit model is the most popular discrete 

choice model and has been used to understand the decision-making process of local 

communities regarding preferred mineral project development choice (Ivanova et al., 

2007; Ivanova & Rolfe, 2011)3.  

The conditional logit model stratified by question is a special instance of the CL 

model with a stratified conditional logistic regression to compare the options in each 

choice set. As discussed in Section 2.4.4, it better represents the way respondents 

consider the choices. Based on this, the CLQ model appears more suitable for mining 

stakeholder analysis. 

The multinomial logit model is not a suitable model for mining stakeholder 

analysis due to the fact that it has too many parameters. There are potential 16 mining 

characteristics and six demographic factors affecting local mining communities’ 

acceptance of mining project (see Section 3). If each factor has only three levels, the 

number of required coefficients will be 44. The huge number of coefficients makes it 

difficult to use the discrete choice model result for reasonable inferences in mining 

stakeholder analysis. 

Both of the MNL and CL models have two limitations: fixed taste coefficients βn 

and the iia property. The fixed taste coefficient may restrict application for mining 

community acceptance modeling, since the models do not allow for uncertainty modeling 

around the coefficients, say with distributions like the ML model. This means individuals 

with the same surveyed demographic factors will always be modeled to have the same 

preferences. Yet, the MNL and CL models restrict one attribute to one fixed coefficient, 

which is a limitation for this application.  

                                                 
3 Ivanova et al. (2007) and Ivanova & Rolfe (2011) refer to their models as MNL models. 

However, it is apparent from Train (2002) that these models are indeed CL models.  
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Additionally, the iia property is not true for some mining local acceptance choice 

situations. Consider the choice set presented in Table 2-5, for example. Assume that 66%, 

33% and 1%, respectively, choose options 1, 2, and 3. Assume also that after public 

education, more people have been convinced of the ability of the mining company to 

implement the proposed 3:1 wetland compensation plan (i.e. 3 acres of wetlands will be 

built elsewhere for every acre of wetlands impacted), leading to an increase in the 

percentage of people in favor of Option 3 to 10%. The MNL model (with the iia property) 

will predict proportional decreases in Options 1 and 2 to 60% and 30%, respectively 

(similar to the previous example with cars). However, it is likely that more of those in 

favor of Option 1 (those influenced mostly by wetland concerns) will change their mind 

with this change than those who were in favor of Option 2 (wetlands were not an issue 

for those).  

 

Table 2-5. Sample choice set 

Choice options Acres of wetlands impacted by mine New jobs created 

Option 1 0 500 

Option 2 1,000 500 

Option 3 1,000 1,000 

 

These two constraints (constant βn and iia property) are relaxed in the mixed 

multinomial logit model. Also, the ML model allows each random coefficient to follow 

any distribution (instead of being restricted to the normal distribution as in the MNP 

model). However, practical application of the ML model is challenging for the reasons 

stated in Section 2.4.6. First of all, model fitting is computationally expensive and not 

easily available in commercial statistical software. Secondly, the ML model is more 

appropriate for factors with continuous levels and, even then, it is difficult to estimate the 

coefficient distributions at any significant level (Revelt & Train, 1998; K. Willis et al., 

2011). Thus, while the two constraints (constant βn and iia property) that plague the MNL 
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and CL models are relaxed in the advanced ML model, the cost of relaxing these two 

limitations is big.  

In this study, the author would like to evaluate the performance of three candidate 

discrete choice models (CL, CLQ and ML models) to determine the most appropriate 

model for mining stakeholder analysis 

 

 

2.5. SUMMARY OF SECTION TWO 

From the above, discussion, the following main points summarize the discussions 

in this section. 

1. Community engagement is important for sustainable development in mining  

2. The literature review shows that there are many factors that affect community 

acceptance. These factors include the impact of the mine, the mine owner’s 

track record and governance issues (local, regional and national), and 

community demographics. 

3. Discrete choice modeling shows significant potential to improve stakeholder 

analysis, which is an important part of community engagement 

4. The candidate discrete choice models for mining stakeholder analysis are 

conditional logit model, conditional logit model stratified by question, and 

mixed logit models.  
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3. CLASSIFYING CRITICAL FACTORS THAT INFLUENCE 

COMMUNITY ACCEPTANCE OF MINING PROJECTS FOR 

DISCRETE CHOICE EXPERIMENTS IN THE UNITED STATES 

3.1. INTRODUCTION 

The first challenge of the discrete choice theory framework for stakeholder 

(community) analysis is, how do you identify, classify, and verify the important factors 

(attributes of the mining project) that may affect local community acceptance of a mining 

project? This challenge can affect the success of the whole discrete choice experiment 

and model. The factors considered need to be broad enough to cover the key issues that 

might be important to different respondents, and easy enough to provide useful feedback. 

Ivanova et al. (2007) and Ivanova & Rolfe (2011) tracked five and seven mining project 

characteristics, respectively. Section 2 provides a discussion on the important factors that 

affect a community’s (or individual’s) acceptance of a mining project.  Further work, 

with emphasis on classifying and verifying the key mining project characteristics from 

the plethora of candidate characteristics, is required to improve the reliability of discrete 

choice models and further refine how this approach can be used in community analysis. 

Pursuant to this challenge, three further questions have to be answered: (1) How do you 

classify and verify the important mining project characteristics for discrete choice 

experiments? (2) How do you find the key demographic factors, which are significant 

vis-à-vis people’s perception of the importance of the mining characteristics? (3) Is there 

a difference between attitudes of people who live in mining and non-mining communities 

(i.e. people with and without significant mining experience)? Without answers to these 

three important questions, discrete choice experiments and modeling would not be 

efficient and effective, nor produce valid models to help with community analysis. 

To bridge this gap, this section describes a qualitative data collection process, 

with the aim of facilitating better choice experiment (survey) design for discrete choice 

modeling. Among qualitative methods, online surveys are useful in an initial exploratory 
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or hypothesis-generating phase (Tey et al., 2012). This work used an online survey to 

validate a classification of the important factors in an individual’s choice to accept a 

mining project. The objectives of this online survey were to: (1) validated the author’s 

classification of mining project characteristics, which affect people’s decision to support 

a proposed mining project; (2) identify the key demographic factors that will affect 

people’s evaluation of project characteristics; and (3) test whether there are significant 

differences between attitudes of respondents who live in mining communities4 and non-

mining communities5. The author conducted a literature review (Section 2) to identify six 

demographic factors and classify mining project characteristics into 16 independent 

factors that would affect community acceptance. Although the list of project 

characteristics that affect an individual’s choice to support a mine or not can be long, the 

author chose a classification system that balances environmental, social, and economic 

impacts, with a view on balanced choice experiments. The survey of residents of mining 

and non-mining communities was used to test the research hypotheses and evaluate the 

differences between the results of respondents living in mining and non-mining 

communities.  

This work will be a significant contribution to knowledge and the literature on 

community acceptance in mining. The research provides preliminary results for effective 

and efficient discrete choice experiments and modeling.  

 

 

3.2. DETERMINANTS OF COMMUNITY SUPPORT OF MINING 

Obviously, there are many ways to classify the factors that affect community 

support and any classification is subjective. In this work, the author attempted to classify 

                                                 
4 Communities where there is significant mining and life is affected by mining activity 
5 Communities where there is no significant mining and no significant impact of mining 

on life 
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the factors equally into four main groups: environmental, economic, social, and 

governance and miscellaneous others. The factors themselves are framed in order to 

easily facilitate the design of choice experiments (i.e. it is easy to set different levels of 

each factor). These choices are subjective and are not put forth as universally correct but 

the most suitable for preliminary choice experiments. Based on a critical review of the 

literature, the author hypothesized the classification of important mining project 

characteristics6 and list of key demographic factors in Table 3-1 and Table 3-2 as the 

preliminary list of factors that influence community support (Que & Awuah-Offei, 2014). 

This list does not include all possible factors but contains the common factors that most 

people will consider in making a decision to support a mining project or not. Thus, the 

author thinks this is a good start for general discrete choice experiments. However, the 

list of factors for discrete choice experiments might vary from one context to another 

depending on the unique characteristics of the project. Professionals involved in 

community consultation using discrete choice experiments should select and validate 

factors, as appropriate, to ensure valid stakeholder input. 

3.2.1. Mining Project Characteristics. Table 3-1 shows the list of 16 project 

characteristics from the four categories discussed above (Dudka & Adriano, 1997; ICMM, 

ICRC, IFC, 2011; ICMM, 2010, 2012a; IFC, 2009; Ivanova & Rolfe, 2011; Lockie et al., 

2009; Muradian et al., 2003; Petkova et al., 2009; Schooten, Vanclay, & Slootweg, 2003; 

K. Willis et al., 2011). In the interest of brevity, the author cites three references for each 

factor, and provides a brief explanation of the factors in each category below. 

 

 

                                                 
6 Mining project (or mine) characteristic here refers to attributes of the development 

option that could affect an individual’s choice to accept a project or not. Factors beyond 

the mine itself are included (see Table 3-1). 
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Table 3-1. Classified characteristics of mining projects that are hypothesized to be 

determinants of community acceptance 

Determinant References 

Social  

Population changes  Lockie et al. 2009; ICMM 2012 

Infrastructure improvement  

(e.g transportation, education, human services, 

communications and IT, hospitals, and shopping) 

ICMM 2012; Petkova et al., 2009 

Cultural impacts  

(e.g. impacts on archaeological and historical sites, 

native American artifacts, historical burial sites, arts 

and culture) 

ICMM 2012;  Schooten et al. 2003 

Traffic and crime increase  Lockie et al., 2009; ICMM 2011 

Economic  

Job opportunities ICMM 2012; IFC 2009 

Income increase  Petkova et al. 2009; Ivanova and 

Rolfe 2011 

Cost of housing or housing shortage Ivanova and Rolfe 2011; Petkova 

et al. 2009 

Labor shortage for other business Petkova et al. 2009 

Environmental  

Noise pollution ICMM 2011; Petkova et al., 2009 

Water shortage or pollution  Ivanova and Rolfe 2011, ICMM 

2010 

Air pollution ICMM 2011, Dudka & Adriano 

1997 

Land pollution Dudka & Adriano 1997, Lockie et 

al. 2009 

Governance and others  

Decision making mechanism on the mine's permits   

(e.g. decisions are based solely on what is legal; or 

decision makers consider input from local 

communities) 

Muradian et al. 2003 

Independent and transparent information 

(e.g. the availability of information on impacts from 

independent and trusted sources in addition to or 

including the mining company, government or non-

governmental organizations) 

Muradian et al. 2003; ICMM 2012 

Mine buffer  

(distance of respondent’s residence from mine) 

Ivanova and Rolfe, 2011 

Mine life (how long the mine will last) Willis et al. 2011 
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3.2.1.1 Social aspects. Resource exploitation can be directly linked to local 

population changes as there is often population growth from migrants looking for job 

opportunities. In addition, many mining towns have significant non-resident workers 

living in temporary accommodation or company provided mining camps (Lockie et al. 

2009). Mine development often includes expansion and/or improvement of local 

infrastructure to facilitate the mining activities. Sometimes, these improvements are not 

to the direct benefit of the mine but are done as part of CSR programs. ICCM specifically 

identifies cultural (heritage) impacts as a factor in community engagement (ICMM 2012). 

Cultural impacts include any effects on the cultural norms and practices, which include 

effects on intangible and tangible cultural heritage, and access to and vibrancy of cultural 

facilities (e.g. community meeting places). Many mine developments result in increases 

in traffic and crime (Lockie et al. 2009). 

3.2.1.2 Economic aspects. The economic impacts of mining activities are well 

documented and include job opportunities (both direct and indirect) and income increases 

due to higher paying jobs and/or the unemployed joining the supply chain (Petkova et al., 

2009; ICMM, 2012).   

However, mining can also lead to increases in housing costs and labor shortages, 

especially for other businesses in the local community that cannot compete with large 

mines for talent (Petkova et al., 2009; Ivanova and Rolfe, 2011). For instance, in five out 

of six communities studied by Petkova (2009) scarcity of labor for other businesses was 

identified as an issue.  
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3.2.1.3 Environmental aspects. There are many environmental impacts of 

mining. The author chose to categorize these impacts into four broad impacts that are 

easy for respondents to understand and make stated preference choices (in a discrete 

choice survey) feasible without overwhelming respondents with information. The four 

broad impacts (water shortage or pollution, air pollution, land pollution/impacts and noise 

pollution) were selected with due regard to the significance of noise (ICMM 2011), 

which was added to the three traditional categories. 

3.2.1.4 Governance and others. As with the other categories, there are many 

factors relating to governance and decision making during the legal permitting process. 

The author chose to include two important governance factors: the ‘decision making 

mechanism’ and the availability of ‘independent and transparent information’ (Muradian 

et al. 2003). The decision making mechanism describes how decisions are made when 

disagreements arise on the impacts (positive and  negative) of mining. These mechanisms 

vary from the purely legal (i.e. the mining company meets the regulatory requirements) to 

those that take cognisance of the SLO and seeks legitimacy. Often, during conflicts 

around mining impacts, most of the information on impacts and baseline studies is 

provided by the mining company and/or government. The local community often does 

not trust the available information on the potential impacts from both sources. SLO or 

acceptance (note that SLO is not acceptance; acceptance is a lower level of SLO) is easier 

to achieve when there is independent and transparent information. 

Two additional factors were included in this section because of their significance. 

Mining projects differ significantly in their mine lives. This has been shown to have 

significant impacts on community acceptance (K. Willis et al., 2011). The role of the not-

in-my-back-yard (NIMBY) phenomenon is well documented in community engagement. 

This is included in as the mine buffer, which is the buffer between the respondent and 

mining impacts (Ivanova & Rolfe, 2011).  



44 

 

 

3.2.2. Demographic Factors. Compared to the mining project characteristics, 

there is much less in the literature that discusses demographic factors that affect an 

individual’s likelihood to support a (proposed) mining project in their community. Four 

demographic factors (age, gender, income and number of children) are used in the only 

previous choice experiment in a mining community (Ivanova & Rolfe, 2011). The author 

hypothesized that the level of education will be important as well. Dimitropoulos & 

Kontoleon (2009) showed that the level of education was significant for local 

acceptability of wind-farm investment. Muradian et al. (2003) identified the ‘job field’ as 

an important demographic factor, with differences in opinions based on how closely the 

respondent’s job was related to seafloor exploration and mining. 

The six potential demographic factors are shown in Table 3-2 (Dimitropoulos & 

Kontoleon, 2009; Ivanova & Rolfe, 2011; Muradian et al., 2003). The author 

hypothesized that the factors that are correlated to the likelihood to support a project will 

be correlated to the ranking of the importance of the mine characteristics. 

 

Table 3-2. Demographic factors that are hypothesized to be determinants of community 

acceptance 

Demographic factors References 

Age  Ivanova & Rolfe 2011 

Gender Ivanova & Rolfe 2011 

Income Ivanova & Rolfe 2011 

Education  Ivanova & Rolfe 2011 

Job field Dimitropoulos & Kontoleon 2009 

Number of children Muradian et al. 2003 

 

 

3.3. EXPERIMENTAL METHOD  

The experimental and analytical approach includes 10 steps, which are shown in 

Figure 3-1. Key aspects of this method are discussed in the following subsections. 
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Figure 3-1. Flowchart of experimental process 

 

3.3.1. Sample Size Determination. The sample size is an important feature of 

any survey, where the goal is to make inferences about a large population from a sample. 

The sample size should be determined based on data collection cost and acceptable 

sampling error (Robert E. Odeh, 1975). The sample size estimation can be targeted 

toward determining the correlation among the demographic attributes and attitudes 

towards project characteristics. In this study, we wish to detect true underlying 

correlations of 0.2 or higher as statistically significant.  The value 0.2 was chosen 

because any value below this would be of little practical importance. The testing method 

for significance can be based on the t-statistic in Equation (3-1):  

2
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n
t r
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



                                                                                                       (3-1) 

where r is the estimated Spearman correlation and n is the sample size.  

Under the null hypothesis of zero correlation, this statistic has an approximate 

Student’s t distribution with 2n   degrees of freedom.  For a sample size of 100, the 

statistic takes the value t = 2.0207. The critical value of t with 98 degrees of freedom is 

1.984, so the null hypothesis will be rejected here.  Based on this, a sample size of 100 
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was chosen so that a correlation of 0.2 or higher between the demographic attributes and 

attitudes towards the project characteristics will be deemed significant. In addition, 

Fisher’s exact test is used, in one instance, to determine if there is association between 

gender (which is binary) and the respondents’ preferences on the project characteristics. 

Using the SAS sample size calculation procedure (PROC POWER), it is estimated that a 

sample size of 100 is sufficient to detect a difference of 20% or more between 

respondent’s choice preferences 80% of the time (M.G.Kendall & A.Stuart, 1973) .  

3.3.2. Sampling Comparable Respondents from Non-mining Communities. 

Individual preferences for a new mine may be influenced by past experience with mining. 

In order to test whether mining experience of a respondent (living in a community with 

significant mining is used as a proxy for experience with mining) affects his or her 

preferences, 100 individuals living in mining communities and 100 living in non-mining 

communities were recruited to complete the online survey. These two surveys were 

conducted in June and October, 2013, respectively. 

The first 100 individuals were randomly selected from 20 mining communities 

across the whole USA (see Appendix A for the full list of communities). After 

identifying the demographic factors significantly associated with attitudes towards 

rankings of the mining project characteristics using correlation analysis, another 100 

individuals from 20 non-mining communities (the list of communities is in Appendix B) 

were selected such that the new sample matched the distribution of important (defined 

based on results of the first survey) demographic factors in the sample from of the mining 

communities.  The surveys were computer assisted personal interviews, administered by 

Qualtrics, a well-known market research firm. Respondents were tracked by their zip 

code using the IP address they used to access the survey. 

Among the respondents from mining communities, 48 out of the 100 stated that 

they live near a mine. Of these, 36 reported living within 30 miles of a mine: 24 live 
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within 10 miles of a mine; seven live between 11 to 20 miles away from a mine; and 

another five live between 21 to 30 miles from a mine. Eleven of the 100 participants self-

declared to have experience with mining (e.g. working for a mine, familiarity with 

mining activities, studying about mining etc.). Sample answers to Question 7 include: 

 “Family worked in mining”; “dad was a miner”; “spouse employed by mine”; 

“study of mines and mining”; “grandfather worked in mines”; “work at the mine”; “my 

father used to work for the mine so I have seen what they do there and how it's processed 

[etc.]”; and “I had uncles who worked in coal mines in Kentucky”. 

3.3.3. Online Survey Design. The online survey was conducted with a three part 

questionnaire. These topical issues were reviewed by colleagues of the author, for their 

relevance, clarity, and efficiency, beforehand. The full survey is shown in the Appendix 

C.  

The first part of the survey contained background questions regarding the 

respondent’s socioeconomic status, as well as their zip code and past experience with 

mining. The demographic questions include age, gender, income, education, job field, 

and number of children.  

The second part of the questionnaire involved attitudinal questions.  Participants 

were asked to rank the importance of each project characteristic, by selecting a number 

from 1 to 7 (“not at all important” to “extremely important”), in their decision to support 

a mine, if a new mine were to be opened in their hometown. A short description was also 

given for each characteristic. The third part contained an open ended question about what 

other characteristic is important to the participant.  

Two quality control questions were inserted in the survey. If a participant did not 

‘pass’ the quality control questions, their data was deleted (less than 10% of participants 

gave invalid answers and their data was deleted and not counted towards the 100). In 



48 

 

 

addition, data was regarded as invalid if the participant completed the survey in less than 

one third of the average survey time (150 seconds). 

 

 

3.4. DATA ANALYSIS AND RESULTS 

3.4.1. Determining Significant Demographic Factors of the Mining Group. 

The first sample of 100 comprised a stratified random sample of participants living in one 

of 20 mining communities. Then correlation and Fisher’s exact tests were performed to 

identify important demographic factors. The correlation analysis was used for age, 

education, income, job field, and number of children, since these demographics are 

ordinal alternatives in the survey. The Fisher’s exact test was used to determine if the 

level of importance attributed to mining characteristics is independent of gender. A 

demographic factor was regarded as important if it was significantly (at the 0.05 

significance level) correlated to at least one of the 16 mine characteristics. The important 

demographic factors were matched in the control group survey.  

Correlation analysis was done using the SAS CORR procedure to estimate the 

Spearman rank correlation coefficient and test the null hypothesis of zero correlation 

against the alternative hypothesis that the coefficient is non-zero (SAS, 2007a, 2007i, 

2007j). If the p-value is less than the significance level α (= 0.05), the null hypothesis is 

rejected, implying that there is significant correlation. Fisher’s exact test analysis was 

done using the SAS FREQ procedure (Exact Fisher/mc) to identify whether there is a 

significant difference between genders (SAS, 2007b, 2007c; Stokes, Davis, & Koch, 

2012). The results of correlation analysis and Fisher’s exact test are shown in Table 3-3. 

All statistically significant coefficients are shown in bold font.  
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Table 3-3. Correlation coefficients (and p-values in parenthesis) of mining group ranking 

and demographic factors. Gender results are based on the fisher’s exact test (p-values). 

Statistically significant correlation coefficients or fisher’s test results are shown in bold 

font 

 
Age Education Income 

Job 

field 

Number of 

children 
Gender 

Population 

changes 

-0.240 0.024 -0.066 -0.083 0.058 
(0.255) 

(0.0171) (0.813) (0.538) (0.414) (0.275) 

Infrastructure 

improvement 

-0.124 0.071 0.120 -0.191 -0.097 
(0.122) 

(0.225) (0.490) (0.256) (0.059) (0.347) 

Cultural impact 
-0.394 0.136 -0.071 -0.016 0.014 

(0.130) 
(<.0001) (0.184) (0.503) (0.879) (0.895) 

Traffic and 

crime increase 

-0.094 -0.051 -0.230 0.041 0.016 
(0.037) 

(0.356) (0.623) (0.030) (0.690) (0.879) 

Job 

opportunities 

-0.137 -0.212 0.028 -0.134 -0.037 
(0.046) 

(0.175) (0.035) (0.792) (0.183) (0.715) 

Income 

increase 

-0.025 -0.236 -0.026 -0.051 -0.073 
(0.064) 

(0.805) (0.019) (0.808) (0.616) (0.478) 

Cost of 

housing or 

housing 

shortage 

-0.173 -0.169 -0.093 0.109 0.010 

(0.023) 

(0.090) (0.099) (0.385) (0.288) (0.922) 

Labor shortage 

for other 

businesses 

-0.140 0.046 -0.093 0.166 -0.017 

(0.878) 

(0.170) (0.653) (0.388) (0.103) (0.871) 

Noise pollution 
-0.196 0.091 -0.005 -0.119 -0.048 

(0.519) 
(0.053) (0.376) (0.960) (0.244) (0.640) 

Water shortage 

or pollution 

-0.173 0.012 -0.320 0.076 0.143 
(0.015) 

(0.084) (0.907) (0.002) (0.448) (0.157) 

Air pollution 
-0.185 0.025 -0.260 0.069 0.052 

(0.229) 
(0.065) (0.803) (0.012) (0.494) (0.608) 

Land pollution 
-0.169 0.040 -0.265 0.153 0.068 

(0.005) 
(0.093) (0.697) (0.011) (0.128) (0.502) 

Decision 

making 

mechanism* 

0.146 -0.055 -0.121 -0.029 -0.147 

(0.048) 

(0.163) (0.601) (0.271) (0.783) (0.161) 

Information 

available** 

0.102 0.153 -0.010 -0.063 0.044 
(0.302) 

(0.332) (0.145) (0.927) (0.551) (0.676) 

Mine buffer 
-0.286 0.100 0.000 -0.077 0.062 

(0.027) 
(0.004) (0.330) (0.998) (0.447) (0.542) 

Mine life 
0.095 -0.057 -0.108 0.027 -0.069 

(0.049) 
(0.355) (0.582) (0.317) (0.794) (0.506) 

 

* Decision making mechanism: Decision making mechanism on the mine's permits 

** Information available: Whether or not there is independent and transparent 

information available 
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As shown in Table 3-3, there is a significant negative correlation between income 

and the possible negative impacts, which include increases in traffic and crime, water 

shortage or pollution, air pollution, and land pollution. This means participants with 

higher incomes ranked traffic, crime, and pollution issues lower than those with lower 

incomes (a lower ranking means the respondent did not think the particular factor is as 

important in his/her decision to support or not support a mining project).  

Also, Table 3-3 shows a negative correlation between education and job 

opportunities and income increase. This means respondents with higher education are less 

concerned about new job opportunities and potential income increases associated with the 

mining operation. This negative correlation may be because people with higher education 

have lower need to change jobs and work for the new mine or consider mining-related 

jobs to be less desirable.  

Age is observed to be negatively correlated to population changes, cultural 

impacts, and mine buffer. These three factors would highly affect lifestyle. It appears, 

from the results, that younger people in mining communities care more about these 

lifestyle impacts.  

From the Fisher’s exact test results, there is a significant difference between 

female and male rankings of eight mining characteristics. They are traffic and crime 

increase, job opportunities, cost of housing or housing shortage, water shortage or 

pollution, land pollution, decision making mechanism, mine buffer, and mine life. It is 

important to note that the Fisher’s exact test (nor this author) does not seek to determine 

which group (male or female) rank a particular characteristic higher/lower. It only seeks 

to determine whether there is a significant difference in the distribution of responses from 

the two groups. The goal of this research was to determine whether gender matters and 

should, therefore, be included in a discrete choice experiment.  
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From the above (Table 3-3), the author concluded that age, gender, income, and 

education are the important demographic factors for the respondents from mining 

communities. Number of children and job field were observed not to be significantly 

correlated with respondents’ choices. 

3.4.2. Comparing the Two Samples. A second set of 100 participants were 

recruited from 20 non-mining communities.  Based on the results of correlation analysis 

of the initial responses from the mining group, the four important demographic factors 

(age, gender, income, and education) of this sample were intended to match those of the 

first set of 100 from mining communities. The distributions of these four socio-economic 

variables of respondents are summarized and compared in Figure 3-2(a-d). The 

distributions were compared using the SAS FREQ procedure (Exact Fisher test) (Stokes 

et al., 2012). The results are shown in Table 3-3 and Table 3-4. The null hypothesis of no 

significant difference between cumulative distributions of each demographic variable for 

the mining and control groups was tested using the Exact Fisher test. All p-values are 

greater than 0.05. The results mean there is not enough evidence to reject the null 

hypothesis at α = 0.05. The author concluded that the two samples are similar (with 

respect to the age, gender, income, and education) and any significant differences in 

opinions will not be due to differences in these demographic factors. 

 

Figure 3-2 Distribution summary of the demographic factors (a) Gender comparison 
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Figure 3-2 Distribution summary of the demographic factors (cont.) (b) Age comparison 

 

Figure 3-2 Distribution summary of the demographic factors (cont.) (c) Education 

comparison 
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Figure 3-2 Distribution summary of the demographic factors (cont.) (d) Annual income 

comparison 

 

Table 3-4. Exact fisher test results comparing demographics of mining and control groups 

Demographic factors P-value 

Gender 0.771 

Age 0.976 

Highest education 0.999 

Annual income 0.984 

 

3.4.3. Determining Significant Demographic Factors of the ‘Control Group’. 

The correlation analysis and Fisher’s exact test carried out for the mining group was also 

done for the second set of 100 participants who live in non-mining communities using the 

same procedure. The results of correlation analysis and Fisher’s exact test are shown in 

Table 3-5. All statistically significant (α = 0.05) coefficients are shown in bold font.  
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Table 3-5. Correlation coefficients (and p-values in parenthesis) of control group ranking 

and demographic factors. Gender results are based on the fisher’s exact test (p-values). 

Statistically significant correlation coefficients and fisher’s test results are shown in bold 

font 

 Age Education Income Gender 

Population changes 
-0.072 0.182 -0.056 

(0.526) 
(0.481) (0.074) (0.586) 

Infrastructure improvement 
-0.241 0.073 0.110 

(0.128) 
(0.016) (0.470) (0.277) 

Cultural impact 
-0.065 0.183 -0.001 

(0.953) 
(0.526) (0.070) (0.990) 

Traffic and crime increase 
-0.078 -0.076 0.004 

(0.240) 
(0.447) (0.460) (0.968) 

Job opportunities 
-0.017 -0.228 0.207 

(0.533) 
(0.871) (0.023) (0.040) 

Income increase 
-0.183 -0.266 0.061 

(0.631) 
(0.073) (0.008) (0.554) 

Cost of housing or housing shortage 
-0.055 -0.133 -0.027 

(0.013) 
(0.588) (0.193) (0.795) 

Labor shortage for other businesses 
-0.290 -0.087 0.201 

(0.499) 
(0.004) (0.395) (0.049) 

Noise pollution 
0.084 0.326 -0.035 

(0.350) 
(0.408) (0.001) (0.734) 

Water shortage or pollution 
0.014 -0.001 -0.021 (0.518) 

 (0.889) (0.989) (0.840) 

Air pollution 
0.011 0.083 -0.047 

(0.341) 
(0.913) (0.411) (0.640) 

Land pollution 
-0.008 0.138 0.059 

(0.816) 
(0.934) (0.172) (0.557) 

Decision making mechanism* 
0.178 0.128 0.153 

(0.764) 
(0.087) (0.221) (0.144) 

Information available** 
0.274 0.142 0.017 

(0.286) 
(0.007) (0.168) (0.870) 

Mine buffer 
0.065 0.176 -0.039 

(0.398) 
(0.526) (0.082) (0.706) 

Mine life -0.094 0.133 0.030 
(0.336) 

 
(0.366) (0.198) (0.771) 

* Decision making mechanism: Decision making mechanism on the mine's permits 

* *Information available: Whether or not there is independent and transparent 

information available 
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As with the mining group, all four demographic factors are correlated to at least 

one of the 16 mine characteristics. This confirms these demographic factors as important 

to the decision to accept a mine. However, in terms of which mine characteristics and the 

sign (positive/negative) of the correlation coefficients, the results of the control group are 

different from that of the mining group. 

As shown in Table 3-5, income is no longer negatively (p > 0.05) correlated with 

potential negative impacts (traffic & crime increase, water shortage or pollution, air 

pollution, and land pollution). There is a significant positive correlation between income 

and job opportunities and labor shortage for other businesses. This means respondents 

with higher incomes ranked job opportunities and labor shortages for other businesses, 

which are indicators of economic opportunity, higher than those with lower incomes. 

This was not observed with those respondents living in mining communities. Since the 

two samples have similar demographic distributions, these differences may be 

attributable to the different attitudes the two groups may have towards mining project 

attributes. Such diversity could arise from the different exposures the two groups have 

had to mining; with the mining group having a more intimate and real-life experience 

while the control group’s attitudes may have formed through indirect knowledge. 

Level of education is negatively correlated to job opportunities (similar to the 

mining group) and positively correlated to noise pollution (the mining group had a 

negligible correlation coefficient – 0.091/ p = 0.376). The positive correlation means 

respondents with higher education ranked noise pollution higher.  

As shown in Table 3-3, age is negatively correlated to infrastructure improvement 

and labor shortage for other businesses. This means younger people ranked infrastructure 

improvements and labor shortage for other businesses higher than those who are older. 

There is a significant positive correlation between age and information available, which 

means older people in non-mining communities care more about whether or not there is 
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independent and transparent information available. In contrast to the mining group, 

females and males significantly differed only on their ranking of the cost of housing or 

housing shortage instead of eight mine characteristics. 

For the non-mining group, labor shortage for other businesses is observed to be 

significantly (positive or negative) correlated to age and income. This was not so for the 

mining group. This result is reasonable since participants in the control group are all 

employed by ‘other businesses.’  

3.4.4. Evaluating the Importance of Project Characteristics. The SAS 

UNIVARIATE procedure was used to analyze the level of importance data from both 

mining and control groups (SAS, 2007l, 2007m). Table 3-6 shows the 95% confidence 

bounds of the median level of importance, rounded to the nearest integer, computed 

without assuming any specific distribution. The detailed comparison of the importance 

scores of the mining and control groups are shown in Figure 3-3(a—q). For all 16 mining 

project characteristics, the distributions of responses on the level of importance are 

skewed to the right (i.e. most respondents ranked higher than 4 – “neither important nor 

unimportant”). 

3.4.4.1. Social impacts. With respect to the social impacts (Figure 3-3a-d and 

Table 3-6), respondents from mining and non-mining communities have similar opinions 

of the importance of population changes, cultural impact, and traffic & crime increase. 

The median levels of importance for these factors are 5—“somewhat important”, (5, 6) 

— above “somewhat important” but below “very important”, and 6 — “very important”, 

respectively. However, the two groups differ slightly in their opinion of the importance of 

infrastructure improvement. While respondents who do not live in mining communities 

view infrastructure improvement as very important, those who live in mining 

communities think it falls within “somewhat important” to “very important.”  
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Table 3-6. Level of importance of mining project characteristics 

Mining  characteristics 
Mining 

group 

Control 

group 

Population changes 5 5 

Infrastructure improvement  (5,6) 6 

Cultural impact  (5,6) (5,6) 

Traffic and crime increase 6 6 

Job opportunities (6,7) (6,7) 

Income increase 6 6 

Cost of housing or housing shortage (5,6) (5,6) 

Labor shortage for other businesses (4,5) 5 

Noise pollution 5 (5,6) 

Water shortage or pollution (6,7) (6,7) 

Air pollution (6,7) (6,7) 

Land pollution (6,7) (6,7) 

Decision making mechanism on the mine's permits (5,6) (5,6) 

Whether or not there is independent and transparent 

information available 
(5,6) (5,6) 

Mine buffer  6 6 

Mine life  6 (5,6) 

1 Not at all Important 

2 Very Unimportant 

3 Somewhat Unimportant 

4 Neither Important nor Unimportant 

5 Somewhat Important 

6 Very Important 

7 Extremely Important 

 

Figure 3-3. Level of importance  
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Figure 3-3. Level of importance (cont.)  
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Figure 3-3. Level of importance (cont.)  
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(Somewhat Important), more people from the control group view its level of important as 

6 or 7 (‘Very Important’ or ‘Extremely Important’).  

3.4.4.2. Economic impacts. Figure 3-3e-h and Table 3-6 show the mining and 

non-mining groups have similar opinions of the importance of job opportunities, income 

increase, and cost of housing or housing shortage in their decision. The median level of 

importance of these factors are (6, 7) — above “very important” but below “extremely 

important”, 6 —“very important, and (5, 6) — above “somewhat important” but below 

“very important”, respectively, for both groups. However, the two groups differ slightly 

in their opinion of the importance of labor shortage for other businesses. While the 

control group views labor shortage for other businesses as somewhat important, the 

mining group thinks it falls within “neither important or unimportant” to “somewhat 

important.”  

 
Figure 3-3. Level of importance (cont.) 
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Figure 3-3. Level of importance (cont.) 
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Figure 3-3. Level of importance (cont.) 

 

For job opportunities and income increases (Figure 3e and f), around or less than 
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Figure 3-3. Level of importance (cont.) 
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Figure 3-3. Level of importance (cont.) 

 

 

Figure 3-3. Level of importance (cont.) 
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groups. More than 70% of respondents rank the importance of these three impacts as 6 or 

7 (‘Very Important’ or ‘Extremely Important’). 

3.4.4.4. Governance and other aspects. Figure 3-3m-p and Table 3-6 show that 

the respondents living in mining and non-mining communities have similar opinions of 

decision making mechanism, independent and transparent information, and mine buffer. 

The median level of importance for the first two are (5, 6) — above “somewhat important” 

but below “very important”, while mine buffer’s median level of importance is 6 —“very 

important”. However, the two groups differ slightly in their opinion of the importance of 

mine life. While the control group views mine life as very important, the mining group 

thinks it falls within “somewhat important” to “very important.”  

 

 

Figure 3-3. Level of importance (cont.) 
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Figure 3-3. Level of importance (cont.) 
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Figure 3-3. Level of importance (cont.) 
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3.4.4.5. Summary. In summary, as shown in Table 3-6, all 16 mining project 

characteristics are verified as important factors for both groups of respondents. Both 

groups consider job opportunities, water shortage or pollution, air pollution and land 

pollution very important, with their median level of importance between 6 and 7, which 

means above “very important” and below “extremely important.” The median level of 

importance assigned to traffic and crime increase, income increase, and mine buffer is 

equal to 6 (very important) in both mining and control groups.  

Population changes, cultural impact, cost of housing or housing shortage, decision 

making mechanism, and mine buffer were also assigned the same median level of 

importance by both groups. The median level of importance for population changes is 5 

(somewhat important).  The median level of importance for the other four factors is 

between 5 and 6, which means above “somewhat important” and below “very important.”  

The two groups’ opinions appear to differ, very slightly (by less than 1 point on a 

7 point scale), on the remaining four mine characteristics: infrastructure improvement, 

labor shortage for other businesses, noise pollution, and mine life. For the first three 

factors, respondents living in mining communities appear to view them as less important 

than those who live in non-mining communities. But mine life is more important for the 

mining group than the control group.  

The respondents provided many suggestions for additional factors in the open 

ended question at the end of the survey. 48 out of 200 indicated explicitly that the 

provided list was adequate with answers like, “none”, “n/a”, “I don’t know” or “the 

survey captures it all.” Most of the suggestions in the other answers were not 

consistently recurring, except for land subsidence which was mentioned in some form by 

6 out of the 200 participants. The author is of the opinion that land pollution alone (as 

defined in this survey) did not seem to capture fully the respondents’ perception of 

subsidence, which appears to be an important factor for these respondents. The author 
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suggests either combining land subsidence explicitly with land pollution in the project 

characteristics list or as a separate factor.  

 

 

3.5. DISCUSSIONS 

This Section is an attempt to provide a proper preliminary study for discrete 

choice experiments for mining community engagement. The work attempts to provide a 

systematic process to: (1) identify key demographic factors; (2) determine the important 

mining project characteristics, which affect people’s acceptance of a mining project (in 

most cases); and (3) evaluate whether there are differences between individuals living in 

mining and non-mining communities. 

As shown in Table 3-3 and Table 3-5, four, out of six, demographic factors have 

been identified as significantly correlated to respondents’ opinion of the level of 

importance of mine characteristics (at α = 0.05). The author postulates that this observed 

correlation means these demographic factors will be important explanatory variables of 

the decision to accept or reject a mining project. Hence, these demographic factors (at 

least in the USA context) should be included in any discrete choice experiments aimed at 

facilitating mining community engagement.  

This result partly confirms three (age, gender and income) of the four 

demographic factors used by Ivanova & Rolfe (2011) in their discrete choice experiment 

in Australia as useful in the USA context too. However, ‘number of children’ was not 

observed to be significantly correlated to the respondents’ answers in this research. Level 

of ‘Education’, which has been found significant for local acceptability of wind-farm 

investment (Dimitropoulos & Kontoleon, 2009), was found to be significant in this work. 

‘Job field’ was not identified as important in this research, although the author 

hypothesized it will be important, based on Muradian (2003). 
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Also, the specific nature of the correlation (positive or negative) should provide 

some insights into which demographic groups are more or less likely to accept certain 

mining projects. Of particular interest is the observed negative correlation between 

income and traffic and crime increase, water shortage or pollution, air pollution, and land 

pollution, for the respondents from mining communities. For these same respondents, a 

negative correlation was observed between education and job opportunities and income 

increase. It will appear then that higher income earners and more educated individuals 

perceived these six characteristics as less important than lower income and less educated 

individuals. Further research is required to determine the underlying reasons for this. 

Stated preference surveys (discrete choice experiments) can reveal how these same 

demographic groups will make hypothesized choices, once they are presented with 

alternatives that require trade-offs between these. However, anecdotally, this result will 

seem to challenge the perception that poor and uneducated individuals do not care about 

these negative impacts. 

From Table 3-5, it is apparent that all sixteen mining project characteristics were 

deemed important by both groups of respondents. This result confirms what is known in 

the literature (Dudka & Adriano, 1997; ICMM, ICRC, IFC, 2011; ICMM, 2010, 2012a; 

IFC, 2009; Ivanova & Rolfe, 2011; Lockie et al., 2009; Muradian et al., 2003; Petkova et 

al., 2009; Schooten et al., 2003; K. Willis et al., 2011). The primary goal of this work was 

to validate the classification of mining impacts, by the author, for discrete choice 

experiments. The list seems to have widely captured all the factors respondents will 

consider in their decision to support a mining project, as no persistent independent 

themes emerged from the open ended question. Only land subsidence appeared 

consistently in their responses. This will suggest that discrete choice surveys with this 

classification of factors will need to find a way to incorporate land subsidence. It is 

important to note that these insights are limited to the USA context and further work will 
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be required to extend this to other contexts. Even in the USA, for a given mine, some of 

these factors may not be as relevant and a specific issue (even though captured by the 

classification – e.g. land subsidence and land pollution in this work) may have to be 

included in the discrete choice experiment, explicitly. 

The survey results will seem to suggest that the most important mining project 

characteristics are job opportunities, water shortage or pollution, air pollution and land 

pollution with median of level of importance above “very important” and below 

“extremely important.” The least important project characteristics are population changes 

and labor shortage for other businesses, which was found to be above “neutral” and 

below or equal “somewhat important.” These differences may be marginal (1- to 2-points 

on a 7 point scale) but are statistically significant (i.e. low probability that the observation 

is by chance). Further work is required to confirm them. However, they provide some 

insight into how mine managers and community engagement professionals may approach 

mine design and community engagement. 

The author hypothesizes that the observed difference (however, slight) in opinions 

between respondents living in non-mining and mining communities is due to knowledge 

and experience gaps. The mental representation of a problem – the perception of a 

situation – is central to the decision-making process. This perception is based on what 

you know about a problem and all judgments made are based on this perception (Chris 

Horn 2006). Respondents from non-mining communities know mining from their 

acquired knowledge, through information from the media and other sources. However, 

respondents from mining communities know mining from practical experience as well as 

the information available to respondents from non-mining communities. As shown in 

Table 3-4, the respondents from mining communities view infrastructure improvement, 

labor shortage for other businesses, and noise pollution as less important, but think mine 

life is more important, than those from non-mining communities, based on their practical 
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experience with mining. Although the author is not sure what the specific reasons for this 

observation are, the difference in experience and knowledge is, most likely, at the core. 

For example, very few members of the general public know how big the differences in 

mine life (which can exceed 100 years) can be. Respondents who live in mining 

communities and know how broad the spectrum of mine lives are, are more likely to rank 

mine life as a more important characteristic. 

In this study, 16 mining project charactersitics (positive and negaitive impacts) 

and six demogrphic factors were evaluated based on a literature review. The author 

carefully selected impacts that were independent and covered a broad spectrum of 

impacts. The choice of these 16 characteristics are validated by the open-ended question 

that did not identify any significantly different characteristic (land subsidence has the 

potential to be highly correlated to land pollution). The results of this study suggest that 

these 16 mine characteristics (or other classification that covers the same spectrum) and 

four of the six demographic factors should be included in any discrete choice experiments 

for mining community engagement in the USA. Ignoring any of these will result in a 

large intercept (constant) in the discrete choice model and unreliable model predictions.  

Mining industry professionals can use these research results in three specific ways: 

(1) As shown in Table 3-6, job opportunities appear more important than higher incomes. 

Thus, during community consultation a company should highlight the increased job 

opportunities rather than higher salaries. Mine design alternatives that improve job 

opportunities (i.e. higher labor needs) are more likely to be supported by individuals in 

the local community than those that reduce labor needs but provide higher paying 

technical jobs. This is particularly pertinent given the shift towards autonomous mining 

systems. Also, noise pollution (somewhat important) is much less important than air, 

water and land pollution (above “very important” and below “extremely important.”). 

More effort should be dedicated to air, water, and land pollution issues, during the 
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consultation process, than on noise pollution control. (2) Respondents from mining and 

non-mining communities have slightly different opinions of four mine characteristics: 

infrastructure improvement, labor shortage for other businesses, noise pollution, and 

mine life. Although, this result still needs further work to fully confirm (the differences in 

this section may be just marginal), the result might mean some adjustment in community 

engagement is necessary during permitting in a community with no prior experience with 

mining. (3) Gender, income, age, and education are important predictors of an 

individual’s decision to accept or reject a proposed mining project. It is important, 

therefore, to engage different sectors of the community differently since their priorities 

are different. The “listening” part of community consultation is important to identify the 

different priority issues for different demographic sectors. 

The exact nature of the interactions between these 16 mining project 

characteristics and four demographic factors in stated preference surveys are explored in 

Section 6. The author conducted discrete choice modeling of mining community 

acceptance in a selected community. This methodology developed and the example 

choice model will help facilitate better community engagement by providing a unique 

perspective, which is not yet widely used in mining community acceptance despite wide 

application in other disciplines. 

 

 

3.6. SUMMARY OF SECTION THREE 

All sixteen project characteristics, identified and classified through a literature 

review, were confirmed as important to the decision to accept or not accept a mining 

project. The most important mining project characteristics are job opportunities, water 

shortage or pollution, air pollution and land pollution. Respondents living in mining and 

non-mining communities have similar opinions of 12 mine characteristics and appear to 

differ on four (infrastructure improvement, labor shortage for other businesses, noise 
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pollution, and mine life). Four of the six demographic factors were confirmed to be 

significantly (p < 0.05) correlated with respondents’ opinion of the importance of the 

mine characteristics.  

During design and management of mines and community consultation for mining 

projects, these results can be used as a guide. The results will facilitate better choice 

experiment (survey) design for discrete choice modeling. Such discrete choice models 

can provide a viable framework for quantitative data-driven community engagement and 

sustainable mine management. 
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4 . DETERMINING THE OPTIMUM NUMBER OF FACTORS 

FOR MINING DISCRETE CHOICE EXPERIMENTS  

4.1. INTRODUCTION 

The second huddle of incorporating discrete choice modeling into mining 

community analysis is how to design good discrete choice experiments (DCEs) for 

mining community consultation. According to the research results presented in Sections 2 

and 3, surveyed respondents drawn from mining and non-mining communities consider at 

least 16 important characteristics in their decision to support a mining project (Que, 

Awuah-Offei, & Samaranayake, 2015). However, most choice experiments use fewer 

than 10 attributes, with the average being around 5 or 6 (Ryan & Gerard, 2003). Ivanova 

and Rolfe (2011) considered only five characteristics of the mine development options in 

order to keep it “simple and concise” so that respondents can complete the survey with 

ease (i.e. reasonable cognitive burden). However, using only five attributes led to a high 

alternate specific constant, which indicates that the selected attributes do not fully explain 

respondent’s preferences (Train, 2002). 

Discrete choice experiments with large number of factors result in complicated 

choices, which require significant cognitive effort by respondents (Caussade, Ortúzar, 

Rizzi, & Hensher, 2005; Hoyos, 2010). This can lead to a gap between the cognitive 

ability of respondents and the cognitive burden of the decision they are asked to make. 

Using 16 attributes in a discrete choice experiment will, most likely, lead to a higher than 

bearable cognitive burden for respondents. The challenge then is how to incorporate 

enough attributes, while ensuring the choice experiment will lead to reasonable cognitive 

burden and, consequently, valid results.  

In this section, the author proposes an approach to overcome this challenge for 

mining community engagement, where there are many attributes to the choice (as many 

as 16, based on the results from Section 3). The approach is based on incorporating all 
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important characteristics (16 in this work) into discrete choice experiments by using 

block scheme designs, in which factors are split into several discrete choice experiments. 

 

 

4.2. BLOCK SCHEME DESIGN   

Block scheme design is a method that can be used when there are many attributes 

because of respondent burden and/or sample size considerations. In the block scheme 

design, the attributes are split into several separate discrete choice experiments. It is an 

important new method to consider since it is not always possible or desirable to reduce 

the number of attributes used. 

There are two reasons for keeping the number of attributes relatively small (Ryan 

& Gerard, 2003). Firstly, with a large number of attributes, individuals may use other 

decision heuristics or lexicographic decision rules instead of make trade-offs. This 

outcome violates a key assumption of the economic choice theory that rules out the 

interpretation of the data as utilities (Scott, 2002). By contrast, a smaller number of 

attributes reduces the task complexity for respondents who are more likely to enable 

compensatory decision rules. The choice sets are constructed with reasonable factors, 

which reduces the cognitive burden placed on respondents. A cognitive demanding set 

may cause respondents to randomly select a choice rather than making a rational choice.   

The second reason for having a smaller number of attributes is more pragmatic; 

the fewer the permutations of attributes and levels, the smaller the number of choice sets 

that needs to be presented. This will reduce the need to block the choice sets across 

different versions of the questionnaire, and therefore may reduce the sample size required 

to complete a given number of choice sets, which, in turn, reduces the cognitive burden 

of the choice tasks. The full combination of 16 factors, each with three levels, is 316 = 

43,046,721. If the factors are split into four blocks of four attributes each, the full 
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combination is 34×4=324. This means, not only will researchers save huge amounts on 

survey cost, but also each participant will deal with much less choice sets.  

Blocking is usually used to reduce the number of choice sets that each respondent 

has to answer, whereas we use it to reduce the number of attributes. For example, the 

block scheme design has been used in Witt, Scott, & Osborne (2009). In that study, a 

choice experiment in the situation where there are 11 attributes, of which 10 have four 

levels, and one has three levels, is carried out. Instead of presenting each respondent with 

all 11 attributes, the attributes are ‘blocked’into three experimental designs.  

However, before using a block scheme design to account for the large number 

factors in discrete choice experiments for mining community acceptance evaluation, there 

is a need to investigate the optimal number of factors for one choice set. Without this, the 

block scheme may still be to tasking to the respondent (still too many attributes in each 

choice set) or inefficient (too few factors in each choice set), leading to higher than 

necessary costs.  

To bridge this gap, this section introduces block scheme design for discrete choice 

experiments and uses an online survey to determine the optimal number of attributes per 

choice set. The main research objective is to determine whether there is an optimal 

number of factors to include in choice experiments or not. Discrete choice experiments 

were designed with different number of factors, from three to six. Respondents’ were 

asked to rate the required effort and difficulty of each choice set. The effort and difficulty 

level ratings were tracked for each design to find the optimal number of factors. This 

research provides preliminary results for effective and efficient block schemed discrete 

choice experiment design.  
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4.3. EXPERIMENTAL METHOD 

4.3.1. Sample Size Determination. The margin of error is a statistic expressing 

the amount of random sampling error in a survey's results. Margin of error occurs 

whenever a population is incompletely sampled. The larger the margin of error, the less 

confidence the results represent the whole population.  

/2E z
n




                                                                                                       (4-1) 

E: margin of error  

α: level of confidence  

zα/2: critical value  

σ:  standard deviation of the population 

n:  sample size  

The Equation (4-1) is used to calculate the margin of error of a sample, assuming 

the population is normally distributed (Taylor, 2013). To balance data collection costs 

and the need for acceptable margin of error, the authors chose a sample size of 200, 

which corresponds to 5 % margin of error at 95% level of confidence. 

4.3.2. Survey Design. An online survey was conducted with a questionnaire, 

consisting of three parts, to evaluate the optimum number of factors that should be 

included in one choice set. The first part of the survey contained background questions 

regarding the respondent’s socioeconomic status. The demographic questions included 

age, gender, income, education, job field, and number of children.  

The second part contained four discrete choice experimental designs with number 

of factors varied from three to six, in increments of one. Each design has nine choice sets 

with the same factors but different combinations of the factor levels. Factors were 

selected from the 16 factors validated in Section 3 (Table 3-1) by including one factor 

from each of the four categories (economic, social, environmental, and governance), and 

http://statistics.about.com/od/HelpandTutorials/a/An-Introduction-To-The-Bell-Curve.htm
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balancing the positive, negative and neutral effects. The factors included in each design 

and their levels are shown in Table 4-1. A choice set sample is shown in Table 4-2.  

 

Table 4-1. Factors of each case design 

Design 
No. of 

factors 
Factors 

1 3 

Income increase (Positive, Economic) 

(1)+ $100 per month  

(2)+ $300 per month  

(3)+ $500 per month  

Population increase (Neutral, Social) 

(1) A reduced rate of population growth (only 2%) 

(2) Continued population growth (average rate 4%) 

(3) An increased population growth (6%) 

Mine life (Neutral, Governance) 

(1)10 years 

(2)20 years 

(3)30 years 

2 4 

Air pollution (Negative, Environmental) 

(1)No increase in pollution 

(2)A slight increase in pollution 

(3)A moderate increase in pollution 

3 5 

Job opportunities (Positive, Economic) 

(1)300 people employed directly by the mine 

(2)600 people employed directly by the mine 

(3)900 people employed directly by the mine 

4 6 

Permit approval decision making mechanism  

(Neutral, Governance) 

(1)Final decision solely by Government agency 

(2)Final decision by Government agency after significant public 

input 

(3)Final decision by Government agency after negotiating with 

local representatives 

 

Participants were asked to select one of three mine options, if a new mine were to 

be opened in their community. Each choice set has four alternatives: Option 4 is “Too 

Complex to Decide.” Following each question, participants were asked to rank their level 

of perceived mental effort (i.e., 36 mental effort ratings), by selecting a number from 1 to 

7 (“very easy” to “very difficult”). After completing the questions in each discrete choice 
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experiment design, participates were asked to assess the perceived difficulty of the choice 

experiments with three, four, five, and six factors (i.e., four difficulty ratings). The same 

seven levels (from very easy to very difficult) were used in the difficulty rating. The time 

it took for each participant to complete each design was tracked by the system. 

 

Table 4-2. Example of choice sets 

 
Income 

increase 
Population increase 

Mine 

life 

 

Air pollution 
I would 

choose 

Option 

1 

+$300 per 

month 

Continued population 

growth  

(average rate 4%) 

20 

years 

A slight increase in 

pollution 

 

Option 

2 

+$100 per 

month 

Continued population 

growth  

(average rate 4%) 

30 

years 

No increase in 

pollution 

 

Option 

3 

+$500 per 

month 

A reduced rate of 

population growth  

(only 2%) 

20 

years 

A moderate 

increase in 

pollution 

 

Option 

4 
Too complex to decide 

 

 

 

This survey was conducted in October, 2013. Based on the sample size 

calculation, 210 individuals were recruited to complete the online survey.  This survey 

was supposed to be a 30 minute online survey, and the data was automatically eliminated 

from anyone who completed the survey in less than 10 minutes. The data of eight 

participants were deleted because they did not follow instructions. The data from the 

remaining 202 participants was used in the following data analysis.  

Among the respondents, 52% participants were female and the other 48% were 

male. The ages ranged from 19 to 78 years old, with a mean age of 52.84.  This survey 

was computer-assisted personal interviews, administered by Qualtrics. The system 

tracked respondents by their zip code using the IP address they used to access the survey.  
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4.4. DATA ANALYSIS 

4.4.1. Correlation Analyses. The frequency with which respondents chose 

Option 4, “Too Complex to Decide”, for each design is shown in Table 4-3. There are 

1,818 total responses for each design (=9×202, nine choice sets for each case and 202 

respondents for each choice set). The design with three factors has the lowest frequency 

of Option 4 answers: 84/1818, which is less than 5%. The design with four factors has a 

higher frequency at 143 responses, and the designs with five and six have even higher 

frequency at 152 and 158 responses, respectively.  

 

Table 4-3. Frequencies for Option 4 selections 

Design Number of factors 
Observed frequency of Option 4  

“Too complex to choose” 
Percent 

1 3  84/1818 4.62% 

2 4 143/1818 7.86% 

3 5 152/1818 8.36% 

4 6 158/1818 8.69% 

 

Correlation analysis was performed to examine whether there is a significant 

relationship between the frequency of choosing Option 4 and the number of factors in one 

choice set (Rodriguez, 2006). The correlation coefficient is a measure of the relationship 

strength, and varies between -1 and +1. The bigger the absolute value of the correlation 

coefficient, the stronger the relationship. Positive correlation coefficient means the two 

variables are proportional while negative correlation coefficient indicates the two 

variables are inversely proportional to each other (Rodriguez, 2006).  

Hypothesis tests are used in correlation analysis to evaluate whether the observed 

correlation coefficient is due to random sampling or not. For correlation analysis, the 

typical null hypothesis is that the correlation coefficient is 0, and the alternative 

hypothesis is that the correlation coefficient is different from 0. The p-value (p) is the 

probability that the null hypothesis is true. If p < α (the level of significance), then the 
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probability of the correlation coefficient being 0 is smaller than α (typically 0.05). Thus, 

there is enough evidence to reject the null hypothesis, and conclude that the correlation 

coefficient is significantly different from 0 at significant level α. On the other hand, if p > 

α, then the test fails to reject the null hypothesis, and we conclude that there is not enough 

evidence to counter the claim that the correlation coefficient is significantly different 

from 0 at significant level α. 

There are three popular correlation coefficients and their corresponding tests: 

Pearson, Spearman and Kendall correlation coefficients (Gibbons, 2006; Pirie, 2006; 

Rodriguez, 2006; Stuart, 2006). Figure 4-1 shows a selection logic for selecting the best 

test. Pearson and Spearman test can be used when the variables are interval variables. The 

Kendall test can be used if the variables are ordinals or can be ranked as ordinals. The 

Chi-square test can be used if the variables cannot be ranked as ordinals (Jeffrey, 2006; 

Koch & Bhapkar, 2006; Stuart, 2006). In this case study, the variables are ordinals from 

levels 1 to 7. Thus, the Kendall test was used to compute p-values for Kendall’s tau-b to 

detect the correlation coefficient.  

The Kendall correlation analysis was done using the SAS FREQ Procedure, which 

computes the Kendall tau-b correlation coefficient and uses the estimate in hypothesis 

testing ( 0
: 0H r   ). The result of Kendall test is shown in Table 4-4. The null hypothesis 

cannot be rejected at α = 0.05 with p-value <0.0001, and we can conclude that the 

Kendall’s tau-b is significantly different from 0 at significant level 0.05. The Kendall’s 

Tau-b coefficient is 0.0503. This is small and raises some doubt on whether the frequency 

of selecting “too complex to choose” is significantly correlated to the number of factors 

in the choice set. Further evidence is needed to support this claim. 
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Figure 4-1. Flowchart of correlation test approach 

 

Table 4-4.  Result of Kendall’s tau-b correlation test 

The FREQ Procedure 

Statistics for Table of Exposure by Response 

Kendall’s Tau-b 0.0503 

ASE 0.0101 

95% Lower Conf Limit 0.0304 

95% Upper Conf Limit 0.0702 

Test of H0: Tau-b = 0 

ASE under H0 0.0103 

Z 4.8921 

One-sided Pr > |Z| < 0.0001 

Two-sided Pr > |Z| < 0.0001 
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4.4.2. Analysis of Effort and Difficulty Ratings. In this study, the effort and 

difficulty level ratings were acquired for questions from all four designs. Statistical 

analysis was used to evaluate whether or not there is a significant difference between the 

level of effort and difficulty ratings for these four designs. The data on effort and 

difficulty level ratings from the fours designs were treated as independent groups.  

There are three data analysis methods for more than two independent groups: 

ANOVA, Welch ANOVA, and Kruskal-Wallis (Schlotzhauer, 2009). Figure 4-2 shows 

the logic for selecting the proper test. ANOVA and Welch ANOVA tests can be used 

when the variables are interval variables. In this case study, the data on the level of effort 

and difficulty were treated as ordinal. Thus, the Kruskal-Wallis test is the most 

appropriate test. 

The null hypothesis is that ‘there is no significant difference between the 

effort/difficulty level distributions of these four designs’. The p-value (p) is the 

probability that the null hypothesis is true. If p < α (the level of significance), then we 

have enough evidence to reject the null hypothesis, and conclude there is at least one 

significant difference between the effort/difficulty level ratings of these four designs at 

significant level α (typically 0.05). On the other hand, if p > α, then the test fails to reject 

the null hypothesis at significant level α. 

Nemenyi and Dunn’s multiple comparison are multiple comparison tests based on 

significant Kruskal–Wallis results. In this case, the Dunn’s multiple comparison test is 

used since the data are classified as tied rank. 
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Figure 4-2. Logic for selecting data analysis method for more than two independent 

groups 
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An important part of Dunn’s test is an estimate of the standard error (SE). For this 

test, the SE is calculated using Equation (4-2) (Dunn, 1964). Then, a QAB statistic and a Q 

critical value are calculated using Equations (4-3) and (4-4), respectively (Zar, 2010). 

 

 

 

1 1 1

12 12 1
AB

A B

N N t
SE

N n n

   
        

                                                   (4-2)  
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K
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
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K is the number of comparison groups 

N is the total sample size 

∑ 𝑡 is the total count of tied rank 
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R R
Q
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
                                                                                                    (4-3) 
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i

R   is the rank for group i 

 
1

1

Alpha
Q

K K

 
      

                                                                                       (4-4) 

 

The null hypothesis for each pairwise comparison is that there is no significant 

difference between these two groups. If QAB >Q, then we have enough evidence to reject 

the null hypothesis, and conclude that there is a significant difference between the 

difficulty/confusion level ratings of these two cases at significant level α (typically 0.05). 

On the other hand, if QAB < Q, then the test fails to reject the null hypothesis at 

significant level α. 



87 

 

 

4.4.2.1. Effort level analysis. The effort level rating distributions are shown as 

histograms and box plots in Figure 4-3 and Figure 4-4, respectively. From Figure 4-3, all 

the distributions are relatively asymmetric and skewed to the left. Most of the participants 

selected level 2 (Easy) or 3 (Somewhat easy) for effort ratings of all four designs with 

number of factors from three to six. As the number of factors increase from three to six, 

the percentage of respondents selecting level 4 (Neutral) increased from 15.7% to 18.2%. 

Similarly, the percentage of respondents selecting levels 5, 6 and 7 increase from 6.9 % 

to 11.6%, 2.4% to 4.3%, and 0.7% to 1.2%. Figure 4-4 shows that the median effort level 

ratings increase as the number of factors increase, even though the mean effort level 

ratings of each design are very similar.   

 

 

Figure 4-3. Effort level rating histograms 
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Level 1 Vary easy 

Level 2 Easy 

Level 3 Somewhat easy 

Level 4 Neutral 

Level 5 Somewhat difficult 

Level 6 Difficult 

Level 7 Very difficult 

 

 

Figure 4-4. Effort level rating boxplot 
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The Kruskal-Wallis test was done, using the SAS PROC NPAR1WAY 

WILCOXON procedure (SAS, 2007k), to evaluate whether there is a significant 

difference between these four designs. The p values were estimated as <0.0001, which 

means the test rejected the null hypothesis. It can be concluded that there is at least one 

significant difference among the effort level ratings of these four designs, at significant 

level 0.05. 

Dunn’s multiple comparison was used to find the detail differences between each 

pair of designs (Elliott & Hynan, 2011; Schlotzhauer, 2009). As shown in Table 4-5, the 

Q critical value is 2.638 at significant level α=0.05. The effort level ratings of the three-

factor design is significantly different from that of the other three designs. The calculated 

QAB statistic (3.85, 5.21, and 6.75) exceeds the Q critical value. The effort level ratings of 

the four-factors design is significantly different from the six-factors design (QAB = 2.90). 

However, the effort level ratings of the four-factors design is not significantly different 

from that of the five-factors design (QAB = 1.36), and effort level ratings of the five-

factors design is not significantly different from that of the six-factors design (QAB = 

1.54).  

 

Table 4-5. Results of the Dunn’s multiple comparisons test for effort level ratings 

Comparison group=Number of factors 

Compare Diff SE QAB Q(0.05) Conclude 

6 vs 3 459.81 68.08 6.75 2.638 Reject 

6 vs 4 197.71 68.08 2.90 2.638 Reject 

6 vs 5 104.80 68.08 1.54 2.638 Do not reject 

5 vs 3 355.01 68.08 5.21 2.638 Reject 

5 vs 4 92.91 68.08 1.36 2.638 Do not reject 

4 vs 3 262.10 68.08 3.85 2.638 Reject 
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4.4.2.2. Difficulty level analysis. The difficulty level rating distributions and 

boxplots are shown in Figure 4-5 and Figure 4-6, respectively. From Figure 4-5, the 

mode of the distribution for the three- and four-factors design is level 2 at 26.8% and 

25.9%; for the five-factors design is level 4 at 21.0%; and the six-factors design is level 5 

at 19.5%. For the three-factors design, the distribution is relatively asymmetric and 

skewed to the left. However, as the number of factors increase, the distribution is less and 

less skewed to the left. The distribution of the six-factors design is nearly symmetric. 

Note from Figure 4-6 that there is a jump between the difficulty ratings of three- and 

four-factors designs and five- and six-factors designs. The median of the difficulty level 

ratings increase as the number of factors increase.   

 

Figure 4-5. Difficulty level rating histograms  
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Level 1 Very easy 

Level 2 Easy 

Level 3 Somewhat easy 

Level 4 Neutral 

Level 5 Somewhat difficult 

Level 6 Difficult 

Level 7 Very difficult 

 

 
Figure 4-6. Difficulty level rating boxplot 

 

The same Kruskal-Wallis test and Dunn’s multiple comparison were used to 

analyze whether or not the number of factors included in one choice set had a significant 

effect on the difficulty level ratings. The null hypothesis of the Kruskal-Wallis test was 

rejected at α = 0.05 (p = 0.0003). The result means there is significant difference between 

the difficulty level ratings of these four designs. The result of Dunn’s multiple 

comparisons is shown in Table 4-6. The Q critical value is 2.638 at significant level 0.05. 
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While the difficulty level ratings of the three-factors design is not significantly 

different from that of the four-factors design (QAB = 1.93), it is significantly different 

from the designs with five and six factors. The calculated QAB statistic (3.36 and 4.03, 

respectively) exceeds the Q critical value. The difficulty level ratings of four-factors 

design is not significantly different from that of the six-factors design (QAB = 2.10). In 

addition, the pair wise comparison of difficulty level ratings of five- vs four and six- vs 

five-factors designs show no significant differences.  

 

Table 4-6. Results of the Dunn’s multiple comparisons test for difficulty level ratings 

Comparison group=Number of factors 

Compare Diff SE QAB Q(0.05) Conclude 

6 vs 3 92.87 23.02 4.03 2.638 Reject 

6 vs 4 48.40 23.02 2.10 2.638 Do not reject 

6 vs 5 Do not reject (within non-sig. comparison)                                             

5 vs 3 77.25 23.02 3.36 2.638 Reject 

5 vs 4 Do not reject (within non-sig. comparison)                                             

4 vs 3 44.47 23.02 1.93 2.638 Do not reject 

 

4.4.3. Analysis Based on Duration of Survey. The time it took for each 

participant to complete the survey section with each design was tracked, and the 

comparative box plot is shown in Figure 4-7.  

The mean duration is higher than the median in all four designs. The mean and 

median of time duration of the design with three factors are 30 and 22 seconds, 

respectively. For the design with four factors, both mean and median decrease slightly to 

29 and 21 seconds, respectively. After that, the mean and median increase to the highest 

values for the design with five factors at 33 and 27seconds, respectively. Then, both 

mean and median drop sharply to the lowest values at 25 and 20 seconds, respectively, 

for the design with six factors.  



93 

 

 

 

Figure 4-7. Comparative box plots for time consumed of the four designs 

 

The data of survey duration are interval variables. Based on the logic for selecting 

the proper test shown in Figure 4-2, ANOVA and Welch ANOVA tests can be used to 

compare the duration data.  However, the prerequisite of normality needs to be tested, 

first.   

Common normality tests include Shapiro-Wilk (W) test (Shapiro, Wilk, & Chen, 

1968), Kolmogorov-Smirnov (KS) test, Anderson-Darling (AD) test (Anderson & Darling, 

1952), and Cramer-vol Mises (CM) test (Anderson, 1961).  These four normality tests are all 

used in this study, and the null hypothesis in all tests are that the data follows a normal 

distribution. SAS PROC UNIVAREATE PROCEDURE was used to perform these tests 

on the duration data.  The results are shown in Table 4-7 (Survey duration).  The results of 

the tests show that the null hypothesis in all tests (data follows normal distribution) is 
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rejected and none of the survey duration of four designs follows normal distribution (all p-

values are less than 0.01). 

One approach to handle the violation of the normality assumption is to transform the 

data by using a natural log transformation (Zhou, Gao, & Hui, 1997). The same statistical 

tests were performed on the log transformed data and the results are shown in Table 4-7  

(Log-Survey duration). Again the results show that the log-transformed data does not follow 

the normal distribution (all p-values are less than 0.01).  

 

Table 4-7. Normality test of survey duration and log-survey duration 

Survey duration               

 

Design 1 Design 2 Design 3 Design 4 

Test 
Statis

tic 
P-value 

Statis

tic 
P-value 

Statist

ic 
P-value 

Statis

tic 
P-value 

Shapiro-

Wilk 
0.580 <0.0001 0.484 <0.0001 0.805 <0.0001 0.646 <0.0001 

Kolmogoro

v-Smirnov 
0.211 <0.0100 0.249 <0.0100 0.151 <0.0100 0.195 <0.0100 

Cramer-von 

Mises 
3.480 <0.0050 4.748 <0.0050 1.750 <0.0050 2.964 <0.0050 

Anderson-

Darling 

19.00

9 
<0.0050 

25.02

2 
<0.0050 

10.05

4 
<0.0050 

16.59

2 
<0.0050 

Log-Survey duration 

 

Design 1 Design 2 Design 3 Design 4 

Test 
Statis

tic 
P-value 

Statis

tic 
P-value 

Statist

ic 
P-value 

Statis

tic 
P-value 

Shapiro-

Wilk 
0.944 <0.0001 0.921 <0.0001 0.970 0.0003 0.943 <0.0001 

Kolmogoro

v-Smirnov 
0.093 <0.0100 0.115 <0.0100 0.083 <0.0100 0.089 <0.0100 

Cramer-von 

Mises 
0.397 <0.0050 0.620 <0.0050 0.301 <0.0050 0.342 <0.0050 

Anderson-

Darling 
2.377 <0.0050 3.623 <0.0050 1.742 <0.0050 2.188 <0.0050 

 

Thus, Kruskal-Wallis test and Dunn’s multiple comparison were used to analyze 

whether or not the number of factors included in one choice set had a significant effect on 
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the survey duration. The null hypothesis of Kruskal-Wallis test was rejected at α = 0.05 

(p < 0.0001). The result means there is significant difference between the survey duration 

of these four designs. The result of Dunn’s multiple comparisons is shown in Table 4-8.  

 

Table 4-8. Results of the Dunn’s multiple comparisons test for survey duration 

Comparison group=Number of factors 

Compare Diff SE QAB Q(0.05) Conclude 

5 vs 3 87.27 23.22 3.76 2.638 Reject 

5 vs 4 111.33 23.22 4.79 2.638 Reject 

4 vs 3 24.06 23.22 1.04 2.638 Do not reject 

 

From Table 4-8, it is shown that there is no significant difference between the 

survey duration of designs with three and four factors (QAB = 1.04). This finding is 

confirmed by the result that there is no significant difference between the difficult level 

ratings of these two designs. In Figure 4-7, it appears the duration of design with four 

factors is slightly less than that of the design with three factors. It is possible that the 

respondents are learning as they proceed through the survey. Caussade et al. (2005) 

observed that there is a learning effect in choice situations. Though the four-factors 

design has one additional factor, the questions, framework, and style of choice situations 

are the same.  

In addition, the survey duration of the design with five factors is significantly 

different from those with three and four factors. The calculated QAB statistic (3.76 and 

4.79, respectively) exceeds the Q critical value (2.638). The design with six factors is 

special in the survey duration analysis. From Figure 4-7, the survey duration drops 

sharply to the lowest at 25 and 20 seconds. Most likely, the design with six factors is too 

complicated, and participants are randomly selecting the choices. Thus, the duration data 

from this design is treated as invalid and not used in the Kruskal-Wallis test and Dunn’s 

multiple comparison.  
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4.5. DISCUSSION 

First of all, participants indicated that designs with the lower numbers of factors 

required less mental effort, and the choices were easier to make.  As the number of 

factors increased, the perceived level of required mental effort and the perceived 

difficulty increased, as well.  The result of Kendall correlation analysis appears to support 

the fact that the number of factors and the frequency of “too complex to choose” are 

positively correlated, with correlation coefficient of 0.0503. Although the magnitude of 

the correlation coefficient will seem to be small, the existence of such a correlation 

appears to be supported by the effort and difficulty ratings data. These findings support 

our hypothesis that a higher number of factors will lead to greater amounts of cognitive 

load (e.g. higher effort and difficulty ratings). 

In addition, as shown by the results of the Kruskal-Wallis test of effort ratings, 

difficulty level ratings, and survey duration, there are significant differences between the 

participants’ effort ratings, difficulty ratings, and survey duration for these four designs at 

significant level 0.05. The results of Dunn’s multiple comparison tests, which were used 

for pairwise comparison of the designs, are summarized in Figure 4-8, Figure 4-9 and 

Figure 4-10.  

 

Figure 4-8. Summary plot of effort level ratings comparisons  

 

3 

4   5 

5   6 
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Figure 4-9. Summary plot of difficulty level ratings comparisons  

 

Figure 4-10. Summary plot of survey duration comparisons  

 

From Figure 4-8 and Figure 4-9, there is no significant difference between 

designs with five and six factors for both effort and difficulty level ratings. From Table 

4-3 and Figure 4-5, the design with six factors is not easy as compared to the other three 

designs. Almost 10% (specifically, 8.69%) of the time, respondents indicated that choice 

sets with six factors are too complex to make a decision.  The difficulty level rating mode 

for this design is level 4 (neutral), and 52.1% of the time, respondents indicated that 

choice sets with six factors are “neutral” (neither difficult or easy) difficulty or difficult. 

These results indicate that the designs with five and six factors are not good options for 

the block scheme experimental design. 

The design with three factors is easiest among these four designs. Only 4.62% of 

the responses indicated the questions with three factors are ‘too complex to decide.’ 74.4% 

3      4 

4   5   6 

3      4 

   5   
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and 69.3% of the time, respondents indicated that the effort and difficulty level, 

respectively, of these choice sets were equal or less than level 3 (somewhat easy). While 

the design with four factors needs, relatively, more effort and is ranked as more difficult 

than the design with three factors, it is still easy enough for the block scheme 

experimental design. 67.6% and 58.1% of the time, respondents indicated that the effort 

and difficulty level ratings, respectively, were equal or less than level 3 (somewhat easy). 

In addition, there is no significant difference between the designs with three and four 

factors for both the difficulty level and survey duration, as shown in Figure 4-9 and 

Figure 4-10. Based on these results, both of the designs with three and four factors are 

good options for the block scheme experimental design. The lower the number of factors 

included in one choice set, the more blocks are need in the block scheme experimental 

design, which will increase the cost of the overall survey. Thus, the design with four 

factors is the optimal choice to reduce cognitive burden and reduce costs.   

 

 

4.6. COMPARISON WITH KLEIN ET AL. (2015) ANALYSIS 

This case study has been published by Klein et al. (2015), who also identified the 

optimum number of factors in one choice set as four. This author conducted independent 

analysis of the data used by Klein et al. (2015) in this dissertation to ensure completeness. 

The main difference between this section and Klein et al. (2015) is the data analysis 

method. As shown by the method selection logic shown in Figure 4-2, the author chose 

the Kruskal-Wallis test and Dunn’s multiple comparisons test since the effort and 

difficulty level were treated in this work as ordinal data. However, Klein et al. (2015) 

used the ANOVA test since they assumed the data to be interval data, an assumption that 

is usually accepted in social science journals for Likert scales. Most of the time (as long 

as the distribution is not too skewed), an ANOVA and a Kruskal-Wallis produce the 

similar results (Schlotzhauer, 2009). The main divergence (between this work and Klein 
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et al. (2015)) is whether to treat the Likert scales as ordinal or interval data in different 

fields of study. In engineering analysis, data like Likert scales are usually considered 

ordinal (Schlotzhauer, 2009). 

 

 

4.7. SUMMARY OF SECTION FOUR 

From the above, discussion, the following main points summarize the discussions 

in this section. 

1. This section attempts to find a way to include all (16) factors in the discrete 

choice experiments while ensuring reasonable cognitive burden. This is to be done 

through a block scheme choice experimental design. Experiments were conducted with 

designs, which differed in the number of factors used to develop the choice sets. The 

number of factors varied from three to six factors.  

2. There is no significant difference between effort and difficulty level ratings of 

the design with five and six factors. These two designs are not ‘easy’ enough for 

participants, and not good options for the block scheme experimental design.  

3. The designs with three and four factors are ‘easy’ enough for participants. The 

design with four factors is the optimal choice for the block scheme experimental design 

since it balances cognitive burden and survey cost.   
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5 DISCRETE CHOICE EXPERIMENTAL DESIGN FOR 

MINING COMMUNITY ACCEPTANCE 

5.1. INTRODUCTION 

The second hurdle for incorporating discrete choice modeling into mining 

community analysis is how to design good discrete choice experiments (DCEs) for 

mining community consultation. For effective and efficient discrete choice experiment 

design, there are three important questions which need to be answered: (1) What is the 

optimum number of factors to consider in one choice set? (2) How do you design discrete 

choice experiment for mining community consultation? (3) How do you validate the 

discrete choice experiment design to ensure the data collected with by the survey is useful? 

Without answers to these questions, discrete choice experiment design would not yield 

useful data to help with community analysis. 

In Section 4, the author addressed the first question and found the optimal number 

of factors in one choice set is four. Consequently, the other two questions are addressed 

in this section. This section presents an approach for designing DCEs which is validated 

with a pilot study. A focus group was used to examine the clarity of instructions and 

difficulty of the survey questions. The objectives of the work in this section are to: (1) 

formulate a general approach to discrete choice experimental design for mining 

community engagement; and (2) validate the proposed DCE design, using the 16 factors 

from Section 3.  

 

 

5.2. RELEVANT MINING PROJECT CHARACTERISTICS FOR COMMUNITY 

CONSULTATION  

Table 5-1 is the list of 16 project characteristics from four categories used in the 

discrete choice experiment in this work.  
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Table 5-1. Mining project characteristics used as attributes in choice experiment design 

(after Que et al. (2014)) 

Determinant 

Social 

 Population increase    

 Infrastructure improvement  

 Traffic increase 

 Crime increase  

Economic 

 Job opportunities 

 Income increase (for all local residents) 

 Increase in housing costs   

 Labor shortage for other business 

Environmental 

 Noise pollution 

 Water shortage or pollution  

 Air pollution 

 Land pollution and subsidence 

Management and others 

 Permit approval decision making mechanism 

 Availability of independent and transparent information on potential impacts of 

mine 

 Mine buffer (Home distance from mine) 

 Mine life 

 

Compared to Section 37, these project characteristics were modified for clarity, 

effectiveness, and validity. First of all, “cultural impact” was deleted since there is no 

clear definition of cultural impact, which makes it invalid in a survey instrument. Second, 

“traffic and crime increase” were separated into “traffic increase” and “crime increase” 

since they are really two different items. In addition, “cost of housing or housing shortage” 

was revised to “increase in housing costs”, “decision making mechanism on the mine's 

permits” has been revised to “permit approval decision making mechanism” , and 

“independent and transparent information” has been revised to “availability of 

independent and transparent information on potential impacts of mine” in an effort to 

provide clarity and  conciseness. This list of mining project characteristics (impacts and 

                                                 
7 the work in Section 3 has been published by Que et al. (2015) 
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other attributes) are then used as attributes, which are varied to generate alternatives in 

discrete choice experiments. 

 

 

5.3. DISCRETE CHOICE EXPERIMENTAL DESIGN  

Two important concepts for discrete choice experimental design are presented in 

this section. These are the concepts of D-error as well as the attributes and their levels. 

This is then followed by discussions on discrete choice experimental design for mining 

community consultation. 

5.3.1. The Concept of D-error. D-error is used as an indicator of effectiveness of 

discrete choice experiments (Kuhfeld, 2010). As shown in Equations 5-1 and 5-2, D-error 

is the geometric mean of the eigenvalues and D-efficiency is the inverse of D-error. The 

D-efficiency is greater than 0 (i.e. no upper bound). If the effectiveness of a discrete 

choice experiment design is evaluated by the D-efficiency, it is difficult to know how 

good the experimental design is. The relative D-efficiency resolves this shortcoming of 

D-efficiency. Relative D-efficiency (Equation 5-3) ranges from 0 to 100%.  The relative 

D-efficiency is used in this research. 

 

                                                                                         (5-1) 

                                                                           (5-2) 

             (5-3) 

where 

----the covariance matrix of choice sets design 

 K --- the number of parameters 

 

1
D-error

K
 

1
D-efficiency 1/

K
 

1

1
Relative D-efficiency 100%

number of choice sets
K

 
 


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5.3.2. Attributes and Levels. The number of attributes and number of levels per 

attribute is a key part of designing a choice experiment (Caussade et al., 2005; Hoyos, 

2010). Firstly, the selected attributes and levels for each attribute should be important and 

relevant to the choice and potential participants. In this case study, the attributes and 

levels for each attribute are shown in Appendix D. The detailed discussion of how the 

author arrived at these attributes is contained in Section 3.  

Secondly, the attributes and levels need to be realistic and framed appropriately. 

Take the levels of the attributes “job opportunities” and “income increase”, as examples. 

The potential increases in number of jobs and incomes due to a mine varies depending on 

mine and community size. These levels should be selected carefully to account for 

different mines and associated local communities. In this study, all levels were 

determined bearing in mind a mine close to Salt Lake City, since the final survey was 

conducted there. 

Thirdly, the attribute levels should easily be understood by the average respondent 

while providing useful information (Bateman et al., 2002; Bergmann, Hanley, & Wright, 

2006). For example, one can add an explanation to the attribute “mine buffer” to explain 

that it is ‘the distance of the respondent’s home from the mine.’ Examples such as 

transportation, education, human services, and internet can be provided for the attribute, 

infrastructure improvement. 
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5.3.3. Experimental Design Considerations. The experimental design 

considerations include four main aspects.  

5.3.3.1. Stated preference vs. revealed preference. Revealed preference (RP) 

and stated preference (SP) are the primary discrete choice experiment methods.  RP is a 

conventional method, which refers to situations where the choice is actually made in real 

market situations. In contrast to RP, SP refers to situations where a choice is made by 

considering hypothetical situations. The choice options of SP are similar to that of RP 

except that the choices in RP are limited to reality. This feature results in a major 

advantage of SP.  

Currently, the most popular method is to have both RP and SP choice data 

(Ivanova & Rolfe, 2011; Winslott Hiselius, 2005). In the case study presented in this 

research, the status quo option shows the average value of each attribute/characteristic in 

the real world. The other two alternatives, in the choice set, use the same attributes but 

different combination of attribute levels to generate hypothetical situations. The design of 

this study is, consequently, a mixed design as recommended by Louviere, Hensher, and 

Swait (2003). Thus, we can show participants various real and possible hypothetical 

mining scenarios (Hensher, Rose, & Greene, 2005). 

5.3.3.2. Block design. Discrete choice experiments with large number of factors 

result in complicated choices, which require significant cognitive effort by respondents 

(Caussade et al., 2005; Hoyos, 2010).  

This can lead to a gap between the cognitive ability of respondents and the 

cognitive burden of the decision they are asked to make. Ivanova and Rolfe (2011) 

considered only five characteristics/attributes in developing mine development options, in 

order to keep it “simple and concise” so that respondents can complete the survey with 

reasonable cognitive burden. However, using only five attributes led to a high alternate 
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specific constant, which indicates the selected attributes do not fully explain respondents’ 

preferences. 

In this case study, there are 16 important attributes or characteristics of the mining 

project (Que et al., 2015). The challenge is to find a way to include all 16 attributes while 

designing choice experiments with reasonable cognitive burden. Previous research (Klein 

et al., 2015) has addressed the cognitive load for participants while completing discrete 

choice experiments with hypothetical mining project choice sets. The optimal number of 

attributes in one question was determined to be four (Klein et al., 2015). Thus, the 16 

mining characteristics were divided into four blocks. Each block includes one factor from 

each of the four categories (Table 5-1), and the factors are chosen to balance the positive 

and negative effects (Table 5-2). There are three positive impacts included in these 16 

characteristics, thus Block 4 does not have one. However, participants will understand 

that the main objective is to make trade-offs, assuming all other factors are at status quo 

levels in the previous blocks. 

 

Table 5-2. Attribute blocks for DCE (* Positive attribute is shown in bold font) 

Block Attributes* 

1 

Job opportunities 

Water pollution and shortage 

Permit approval decision making mechanism 

Population increase 

2 

Income increase (for all local residents) 

Air pollution 

Availability of independent and transparent information on potential impacts of 

mine 

Crime increase 

3 

Increase in housing costs   

Noise pollution 

Infrastructure improvement (transportation, education, human serves, internet)  

Mine buffer (Home distance from mine) 

4 

Labor shortage for other business 

Land pollution and subsidence 

Traffic increase 

Mine life  
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5.3.3.3. Fractional factorial design. Fractional factorial designs refer to survey 

designs, which use only a fraction of the total number of treatment combinations. In the 

case study, each block has four factors with three levels and the full set of combinations 

is 81=34. This means we will have more than 40 choice sets (each choice set includes two 

hypothetical alternatives plus the status quo option) for each block. This number of 

questions (each choice set will be presented as a question) is too high. Thus, fractional 

factorial design is used in this case study (Hensher et al., 2005; Louviere et al., 2003).  

5.3.3.4. With or without interaction. A discrete choice experiment can examine 

both main factors as well as interactions. In this case study, the design only includes main 

factors because interactions rarely account for much of the choice. As suggested by 

Dawes and Corrigan (1974),  main effects typically account for 70 to 90 % of the 

explained variance, two-way interactions typically account for 5 to 15%, and Higher-

order interactions account for the remaining explained variance (Louviere et al., 2003).  

5.3.4. Generating Experiments. As discussed in the previous section, the 

discrete choice experiment will be designed as a mix style, blocking scheme, fractional 

factorial without interaction experiment. This design has five main steps: experimental 

size determination, candidate design construction, efficient experiment design, duplicate 

check, and labeling. The functions and respective SAS Macros are shown in Table 5-3. 

 

Table 5-3. Steps in generating experiments  

Step SAS Macro Function 

1. Experimental size 

determination 

%MktRuns 

(SAS, 2007h) 

Suggests sizes for balanced factional factorial 

experiment designs. 

2. Candidate design 

construction 

%MktEx 

(SAS, 2007f) 

Creates efficient factorial designs with the 

selected size 

3. Efficient 

experiment design 

%ChoicEff 

(SAS, 2007d) 

Finds optimal experimental designs for choice 

experiments and evaluates choice designs 

4. Duplicate check 
%MktDups 

(SAS, 2007e) 

Detects duplicate choice sets and alternatives 

within generic choice sets 

5. Labeling 
%MktLab 

(SAS, 2007g) 
Labels factors and their levels for each block 
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5.3.4.1. Experimental size determination. The size of the experiment needs to 

be found to achieve perfect balance and orthogonality or, at least, to minimize violations 

of orthogonality and balance in the following experimental design. A design is 

orthogonal when all of the parameter estimates are uncorrelated. A design is balanced 

when all levels of each factor occurs equally often. As discussed in Section 5.3.1, the 

relative D-efficiency is an indicator of effectiveness (orthogonality and balance) of 

discrete choice experiments. The design size is selected to achieve the maximum possible 

relative D-efficiency.  

The SAS %MktRuns macro was used to determine the design size with four 

factors, each with three levels (SAS, 2007h). The possible sizes and corresponding 

relative D-efficiency are shown in Table 5-4.  

 

Table 5-4. Experimental size suggestion output  

Saturated         = 9 

Full Factorial   = 81 

Observation 
Reasonable 

design size 

1 9 *S 

2 18 * 

3 12 

4 15 

5 10 

6 11 

7 13 

8 14 

9 16 

10 17 
* - 100% efficient design. 
S - Saturated Design - The smallest design that can be made. 

 

The saturated design (smallest design that can be made) is nine, and the full 

design size is 81. Designs with 100% relative D-efficiency can be achieved with size 9 

and 18. Both satisfy the desire for a reasonable sample size and to maximize the relative 
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D-efficiency. In this case study, each question (choice set) includes the status quo 

alternative and two hypothetical alternatives. Thus, the author chose the design size of 18 

since 18 hypothetical alternatives can be divided into nine choice sets of two alternatives 

each.  

5.3.4.2. Candidate design construction. In this step, a researcher needs to 

construct a candidate design with size 18 and 100% D-efficiency, which can be used to 

find the most efficient design quickly, in the next step. The coordinate-exchange 

algorithm (CoordX) of Meyer and Nachtsheim (1995) provides a way to search the 

candidate designs by initializing the design with an orthogonal and random design 

(Kuhfeld, 2010). The CoordX algorithm stops if, at any time it finds a perfect, 100% 

efficient, orthogonal, and balanced design. The CoordX algorithm, as implemented in the 

SAS %ChoicEx macro, was used to find a candidate design with 100% D-efficiency  

(SAS, 2007f). The solution (candidate design) is shown in Table 5-5.   

 

Table 5-5. CoordX algorithm output (100% efficient) 

Observation x1 x2 x3 x4 

1 1 1 1 1 

2 1 1 2 2 

3 1 2 1 3 

4 1 2 3 1 

5 1 3 2 3 

6 1 3 3 2 

7 2 1 1 3 

8 2 1 3 1 

9 2 2 2 2 

10 2 2 3 3 

11 2 3 1 2 

12 2 3 2 1 

13 3 1 2 3 

14 3 1 3 2 

15 3 2 1 2 

16 3 2 2 1 

17 3 3 1 1 

18 3 3 3 3 
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5.3.4.3. Efficient experiment design. In this step, the 18 hypothetical alternatives 

(Table 5-5) need to be divided into nine choice sets of two alternatives each. A modified 

Fedorov (MFed) candidate-set-search algorithm was used in this step (Cook & 

Nachtsheim, 1980; Fedorov, 1972; Kuhfeld, 2010). A random initial design was 

constructed from the candidate design. This is then evaluated by exchanging 

alternatives/sets until increase the D-efficiency stabilizes at a local maximum. This 

process is repeated with different initial designs to find the best design for all possible 

initial designs.  

MFed algorithm is implemented in the SAS %ChoicEff macro, which was used to 

find the most efficient random scheme to pair the 18 alternatives into nine choice sets 

(SAS, 2007d). The candidate-set-search output is shown in Table 5-6, which shows two 

runs with both converging in four iterations. The first run returns the highest local 

maximum D-efficiency. The process was repeated with 145 initial designs (two iterations 

are shown in Table 5-6 as examples). The first run in Table 5-6 returns the maximum D-

efficiency and corresponds to the pairing shown in Table 5-7.  

 

Table 5-6. Sample candidate-set-search results 

Design Iteration D-Efficiency D-Error 
Relative D-

Efficiency 

1 0 0 . . 

 1 5.970687 0.167485 66% 

 2 6.142330 0.162805 68% 

 3 6.500560 0.153833 72% 

 4 6.500560 0.153833 72% 

2 0 1.837117 0.544331 20% 

 1 5.759409 0.173629 64% 

 2 5.845501 0.171072 65% 

 3 6.167149 0.162149 69% 

 4 6.167149 0.162149 69% 
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The relative D-efficiency is 72%. This step changes the relative D-efficiency 

(from 100%) since it depends on the number of choice sets (Equation 5-3). In this study, 

the author deemed this adequate. If the relative D-efficiency is too low, the designer can 

change the number of choice sets or the size of candidate alternatives to improve the 

design. The number of attributes and number of levels for each attribute can also affect 

the relative D-efficiency. However, these are difficult or unrealistic to change in real 

cases. 

 

Table 5-7. Efficient experimental design result  

Observation (Table 5-5) Set 

4 1 

13 1 

8 2 

15 2 

9 3 

18 3 

16 4 

11 4 

12 5 

3 5 

5 6 

14 6 

17 7 

2 7 

1 8 

10 8 

6 9 

7 9 

 

5.3.4.4. Duplicate check and labeling. At this step, the design needs to be 

checked for duplicate choice sets and alternatives. The experimental design needs to be 

labeled with the full description of factors and their levels for each block.  

The SAS %MktDups macro is used to check for duplicates (SAS, 2007e). In this 

case, there are no duplicate choice sets and no duplicate alternatives within the choice 

sets. The SAS %MktLab macro is used to label the experiments with factors and levels 
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(SAS, 2007g). The status quo alternative was added to each question (choice set) 

manually. Finally, there are four discrete choice experiments in this work: one for each of 

the four blocks. Each survey has nine choice sets: one status quo option plus two 

hypothetical alternatives. This results in 36 choice sets (questions).  

 

 

5.4. FOCUS GROUP STUDY 

An online survey was conducted with a two part questionnaire to validate the 

design. The first part of the survey contained background questions regarding 

demographics, the respondent’s socioeconomic status, and past experience with mining. 

The demographic questions included age, gender, income, education, job field, and 

number of children.  

The second part would have contained 36 choice sets from four blocks. This is too 

much for one respondent. To prevent fatigue, the plan for the final survey was to give 

each respondent three choice set from each block. This means each respondent will see 

12 choice sets, and three respondents are required to answer all 36 choice sets. This 

approach has been used in several applications where there are too many choice sets 

(Witt et al., 2009). In this focus group study, the author used only one of the surveys (i.e. 

only 12 choice sets) to examine the clarity of instructions and difficulty of the survey 

questions. 

In the second part of the survey, participants were asked to select one of three 

mine options, if a new mine were to be opened in their community (12 such questions 

were asked, three from each block). Following the questions from each block, 

participants were asked to rank the level of difficulty and confusion of each block’s 

questions, by selecting a number from 1 to 5 (“not difficult at all” to “very difficult” and 

“not confusing at all” to “very confusing”). Additional open questions ‘what made the 
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questions difficult/ confusing?’ were shown to them if they chose level 4 (somewhat 

difficult/ confusing) or level 5 (very difficult/ confusing).  

This survey was conducted in October, 2014. Twenty-five people participated in 

this survey, and 22 of them completed it (i.e. answered all question to the end). The 

participants were recruited from residents in Rolla, MO. Two quality control questions 

were inserted in the survey. Data was regarded as invalid if the participant completed the 

survey in less than the minimum expected survey time (150 seconds). Two participants 

did not ‘pass’ the quality control questions, and data from these two participants were 

deleted. Thus, data from 20 participants was used for the data analysis.  

Among the 20 respondents, nine were male and eleven were female. Ten people 

stated that they live near a mine. Of these, 6 reported living within 10 miles of a mine and 

the remaining four live more than 30 miles of a mine. The Missouri University of Science 

and Technology Experimental Mine and Capital Quarries’ limestone quarry are located in 

Rolla, MO.  Seven of the 20 participants self-declared to have experience with mining 

(e.g. working for a mine, familiarity with mining activities, studying about mining etc.). 

Sample answers to this Question include: 

 “I visited the experimental mine at MST”, “Mining Engineer, work with Mining 

Companies and for Mining Companies” and “intern at underground coal mine and a 

surface diamond mine”. 
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5.5. DATA ANALYSIS 

5.5.1. Analysis of Difficulty and Confusion Ratings. In the focus group study, 

data on the level of difficulty and confusion was acquired for questions and instructions 

from all four blocks. The main objective of the data analysis is evaluate whether or not 

there is a significant difference between the level of difficulty and confusion rating for 

these four blocks. Thus, the data on difficulty and confusion ratings from the different 

blocks were treated as independent groups.  

There are three data analysis methods for more than two independent groups: 

ANOVA, Welch ANOVA, and Kruskal-Wallis (Schlotzhauer, 2009). Figure 4-2 shows 

the logic for selecting the proper test. ANOVA and Welch ANOVA tests can be used 

when the variables are interval variables. In this case study, the data on the level of 

difficulty and confusion are treated as ordinal. Thus, the Kruskal-Wallis test is the most 

appropriate test. 

The null hypothesis is that ‘there is no significant difference between the 

difficulty/confusion level distributions of these four blocks.’ The p-value (p) is the 

probability that the null hypothesis is not true. If p < α (the level of significance), then we 

have enough evidence to reject the null hypothesis, and conclude there is at least one 

significant difference among the difficulty/confusion level ratings of these four blocks at 

significant level α (typically 0.05). On the other hand, if p > α, then the test fails to reject 

the null hypothesis at significant level α. 

Kruskal-Wallis test was done using the SAS PROC NPAR1WAY WILCOXON 

PROCEDURE (SAS, 2007k). The p values were estimated as 0.9536 and 0.8469 for 

difficulty and confusion level comparisons, respectively. The tests fail to reject the null 

hypothesis, and we conclude that there is not enough evidence to prove there is at least 

one significant difference among the difficulty and confusion level ratings of these four 

blocks at significant level 0.05. 
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To examine the hypothesis test more closely, the author estimated 95% 

confidence bounds of the medians using the SAS UNIVARIATE procedure for both data 

sets (SAS, 2007l, 2007m). Table 5-8 shows the results, rounded to the nearest integer, 

computed without assuming any specific distribution. It shows the median level of 

difficulty and confusion is similar for all four blocks, although, Block 1 has slightly 

higher medians. 

 

Table 5-8. Level of difficult/confusing scale for each block 

 Difficulty level Confusing level 

Block 1 (2,4) (2,4) 

Block 2 (2,3) (2,3) 

Block 3 (2,3) (2,3) 

Block 4 (2,3) (2,3) 

1 Not difficult/confusing at all 

2 Not very difficult/confusing 

3 Acceptable 

4 Somewhat difficult/confusing 

5 Very difficult/confusing 

 

From Figure 5-1 and Figure 5-2, most of the participants selected level 3 

(acceptable) for both difficulty and confusion ratings of all four blocks. All the 

distributions are relatively symmetric, although a few more selected levels 1 and 2 than 

levels 4 and 5, in most cases. For Block 1, 30% of participants selected levels 4 

(somewhat difficult/confusing) and 5 (very difficult/confusing) for both difficulty and 

confusion rating. However, significantly fewer respondents (≤20%) selected levels 4 or 5 

in the other three blocks. It is the main reason why the median level of both difficulty and 

confusion rating for Block 1 are higher than the other three blocks.  
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Figure 5-1. Difficulty levels 

 

 

Figure 5-2. Confusing levels 
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5.5.2. Analysis Based on Duration of Survey. The time duration it took for each 

participant to complete each block was tracked, and the comparative box plot is shown in 

Figure 5-3.  

The same Kruskal-Wallis test was used to test the null hypothesis that there is no 

significant difference between the duration of these four blocks (SAS, 2007k). The p 

value was estimated as 0.6373, and fail to reject the null hypothesis. This result means 

there is not enough evidence to prove that there is at least one significant difference 

among the duration of the survey for respondents on these four blocks, at a significant 

level of 0.05. 

 

 

Figure 5-3. Time for completing each block 

 

Figure 5-3 shows that the mean of duration is higher than the median in all blocks 

and the variation for all blocks is similar. The mean and median of time duration is 
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highest for Block 1, which is 121 and 96 seconds, respectively. For Block 2, both mean 

and median drop sharply to the lowest at 93 and 78 seconds, respectively. After that, the 

mean and median stays steady for Blocks 3 and 4 at 104 and 83 seconds, and 107 and 93 

seconds, respectively.  

5.5.3. Open Question Comments. The respondents provided 32 comments in 

response to the open questions “what made the questions difficult/confusing?”  

There were five comments for each question (difficulty/clarity) from Block 1. The 

other three blocks have fewer comments: three to four comments for each question. The 

answers are quite similar for these two questions, thus, author did not separate them. 

These comments can be generally classified into three types: clarity, information, and 

levels and factors. 

Some participants did not understand the main purpose of this survey (i.e. the 

instructions on the purpose was not clear to them). This is indicated by comments such as 

“Do I choose these according to what I want this mine to be?” In addition, the block 

introduction, which introduces the factors and their levels before each block seems to 

have confused some respondents.  This is shown by comments like “Mostly just the way 

it started -- I was trying to select options on first page”. 

It appears some participants wanted to more details and background information 

about the survey. Respondents provided comments like “Not enough information or 

detail” and“No explanation of how factors relate to question”. What is more, this survey 

is designed with a block scheme to ensure reasonable cognitive burden. However, it 

appears this unsettled some participants who wanted information on the hidden/unknown 

variables. They seem to have missed the instruction that “all other factors are the same 

for all alternatives.” 

It appears most of the levels are not clear enough. First of all, labor shortage for 

other businesses, infrastructure improvement, and all environmental factors have similar 
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levels “negligible”, “no increase”, “slight”, “moderate”, which appears to confuse some 

respondents. Respondents did not understand the relative degrees, and provided 

comments like “Is slight>moderate?” and “I don't understand if 

slight<negligible<moderate?” Secondly, the levels of factors population increase, traffic 

increase, increase in housing costs and crime increase seem to be confusing (e.g. “a 

reduced rate of increase” and “2% reduction in increase …”). There were comments such 

as “What is reduction in increase? Is reduction in increase= decrease?” Thirdly, the 

percent levels were also difficult to understand since participants did seem to have a 

concept of the current rate.  

There were also comments like “I can't say I really liked any of the options so I 

had to weigh in what I thought best” and “no obvious option”. These comments are 

acceptable since the objective of choice experiments is evaluate how respondents make 

trade-offs. 

 

 

5.6. RESULTS AND DISCUSSION 

5.6.1. Design Evaluation. As discussed in the design section, the discrete choice 

experiment is a mix style, blocking scheme, fractional factorial without interaction design. 

The 16 mining project characteristics are divided into four blocks as shown in Table 5-2.  

Every block has nine questions with three alternatives each. The first alternative is 

always the status quo option and shows the average impact/value of each attribute in the 

survey area. The other two alternatives use the same attributes but different levels to 

generate hypothetical alternatives. The relative D-efficiency of the discrete choice 

experiment is 72%. Each survey (for each respondent) contained 12 choice sets, three 

from each of the blocks, in order to prevent fatigue and to ensure each participant 

provides input on each block’s attributes. Hence, there will be three surveys in the real 

discrete choice experiment for collecting data for discrete choice modeling. In this focus 
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group study, the author used one such survey to examine the clarity of instructions and 

difficulty of the survey questions. 

As shown by the results of the Kruskal-Wallis test, there is no significant 

difference between the participants’ difficulty and confusion level ratings for these four 

blocks, at significant level 0.05. In addition, the median level of difficulty and confusion 

rating for all blocks are (2, 3) — above “not very difficult/confusing” but below 

“acceptable” -- and (2, 4), — above “not very confusing” but below “somewhat 

confusing” -- respectively. This means the discrete choice experiment design achieves 

one of the main goals for questions in all blocks, which is a survey that is not unduly 

difficult (i.e. reasonable cognitive burden).  

While there is no significant difference among the difficulty and confusion ratings 

of the four blocks, it appears Block 1 has a slightly higher rating than the other three 

blocks. This finding is confirmed by the result of time duration analysis: both the median 

and mean peaked at Block 1, although there is no significant difference in statistics. This 

slight difference may be partly because Block 1 is slightly more difficult and confusing 

than the other blocks. However, it is also possible that respondents are learning as they 

proceed through the survey. Caussade et al. (2005) observed that there is a learning effect 

in choice situations. Though the factors in each block are different, the question, 

framework, and style of choice situations are the same. Hence, these four blocks should 

be random ordered in the actual discrete choice experiment. This way, one can prevent 

unnecessary variance in the discrete choice model.  
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5.6.2. Survey Revision. Although, the respondents rated the difficulty and 

confusion levels as acceptable, some revision is necessary based on feedback from the 

open-ended question. The main purpose of this survey needs to be stated more clearly to 

help participants understand the survey and provide effective data for the discrete choice 

model.  

With respect to clarity of the survey and instructions, an introduction will be 

added to provide background information to respondents so they can appreciate why and 

how a mining project can affect their lives. A sample problem will be given to help 

participants understand the survey questions. Also, the instructions will highlight that the 

each choice set includes only four attributes and assumes the remaining attributes are all 

at the status quo level. The revised survey introduction is shown in Appendix E. A video 

will be inserted in the induction to help participants understand the instructions better. In 

addition, the block introduction, which introduces the attributes and their levels before 

each block, was revised to prevent participants from trying to select answers at this stage. 

The whole survey including the video introduction, and discrete choice questions is 

available in Appendix F. 

The author has revised the levels and/or provided more explanation to ensure 

respondents understand each level and the relative scale. First, the confusing levels “a 

reduced rate of increase” and “2% reduction in increase …” have instead been revised to 

percent increase/decrease or by comparing the level with the current rate. Take the levels 

of traffic increase as an example, the new levels are compared to the current traffic rate to 

yield “Lower than current rate”, “Same as current rate” and “Higher than current rate”. 

All revised levels are shown in Appendix D in italic. Second，to prevent participants 

from confusing the relative degrees of the levels, the author highlighted the middle level 

as yellow, ‘worse’ level as red and ‘better’ level as green. The text highlighting provides 

a quick reference for respondents, who can now easily appreciate the relative scale of the 
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levels. Third, the factor “land pollution and subsidence” is revised as “land pollution” 

since the proposed study site is Salt Lake City, Utah, USA, which has mainly surface 

mining activities. Land subsidence is not a significant problem. Also, it will be difficult 

to define clear levels that will be useful for “pollution” and “subsidence” at the same time. 

In addition, the factor “water pollution and shortage” is revised to “water pollution” for 

the same reason. In another context, subsidence or shortage may be more important than 

pollution or both will be equally important. The choice of whether to include one, the 

other, or both should be made on the basis of relevance to the community consultation 

process. 

 

 

5.7. SUMMARY OF SECTION FIVE 

This Section is an attempt to design and validate a discrete choice experiment for 

mining community engagement. The work attempts to (1) show the general approach to 

discrete choice experimental design for mining community engagement; and (2) provide 

a research note on validation data analysis with a case study.  

The discrete choice experiment is designed as mixed style, blocking scheme, 

factional factorial without interaction experiment. The relative D-efficiency of the 

discrete choice experiment was 72%. Based on the focus group results, the discrete 

choice experiment design achieved acceptable difficulty and clarity for questions in all 

blocks. 

In addition, on the basis of the validation result, the four blocks should be random 

ordered in the discrete choice experiment to avoid the learning effect affecting only 

Block 1. Revision is also done to address some of the concerns raised with respect to 

clarity, lack of information, and definition of attribute levels. 

  



122 

 

 

6 DICRETE CHOICE EXPERIMENT—A CASE STUDY  

6.1. INTRODUCTION 

The final challenge of this dissertation work is to illustrate the usefulness of the 

discrete choice experimental design suggested in Section 5 for stakeholder analysis in 

mining. This is done by conducting the discrete choice experiment in Salt Lake City, UT 

and analyzing the results to make useful inferences. A major technical challenge in this 

step is how to select the most appropriate discrete choice model to describe the local 

community’s acceptance of mining projects. This task involves: (1) conducting a 

comprehensive literature review of discrete choice models to identify candidate discrete 

choice models that are most appropriate for modeling mining community acceptance 

(Section 2.4); and (2) evaluating the candidate discrete choice models to select the most 

suitable discrete choice model for mining community acceptance. The comprehensive 

literature review of discrete choice models was done in Section 2, in which candidate 

models were identified. Those candidate models are the conditional logit (CL), 

conditional logit stratified by questions (CLQ), and mixed logit (ML) models. The second 

task is addressed in this Section, which examines various discrete choice models to select 

the most appropriate model for mining community consultation based on the case study 

presented in section five. 

When produced from a properly selected DCM method, the discrete choice 

modeling results can provide valuable information for mining companies during design, 

planning and management of mining projects. The results can support the whole 

consultation process by answering three important questions: (1) what are the factors that 

affect stakeholders’ decision and how do these affect the decision-making? (2) what is 

the effect of demographics on individual preferences? (3) what is the value of 

environmental and social impacts to individuals in the community? 
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6.2. DISCRETE CHOICE EXPERIMENT (SURVEY) 

6.2.1 Sample Size Determination. As discussed in Section 5, this survey targeted 

600 respondents (three blocks with 200 respondents per block). The sample size (200 per 

block) was based on the largest proportion of respondents that were likely to choose a 

particular option, which was estimated to be 0.5 (based on the largest proportion in the 

preliminary survey, where 50% of respondents chose water pollution as very important 

(Que et al., 2015). This analysis indicated that a sample size of 183 would be adequate. 

The sample size was rounded up to a more conservative 200 respondents per block for 

convenience in budgeting. 

6.2.2. Sampling Respondents from Mining Communities. The survey 

(designed and validated in Section 5) was conducted in Salt Lake City for three reasons: 

(1) it has a population of 186,440, which makes it relatively easy to find enough 

participants to complete the discrete choice experiment via online interviews; (2) Rio 

Tinto Kennecott’s mine is very visible in the community and has an effect on locals; and 

(3) Rio Tinto has a comprehensive sustainable development report available online, 

which provides relevant data for designing discrete choice experiments. . In a real 

stakeholder analysis situation, a mine seeking to engage in consultation should dedicate 

enough resources to design the DCE and acquire the data, since these particular 

characteristics (which made it easy to acquire responses via online surveys) of this case 

study will not be relevant for determining ease of application. 

The survey was conducted with a two part questionnaire. The first part contained 

demographic questions, including respondent’s age, gender, income, and education. This 

means that three separate respondents were required in order to receive a complete set of 

answers to all 36 choice sets. This approach has been used in several applications where 

there are too many choice sets (Witt et al., 2009). For each choice set, participants were 

asked to select one of three mine options, if a new mine were to be opened in Salt Lake 

City. The full survey can be found in Appendix F. 
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The survey was estimated to take 15 minutes to complete. Two quality control 

questions were inserted in the survey (Appendix F). Data from a participant was regarded 

as invalid if the participant completed the survey in less than seven minutes, which was 

estimated to be the minimum expected survey time. Data from participants who did not 

‘pass’ the quality control questions or survey duration control, was deleted from the data 

set. The survey was computer assisted personal interviews, administered by Qualtrics, a 

well-known market research firm. The survey was conducted from January to March 

2015, and respondents were tracked by their zip code using the IP address they used to 

access the survey. 

6.2.3. Demographic Distribution of Respondents. A total of more than 1,810 

people were invited to participate in this survey, as shown in Table 6-1. Of these, 1,062 

responded, and 882 of them completed the survey (i.e. answered all questions). Forty-

four participants were excluded for failing to answer the quality control question 

correctly or completing the survey in less than seven minutes.  

 

Table 6-1. Survey participant statistics 

No. of participants Group 1 Group 2 Group 3 Total 

Invited 755 669 >386 >1,810 

Started  485 316 386 1,062 

Completed (i.e. answered 

all question to the end) 

300 261 261 882 

Terminated by quality 

control  question or 

survey duration 

12 10 22 44 

Excluded due to 

demographic factors 

74 40 36 150 

Final qualified  214 211 203 628 

 

Based on the results of correlation analysis discussed in Section 3, the goal was to 

match the four important demographic factors (age, gender, income, and education) of 

the intended participants to those of the Salt Lake City (SLC). In all, 150 people were 
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terminated due demographic factors (i.e. accepting them would have unduly biased the 

pool). While the gender and age of the respondents matched those of SLC, the average 

education and annual income did not achieve this goal. This was partly due to the 

difficulty of recruiting a representative sample using online surveys. The limitations of 

the survey method are discussed in Section 6.5.4. A total of 628 qualified participants, 

recruited from Salt Lake City, were included in the final pool of participants. The 

statistics of the four important demographic variables of respondents are summarized and 

compared in Table 6-2.  

 

Table 6-2 Demographic distribution of participants 

Demographics Group 1 Group 2 Group 3 Sum SLC* 

Gender      

Male 50% 49% 44% 47% 50% 

Female 50% 51% 56% 53% 50% 

Age      

18—25 4% 11% 12% 9% 18% 

26—34 26% 24% 34% 28% 26% 

35—54 34% 38% 30% 34% 31% 

55—64 19% 16% 12% 16% 12% 

>65 17% 10% 12% 13% 13% 

Highest education      

<high school 0% 0% 0% 0% 14% 

High school/GED 7% 9% 13% 10% 18% 

Some college, vocational,  

or 2 year college degree 

33% 36% 31% 34% 27% 

Bachelor's degree  

and higher 

59% 55% 55% 56% 41% 

Annual income      

< $20,000 4% 6% 10% 7% 22% 

$20,000—$39,999 22% 21% 19% 21% 23% 

$40,000—$59,999 22% 24% 21% 22% 18% 

 =>$60,000 52% 49% 51% 51% 37% 

*United States Census Bureau, 2010 Census 
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6.3. DATA PROCESSING 

The survey data was collected by groups. Each group contained 12 choice sets, 

three from each of the four blocks. Raw data for the first 10 observations of group one is 

shown in Figure 6-1 as an illustration. The data consist of a subject (participant) number 

followed by 16 integers, which represent the participant’s responses. The first four 

integers represent the demographic factors: gender, age, education, and income.  

 

 

Figure 6-1.  Raw data for the first 10 observations of Group 1 

 

These demographic factors were coded as integers as shown in Table 6-3, in 

which the “prefer not to answer”, option was coded as a blank entry. The next 12 integers 

are in the range 1 to 3 and represent the answers for each choice set. For example, the 

first subject chose alternative 3 in choice set 1 of block 1, alternative 3 in choice set 2 of 

block 1, and so on. 
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Table 6-3. Demographic factor codes 

Demographic factors and levels Level code 

Gender Male 1 

Female 2 

Prefer not to answer . 

Age 18-24 1 

25-34 2 

35-54 3 

55-64 4 

65 or over 5 

 
Prefer not to answer . 

Highest level  

education 

Less than high school 1 

High school/GED 2 

Some college, vocational, or 2 year college degree 3 

Bachelor's degree and higher 4 

Prefer not to answer . 

Combined annual  

household income 

below $20,000 1 

$20,000-$39,000 2 

$40,000-$59,000 3 

$60,000 or more 4 

Prefer not to answer . 

 

For modeling purposes, the raw data needed to be converted to binary coded 

(1=chose, 0=did not choose) data. A sample binary coded data sample for answers of the 

first three respondents in Figure 6-1 are shown in Figure 6-2.   

The data starts with subject number and the four demographic factors. Next are 

the attributes X1, X2, X3, and X4, which are the factors used in the choice sets in Block 1 

(job opportunities, water pollution, permit approval decision making mechanism, and 

population increase). The relative integers, in the range 1 to 3, show the level of each 

factor in the choice set. The next number describes the decision (i.e. whether the option 

was chosen or not).The final number in the sequence, describes the choice set.  

After coding the data as shown in Figure 6-2, the data sets from the four blocks 

and three groups are combined to form over 21,600 observations: 4 blocks × 3 groups × 

200 subjects (minimum) × 3 choice sets × 3 alternatives. This data was then used to fit 

the three candidate discrete choice models to the respondents’ preferences. 
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Figure 6-2. Sample coded data for the first three subjects of Group 1 Block 1 

 

 

6.4. LOG-LIKLIHOOD RATIO INDEX AND ALGORITHMS 

6.4.1. The Log-likelihood Ratio Index. The likelihood ratio index (LRI, also 

called pseudo- R2) is frequently used in discrete choice modeling to measure how well 

the models fit the data. Specifically, the statistic measures how well the model, with its 

estimated parameters, performs compared with a model in which all the parameters are 

zero (which is usually equivalent to having no model at all).  
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Breffle and Rowe (2002) report that an LRI of 0.12 is typical for cross sectional 

data8.  As a rule of thumb, well fitted models have an LRI greater than 0.2, and it is rare 

to find cases with LRI greater than 0.4 (Hoyos, 2010). LRI comparison is conducted on 

the basis of the log likelihood function, evaluated at both the estimated parameters and at 

zero for all parameters. The likelihood ratio index is defined by Equation (6-1). 

 

 
1

LL

LL
  

β

0
                                                                                                   (6-1) 

where ( )LL β is the value of the log likelihood function at the estimated parameters while 

( )LL 0 is its value when all parameters are set equal to zero. If the estimated parameters 

are not better than the zero parameters in terms of the likelihood function, then ( )LL β =

( )LL 0 and 0  . This is the lowest value of  , since  ( )LL LLβ 0 if  would be the 

maximum likelihood estimate. At the other extreme, suppose the estimated model was so 

good that each sampled decision-maker’s choice can be predicted perfectly, then the 

likelihood function at the estimated parameters would be one. This is because the 

probability of observing the choices that were actually made is one. And, since the log of 

one is zero, the log likelihood function would be zero at the estimated parameters, 

making ( )LL β =0 and 1  in this scenario. This is the highest value that   can take. In 

summary, the likelihood ratio index ranges from zero, when the estimated parameters are 

no better than zero parameters, to one, when the estimated parameters perfectly predict 

the choices of the sampled decision-makers. The log-likelihood function has the form 

shown in Equation (6-2). 

 
1

( ) ln ( ) /
N

nn
LL P N


β β                                                                                  (6-2) 

                                                 
8  Cross-sectional data, in statistics and econometrics, is a type of data collected by 

observing many subjects (such as individuals, firms, countries, or regions) at the same 

point in time, or without regard to differences in time. 
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where ( )
n

P β  is the probability of the observed outcome for decision maker n, N is the 

sample size, and β  is a K×1 vector of parameters. If the log-likelihood function was 

divided by N, LL would be the average log-likelihood in the sample. Doing so does not 

change the location of the maximum, since N is fixed for a given sample and yet 

facilitates the interpretation of some of the procedures. All the procedures operate the 

same way regardless of whether the log-likelihood is or is not divided by N.  

6.4.2. The Newton-Raphson Algorithm. This section describes the Newton-

Raphson algorithm that is used to maximize a likelihood function.  

This algorithm is used to find the optimum value of β  that maximizes ( )LL β

Referring to Figure 6-3, the goal is to locate β which occurs at a maximum in ( )LL β . 

Note in the figure that ( )LL β is always negative, since the likelihood is a probability 

between 0 and 1 and the log of any number between 0 and 1 is negative. The maximum 

of ( )LL β
 can be found by “walking up” the likelihood function until no further 

increase can be found (within numerical tolerance). A starting value
0

 can be specified 

as 0 at the beginning, and the subscribe “t” of 
t
β  refers to the number of steps that 

t
β  has 

moved from 
0
β .  Each iteration moves, to a new value of the parameters at which ( )LL β

 

is higher than at the previous value, if the algorithm is convergent. The question is how to 

find the best value for 
1t

β . There are two related questions: (1) in what direction, within 

the search space, should the algorithm proceed to search for the optimum? (2) once the 

search direction is determined, what step size should the algorithm use to find the next 

candidate solution? 
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The gradient 
t

g  at 
t
β  is the vector of first derivatives of the function ( )LL β  

evaluated at 
t
β  (Equation 6-3). The gradient has dimension K × 1, where K is the number 

of parameters to be estimated for the model. As shown in Figure 6-4 for the 1-

dimensional case, this vector indicates the direction of increase in the likelihood function 

(i.e. 
t
β moves LL towards maximum in the positive direction of 

t
g  and 

t
β  moves LL 

away from maximum in the negative direction of 
t

g ). 

 

 
Figure 6-3. Maximum likelihood estimate (Train, 2002) 

 

The Hessian, 
t

H , is the K × K matrix  of second derivatives of ( )LL  , (Equation 

6-4). The Hessian can be used to determine how large a step should be made based on the 

direction suggested by the gradient. If the determinant of the Hessian is high, it implies 

that the slope changes quickly, as in Figure 6-5(a), and the maximum is likely to be close. 

Hence, the algorithm takes small step sizes.  Conversely, if the determinant of the 

Hessian is small, then that the slope is not changing much and the maximum is likely to 

be further away. Hence, the algorithm takes larger step sizes.  After calculating 
t

g  and
t

H , 
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an iterative algorithm to find the optimum can be developed using
 
Equation (6-5), where 

the inverse of the Hessian matrix is used as the step size. The algorithm terminates when 

the maximum ( )LL β  has been found. 

 

 

t

t

LL
g







 
  

 
                                                                                              (6-3) 
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 1

1t t t t
H g  


                                                                                           (6-5) 

 

 
Figure 6-4. Direction of step follows the slope  (Train, 2002) 
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Figure 6-5. Step size is inversely related to curvature  (Train, 2002) 

 

 

6.5. DISCRETE CHOICE MODELING RESULTS 

In this study, the author selected the most appropriate model by fitting the discrete 

choice experiment data to the three candidate discrete choice models: conditional logit 

model (CL), conditional logit model stratified by question (CLQ), and mixed multinomial 

logit model (ML). 

6.5.1. Conditional Logit Model. Modeling with the conditional logit model (CL) 

was done using the SAS LOGISTIC procedure. Based on the CL model result (Table 6-4), 

it can be concluded that the estimated values agreed with the discrete choice experimental 

data reasonably well.  

The goodness-of-fit of the CL model is quite good, with an LRI (pseudo-R2) of 

0.2687. As mentioned above, well-fitting models have a LRI greater than 0.2 (Hoyos, 

2010). The percent concordant9  of the CL model is 73.3%, the percent discordant10 

                                                 
9 Percent Concordant: Percentage of pairs where the observation with the desired 

outcome (event) has a higher predicted probability than the observation without the 

outcome (non-event). 
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equals 23.5%, and the percent tied11 is 3.2%. In general, higher percentages of concordant 

pairs and lower percentages of discordant and tied pairs indicate a more desirable model. 

 

Table 6-4. Conditional logit model result 

Parameter Coefficient Standard 

Error 

Odds 

Ratio 

WTP $/month 

(Standard error) 

Intercept 0.8931** 0.3632   

Economic     

Job opportunities 1.1259*** 0.0481 3.083 341(15) 

Income increase 0.6600*** 0.0518 1.935 200(16) 

Increase in housing costs -1.0416*** 0.0506 0.353 -316(15) 

Labor shortage for other business -0.0924** 0.0433 0.912 -28(13) 

Environmental     

Noise pollution -0.9580*** 0.0507 0.384 -290(15) 

Water pollution -0.1956*** 0.0479 0.822 -59(15) 

Air pollution -1.0952*** 0.0552 0.334 -332(17) 

Land pollution -0.2485*** 0.0451 0.780 -75(14) 

Social     

Population increase -0.0709 0.0465 0.932 N/A 

Infrastructure improvement 0.6527*** 0.0475 1.921 198(14) 

Crime increase -1.1753*** 0.0548 0.309 -356(17) 

Traffic increase -0.1938*** 0.0431 0.824 -59(13) 

Governance and others     

Decision making mechanism 0.1634*** 0.0464 1.178 50(14) 

Information available 0.8460*** 0.0532 2.330 256(16) 

Mine buffer 0.6684*** 0.0479 1.951 203(15) 

Mine life 0.1181*** 0.0431 1.125 36(13) 

Demographic factor     

Age 0.0100**  0.0074   

Gender -0.0200*  0.0118   

Household income 0.0043* 0.0017   

Education 0.0013*  0.0008   

***1% significance level, **5% significance level, *10% significance level. 

                                                                                                                                                 
10 Percent Discordant: Percentage of pairs where the observation with the desired 

outcome (event) has a lower predicted probability than the observation without the 

outcome (non-event). 
11 Percent Tied: Percentage of pairs where the observation with the desired outcome 

(event) has same predicted probability than the observation without the outcome (non-

event). 
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Of the 16 mining characteristics and four demographic factors included in the 

model (Table 6-4), the Wald 2 test results indicate that 15 of the 16 mining characteristics, 

(population increase being the exception), and all four demographic factors that have 

statistically significant influence on the participants’ choices. The null hypothesis of the 

Wald 2 test is that the coefficient of a factor is equal to zero. If the p-value is less than the 

significance level α, the null hypothesis is rejected, implying that the factor has 

significant influence on the choice to accept or reject a particular mining project by the 

mining community. In this model, the author used three significance levels (i.e. 0.01, 0.05, 

and 0.1).   

6.5.1.1. Positive mining characteristics. Since the levels of each factor are coded 

as 1, 2 and 3, the coefficients f the factors represent the relative degrees of influence of 

the factors (i.e. bigger coefficient means larger influence). As illustrated by the results in 

Table 6-4, job opportunities, income increase, infrastructure improvement, decision 

making mechanism, information available, mine buffer, and mine life have positive 

impacts on the preference for particular mining projects at the 1% significance level. 

Increasing their levels will increase the probability of acceptance of a mining project in 

the communities.  

Contrary to the author’s expectation, mine life is estimated as a positive factor at 

the 1% significance level. In the discrete choice experimental design (Section 5), the 

author colored the first level (20 years) of mine life as green representing the “best” level, 

the second level (30 years) as yellow indicating the intermediate level, and the third level 

(40 years) as red representing the “worse” level. However, participants appear not to have 

been biased by the experimental design. This finding is important for mining project 

design and planning since it will suggests—if true for other communities—that mining 

communities prefer longer mine lives (at least in the range of 20 to 40 years). This result 

may be because individuals in mining communities know that most of the mining’s 
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positive impacts only last as long as the mining project, but the negative impacts may last 

much longer than the mine life. Hence, such individuals are likely to opt for longer mine 

lives. The reasons behind this result and whether it can be generalized should be explored 

in future studies.  

The coefficient results from Table 6-4 show that the degree of influence of the 

seven positive mining project characteristics are job opportunities (6, 7) > information 

available (5, 6) > mine buffer (6) > income increase (6) > infrastructure improvement (5, 

6) > decision making mechanism (5, 6) > mine life (6).  The numbers in the parentheses 

represent the mining group result from Table 3-6 (level of importance of mining project 

characteristics). Comparing these two results, the order of the factors based on the 

discrete choice model coefficients are different from the order that would be expected 

based on the results in Section 3. For example, “availability of independent and 

transparent information on potential impacts of mine” has a level of importance (5, 6), 

above somewhat important and less than very important. However, its degree of influence 

in participants choices is larger than mine buffer and mine life, both of which have a level 

of importance (6) -- very important. Also, while the mining project characteristic “mine 

life” has a level of importance (6) -- very important, its degree of influence is the lowest 

among these seven positive mining characteristics and is lower than “availability of 

independent and transparent information on potential impacts of mine”, “infrastructure 

improvements” and “permit approval decision making mechanism”, all of which have 

level of importance (5, 6) – above somewhat important and less than very important.  

The differences show that just ranking the factors independently cannot give us 

the full picture. Section 3 measures each factor independently by asking respondents to 

rank the level of importance of each factor. In discrete choice experiments, respondents 

are presented with real and hypothetical options and asked to choose one option. In doing 

so, respondents are forced to make trade-offs to choose one option over the other. The 
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discrete choice model estimates the relative importance of these 16 mining characteristics 

to respondents when making choices about what they prefer. This is why the discrete 

choice model result can give us a better sense for what people really value. 

Factors similar to the mining project characteristics “mine buffer” and “job 

opportunities” were studied by Ivanova and Rolfe (2011) and Ivanova et al. (2007) as 

“buffer for mine impacts” and “jobs for partners/children”. In their conditional logit (CL) 

model, the coefficients were estimated as 0.248 at significance level 5%, and 0.278 at 

significance level 1%. In this CL model, the coefficient of mine buffer is 0.6684 at 

significance level 1%, and that of job opportunities is 1.1259 at significance level 1%. 

The coefficients are difficult to compare be compared directly due to the different levels 

and unit definition. However, the two results agree that both mining project 

characteristics are positive, at the 1% or 5% significance level. Also, it is shown that “job 

opportunities” has greater influence than “mine buffer” in both models.  

The odds ratio results are shown in the fourth column of Table 6-4. The odds ratio 

is the exponentiated values of the coefficients, so these can be interpreted as odds ratios 

between levels (Allison, 2012).  For example, the coefficient of job opportunities is 

1.1259, and the odds ratio is calculated as 1.1259
3.083e  . This means that the odds of 

choosing job opportunities at the second level (600 people employed directly by the mine) 

is three times the odds of choosing job opportunities at the first level (300 people 

employed directly by the mine).  

And the odds of choosing job opportunities at the third level (900 people 

employed directly by the mine) is three times the odds of choosing job opportunities at 

the second level (600 people employed directly by the mine). The odds ratios of the 

mining characteristics “income increase”, “infrastructure improvement”, and “availability 

of independent and transparent information” on potential impacts of mine and mine 

buffer are almost equal to two, which means there is twice the chance that an individual 
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will choose the level 2 over level 1, or level 3 over level 2 of these four mining 

characteristics. The other two factors, “decision making mechanism” and “mine life” 

have an odds ratio close to one, which means that the odds are the same that an individual 

will choose one level over the other. 

Willingness-to-pay (WTP) is a measure designed to determine the amount of 

money that individuals are willing to forfeit in order to obtain some benefit from the 

undertaking of some specific action or task. WTP is calculated as the ratio of two 

parameter coefficients in MNL and CL models.  It requires at least one attribute that is 

measured in monetary units in the discrete choice experimental design, and the 

coefficient of the factor with monetary unit will provide a financial indicator for all other 

factors. 

In this work, the mining characteristic “income increase (for all local residents)” 

is the factor with a monetary unit  (US$), and its coefficient has been estimated as 0.6600 

at the 1% significance level.  In calculating a measure of WTP, it is important that both 

factors to be used in the calculation are found to be statistically significant, otherwise no 

meaningful WTP measure can be established. The WTP of job opportunities from the CL 

model can be calculated as Equation (6-6). 

 

1.1259
WTP 200 200 341$ / month

0.6600

job

job

income




                                           (6-6) 

The WTP is multiplied by 200 since the level differential for income increase is 

200$/month, but all coefficients were estimated with factors coded as 1, 2, and 3 (so the 

differential is 1). This multiplication converts the WTP of job opportunities into dollars 

per month. The WTP of $341/month for job opportunities means that directly employing 

300 less people (300 is the level differential) at the mine will be acceptable to local 

residents only if their incomes increase by $341/month. All WTP results are shown in 
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Table 6-4, with the standard error shown in the parentheses. The WTP measures are 

especially important for governance factors which are difficult to value in monetary terms. 

The WTP of these four governance factors are $50, $256, $203 and $36 per month for 

each level decrease, respectively.   

6.5.1.2. Negative mining characteristics. As the model results in Table 6-4 show, 

the following factors were considered by participants to be negative impacts: increase in 

housing costs, labor shortage for other businesses, noise pollution, water pollution, air 

pollution, land pollution, crime increase and traffic increase. Labor shortage for other 

business is significant at the 5% significance level while all the other seven factors are 

significant at the 1% significance level. Increasing the levels of these eight factors will 

decrease the probability of the acceptance of mining project. While the coefficient of 

population increase is estimated as negative, it is not found to be a statistically significant 

influence (i.e. p-value > 0.1). A similar finding was reported by Ivanova et al. (2007), 

where population increase is uncorrelated with the decision to adopt a mining project.  

As explained before, the coefficients of factors can represent the relative degree 

of influence of the factors in explaining individual choices. Thus, the absolute value of 

the coefficients can be used to rank the degree of influence of the eight negative mining 

characteristics as crime increase (6) > air pollution (6, 7) > increase in housing costs (5, 

6) > noise pollution (5) > land pollution (6, 7) > water pollution (6, 7) > traffic increase 

(6) > labor shortage (4, 5). Similar to the positive factors, the ranking is different from 

what one would expect using the results from Section 3.  

In Table 3-6, the factors “crime increase” and “traffic increase” were combined 

together and the importance level is found to be (6) -- very important. In the DCE, it was 

thought to be better to separate these two items. The results validate this choice. They are 

different items, and have very different degrees of influence. The results indicate crime 

increase is much more important to residents than traffic increase.  
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Also, although the respondents in the earlier survey (Table 3-6) ranked increase in 

housing cost relatively lower at (5, 6) -- above somewhat important and less than very 

important, in the DCE it has much higher degree of influence than the three pollutions 

items.  The differences show why the DCE is superior to the ranking survey. The 

participants of the raking survey may have thought pollution is important to them because 

they never had to make trade-offs. When they were required to make trade-offs with 

housing costs, they chose lower housing costs. The discrete choice model can compare 

the immediate interest of participants and the factors which are difficult to value 

monetary terms. 

In addition, the importance level of noise pollution was much less than the other 

three pollution impacts in the earlier survey. However, in the DCE, its influence is greater 

than land and water pollution. This result agrees with our literature review result in 

Section 2 that noise pollution is the single largest type of community complaint (ICMM, 

2009). BHP Billiton reports that out of 536 complaints in 2008, 200 were related to noise 

(BHP, 2008). 

“Increase in housing costs” and “water pollution” were studied by Ivanova and 

Rolfe (2011) as “housing and rental prices” and “water restrictions”. In their CL model, 

the coefficients were estimated as 0.284 at the 5% significance level, and 0.218 at the 10% 

significance level. In this CL model, the coefficient of the factor, “increase in housing 

costs” is -1.0416 at significance level 1%, and that of “water pollution” is -0.1956 at 

significance level 1%. While the sign of these coefficients seems different, it is only 

because of how levels were defined in the different discrete choice experiments. In  

Ivanova and Rolfe (2011), the levels of “Housing and rental prices” and “water restriction” 

were defined from “best” to “worse” whereas the author defined the levels in this work 

from “worse” to “best.”  
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The absolute value of the coefficients of “water pollution” and “water restrictions” 

are close to 0.2, which means their relative importance is similar in the different discrete 

choice experiments. The levels of water pollution are from “less than similar mine in the 

area” to “more than similar mine in the area”, and that of water restrictions are from 

“none of households, town parks and gardens are drier than now” to “none of households, 

town parks and gardens are greener than now”.  

The absolute value of the coefficient of “increase in housing costs” in this work is 

only half of the coefficient of “housing and rental prices”, in Ivanova and Rolfe (2011). It 

may be because the levels of the increase in housing costs in this work only varied in the 

range from “3% increase every year in 10 years” to “7% increase every year in 10 years”, 

and that of the housing and rental prices used by Ivanova and Rolfe varied in the much 

bigger range of “25% increase” to “25% decrease”. 

As expected, all negative factors have odds ratio less than one (Table 6-4). For 

“increase in housing costs”, the odds of choosing the second level (5% increase every 

year for 10 years) are only one third of the odds of choosing the first level (3% increase 

every year for 10 years), and the odds of choosing the third level (7% increase every year 

for 10 years) are also only one third of the odds of choosing the second level (5% 

increase every year for 10 years). Noise pollution, air pollution, and crime increase have 

similar odds ratio as increase in housing costs. Labor shortage for other businesses, water 

pollution, and land pollution all have odds ratios close to one.   

The WTP of population increase was not estimated since population increase is 

not statistically significant, and the WTP is not meaningful. The WTP of increase in 

housing costs, noise pollution, air pollution, and crime increase is around -$300/month. 

For example, if the mining project causes housing costs to increase from first level (3% 

increase every year in 10 years) to second level (5% increase every year in 10 years), this 

2% difference, to the respondents, is equivalent to losing $316 per month in income for 
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all local residents. The WTP for labor shortage for other businesses, water pollution, land 

pollution, and traffic increase are much less.  

WTP measures are important for environmental-economic studies in which a 

common objective is the valuation of non-monetary attributes. In this study, it has been 

found that individuals in Salt Lake City treat noise pollution and air pollution as much 

more important than the water pollution and land pollution. Further work is necessary to 

determine whether this result can be generalized in some form to all mining communities. 

6.5.1.3. Demographic factors. As the model result in Table 6-4 shows, the 

estimated coefficients (and p-values) of demographic factors revealed that age (5% level), 

gender (10% level), household income (10% level), and education (10% level) have 

significant effects on individual preferences. That is, individuals who differ in these 

demographic factors are likely to have different opinions. 

The coefficient of gender is estimated as negative at 10% significance level. Since 

the first level of gender is male, and the second one is female, this shows a negative 

relationship between female and the probability of choosing a particular preference. 

Compared with the coefficients of mining characteristics, it is obvious that the influence 

of demographic factors is secondary to the mining characteristics. While individuals with 

variable backgrounds in Salt Lake City may have different preferences with regards to a 

mining project, the characteristics or impacts of the mining project itself are much more 

important. In fact, the influence of the demographics itself is, most likely, the result of 

how individuals of different demographics perceive the mining characteristics. 

The results of demographic factors of the CL model confirm the correlation 

results (Fisher’s exact test results) in the earlier survey reported in Table 3-3 (summary in 

Table 6-5). As shown in Table 6-5, age is observed to be negatively correlated to 

population changes, cultural impacts, and mine buffer. These three factors would highly 

affect lifestyle. It appears, from the results, that younger people in mining communities 
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care more about these lifestyle impacts.  It may be the main reason why individuals with 

a higher age are more likely to prefer any particular mine option than individuals with a 

lower age. 

Table 6-5 also shows a significant negative correlation between income and the 

possible negative impacts, which include traffic and crime increase, water shortage or 

pollution, air pollution, and land pollution. This means participants with higher incomes 

ranked traffic, crime, and pollution issues lower than those with lower incomes, and it 

can explain why people with higher income are more likely to prefer any particular mine 

option than people with a lower income.   

 

Table 6-5. Summary significant results from Table 3-3 

Demographic 

factors 

Correlated characteristics of mining 

projects 

Correlation 

coefficients (p-values) 

Age Population changes (M) -0.240 (0.0171) 

 Cultural impact(M) -0.394 (<.0001) 

 Mine buffer(M) -0.286 (0.004) 

Income Traffic and crime increase (M) -0.230 (0.030) 

 Water shortage or pollution (M) -0.320 (0.002) 

 Air pollution (M) -0.260 (0.012) 

 Land pollution (M) -0.265 (0.011) 

Education Job opportunities (M) -0.212 (0.035) 

 Income increase (M) -0.236 (0.019) 

Gender Traffic and crime increase (M) (0.037) 

 Job opportunities (M) (0.046) 

 Cost of housing or housing shortage (M) (0.023) 

 Water shortage or pollution (M) (0.015) 

 Land pollution (M) (0.005) 

 Decision making mechanism (M) (0.048) 

 Mine buffer (M) (0.027) 

 Mine life (M) (0.049) 

 

These differences in the preferences of individuals with different demographics 

are most likely due to differences in how individuals of different demographics perceive 

the mining attributes  (Que et al. 2015). Future work needs to be done to establish the 

exact differences in preferences of males and females which was found to be the most 
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significant demographic factor. The same discrete choice experiment could administered 

to males and females. The difference between the two discrete choice models can show 

the exact differences in preferences of males and females. 

There is also a negative correlation between education and job opportunities and 

income increase. This means respondents with higher education are less concerned about 

new job opportunities and potential income increases associated with the mining 

operation. This negative correlation may be because people with higher education have 

less of a need to change jobs and work for the new mine or consider mining-related jobs 

to be less desirable. However, people with higher education are still more likely to prefer 

any particular mine option than people with lower education.  

From the Fisher’s exact test results of gender, there is a significant difference 

between female and male rankings of eight mining characteristics. They are traffic and 

crime increase, job opportunities, cost of housing or housing shortage, water shortage or 

pollution, land pollution, decision making mechanism, mine buffer, and mine life. The 

Fisher’s exact test only seeks to determine whether there is a significant difference 

between the distribution of responses from the male and female groups, but does not 

determine which group (male or female) rank a particular characteristic higher/lower. 

However, the tendency is revealed in the CL model result. Females have a significant 

negative relationship with the probability of mining project adoption. That is, females are 

less likely to prefer any particular mine option that males.  

“Age”, “income” and “gender” were studied by Ivanova and Rolfe (2011) and 

Ivanova et al. (2007). In their MNL model, the coefficients were estimated as 0.037 (age) 

at significance level 5%, 0.000 (income) at significance level 5%, and 1.243 (gender) at 

significance level 1%.  

 In this CL model, the coefficient of age is 0.037 at the 5% significance level, and 

that of income is 0.0043 at the 10% significance level. While the coefficients are difficult 
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to compare due to differences in levels, unit definition, and modeling parameters, these 

results confirm that both of these demographic factors are positive at 5% or 10% 

significance level. Also, the degree of influence of “age” is greater than that of “income” 

in both models.  

The coefficient of gender is difficult to compare since the definition of levels of 

gender are not shown in Ivanova and Rolfe (2011). If Ivanova and Rolfe (2011) defined 

the first level as female and second level as male, then the results of this work are 

confirmed by theirs. Otherwise, they are different. However, regardless of whether 

gender is negatively or positively related, the absolute value of the gender coefficient is 

the largest of all demographic factors, which means gender has the largest influence 

among all demographic factors in the decision of mining project adoption.  

6.5.2. Conditional logit model stratified by question. Modeling with the 

conditional logit model stratified by question (CLQ) was done using the SAS LOGISTIC 

procedure and the STRATA statement. With the STRATA statement, the LOGISTIC 

algorithm has the ability to do a stratified analysis. The CLQ model results are shown in 

Table 6-6.  

In the CL model, the LOGISTIC procedure, by itself, analyzes the local mining 

communities’ preference by comparing only the decision codes, 0 and 1, of all questions 

together (Figure 6-2, tenth column). However, in the real case, participants were 

answering questions one by one. And in each question, they only had three options. The 

STRATA statement instructs the algorithm to consider the data by choice set (Figure 6-2, 

eleventh column). The CLQ model fit the observed data reasonably well. The goodness-

of-fit of the CLQ model is slightly better than the CL model. The LRI (pseudo-R2) of the 

CLQ model is 0.2696 compared to 0.2687 for the CL model. The percent concordant of 

the CLQ model increased to 78.5 and the percent discordant and percent tied are 

decreased to 18.7 and 2.8, respectively.  
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Table 6-6. Conditional logit model stratified by question result 

Parameter Coefficient Standard 

Error 

Odds 

Ratio  

WTP $/month 

(error) 

Economic     

Job opportunities 1.3886*** 0.0562 4.009 221(9) 

Income increase 1.2541*** 0.0697 3.505 200(11) 

Increase in housing costs -1.7527*** 0.0706 0.173 -280(11) 

Labor shortage for other business -0.1117** 0.0463 0.894 -18(7) 

Environmental     

Noise pollution -1.6794*** 0.0713 0.186 -268(11) 

Water pollution -0.3471*** 0.0566 0.707 -55(9) 

Air pollution -1.8216*** 0.0735 0.162 -291(12) 

Land pollution -0.2707*** 0.0488 0.763 -43(8) 

Social     

Population increase -0.2570*** 0.0532 0.773 -41(8) 

Infrastructure improvement 1.1575*** 0.0601 3.182 185(10) 

Crime increase -1.6939*** 0.0703 0.184 -270(11) 

Traffic increase -0.1742*** 0.0453 0.840 -28(7) 

Governance and others     

Decision making mechanism 0.2028*** 0.0499 1.225 32(8) 

Information available  1.2606*** 0.0649 3.528 201(10) 

Mine buffer 1.2141*** 0.0620 3.367 194(10) 

Mine life 0.1402*** 0.0460 1.150 22(7) 

Demographic factor     

Age 0.0028* 0.0015   

Gender -0.0093* 0.0033   

Income 0.0021* 0.0017   

Education 0.0017* 0.0009   

*** 1% significance level, **5% significance level, *10% significance level. 

 

6.5.2.1. Comparing taste coefficient results. Compared to the CL model result, 

the coefficient of population increase is estimated as -0.2570 at the 1% significance level 

in the CLQ model. It is the main difference between the CLQ and CL models. In the CL 

model, population increase was estimated as a non-significant factor. 

The same seven mining project characteristics are estimated as positive impacts at 

the same 1% significance level. These are job opportunities, income increase, 

infrastructure improvement, decision making mechanism, information available, mine 
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buffer, and mine life . Increasing the levels of these factors will increase the probability 

of acceptance of a mining project.  

However, all positive coefficients are bigger than those of the CL model. The 

influences of these seven mining project characteristics are estimated to be higher than 

those of the CL model. The coefficient of job opportunities increased from 1.1259 to 

1.3886. The coefficients of income increase, infrastructure improvement and mine buffer 

almost doubled to 1.2541, 1.1675 and 1.2141, respectively. The coefficients of decision 

making mechanism, information available, and mine life increased slightly.  

The negative project characteristics in the conditional logit model stratified by 

question have the same tendencies as the previous results. All coefficients of these eight 

characteristics are still negative in the CLQ model, at the same significance level (1% or 

5%). These are increase in housing costs, labor shortage for other businesses, noise 

pollution, water pollution, air pollution, land pollution, crime increase and traffic increase. 

Increasing levels of these factors will decrease the mining project adoption probability. 

Also, most of the absolute values of the negative coefficient (seven of eight, with traffic 

increase as the exception) are bigger than those of the CL model. Their influences are 

estimated to be higher than in the CL model. The coefficients of increase in housing costs, 

noise pollution and air pollution are almost doubled to -1.7527, -1.6794 and -1.8216, 

respectively. The coefficients of water pollution, land pollution, crime increase and labor 

shortage decreased much more gradually.  

As the model results in Table 6-6 show, the coefficients of demographic factors of 

CLQ model are similar but less than that that of CL model. All four demographic factors 

are estimated at the 10% significance level. This result of CLQ model confirms that the 

influence of demographic factors is less than the mining characteristics. This tendency is 

more predominant when the decisions of mining communities have been stratified by the 

choice sets. 
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6.5.2.2. Comparing odds ratio. The odds ratios of positive factors in CLQ model 

are bigger than those of the CL model.  

For example, the odds ratio of job opportunities was 3.0883 in the CL model, and 

it increases to 4.009 in the CLQ model. It means the odds of choosing job opportunities at 

the second level (600 people employed directly by the mine) is four times the odds of 

choosing job opportunities at the first level (300 people employed directly by the mine), 

and the odds of choosing job opportunities at the third level (900 people employed 

directly by the mine) is four times the odds of choosing job opportunities at the second 

level (600 people employed directly by the mine). The odds ratios of income increase, 

infrastructure improvement, information available, and mine buffer were estimated to be 

around 2 in the CL model. In the CLQ model, their odds ratios are increased to 3.505, 

3.182, 3.528, and 3.367, respectively. The other two factors, decision making mechanism 

and mine life, which have odds ratio close to one in the CL model, have slightly 

increased odds ratios.  

As expected, the odds ratios of the seven of eight negative mining factors (except 

traffic increase) plus the new significance of a negative mining factor (i.e. population 

increase) are decreased. The odds ratios of increase in housing costs, noise pollution, air 

pollution, and crime increase in the CL model are almost one third of that in the CLQ 

model. In the CLQ model, these odds ratios were decreased by a half, which means one-

sixth of people are likely to choose the level 2 compared to level 1, or level 3 compared 

to level 2 for these four mining project characteristics. The odds ratios of labor shortage 

for other business, water pollution, land pollution and population increase were slightly 

lower.  
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6.5.2.3. Comparing WTP results. Comparing the WTPs of the CL and CLQ 

models, the WTPs of all positive mining characteristics are lower in the CLQ model. As 

shown in Equation (6-6), the WTP of job opportunities is proportional to the ratio 

between the coefficients of job opportunities and income increase. While the coefficient 

of job opportunities increased from 1.1259 to 1.3886, that of income increase doubled, in 

the CLQ model. Thus, the WTP of job opportunities decreased from $341 to $221/month. 

Similarly, the WTPs of infrastructure improvement, decision making mechanism, 

information available, mine buffer and mine life decreased to $185, $32, $201, $194 and 

$22 per month for each level increase, respectively.  

The WTP of population increase can now be estimated in the CLQ model since 

the factor was found to be statistically significant at the 1% significance level. As shown 

in Table 6-6, the WTP of population increase is -$41/month. This means if population 

increases from the first (2% annually) to second level (4% annually) due to a mining 

project increases, this additional 2% per annum is equivalent to an additional $41 per 

month income for all local residents. The absolute value of WTPs of all the eight negative 

mining characteristics decreased, meaning the factors are of less value for the local 

mining residents.  



150 

 

 

6.5.3. Mixed Logit Model. The mixed logit model was done using the MDC 

procedure in SAS. This procedure supports three distributions: normal, lognormal and 

uniform. The coefficient of each mining project characteristic was tested with a model of 

these three distributions. Only two factors were found to fit distributions at a significance 

level.  The coefficient of labor shortage for other businesses was found to be lognormally 

distributed with mean -0.0746 and standard deviation 0.0188 at 10% significance level. 

The coefficient of mine buffer is normally distributed with mean 0.7519 (1% level) and 

standard deviation 0.0165 (10% level). The results are shown in Table 6-7.  

The LRI of the ML model, which was 0.3127, was bigger than the CL and CLQ 

models. The coefficients of the other factors (those with no distributions) were similar to 

those of the CL and CLQ models. However, as discussed in Section 2.4, there is a big 

cost to using this advanced model to relax the iia limitation and use random parameter 

distributions. Thus, whether the ML model is suitable for a particular case of mining 

stakeholder analysis depends on whether relaxing the restrictions (iia and fixed taste 

coefficients) is important to the intended use of the model.  

First of all, the coefficient of the demographic factors could not be estimated in 

ML model with the MDC PROC algorithm in the general software SAS. From both the 

CL and CLQ results, the coefficients of all four demographic factors are much smaller 

than that of mining characteristics, and most of them are significant only at the 10% level. 

This means that the influence of demographic factors is far less than the mining 

characteristics, in this case. Therefore, in this case, a model that does not include 

demographic factors is acceptable.    

Second, the ML model is more proper for factors with continuous levels since the 

coefficients will be estimated as distributions. In this case, only two mining 

characteristics have been estimated as distributions at any significance level. Thus, this 

limitation restricts the application of ML model in mining stakeholder analysis a lot. Also, 
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the odds ratio and WTPs cannot be estimated in the model since the factors are no longer 

assumed to have the independence of irrelevant alternatives (iia) property. The 

importance of this limitation depends on whether or not this information is necessary for 

achieving the goals of the community engagement.  

 

Table 6-7. ML model result 

Parameter Coefficient Standard 

Error 

Economic   

Job opportunities 0.9139*** 0.0518 

Income increase 0.7502*** 0.0613 

Increase in housing costs -1.0828*** 0.0543 

Labor shortage for other business_M -0.0746* 0.0434 

Labor shortage for other business_S 0.0188* 0.0036 

Environmental   

Noise pollution -1.0362*** 0.0544 

Water pollution -0.2218*** 0.0514 

Air pollution -1.1147*** 0.0598 

Land pollution -0.1803*** 0.0504 

Social   

Population increase -0.1727*** 0.0516 

Infrastructure improvement 0.7195*** 0.0459 

Crime increase -1.0269*** 0.0615 

Traffic increase -0.1145*** 0.0400 

Governance and others   

Decision making mechanism 0.1262*** 0.0470 

Information available  0.7458*** 0.0564 

Mine buffer_M 0.7519*** 0.0483 

Mine buffer_S 0.0165* 0.0039 

Mine life 0.0930** 0.0397 

M: mean, S: standard deviation  
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6.5.4. Discussion. From the case study results, the CLQ model appears more 

suitable for mining stakeholder analysis. This is not only because of the bigger LRI and 

better percent concordant in this particular case study. The main reason is that the CLQ 

model can do stratified analysis, which makes it more practically applicable. It better 

represents the way respondents considered the choices. 

While the mixed logit model is the most advanced model with the biggest LRI, its 

disadvantages have never been discussed well in other studies. First, the coefficients of 

demographic factors could not be estimated in the ML model with the most widely used 

advanced statistical software SAS (with its MDC PROC). Second, not all the factors of 

the ML model can be estimated as distributions at any significant level. Based on the 

author’s experience, the ML model is more appropriate for factors with continuous levels 

(e.g. time). Third, the odds ratio and WTPs cannot be estimated with the ML model since 

the independence of irrelevant alternatives (iia) property is relaxed in this model. 

As shown by the CLQ model result (Table 6-6), the goal to use discrete choice 

theory for mining stakeholder analysis has been achieved by answering three important 

questions:   

(1) What are the factors that affect individual’s decision and how do these affect 

the decision?  

In Salt Lake City, there are 16 mining project characteristics that affect the 

communities’ acceptance of a mining project, at 1% and 5% significance levels (Table 6-

6). Of these, seven factors are positive (i.e. they positively correlate to the likelihood of 

individuals accepting a project) and the remaining are negative. The degree of influence 

of the positive mining project characteristics are job opportunities > information 

available > income increase > mine buffer > infrastructure improvement > decision 

making mechanism > mine life.  The degree of influence of the negative mining project 

characteristics are air pollution > increase in housing costs > crime increase > noise 
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pollution > water pollution > land pollution > traffic increase > labor shortage. These 

results are much more realistic than those obtained by soliciting such results from 

respondents independently, as was done in the survey in Section 3, for example. The 

discrete choice theory results are based on hypothetical choices that force respondents to 

make real trade-offs based on their perceived importance.  

(2) What is the effect of demographics on individual preferences? 

Age, household income, education and gender were found to significantly affect 

individual preferences at 5% and 10% significance levels.  The result reveals that, in Salt 

Lake City, older males with higher household incomes and more education are more 

likely to prefer any particular mine option than younger females with lower household 

income and less education.  

(3) What is the value of environmental and social impacts to individuals in the 

community? 

There are eight negative mining project characteristics affecting individual 

acceptance of a mining project at 1% and 5% significance levels (Table 6-6). The results 

can be used to estimate the average Salt Lake City resident’s WTPs (or value) for the 

undesirable effects of these factors. The ranking of predicted value of the negative effects, 

in additional income, is air pollution ($291/month) > increase in housing costs 

($280/month) > crime increase ($270/month) > noise pollution ($268/month) > water 

pollution ($55/month) > land pollution ($43/month) > traffic increase ($28/month) > 

labor shortage ($18/month). 

The number of internet surveys has increased dramatically in the last 10 years. 

Online surveys have a number of advantages over traditional survey modes. First, online 

surveys are not limited by the space and time of respondents. Second, online surveys 

allow researchers to use multimedia elements. Take this case study as example, the 

author inserted two videos (a respondent was not allowed to skip this) to help the 
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respondents understand the survey background information and the survey questions. 

Third, the survey duration of each question can be recorded to allow researchers to track 

each participant. These functions are not available to other survey modes. 

However, online surveys have their drawbacks. First of all, online surveys rely on 

the internet and can be subject to significant biases resulting from under-coverage and 

nonresponse. Not everyone in the mining community has access to the Internet. Hence, 

the demographic distribution of respondents may be significantly different from the 

mining community’s. This drawback affected this case study’s sampling. While 150 

participants were excluded due to demographic factors, the distributions of income and 

education still could not be completely matched to the CLQ population, very well. As 

shown by the demographic distribution of participants in Table 6-2, the main problem is 

that not enough respondents with lower incomes and education were reached by our 

market research partner, Qualtrics. While the population of SLC has 14% and 22% of 

people with education less than high school and annual income less than $20,000, 

respectively, less than 1% and 7% of the participants in this survey had that level of 

education or income, respectively. This tendency is confirmed by research by the Pew 

Research Center (2015), which found that people with lower incomes, less education, 

living in rural areas or ages 65 and older are underrepresented among internet users. 

In addition, volunteer bias is present in any survey. A voluntary sample is made 

up of people who self-select into the survey. Often, these people have a strong interest in 

the main topic of the survey. The sample is chosen by the viewers, not by the survey 

administrator. Thus, the sample used in this work would be a voluntary sample, not a 

random sample. Therefore, the resulting sample and the following result tends to over 

represent individuals who have strong opinions. This was mitigated to an extent in this 

survey because Qualtrics recruited participants from its large network of users who have 
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signed up to take surveys of all kinds, limiting the possibility of someone only taking the 

survey because they have a strong bias for or against mining generally.  

Third, the factors and their level were colored-coded to be clear and easy for the 

participants to understand, based on the feedback from the focus group survey in Section 

5. However, these color codes may have biased some of the results by priming the 

respondents to think in a particular way. Take mine life as an example. In the discrete 

choice experimental design (Section 5), the author colored the first level (20 years) of 

mine life green representing the “best” level; the second level (30 years) yellow, 

indicating the intermediate level; and the third level (40 years) red, representing the 

“worst” level. Contrary to the author’s expectation, mine life is estimated as a positive 

factor with coefficient 0.1402 (CLQ model result, Table 6-6) at the 1% significance level. 

The coefficient of mine life is low compared to other positive factors. The coefficient 

may have been bigger if the factor had been color coded differently.  

Based on these discussions and experiences, the online survey alone is not the 

best option for mining stakeholder analysis using discrete choice modeling. Discrete 

choice experiments for mining stakeholder analysis does not really benefit from the “no 

space limitation” of online surveys since the target is the several local communities 

around the mining project. A mixed-mode survey is recommended for the local mining 

stakeholder analysis using DCE. For example, mining companies could use face-to-face 

interviews with the support of multimedia elements to overcome the limitation of paper 

surveys. The participants still can get background information with video and graphics.  

 

 

6.7. SUMMARY OF SECTION SIX 

This Section illustrates the usefulness of discrete choice theory for stakeholder 

analysis in mining by conducting a discrete choice experiment in Salt Lake City, UT and 

analyzing the results to make useful inferences. A major technical challenge was an 
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attempt to select the most appropriate discrete choice model to describe the local 

community’s acceptance of mining projects. The discrete choice experiment designed in 

Section 5 was conducted in Salt Lake City, UT. The conditional logit (CL), strata 

conditional logit (CLQ) and mixed logit (ML) models were evaluated using the log-

likelihood ratio index as a measure of goodness-of-fit.  

After balancing the advantages and disadvantages of each model, the CLQ model 

is recommended as the most appropriate discrete choice model for mining stakeholder 

analysis. The CLQ model had the second highest LRI; the ML model had the highest LRI.  

However, the disadvantages of the ML model restrict its application in mining 

stakeholder analysis. 

More importantly, all three questions posed have been successfully answered by 

the selected (CLQ) model result. This achieves the goal of illustrating that discrete choice 

theory can be used for stakeholder analysis in mining. Discrete choice modeling results 

can be a guideline for the mining company during mining project design, planning and 

management. Discrete choice theory can support successful community consultation.  
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7 CONCLUSIONS, RECOMMENDTATIONS &FUTURE WORK 

7.1. SUMMARY AND CONCLUSIONS 

A key part of community engagement is community consultation, which includes 

three main parts: stakeholder identification, stakeholder analysis and iterative 

consultation (ICMM, 2012a; IFC, 2007).  Stakeholder analysis is one of the key 

challenges in community consultation since misunderstanding stakeholders will misguide 

the whole community consultation effort. Current stakeholder analysis processes (ICMM, 

2012a) are mainly qualitative, and classify  stakeholders into three groups: highly 

influential supporter of the project, neutral about the project, and highly influential 

opponent of the project.  

This kind of stakeholder analysis alone is not enough to support the success of the 

whole consultation process. The main goals of community analysis should include 

answering the following questions: (1) what are the factors that affect stakeholders’ 

decisions and how do these factors affect their decisions/preferences? (2) what is the 

effect of demographics on individual preferences? (3) what is the value of environmental 

and social impacts to individuals in the community? 

Discrete choice theory, based on the Nobel winning work by McFadden (1974) 

has transformed the world of market research. As a statistical analysis method, discrete 

choice theory aims at analyzing individual decision marker's preferences. Discrete choice 

modeling can help us understand what kind of mining project individuals in a community 

prefer by comparing different hypothetical options. By identifying patterns in these 

choices, discrete choice models will provide insight into how different individuals 

respond to different mining options. DCM will allow mining companies to examine the 

significance of different mining impacts (including social, economic, and environmental) 

and other aspects of a project on the preferences of different groups of in the local 

communities. Compared to traditional stakeholder analysis methods, the mining company 
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will have a quantitative tool for planning, designing, operating, and managing their 

mining project in order to facilitate better community engagement.  

The goal of this PhD research is to facilitate improved community (stakeholder) 

analysis by providing further insight on the determinants of local community acceptance 

using discrete choice theory. Pursuant to the overall goal of this study, the specific 

objectives are to:  

1. Identify, classify, and verify the important mine characteristics and key 

demographic factors that affect local community acceptance of a mining project;  

2. Account for the large number of relevant factors inherent in discrete choice 

experiments for mining community acceptance evaluation; and 

3. Examine discrete choice models to select the most appropriate model for 

mining community consultation. The research will test the hypotheses that various 

discrete choice models can describe the local community’s acceptance of mining projects. 

Pursuant to the aims of this study, online surveys were done in 20 mining 

communities and 20 non-mining communities to validate a classification of important 

mining project characteristics developed from a comprehensive literature review. A 

discrete choice experiment was then designed, based on the validated list of important 

factors, for Salt Lake City, UT, a select mining community. Three candidate discrete 

choice models were applied for the discrete choice experiment data.  

Based on the work in this dissertation, the following conclusions can be drawn: 

1. On research objective one: 

(1) All sixteen project characteristics, identified and classified through a literature 

review, were confirmed as important to the decision to accept or not accept a 

mining project. The most important mining project characteristics are job 

opportunities, water shortage or pollution, air pollution and land pollution. This 

list of characteristics is not put forth as universally true. This is found to be 
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generally true in the United States. Depending on the particular context of a 

specific project, however, the list may change as appropriate.  

(2) Respondents living in mining and non-mining communities have similar opinions 

of 12 mine characteristics and appear to differ on four (infrastructure 

improvement, labor shortage for other businesses, noise pollution, and mine life). 

The candidate hypothesizes that this is due to differences in the experience of 

these two groups. Hence, stakeholder analysis in a community with or without 

prior mining should be approached differently. 

(3) Four of the six selected demographic factors were confirmed to be significantly (p 

< 0.05) correlated with respondents’ opinion of the importance of the mine 

characteristics. Gender, income, age, and education are important predictors of an 

individual’s decision to accept or reject a proposed mining project. 

2. On research objective two: 

(1) A mixed style, blocking scheme, factional factorial discrete choice experiment 

without interaction is proposed as a solution to overcome the large number of 

relevant factors in mining community analysis. The relative D-efficiency of the 

discrete choice experiment was 72%.  

(2) A design with four factors in each choice set is optimal for the block scheme 

experimental design. Using four factors in each choice set balances the survey 

cost with reasonable cognitive burden.   

(3) A focus group study was used to validate the experimental design. The discrete 

choice experiment design achieved acceptable difficulty and clarity for questions 

in all blocks. 

3. On research objective three: 

(1) In the case study, all three candidate discrete choice models showed acceptable 

goodness-of-fit. 
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(2) The conditional logit model stratified by question was found to be better than the 

conditional logit model in the case study, since the CLQ model has the ability to 

do a stratified analysis by choice set. 

(3) While the mixed logit model is the most advanced discrete choice model, its 

disadvantages restrict its application for mining stakeholder analysis.  

 

Also, this work has successfully demonstrated that discrete choice theory can be 

used in mining community consultation for stakeholder analysis. Three important 

questions posed in support of community consultation can by answered with discrete 

choice theory.  

 

 

7.2. CONTRIBUTION OF THE PHD RESEARCH 

1. Contribution to knowledge on factor selection, identification, and verification  

This dissertation is the first attempt to provide research on classifying and 

verifying the key mining project characteristics from the plethora of candidate 

characteristics for discrete choice experimentation. Section 3, and the statistical analysis 

methods in it, will be helpful for researchers who would employ discrete choice theory in 

any kind of economic or project development on: (1) How to classify and verify the 

important project characteristics for discrete choice experiments? (2) How to find key 

demographic factors, which are significant vis-à-vis people’s perception of the 

importance of the project characteristics? (3) Is there a difference between attitudes of 

local and non-local communities? This contribution serves as a starting point for efficient 

choice experiment (survey) design and effective discrete choice modeling.  

2. Contribution to knowledge on discrete choice experiment design.  

This dissertation is the first attempt, to the best of the author’s knowledge, to 

design discrete choice experiments (DCEs) with such a large number (16) of factors and 
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also to attempt to address the challenges associated with the clarity and difficulty of 

questions. The experience of DCE design and validation can be borrowed by other 

discrete choice theory researcher. The most important design contribution is that DCEs: 

(1) can be designed as mixed style, including both a status quo option and hypothetical 

situations; (2) can be designed as a block scheme, using the optimal number of factors, 

determined by balancing the survey cost and reasonable cognitive burden; (3) need to be 

validated using a focus group, and then revised based on the feedback. This contribution 

is the foundation of effective and efficient discrete choice experiment design, even with 

the large number of factors.  

3. Contribution to knowledge on the discrete choice modeling of mining stakeholders 

This dissertation is the first attempt at comprehensive discrete choice modeling 

for mining stakeholders. This work includes 20 factors (16 mining project characteristics 

and four demographic factors) in a discrete choice model to analyze the mining 

stakeholders. The only other examples of discrete choice modeling in mining contain five 

or seven factors (Ivanova et al., 2007; Ivanova & Rolfe, 2011). In this study, the author 

designed the DCE as a block scheme, using the optimal number of factors. 

4. Contributions to knowledge on the most suitable discrete choice model for mining 

stakeholder analysis 

This dissertation is the first attempt to critically evaluate models in order to select 

the most suitable for mining stakeholder analysis. Ivanova and Rolfe (2011) and Ivanova 

et al. (2007) used the MNL model without any discussion of whether it was the most 

suitable model for mining stakeholder analysis. This work is the first research to highlight 

the relevance of the conditional logit model stratified by question and discuss the 

disadvantages of the mixed logit model. The knowledge gained from applying the CLQ 

and ML models to stakeholder analysis are helpful for researchers who would employ 

these two models similar applications: (1) The CLQ model is more suitable for 
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stakeholder analysis than the popular CL model since the CLQ model can do stratified 

analysis, which makes it more practically applicable. (2) While the ML model is the most 

advanced model, its limitations affects its usefulness in mining stakeholder analysis. 

 

 

7.3. RECOMMENDATIONS FOR FUTURE WORK  

The following are recommendations for future research that will improve on the 

present work and further our understanding of local community acceptance of mining: 

1. Evaluation of cultural impact 

In Section 3, the importance level of “cultural impact” was ranked at (5, 6) — 

above “somewhat important” but below “very important” – by respondents. However, 

this factor was deleted in the discrete choice experimental design since there is no clear 

definition of cultural impact, which makes it invalid in a survey instrument. This factor 

can be separated into several clearly defined mining project characteristics, which are 

suitable for further discrete choice experimental design and discrete choice modeling.   

2. Inclusion of the effect of females with and without children  

In Section 3, the demographic factor “number of children” was observed not to be 

significantly correlated with respondents’ choices. That is why the number of children 

was not included in the following discrete choice model. It may be possible that whether 

the respondent has any children at all is affects the respondents choices even if the total 

number does not. This can be tested by comparing the distribution of respondents with 

and without children and even further splitting the respondents into males and females, 

with and without children. If it is observed that whether a respondent has children or not 

has an effect on the distribution of rankings, then it is possible that the discrete choice 

model may be improved by including this factor. The nested logit model is a possible 

approach to achieve this.  
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3. Extending the observations on the classification of important factors and 

discrete choice modeling to other mining contexts 

Currently, most mining projects are moving to developing countries, such as 

China. However, the benefits and costs to local mining communities have not been 

studied thoroughly. The discrete choice model result can be used to get a better 

understanding of the determinants of community acceptance in those contexts. The 

selection and classification of the mining characteristics and demographic factors may 

vary between different communities and countries. Thus, the author suggests the whole 

methodology of this dissertation should be applied to select the important factors for a 

given target mining communities’ acceptance of a mining projects, design the discrete 

choice experiments, and conduct discrete choice modeling with the data. Then, the 

discrete choice model result would help the mining community to plan, design, process, 

and manage mining projects better.  

4. Extending the discrete choice modeling to non-mining communities 

The case study in this dissertation focused on a community with a large mining 

project located nearby. Thus, the discrete choice model result shows the opinions of 

people who are used to a mining project. It will be interesting if this study can be 

duplicated in non-mining communities.  The differences between the mining and non-

mining communities will be important information for mining companies.  The result 

may be similar to the importance level ranking result from mining and non-mining 

communities in Section 3. However, there may be some significant differences as the 

results in Section 3 also indicates. 
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APPENDIX A: ONLINE SURVEY MINING COMMUNITIES LIST 

1. Eureka, Nevada   68859 

2. Elko, Nevada  89801  89802  89803 

3. Gillette, WY  82716  82717   82718  82731   82732 

4. Butte, Montana  59701   59702   59703  59707  59750 

5. Lemhi County, Idaho   83465 

6. Carthage, Missouri 64836 

7. Centralia, in Lewis County, Washington  98531 

8. Fairbanks mining district of Alaska  99701  99702  99705  99706  99707  99708   

99709   99710  99711  99712   99714  99716  99767  99775  99790 

9. Lead, South Dakota  57754 

10. Boron, California  93516   93596 

11. Bunker, Missouri  63629 

12. Carbondale, IL   62901   62902  62903 

13. Terre Haute, IN  47801   47802  47803  47804   47805  47807  47808  47809 

14. Cutler, IL 62238 

15. Percy, IL 62272 

16. Steeleville, IL  62288 

17. Somerset, PA  15501  15510 

18. Jenners, PA  15546 

19. Jennerstown, PA  15547  

20. Meyersdale, PA  15552 
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APPENDIX B: 

ONLINE SURVEY NON-MINING COMMUNITIES LIST 
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APPENDIX B: ONLINE SURVEY NON-MINING COMMUNITIES LIST 

1. Kly, Nevada 89301 

2. Carson city, Nevada  89701 89702 89703 89704  

3. 89705 89706 89711 89712 89713 89714 89721 

4. Douglas, WY 82633 

5. Idaho falls, Idaho  83401 83402 83403 83404 83405 83406 83415 

6. Hamilton County, Illinois  62817 62828 62829 62860 62859 

7. Winfield, Kansas  67156 

8. Ellensburg, Washington 98926 98950 

9. Wasilla, Alaska  99623 99629  99652  99654  99687 

10. Chadron, Nebraska  69337 

11. Lone pine, California  93545 

12. Murrayville, Illinois 62668 

13. Owensboro, Kentucky  42301  42302  42303  42304 

14. Muncie, IN 47302 47303 47304 47305 47306 47307 47308 

15. Morganfield, Kentucky 42437 

16. Ortonville, Michigan 48462 

17. Chaffee, MO 63740 

18. Clearfield, PA 16830 

19. Rigby city, Idaho  83442 

20. Kingsley city, Iowa 51028 

21. Arcola city, Illinois 61910 
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APPENDIX C: ONLINE SURVEY 

Q1. Do you live or have you ever lived near a mine? 

Yes 

No 

 

Q2. If yes, how far is/was it? 

< or =10 miles 

11-20 miles 

21-30 miles 

 

Q3. What is your zip code? 

 

Q4. Do you have any experience with mining (e.g. working for a mine, familiarity with 

mining activities, studying about mining)? If yes, what is it? 

Yes 

No 

 

Q5. What is your gender? 

Male 

Female 

Prefer not to answer 

 

Q6. How old are you? 

18-25 

26-34 

35-54 

55-64 

65 or over 

Prefer not to answer 

 

Q7. What is the highest level of education you have completed? 

Less than High School 

High School / GED 

Some College 

2-year College Degree 

4-year College Degree 

Masters Degree 

Doctoral Degree 

Professional Degree (JD, 

MD) 

Prefer not to answer 

 

Q8. What is your annual income? 
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Below $20,000 

$20,000 - $29,999 

$30,000 - $39,999 

$40,000 - $49,999 

$50,000 - $59,999 

$60,000 - $69,999 

$70,000 - $79,999 

$80,000 - $89,999 

$90,000 or more 

Prefer not to answer 

 

Q9. In which industry are you employed? 

Forestry, fishing, hunting or agriculture 

support 

Mining 

Utilities 

Construction 

Manufacturing 

Wholesale trade 

Retail trade 

Transportation or warehousing 

Information 

Finance or insurance 

Real estate or rental and leasing 

Professional, scientific or technical 

services 

Management of companies or enterprises 

Admin, support, waste management or 

remediation services 

Educational services 

Health care or social assistance 

Arts, entertainment or recreation 

Accommodation or food services 

Other services (except public 

administration) 

Unclassified establishments 

 

Q10. How many children (under the age of 18) do you have? 

0 

1 

2 

3 

4 

5 + 

Prefer not to answer 
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Q11-26: If a new mine is to open in your area, carefully consider the following factors, 

and rank the importance of each factor in your decision to support or not support the 

mine. 

 

1 Not at all Important 

2 Very Unimportant 

3 Somewhat Unimportant 

4 Neither Important nor Unimportant 

5 Somewhat Important 

6 Very Important 

7 Extremely Important 

8 Do not know 

9 Prefer not to answer 

 

Mining impacts 

Population changes 

Infrastructure improvement (e.g transportation, education, human service, Internet, 

hospital, and shopping) 

Cultural impact (e.g. impacts on archaeological and historical sites, native American 

artifacts, historical burial sites, arts and culture) 

Traffic and crime increase 

Job opportunities 

Income increase 

Cost of housing or housing shortage 

Labor shortage for other businesses 

Noise pollution 

Water shortage or pollution 

Air pollution 

Land pollution 

Decision making mechanism on the mine's permits (e.g. decisions are based only on 

what is legal; or decision makers consider input from local communities) 

Whether or not there is independent and transparent information available 

Mine buffer (distance of your residence from mine) 

Mine life  (how long the mine will last) 

 

Q27:  What other factor(s) (characteristics of the mining operation) is important for you? 
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APPENDIX D: FACTORS AND LEVELS 

Economic: 

1. Job opportunities 

(1)300 people employed directly by the mine 

(2)600 people employed directly by the mine 

(3)900 people employed directly by the mine 

 

2. Income increase (for all local residents) 

(1)+ $100 per month  

(2)+ $300 per month  

(3)+ $500 per month  

 

3. Increase in housing costs   

(1)2% reduction in increase every year for 10 years – 3% increase every year in 10 years 

(2)0 % additional increase every year for 10 years – 5% increase every year in 10 years 

(3)2 % additional increase every year for 10 years – 7% increase every year in 10 years 

 

4. Labor shortage for other business 

(1)Negligible (no noticeable effect on other businesses)     

(2)Slight (other businesses take longer to fill vacancies but don’t have to pay more)  

(3)Moderate (other businesses take longer to fill vacancies and have to offer higher 

wages) 

 

Environmental: 

1. Noise pollution 

(1)No increase in pollution – Less than similar mine in the area 

(2)A slight increase in pollution – Same as similar mine in the area 

(3)A moderate increase in pollution – More than similar mine in the area 

 

2. Water pollution and shortage – Water pollution 

(1)No increase in pollution – Less than similar mine in the area 

(2)A slight increase in pollution – Same as similar mine in the area 

(3)A moderate increase in pollution – More than similar mine in the area 

 

3. Air pollution 

(1)No increase in pollution – Less than similar mine in the area 

(2)A slight increase in pollution – Same as similar mine in the area 

(3)A moderate increase in pollution – More than similar mine in the area 
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4. Land pollution and subsidence – Land pollution 

(1)No increase in pollution – Less than similar mine in the area 

(2)A slight increase in pollution – Same as similar mine in the area 

(3)A moderate increase in pollution – More than similar mine in the area 

 

Social: 

1. Population increase    

(1) A reduced rate of population growth (only 2%) – 2% annually 

(2) Continued population growth (average rate 4%) – 4% annually 

(3) An increased population growth (6%) – 6% annually  

 

2. Infrastructure improvement (transportation, education, human serves, internet)  

1) Slight improvement 

2) Moderate improvement 

3) Considerable improvements  

 

3. Traffic increase 

(1) A reduced rate of traffic increase – Lower than current rate 

(2) Continued average rate of traffic increase – Same as current rate 

(3) An increased rate of traffic increase – Higher than current rate 

 

4. Crime increase 

(1) A reduced rate of crime increase – Lower than current rate 

(2) Continued average rate of crime increase – Same as current rate 

(3) An increased rate of crime increase – Higher than current rate 

 

Management and other: 

1. Permit approval decision making mechanism 

(1)Final decision solely by Government agency 

(2)Final decision by Government agency after significant public input 

(3)Final decision by Government agency after negotiating with local representatives 

 

2. Availability of independent and transparent information on potential impacts of mine 

(1)Information reported by mining company only 

(2)Information reported/verified by government agency 

(3)Information reported/verified by third party (e.g. non-profit or independent expert) 

 

 

3. Mine buffer (Home distance from mine) 
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(1)5 mile 

(2)10 mile 

(3) >20 mile 

 

4. Mine life  

(1)20 years 

(2)30 years 

(3)40 years 
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APPENDIX E: SURVEY INSTRUCTIONS AND SAMPLE PROBLEM 

 

Instructions:  If a new mining project was to start near Salt Lake City, it would likely 

affect you and the community in many different ways.  

The objective of this survey is to understand what kind of mining project you prefer by 

varying the impacts (better or worse) of all project characteristics. 

In the survey, you will be presented with several possible combinations of impacts and 

mine characteristics. You will then be asked to choose your preferred alternative from the 

three options available. Impacts will be color coded to help you quickly understand how 

they might affect the community. Impacts colored yellow represent current conditions in 

Salt Lake or the impact of a similar mine in the area. Impacts colored red are worse than 

the current conditions and those colored green are better than current conditions. 

Shown below are 16 project impacts or mine characteristics classified into four major 

categories. For each set of options, assume all the other characteristics have the same 

impacts for all choices.  This activity will involve making choices such as whether an 

increase in one dimension (ex: jobs) is worth an increase in another (ex: crime). 

 

Economic: 

1. Job opportunities 

2. Income increase (for all local residents)  

3. Increase in housing costs  

4. Labor shortage for other business  

Environmental: 

1. Noise pollution 

2. Water pollution 

3. Air pollution  

4. Land pollution and subsidence  

Social: 

1. Population increase 

2. Infrastructure improvement (transportation, education, human serves, internet)  

3. Traffic increase  

4. Crime increase  

Management and other: 

1. Permit approval decision making mechanism  

2. Availability of independent and transparent information on potential impacts of mine  

3. Mine buffer (Home distance from mine)  

4. Mine life 
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This page contains a sample problem. 

  

The following pages will contain questions regarding a hypothetical mining project 

coming to your town/city of residence. Each page will contain a table with several 

different options you can choose for this hypothetical mine. For example, look at this 

table: 

 

Column Definitions: 

Job Opportunities - New jobs created in the area as a result of the mining operation 

Water Pollution - water pollution from mining operations  

Permit Approval Decision Making Mechanism – The process government workers will 

use to approve the mine’s permit application 

Population Increase – How the population will grow each year for ten years after the 

mine opens 

 

A new mine will be opened near Salt Lake. Carefully consider each of the following 

options. Suppose all other unknown conditions/characteristics are the same, which option 

would you choose? 

 

 
Job Opportunities Water Pollution  

Permit Approval Decision Making 

Mechanism 

Population 

Increase 

Option 

A 

600 people employed 

directly by the mine 

Same as similar 

mine in the area 

Final decision by Government agency 

after significant public input 
4% annually 

Option 

B 

300 people employed 

directly by the mine 

Same as similar 

mine in the area 

Final decision by Government agency 

after negotiating with local 

representatives 

2% annually 

Option 

C 

900 people employed 

directly by the mine 

Less than similar 

mine in the area 

Final decision by Government agency 

after significant public input 
6% annually 

 

Option A 

Option B 

Option C 

So, for this example, you are asked to consider that a hypothetical mine is coming to your 

community. There are three possible options listed above that describe possible changes 

to your community when the mining project begins. For example, "Option 1" in the table 

above would offer 600 jobs for community, same water pollution as a similar mine in the 

area, the mine permit will approved by government agency after significant public input, 

and increase the population of the community by 4% annually. You are being asked to 

read through all four options and select which option you would prefer. 

Please set aside a block of time (approximately 15 minutes) to complete this task without 

disruption or distraction. Please also take this survey in an area where you will not be 

distracted. 
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APPENDIX F: VIDEO INTRODUCTION AND SURVEY  

 

1. INTRODUCTION 

The whole survey including the video introduction, and discrete choice questions 

are available online at http://web.mst.edu/~kabp3/jem2015supplement.htm 

 

 

http://web.mst.edu/~kabp3/jem2015supplement.htm
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