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Generation of three-dimensional 
optical cusp beams with ultrathin 
metasurfaces
Weiwei Liu, Yuchao Zhang, Jie Gao & Xiaodong Yang  

Cusp beams are one type of complex structured beams with unique multiple self-accelerating 
channels and needle-like field structures owning great potentials to advance applications such as 
particle micromanipulation and super-resolution imaging. The traditional method to generate optical 
catastrophe is based on cumbrous reflective diffraction optical elements, which makes optical system 
complicated and hinders the nanophotonics integration. Here we design geometric phase based 
ultrathin plasmonic metasurfaces made of nanoslit antennas to produce three-dimensional (3D) optical 
cusp beams with variable numbers of self-accelerating channels in a broadband wavelength range. 
The entire beam propagation profiles of the cusp beams generated from the metasurfaces are mapped 
theoretically and experimentally. The special self-accelerating behavior and caustics concentration 
property of the cups beams are also demonstrated. Our results provide great potentials for promoting 
metasurface-enabled compact photonic devices used in wide applications of light-matter interactions.

Catastrophe theory mathematically describes the formation and dramatic change of bifurcations as geometri-
cally stable structures in nonlinear potential functions under the perturbations of external control parameters1,2. 
Catastrophe theory bridges geometry interpretation to the physical world and its manifestation in optics appears 
in high-intensity caustics with defined geometries of different orders3–5. According to the increasing dimensional-
ity of the control parameter space, seven elementary catastrophes have been hierarchically classified including four 
cuspoid catastrophes (fold, cusp, swallowtail, butterfly) and three umbilic catastrophes (hyperbolic, elliptic, par-
abolic)1,2. Subsequent to the Airy beam with typical fold caustics which is the first realized optical catastrophe6,7, 
the regular polygon beam (RPB) emerges as a paraxial beam with multiple cusp points equally spaced in a circle 
and propagating along a bending trajectory. The triple RPB corresponds exactly to the elliptic umbilic catastro-
phe8–11. In contrast to the fold caustics, this kind of cusp caustics owns not only the simultaneous self-healing and 
self-bending propagation properties but also has the remarkable caustics concentration property which leads to 
the generation of needle-like field structure8,12–14. Such novel beam properties of cusp beams will enable many 
spectacular applications such as optical particle micromanipulation and transportation15,16, super-resolution 
imaging17,18 and curved plasma channels19. Optical catastrophe is traditionally generated by using reflective dif-
fraction optical elements like SLM (spatial light modulator)6,16 or DMD (digital mirror device)12. However, these 
bulky devices usually have micrometer pixel size and the limited working-wavelength range, which inevitably 
hinder the further exploration of optical catastrophe integrated in miniaturized photonic devices and systems.

Recently, the manipulation of complex light field is getting rapid growth with the development of ultrathin 
geometric phase based metasurfaces20,21. Different from bulky optical components with the phase shift depend-
ing on the optical path, metasurfaces can introduce the Pancharatnam-Berry geometric phase accompanied 
with polarization conversion, which can overcome narrow bandwidth limitation and make the optical device 
compact22–27. Nowadays metasurfaces have been widely designed to shape the phase front of light field in many 
applications such as structured beam generation28–35, flat lens imaging36–39, compact wave plates for polarization 
conversion40–42 and holographic image construction43–47.

In this work, we investigate and analyze the generated 3D cusp beams with geometric phase based ultrathin 
plasmonic metasurfaces constructed from nanoslit antennas. The Pancharatnam-berry (PB) geometric phase 
profile encoded in the metasurface is taken from the Fourier spectrum of cusp beam, and the local geometric 
phase is realized by varying the orientation angle of nanoslit antenna in each unit cell. Here three kinds of cusp 
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Figure 1. (a) Schematic of the unit cell design of the nanoslit antenna at the orientation angle of θ. (b) 
Simulated electric field log|E| distributions of the nanoslit antenna under circular polarization basis at the 
wavelength of 800 nm in the middle plane of nanoslit. (c) A SEM image of the fabricated homogeneous nanoslit 
antenna array. (d) Measured and simulated transmission spectra under circular polarization basis.

Figure 2. (a) The phase profile to generate the optical cusp beam with m = 3, C = 3.3 and w = /2π . (b) SEM 
images for the fabricated metasurface. (c) Schematic of the experimental setup.
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beams with different numbers of self-accelerating channels have been studied. We have analyzed the whole beam 
propagation profile of cusp beams accompanied with their novel self-accelerating property and caustics concen-
tration property at three different wavelengths of 633 nm, 808 nm and 980 nm, covering a broadband wavelength 
range. Furthermore, it is shown that the generated 3D cusp beams from the metasurface gets robust self-healing 
property over obstacles during propagation. Our demonstrated results will provide promising possibilities for 
building metasurface-enabled ultrathin photonic devices used in many applications of light-matter interactions 
such as complex light field conversion, optical particle manipulation, and super-resolution imaging.

Results
Design of ultrathin plasmonic metasurfaces. The designed plasmonic metasurface based on the PB 
geometric phase with compact size of 50 μm by 50 μm contains 150 by 150 subwavelength nanoslit antennas 
with specified orientation angles. As shown in Fig. 1a, the nanoslit antenna is etched into a thin gold film with 
thickness of 50 nm on glass substrate, the width and length of each nanoslit antenna is 60 nm and 200 nm respec-
tively, and the period of the unit cell is 330 nm. The PB geometric phase introduced by each nanoslit antenna 
is only determined by the antenna orientation angle θ. When the incident circularly polarized beam normally 
transmits through the anisotropic nanoslit antenna, the original spin component has no phase shift, while the 
converted spin component will have the induced geometric phase shift of 2θ based on the general principle of 
Pancharatnam-Berry optical elements (PBOEs)23–25,33. The overall phase distribution from the metasurface is 
obtained by arranging the nanoslit antennas into the designed spatially inhomogeneous array. Figure 1b plots 
the electric field distributions |E| under circular polarization basis (left-handed and right-handed circular polar-
izations, LCP and RCP), showing the polarization anisotropy of the nanoslit antenna. A SEM image of the fabri-
cated homogeneous array of nanoslit antennas is shown in Fig. 1c. Figure 1d shows the measured and simulated 
transmission spectra from the nanoslit antenna array under circular polarization basis. In this case, the original 
spin component is chosen as LCP, and the converted spin component is RCP. It is found that the simulated results 
match well with the experimental results, proving the effectiveness of the designed nanoslit antennas.

Recently the class of RPBs has been extended with both odd and even numbers of cusp points, and such 
accelerating cusp beams with four or five cusp points are derived from Thom’s elliptic umbilics. These cusp beams 
naturally focus in free space to yield caustics with a non-trivial morphology that does not correspond to those 

Figure 3. (a) Calculated and (b) experimental 3D intensity structures for optical cusp beams with m = 3, 4, 
5. (c) The beam deflection of self-accelerating channels during the propagation and (d) the optical intensity 
distribution along the optical axis for three cusp beams.
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described by standard catastrophe optics8,9,11. Here the targeted geometric phase profiles for generating the cusp 
beams with three different numbers of self-accelerating channels are determined by the beam Fourier spectra. 
The integral representation for the electric field of cusp beams in the Cartesian coordinates can be written as8,9,11

∫ ∫ ψ ξ η ξ η=
−∞

+∞

−∞

+∞
E x y A exp ik x y z( , , z) [ ( , , , , )]d d (1)

The phase function in the integral can be written as ψ x y z( , , , , )ξ η  = φ ξ η ξ η ξ η− + − +z x y( , ) ( ) ( )m
2 2 , A 

is a constant and π λ=k 2 /  is the wave number. ξ η( , ) denote the transverse coordinates in the input plane and 

Figure 4. (a) Measured (b) calculated transverse optical intensity profiles of the generated cusp beams at 
several z positions at the wavelength of 633 nm. Figures in each column share the same scale bar.
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x y z( , , ) represent the coordinates in the propagation plane, and the generation of cusp beams is realized by the 
Fourier transform for the phase term ( , )mφ ξ η 8,11. Then the orientation angles θ of nanoslit antennas in metasur-
face is determined by ( , )θ ξ η  = ( , )/2mφ ξ η . Through the coordinate transformation, the general expression of 
φ ξ η( , )m in the polar coordinate can be written as10

φ θ θ= +R CR sin m w( , ) ( ) (2)m
m

where R( , )θ  are the polar variables in radial and azimuthal directions, C and w represent a constant scaling num-
ber and the initial phase, respectively. Specially, the polynomial order m determines the number of 
self-accelerating channels with the intensity maximum of the cusp beams.

In order to illustrate the special characteristics of cusp beams having various number of self-accelerating chan-
nels, three metasurfaces with m = 3, 4, 5 are designed. Figure 2a shows the typical phase profile to generate the 
optical cusp beam with m = 3, C = 3.3 and w /2= π . The SEM images for the fabricated metasurface are shown in 
Fig. 2b. Figure 2c describes the scheme of experimental setup, where a circular polarized incident beam from a 
laser diode is prepared through a linear polarizer and a quarter-wave plate. Then a pinhole with diameter of 
500 μm is imaged upon the metasurface by a 10× objective lens. Another 10× objective lens is used for the 
Fourier transform of the transmitted beam out from the metasurface. Here another set of a quarter-wave plate 
and a linear polarizer is used to select out the generated 3D cusp caustics in the converted spin component. A 
CCD camera is placed on a translation stage to record the 3D intensity profile of the produced optical cusp beams.

Generation of optical cusp beams with special beam structures. The special beam structures of 
optical cusp beams with m = 3, 4, 5 are first measured at the wavelength of 633 nm. In order to keep the similar 
beam sizes for the generated optical cusp beams with different m, the initial phase is = πw /2 and the scaling 
number for m = 3, 4, 5 is set to be C = 3.3, 1.2, 0.52 respectively. Figure 3a displays the calculated 3D intensity |E|2 
skeleton of cusp beams with m =  3, 4, 5 based on Eq. (1) and Eq. (2), and the corresponding reconstructed 3D 
intensity structure in experiment is shown in Fig. 3b. It is shown that the cusp beams exhibit the unique 3D beam 
structures with multiple self-accelerating channels and the needle-like concentrated optical field. Distinguished 
from the bending beam structure of Airy beam, the cusp beam shows the straight needle-like field in the front 
section of beam, here the needle-like field propagates straightly in the beam’s front section, where the z = 0 plane 

Figure 5. (a–c) Calculated optical intensity profiles in x-z plane for the cusp beams with m = 4 at 633 nm, 
808 nm, 980 nm. (d) Calculated and measured transverse intensity distribution at z = 0 plane. (e) Calculated and 
measured beam deflection along the curved cusp lobes during the propagation.
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starts at the initial plane of Fourier transform in the spatial spectrum space. Then the needle-like field expands to 
multiple cusp lobes with the number of m which move away from the optical axis along the curved paths, showing 
the self-accelerating property during the beam propagation. Such unique beam structure of cusp beams exhibits 
great potentials in applications such as optical particle manipulation and super-resolution imaging. Furthermore, 
the beam deflection of self-accelerating channels during the propagation and the optical intensity distribution 
along the optical axis for the above three cusp beams are compared in Fig. 3c,d, respectively. It is observed that the 
length of needle-like field is inversely proportional to the parameter m, and the beam deflection angle has the 
similar tendency and becomes identical at the position of z = 60 mm. At z > 60 mm, the cusp beams will still keep 
the transverse cusp intensity profiles but with enlarged sizes and weaker intensity as the propagation distance 
increases. In order to further reveal the beam structure of cusp beams, Fig. 4a,b show the measured and calculated 
transverse optical intensity profiles of the generated cusp beams at several z positions during the beam propaga-
tion at the wavelength of 633 nm, showing good consistency with each other. It is observed that a focused region 
with intensive optical intensity exists in the beam center at z = 0 plane showing the transverse structure of the 
needle-like field for each cusp beams. Afterwards, the transverse intensity profiles during the propagation are 
evolved into multiple cusp points from the initial central singular point. It is observed that each cusp beam can 
keep the stable cusp intensity pattern for long distance but with the enlarged size during propagation, indicating 
the shape-invariant and robust propagation property for the cusp caustics generated by the metasurfaces. From 
the beam pattern, it can be seen that the intensity distribution for the generated cusp beam of m = 3 is the typical 
elliptic umbilic catastrophe48, while the beam patterns for cusp beams of m = 4, 5 are consistent with the previous 
results from RPBs10, which can provide variable numbers of optical trapping channels for particle 
transportation.

Broadband generation of stable-shape cusp caustics with the designed metasurface will further expand their 
applications. The calculated optical intensity profiles in x-z plane for the optical cusp beam with m = 4 at three 
wavelengths of 633 nm, 808 nm, 980 nm are plotted in Fig. 5a–c. In the calculation, the parameter setting for the 
cusp caustics is the same as the above design but with w = 3π/2 to rotate two cusp points on the x axis. It is shown 
that the longitudinal length and transverse width of the needle-like field for the cusp beam get larger as the oper-
ation wavelength increases, but the beam deflection of the evolved cusp lobes from the needle-like structure has 
the inverse proportion to the increased wavelength. Additionally, Fig. 5d,e plot the transverse optical intensity 
distribution at z = 0 plane and the beam deflection along the curved cusp lobes in both calculation and experi-
ment, which verify the above beam properties of the cusp caustics influenced by the operation wavelength.

Figure 6. Measured transverse intensity patterns for cusp beams with m = 3, 4, 5 at the wavelengths of 633 nm, 
808 nm, 980 nm in the propagation planes of z = 60 mm, 75 mm, 95 mm, respectively.
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Figure 6 presents the measured transverse intensity patterns for optical cusp beams with m = 3, 4, 5 generated 
from the metasurfaces at the three wavelengths in the propagation planes of z = 60 mm, 75 mm, 95 mm, respec-
tively. It is seen that the beam sizes and optical intensity patterns for each cusp beam at the three wavelengths are 
almost the same, but the longer propagation distance is needed to get the stable multiple cusp points at the longer 
operation wavelength. At one certain wavelength, the three cusp beams at the same propagation plane get the 
similar beam deflection for the cusp lobes.

Self-healing property of optical cusp beams. According to the catastrophe theory, optical cusp beams 
with stable cusp caustics formed from the nonlinear potential function occupies the minimal potential energy, 
indicating robust self-accelerating geometrical structures8,11. In order to experimentally demonstrate the structural 
stability of the cusp beams generated by the metasurface at the wavelength of 633 nm, a small opaque obstacle is 
employed to completely block one arbitrary cusp point and then the self-healing property of optical cusp beam 
during the propagation is monitored. The blocked beams with m = 3, 4, 5 right after the obstacle are shown in the 
first column of Fig. 7, where this position is defined as the initial measurement plane z’ = 0. Behind the obstruction, 
it is seen that the blocked cusp points of all the three cusp beams gradually recover themselves with the increasing 
propagation distance. Concretely, at about z’ = 12 mm, the weak cusp points appears in the blocked arms as shown 
in the second column of Fig. 7. At the propagation plane z’ = 24 mm, all the cusp beams can reconstruct the blocked 
points with the whole cusp shapes appearing as shown in the third column of Fig. 7. It is noted that the optical 
intensity of the recovered cusp points is weaker than the unblocked cusp points, which is caused by the energy loss 
resulted from the blocking. After all, it is demonstrated that the optical cusp beam generated by the metasurface 
also has the special self-healing propagation property. Such beam property may further promote wide applications 
of optical cusp beams such as particle manipulation and biology tissue imaging, where the light absorption or 
scattering problems may be overcome to some extent because of the self-construction property of the cusp beams.

Discussion
In summary, the generation of 3D optical cusp beams with different numbers of cusp lobes has been realized by 
using ultrathin plasmonic metasurfaces based on geometric phase in a broadband wavelength range. The spe-
cial 3D beam structures of cusp beams with the needle-like fields and multiple self-accelerating channels have 

Figure 7. Self-healing property of the generated optical cusp beams with m = 3, 4, 5 at 633 nm.
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been demonstrated at multiple wavelengths. Furthermore, the experimental results indicate that the cusp caustics 
generated from the designed metasurface also own robust self-construction property over obstacles during the 
propagation. Our demonstrated results will find many promising applications in light-matter interactions such as 
particle trapping and transport, super-resolution imaging, and laser nanomanufacturing.

Methods
Simulation. The simulations in Fig. 1 are conducted by using the CST microwave studio software. The per-
mittivity of gold is taken from spectroscopic ellipsometry data fitted with a general oscillator model and the 
refractive index of glass substrate is 1.45. The unit cell is enclosed by periodic boundary conditions at both x and 
y directions.

Sample preparation. A 50 nm-thick gold film is deposited on a glass substrate using electron-beam evap-
oration. Then the designed antenna arrays are milled in the gold film using focused ion beam (FIB) system (FEI 
Helios Nanolab 600, 30 kV, 9.7 pA). To achieve the targeted metasurface, the orientation angle for the nanoslit 
antenna in each unit cell is determined by the designed phase profile for the cusp beam.

Optical characterization. To achieve the transmission spectra measured from the metasurface shown in 
Fig. 1 under circular polarization basis, a collimated broadband Tungsten-Halogen source is employed with the 
combination of a linear polarizer and an achromatic quarter-wave plate which can convert the incident light to 
circularly polarized wave. A 50× objective lens is used to focus the light beam normally onto the metasurface 
and then the transmitted light is collected by another 10× objective lens to a spectrometer (Horiba, iHR 550). 
Another set of a quarter-wave plate and a linear polarizer is used to separate the transmitted converted spin 
component through the metasurface. Here a transparent glass substrate is utilized to normalize the transmission 
spectra.
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