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The antiferrodistortive (AFD) structural transitions of calcium titanate (CaTiO3) at ambient pressure have been
extensively studied during the last few years. It has been found that none of the AFD polymorphs is polar or
ferroelectric. However, it was recently shown theoretically and later experimentally confirmed that a ferroelectric
transition in CaTiO3 can be induced by tensile strains. The ferroelectric instability is believed to be strongly
coupled to the AFD soft modes. In this paper, we present a complete thermodynamic potential for describing
the coupling between the AFD and ferroelectric phase transitions. We analyzed the dependence of transition
temperatures on stress and strain condition. Based on this potential, a (001) CaTiO3 thin film diagram was
constructed. The results show good agreement with available experimental observations. The strong suppression
of ferroelectric transition by the AFD transition is discussed.

DOI: 10.1103/PhysRevB.85.064117 PACS number(s): 77.80.B−, 64.60.Ej

I. INTRODUCTION

The ideal perovskite structure, described as a simple
cubic network of corner linked BO6 octahedra with A atoms
occupying 12-fold oxygen coordinated sites, is inherently
unstable and can exhibit a variety of distortions. These include
polar distortions, dominated by off-centering of the B cation
in its oxygen octahedron, and tilts and rotations of the oxygen
octahedron network. The polar distortions lead to the presence
of dipoles and to ferroelectric and antiferroelectric behavior in
several well-known perovskite compounds, such as BaTiO3,
PbTiO3, PbZrO3, and BiFeO3.1 Oxygen octahedron rotations
produce a variety of nonpolar phases, the phase transitions of
which are called antiferrodistortive (AFD) phase transitions.
The same compound can show instabilities to both distortions
in the cubic phase, in which case they usually compete.
Strontium titanate (SrTiO3) is a good example of such
compounds. Although SrTiO3 has a ferroelectric instability,
it is paraelectric all the way down to 0 K. Its ferroelectric
transition is weakened along the direction of AFD tilt.2,3 With a
sufficiently large epitaxial strain, SrTiO3 becomes ferroelectric
even at room temperature.4

At ambient temperature and pressure, calcium titanate
(CaTiO3) has the orthorhombic distorted-perovskite structure
with space group Pbnm, a structure common to many per-
ovskite oxides. Disregarding the distortion of TiO6 octahedra,
the structure of CaTiO3 can be illustrated as a combination
of two kinds of TiO6 octahedron tilts: two out-of-phase tilts
along x1 and x2 directions, and one in-phase tilt along x3

direction (Fig. 1). With the standard Glazer’s notation,5 it can
be expressed as a−a−c+. These two kinds of tilts can also be
used to characterize the AFD transitions in CaTiO3. We will
discuss it in more details later.

The AFD transition sequence of CaTiO3 is complicated.
From high to low temperature, CaTiO3 transforms from cubic
(Pm3̄m) to tetragonal (I4/mcm) at about 1600 K, and from
tetragonal (I4/mcm) to orthorhombic at about 1500 K.6–11

The later transition or transitions is quite controversial. Ali
and Yashima10,11 proposed a direction transition from I4/mcm

to Pbnm by the Rietveld analysis of high-temperature x-ray
and neutron diffraction data. Also by the analysis of high-
temperature neutron diffraction data, Kennedy et al.9 found
there might be an intermediate phase with Cmcm structure
between the transition from I4/mcm to Pbnm. And the
transition temperature from Cmcm to Pbnm is around 1380 K,
which agrees with both the drop-calorimetry measurements of
Guyot et al.7 and the Raman spectroscopy observation.of Gillet
et al.12 On the other hand, Carpenter theoretically investigated
the structural transitions of CaTiO3 using Landau theory, and
he concluded that in order to get a stable Pbnm structure, there
must be some intermediate structure between I4/mcm and
Pbnm. However, he proposed an I4/mcm → Imma → Pbnm
transition sequence.

Despite of the complicity and discrepancy, none of the
above-mentioned structures is polar or ferroelectric at ambient
pressure. However, CaTiO3 has a ferroelectric soft mode as
manifested by a high dielectric constant at low temperature13

and later first-principles calculations.14 Experiments also show
frequency independence of CaTiO3 dielectric constants, which
makes it a high-quality microwave material. Therefore, similar
to SrTiO3, CaTiO3 is also an incipient ferroelectric,13 and
the extrapolated ferroelectric transition temperature is about
−111 K.13,15 It is natural to consider the ferroelectricity of
CaTiO3 as an analog to that of SrTiO3, which is weak-
ened by AFD, but can be induced by applied strain.2–4,16

In addition, some other perovskites with Pbnm structures,
including CaMnO3,17 SrZrO3,18 etc.,19 are possible to exhibit
strain-induced ferroelectricity. Recently, by first-principles
calculations, Eklund et al.20,21 predicted that 1.5% epitaxial
tensile strain can indeed lead to ferroelectric transition.
Experimentally, Vlahos22 found spontaneous polarization in
the CaTiO3/NdGaO3 film system with a tensile constraint
strain of 1.15%. Thus, ferroelectricity in CaTiO3 can be
induced by a sufficiently large tensile strain.

In addition to the strain-induced ferroelectric behavior of
thin films, the twin walls of CaTiO3 have been extensively
investigated, including trapping of oxygen vacancies,23,24 the
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FIG. 1. (Color online) Crystal structure of CaTiO3: (a) projection
along [100] direction, the TiO6 octahedra in consecutive two layers
exhibit out-of-phase tilt, (the projection along [010] direction is
similar); (b) projection along [001] direction, the TiO6 octahedra
show in-phase tilt.

activation energy for twin-wall motion,25 and the intrinsic
elasticity of the twin walls.26 By theoretical simulations,
Goncalves-Ferreira et al.27 showed that the CaTiO3 ferroelastic
twin walls exhibit sizeable spontaneous polarization due to the
vanishing of octahedra tilt and the decrease of the material
density. Further experiments show that the twins of CaTiO3

are ferroelectric themselves.22 Since the formation of twins is
usually to lower the total strain energy, the twins themselves
are usually strained. Therefore, the discovered ferroelectricity
of CaTiO3 twin domains may also be due to strain effect.

In order to control and manipulate its properties with an ap-
plied external strain, it is necessary to understand the thermo-
dynamics of CaTiO3. Carpenter et al.28,29 proposed a Landau
expansion to describe the AFD transitions in (Ca, Sr)TiO3.
Although he made a systematic analysis of the stability of
all the possible structures, the ferroelectric transition is not
considered, and coefficients were not determined. In this paper,
we construct a phenomenological thermodynamic potential
for a CaTiO3 single crystal, which incorporates both the AFD
transitions and the ferroelectric transitions with different stress
and strain conditions. This potential can therefore be employed
to analyze all the important phase transitions and their depen-
dence on stress and strain conditions. In the following section,
we’ll introduce the phenomenological model and convert all
the parameters determined from first-principles calculations to
this model. In the third section, all the temperature-dependent
coefficients will be determined, and some of the parameters
from first-principles calculations will be revised from fitting
the experimental data. Finally, we’ll use a dielectric constant
to validate our model and then investigate the competition
mechanism of AFD and ferroelectric transitions in the CaTiO3

thin film phase diagram.

II. PHENOMENOLOGICAL DESCRIPTION

The phase transitions in CaTiO3 can be described with a
single Landau free energy expansion in terms of εi , Pi , and qi .
Here, εi (i = 1–6) are the strain components following Voigt’s
convention; Pi (i = 1, 2, 3) represent three components of the

spontaneous polarization in the Cartesian coordinate system;
and qi (i = 1, 2, 3) represent the linear oxygen displacement
that corresponds to simultaneous out-of-phase tilt of TiO6

octahedra. Similarly, qi (i = 4, 5, 6) represent the oxygen
displacement of simultaneous in-phase tilt of TiO6 octahedra.
The relationship between order parameter qi and octahedral tilt
angles is explained in the Appendix. In terms of soft modes,
Pi , qi (i = 1, 2, 3), and qi (i = 4, 5, 6) correspond to the
�4

−, R4
+, M3

+ modes, respectively. The total free energy has
following form:

F = FPolar + FOPT + FIPT + FElastic + FCoupling. (1)

The first three terms on the right-hand side of Eq. (1)
describe contributions from spontaneous polarization, out-of-
phase tilt, and in-phase tilt:
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where α, β, and γ are constants. Only the coefficients of the
second-order terms are assumed to be temperature dependent,
i.e.

α1(T ) = α10�S1

[
coth

(
�S1

T

)
− coth

(
�S1

T1

)]
,

β1(T ) = β10�S2

[
coth

(
�S2

T

)
− coth

(
�S2

T2

)]
, (5)

γ1(T ) = γ10�S3

[
coth

(
�S3

T

)
− coth

(
�S3

T3

)]
,

where T1, T2, and T3 are Curie temperatures, and �S1, �S2,
and �S3 are saturation temperatures. The strain contribution
to the total free energy can be written as

FElastic = 1
2C11

(
ε2

1 + ε2
2 + ε2

3

) + C12(ε1ε2 + ε3ε2 + ε1ε3)

+ 1
2C44

(
ε2

4 + ε2
5 + ε2

6

)
, (6)

where C11, C12, and C44 are elastic stiffness constants, and
ε1–ε6 are strain components. The coupling energy among
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different-order parameters and strains is written as

FCoupling = −t11
(
P 2

1 q2
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where tij , κij , gij , μij , λij , and ςij are coupling coefficients.
The 33 parameters appearing in Table I were determined from
a series of first-principles total-energy calculations on distorted
perovskite structures.21 Detailed information of the first-

TABLE I. The parameters converted from first-principles
calculationsa (Ref. 21; energy density unit: J/m3).

α1 −3.56 × 108

α11 3.70 × 108

α12 9.72 × 107

α111 −1.18 × 107

α112 −5.94 × 107

α122 −2.68 × 108

β1 −2.05 × 1029

β11 1.20 × 1049

β12 3.62 × 1048

β111 −2.89 × 1067

β112 −2.31 × 1068

β122 −4.92 × 1068

γ1 −1.85 × 1029

γ11 + γ12 1.48 × 1049

γ111 + γ112 −2.31 × 1068

γ122

μ11 −7.69 × 1049

μ12
b 3.29 × 1048

C11 4.03 × 1011

C12 1.07 × 1011

C44 9.99 × 1010

t11 −1.53 × 1029

t12 −7.79 × 1028

t44 2.34 × 1029

κ11 −1.43 × 1029

κ12 −5.02 × 1028

κ44

g11 1.02 × 1010

g12 −1.76 × 109

g44 7.70 × 109

λ11 −2.10 × 1029

λ12 −9.85 × 1029

λ44 −1.24 × 1029

ζ11 0
ζ12 −9.65 × 1029

ζ44

aR+
5 mode is neglected.

bNormalized by eliminating X+
5 mode.

principles calculations and the approach to determining these
coefficients can be found in Refs. 20 and 21. The parameters (in
SI unit) converted from first-principles calculations are listed
in the Table I.

III. RESULTS AND DISCUSSION

A. AFD transitions

For the AFD transition with only one in-phase TiO6

octahedron tilt and two out-of-phase TiO6 octahedron tilts,
i.e. P1 = P2 = P3 = q3 = q4 = q5 = 0, we have

F = β10�S2

[
coth

(
�S2

T

)
− coth

(
�S2

T2

)] (
q2

1 + q2
2

)

+ γ10�S3

[
coth

(
�S3

T

)
− coth

(
�S3

T3

)]
q2

6

+β∗
11

(
q2

1 + q2
2

)2 + β∗
12

(
q4

1 + q4
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) + β111
(
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1 + q2
2

)3

+β112
(
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1 + q2
2

)(
q4

1 + q4
2

) + (γ ∗
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12)q4
6

+ (γ111 + γ112)q6
6 − μ∗

12

(
q2

1 + q2
2

)
q2

6 , (8)

where β∗
ij , μ∗

ij , and γ ∗
ij are normalized coefficients with

stress-free boundary conditions (see Appendix for details).
The order parameters and free energies of different structures
are summarized in Table II.

According to experimental results, as discussed in the
introduction, we can conclude that there are at least two AFD
transitions, i.e. Pm3̄m to I4/mcm and another transition to
Pbnm. The latter cannot be a direct transition from I4/mcm
to Pbnm, if the energy of Imma or Cmcm is higher than
Pbnm. As compared in Table II, appropriate selection of
coefficients can generate different possibilities for the latter
AFD transition sequence, such as I4/mcm → Imma → Pbnm,
I4/mcm → Cmcm → Pbnm, etc. Carpenter29 analyzed the
energy difference between these structures and proposed an
I4/mcm → Imma → Pbnm transition sequence. It should be
noted that the Imma structure was not observed experimentally.
Here, we propose another scenario for the transformation
sequence, I4/mcm → Cmcm → Pbnm, although the existence
of Cmcm structure is still controversial in this system.7,9–11

However, only this transition sequence can account for both the
transition temperature of about 1380 K, which was determined
by Guyot et al.7 and Gillet et al.,12 respectively, and Kennedy
et al.’s neutron diffraction results.9 According to Guyot et al.’s
heat capacity measurement,7 both I4/mcm → Cmcm and
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TABLE II. The order parameters and free energies of different structures of AFD transitions.

Space group Order parameters Energy expression

Pm3̄m qi = 0, (i = 1, 2, 6) 0
I4/mcm q1 �= 0 FI4/mcm = β1(T )q2

1 + (β∗
11 + β∗

12)q4
1 + (β111 + β112)q6

1

Imma q1 = q2 �= 0 FImma = 2β1(T )q2
1 + (4β∗

11 + 2β∗
12)q4

1 + (8β111 + 4β112)q6
1

Cmcm q1 �= q6 �= 0 FCmcm = β1(T )q2
1 + (β∗

11 + β∗
12)q4

1 + (β111 + β112)q6
1 + γ1(T )q2

6

Cmcm q1 �= q6 �= 0 +γ1(T )q2
6 + (γ ∗

11 + γ ∗
12)q4

6 + (γ111 + γ112)q6
6 − μ∗

12q
2
1 q2

6

Pbnm q1 = q2 �= 0, q6 �= 0 FPbnm = 2β1(T )q2
1 + (4β∗

11 + 2β∗
12)q4

1 + (8β111 + 4β112)q6
1 + γ1(T )q2

6

+(γ ∗
11 + γ ∗

12)q4
6 + (γ111 + γ112)q6

6 − 2μ∗
12q

2
1 q2

6

Cmcm → Pbnm transitions are of the first order. For the
Pm3̄m → I4/mcm transition at about 1600 K, there is no
or very small latent heat, which may be buried by the broad
calorimetric peak of the previous transition.7 Therefore, this
transition may be of the second order or weakly first order.
However, the tilt angles-vs-temperature diagram from the
x-ray diffraction and neutron diffraction results9,11 shows
discontinuity near the transition temperature, a characteristic
feature of a first-order transition.

In this paper, we adopted Guyot et al.’s7 measured data of
the transformation latent heat and assumed that the Pm3̄m →
I4/mcm transition is also of first order with a small latent heat
of 1.0 kJ/mol. The saturation temperatures were estimated
from the (Ca,Sr)TiO3 phase diagrams.30 The calculated values
of β10 and γ10 by first principles show good agreement with the
measured latent heat. So we simply adopted them to make the
whole set of parameters consistent. The other parameters were
determined by fitting Kennedy et al.’s9 and Yashima et al.’s11

neutron diffraction and x-ray diffraction data. A comparison
between the fitted parameters and those from first principles is
shown in Table III.

As shown in Table III, the fitted parameters deviate from
those calculated by first principles. Both signs and magnitudes
are different in almost every case. However, this can be
expected because the first principles is for 0 K, and our
fits are from the whole temperature range. The validity of
the first-principles calculations can be tested by comparing
the total free energy at 0 K from both sets of parameters.
Actually, the difference is about 6.5% of the total free
energy. Considering the possible errors and approximations
made during the two calculations, this difference is small. In
addition, the discrepancy is only confined to the parameters
of the fourth- and sixth-order terms. The nice agreement
between our fitted plot and the measured values (Fig. 2)
indicates the accuracy of the parameters of the second-order
terms and coupling terms from first principles. As shown in

Fig. 2, the fitted plot not only reproduces three first-order
transitions but also shows the saturation of tilt angles at very
low temperature. We also compared the free energy of these
structures to study the phase stabilities, as plotted in Fig. 3.
Although the differences between I4/mcm and Imma and
between Cmcm and Pbnm are very small, the relative phase
stability of different structures is just as we expected. And the
small energy difference between Cmcm and Pbnm indicates
the difficulty to get stable Cmcm phase during in-situ x-ray
diffraction and neutron diffraction experiments.

B. Ferroelectric transition

With the refined parameters, we can further investigate
the AFD effect on ferroelectric transition in CaTiO3 single
crystals. Firstly, we can extract the Curie temperature T1 from
the extrapolated value (−111 K)13 by eliminating the coupling
effect from TiO6 octahedron tilts. From our model, it is easy to
calculate the T1 for all the combinations of polarization in the
three directions. And the calculated highest T1 corresponds to
the extrapolated ferroelectric effective temperature (−111 K).

By minimizing the free energy of the AFD part, we can
calculate the in-phase tilt angle and out-of-phase angle as ϕ3 =
9.10◦ and θ1 = θ2 = 8.64◦, respectively. Then using the tilt
angles and the saturation temperature �S1 = 55 K,13 the T1

of different polarization combinations are calculated. As listed
in Table IV, the highest Curie temperature is 252.1 K for the
case of P1 = P2 �= P3. This structure is therefore the most
stable one, and this temperature is the Curie temperature T1.
Correspondingly, the parameter α10 is calculated as 1.77 × 106.
So far, we have all the coefficients determined either from
first-principles calculations or fitting from experimental data
as summarized in Table V (in SI unit).

Because the tilt angles do not change much at low
temperature, we can simply freeze them and calculate the

TABLE III. Parameters from fitting and their counterparts from first-principles calculations.

T2 T3 �S2 �S3

Parameters (K) (K) (K) (K) β10 γ1 β∗
11 β111 β∗

12 β112 γ ∗
11 + γ ∗

12 γ111 + γ112

From 1285 1590 274 345 −1.41 × 1048 1.45 × 1069 −3.59 × 1048 1.15 × 1069 −3.38 × 1049 1.15 × 1070

fitting
From first 1.54 × 1026 1.68 × 1026 1.10 × 1049 −2.89 × 1067 2.64 × 1048 −2.31 × 1068 1.27 × 1049 −2.31 × 1068

principles
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FIG. 2. (Color online) Tilt angle as a function of temperature. The
discontinuities in the plot clearly show that there are three first-order
transformations.

dielectric constant as a function of temperature. Thus, we get
the coefficients of P1

2 and P3
2

αR
1 = 2α10�S1

[
coth

(
�S1

T

)
− coth

(
�S1

T1

)]

− (2t∗11 + 2t∗12 + t∗44)q2
1 − 2κ∗

12q
2
6 ,

αR
3 = α10�S1

[
coth

(
�S1

T

)
− coth

(
�S1

T1

)]

− (t∗11 + t∗12)q2
1 − 2κ∗

11q
2
6 . (9)

Experimentation shows that the intensity of the optical
second harmonic generation (SHG) of CaTiO3 thin film
changes continuously as a function of temperature,22 which

FIG. 3. (Color online) Relative free energy density of different
structures: I4/mcm, Imma, Cmcm, and Pbnm. Note that Pm3̄m is set
to be the reference state with free energy equal to zero. So the relative
free energies of other structures are basically the energy difference
from Pm3̄m structure.

FIG. 4. (Color online) The dielectric constant as a function of
temperature. The saturation of dielectric constants occurs at very low
temperature.

indicates the ferroelectric transition of CaTiO3 may be of
the second order. However, the defects in the thin films,
including strain inhomogeneity, domain structures, and so on,
may make a first-order transformation look like a second-
order one. Further studies are needed to understand the
nature of ferroelectric transition in CaTiO3. In this paper,
we assume the ferroelectric transformation of CaTiO3 is
second order. According to Devonshire’s theory,1 the dielectric
constant of a second-order transformation can be written
as

εij = 1

ε0αij

(i,j = 1,2,3), (10)

where ε0 is the vacuum permittivity, and αij is the coefficient
of PiPj (i,j = 1,2,3). Since P1 = P2, it is easy to get ε11 = ε22.
The calculated dielectric constants are shown in Fig. 4. The

total dielectric constant (
√

2ε2
11 + ε2

33) is 300 at 0 K, and 144
at room temperature. They are quite close to the measured
values 331 and 168,13 which indicate good accuracy for both
the α1 value from first-principles calculations and the Curie
temperature T1 from this calculation.

With all the temperature-dependent coefficients, we can
investigate the phase stability under different boundary condi-
tions. Here, we will calculate the temperature-constraint strain
phase diagram of (001) CaTiO3 thin film as an example.

For the stable structures of strained (001) CaTiO3 thin films,
Eklund et al.20,21 reported two possible ferroelectric structures
on the tensile strain side, Pmc21 and Pmn21, among which
the Pmn21 structure has slightly lower free energy. Also from
first-principles calculations, Bousquet31 showed that Pmc21 is
stable. On the compressive side, Pna21 is the stable structure.21

In the following calculations, we will only consider these three
structures.

Firstly, we renormalized the free energy expression with
the thin film boundary condition (see Appendix for detail). By
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TABLE IV. The calculated Curie temperatures for different polarization symmetry.

Polarization P1 �= P2 �= P3 P1 = P2 �= P3 P1 = −P2 �= P3 P1 = P2 = P3

Curie temperature (K) 139.4 252.1 132.0 187.4

minimizing the total free energy with respect to q1 and q6,
respectively, we get

β ′
1(T ) + (2β ′

11 + β ′
12)q2

1 + 6(2β111 +β112)q4
1 − μ′

13q
2
6 = 0,

(11a)

γ ′
3(T ) + 2γ ′

33q
2
6 + 3(γ111 + γ112)q4

6 − 2μ′
13q

2
1 = 0, (11b)

TABLE V. The parameters for the phenomenological potential of
CaTiO3 from either first-principles calculations or experimental data
(temperature unit: K, and energy density unit: J/m3)

T1 252.1
T2 1589.7
T3 1285.0
�S1 55.0
�S2 274.0
�S3 345.0
α10 1.77 × 106

α11 3.70 × 108

α12 9.72 × 107

α111 −1.18 × 107

α112 −5.94 × 107

α122 −2.68 × 108

β10 1.54 × 1026

β11 −4.28 × 1047

β12 −2.61 × 1048

β111 1.45 × 1069

β112 1.15 × 1069

β122 −4.92 × 1068

γ1 1.68 × 1026

γ11 + γ12 −3.17 × 1049

γ111 + γ112 1.15 × 1070

γ122

μ11 −7.69 × 1049

μ12 3.29 × 1048

C11 4.03 × 1011

C12 1.07 × 1011

C44 9.99 × 1010

t11 −1.53 × 1029

t12 −7.79 × 1028

t44 2.34 × 1029

κ11 −1.43 × 1029

κ12 −5.02 × 1028

κ44

g11 1.02 × 1010

g12 −1.76 × 109

g44 7.70 × 109

λ11 −2.10 × 1029

λ12 −9.85 × 1029

λ44 −1.24 × 1029

ζ11 0
ζ12 −9.65 × 1029

ζ44

where βij
′, μij

′, and γij
′ are normalized coefficients. Combin-

ing Eqs. (11a) and (11b) with the equation from the coefficient
of P1

2,

2α′
1(T ) − (2t ′11 + 2t ′12 + t44)q2

1 − 2κ ′
13q

2
6 = 0, (12)

we can get the phase boundary between Pbnm and Pmc21

structures. It should be mentioned here, from our potential,
the stable structure on the tensile side is Pmc21, not Pmn21.
Similarly, for the phase boundary of Pbnm → Pna21 transition,

(a)

(b)

FIG. 5. (Color online) The temperature-constraint strain phase
diagram of (001) CaTiO3 (a) with AFD and (b) without AFD. The
transition point shown in (a) is measured by SHG experiment.22
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FIG. 6. (Color online) The polariztation of (001) CaTiO3 thin film
as a function of in-plain constraint strain of different temperatures.
The void markers represent our calculations for different tempera-
tures. And the solid diamonds denote the data from first-principles
calculations (Ref. 21; solid diamond) for 0 K.

we need to solve Eqs. (11a) and (11b) and the equation from
the coefficient of P3

2,

2α′
3(T ) − 2t ′31q

2
1 − 2κ ′

33q
2
6 = 0. (13)

The calculated phase diagram is asymmetric, as shown
in Fig. 5(a). The minimum tensile strain to induce the
ferroelectric transition is about 1.5%, which agrees well with
the prediction from the first-principles calculations. On the
compressive side of the diagram, about 13% compressive strain
is needed to induce a Pbnm → Pna21 transition. This value is
so huge that it exceeds the limit of substrate constraint strain. In
other words, it is impossible to have a Pna21 structure in (001)
CaTiO3 thin films. The temperature-constraint strain phase
diagram of (001) CaTiO3 thin film without AFD [Fig. 5(b)]
was calculated by setting qi = 0 (i = 1–6) and solving

∣∣∣∣∣∣∣∣∣

∂2F

∂P 2
1

∂2F
∂P1∂P2

∂2F
∂P1∂P3

∂2F
∂P2∂P1

∂2F

∂P 2
2

∂2F
∂P2∂P3

∂2F
∂P3∂P1

∂2F
∂P3∂P2

∂2F

∂P 2
3

∣∣∣∣∣∣∣∣∣
P1=P2=P3=0

= 0. (14)

Comparing Figs. 5(a) and 5(b), we can easily find the
asymmetry of the temperature-constraint strain phase diagram
comes from the effect of AFD. Also the ferroelectric transition
temperature of CaTiO3 is greatly suppressed by AFD. A
similar but weaker effect was also found in SrTiO3.32 The
substantial effect of AFD on ferroelectricity in SrTiO3 is
attributed to the competitive anharmonic couplings between
AFD mode and the ferroelectric mode and their mutual
coupling to the elasticity.2,16 In our phenomenological model
of CaTiO3, the stability of different structures is strongly
dependent on the coupling coefficients among Pi , qi , and εi ,
which can be easily seen from Eqs. (11a), (11b), (12), and (13).

This indicates that the competition mechanism between AFD
and ferroelectricity is essentially the same as that of SrTiO3.

By minimizing the total free energy, we also calculated the
polarization of (001) CaTiO3 thin film as a function of in-plane
constraint tensile strain at different temperatures. As shown in
Fig. 6, the ferroelectric transition temperature increases with
in-plane tensile strain. At 0 K, the minimum tensile strain
needed to induce the ferroelectric transition is about 1.5%.
At 200 K, the critical tensile strain increases to about 4%,
indicating the difficulty to obtain strain-induced ferroelectric-
ity at elevated temperature. The calculated polarization of 4%
tensile strain at 0 K is 0.61 C/m2, which is more than twice
that of BaTiO3.1 The polarization also exhibits saturation near
the transition point and becomes linearly dependent on tensile
strain in a large strain region. As compared in the figure,
our result of 0 K is a little larger than the first-principles
calculations. The discrepancy may rise from different selection
of stable structures. In the first-principles calculation,21 the
stable structure used is Pmc21, whereas we computed the
polarization of Pmn21.

IV. CONCLUTIONS

A phenomenological thermodynamic potential is developed
for CaTiO3 single crystals. The coefficients of the potential
are determined from first-principles calculations and neutron
diffraction and x-ray diffraction data. This potential effectively
coupled the AFD transitions and strain-induced ferroelec-
tric transitions. Several experimental observations, including
transition temperatures, transition latent heat, dielectric con-
stant, and tilt angles of TiO6 octahedron, are successfully
reproduced. Then the temperature-constraint strain single-
domain phase diagram of (001) CaTiO3 is constructed. The
dependence of Curie temperature on constraint strain is quite
asymmetric, i.e. only tensile strain can induce ferroelectric
transition. Comparing the phase diagrams with and without
AFD, we conclude that the asymmetry is not inherited from
the ferroelectric transition itself but attributed from the AFD
suppression.
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APPENDIX

1. Relationship between order parameter q
and octahedral tilt angles

For an infinitesimal angle, there is no octahedron distortion
during tilting. In the 10-atom supercell, there are four atoms
(all oxygen) that displace by equal amounts. The amplitude of
q1 = 1 means each atom moves 1 Å along x1 direction. Then
in a simplified diagram of TiO6 octahedron tilt, we have

tan θi = 2 × (qi × 0.5)

a0
= qi

a0
(i = 1,2,3), (A1)
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where θi is the in-phase tilt angle, and a0 is the lattice parameter
of the 5-atom cell. Similarly, we have the relationship for
out-of-phase tilt

tan ϕ1 = qi

a0
(i = 4,5,6), (A2)

where ϕi is the in-phase tilt angle.

2. Normalizing the total free energy with stress-free
boundary condition

With the stress-free boundary condition, we have

∂F

∂εij

= σij = 0. (A3)

Then we can rewrite the expression for the total free energy
as

F = α10�S1

[
coth

(
�S1

T

)
− coth

(
�S1

T1

)] (
P 2

1 + P 2
2 + P 2

3

) + α∗
11

(
P 2

1 + P 2
2 + P 2

3

)2 + α∗
12

(
P 4

1 + P 4
2 + P 4

3

)

+α111
(
P 2

1 + P 2
2 + P 2

3

)3 + α112
(
P 2

1 + P 2
2 + P 2

3

)(
P 4

1 + P 4
2 + P 4

3

) + α122(P1P2P3)2

+β10�S2

[
coth

(
�S2

T

)
− coth

(
�S2

T2

)] (
q2

1 + q2
2 + q2

3

) + β∗
11

(
q2

1 + q2
2 + q2

3

)2 + β∗
12

(
q4

1 + q4
2 + q4

3

)

+β111
(
q2

1 + q2
2 + q2

3

)3 + β112
(
q2

1 + q2
2 + q2

3

)(
q4

1 + q4
2 + q4

3

) + β122(q1q2q3)2

+ γ10�S3

[
coth

(
�S3

T

)
− coth

(
�S3

T3

)] (
q2

4 + q2
5 + q2

6

) + γ ∗
11

(
q2

4 + q2
5 + q2

6

)2 + γ ∗
12

(
q4

4 + q4
5 + q4

6

)

+ γ111
(
q2

4 + q2
5 + q2

6

)3 + γ112
(
q2

4 + q2
5 + q2

6

)(
q4

4 + q4
5 + q4

6

) + γ122(q4q5q6)2 − μ∗
11

(
q2

1q2
4 + q2

2q2
5 + q2

3q2
6

)
−μ∗

12

[(
q2

2 + q2
3

)
q2

4 + (
q2

3 + q2
1

)
q2

5 + (
q2

1 + q2
2

)
q2

6

] − t∗11

(
P 2

1 q2
1 + P 2

2 q2
2 + P 2

3 q2
3

)
− t∗12

[
P 2

1

(
q2

2 + q2
3

) + P 2
2

(
q2

1 + q2
3

) + P 2
3

(
q2

1 + q2
2

)] − t∗44(P1P2q1q2 + P1P3q1q3 + P2P3q2q3)

− κ∗
11

(
P 2

1 q2
4 + P 2

2 q2
5 + P 2

3 q2
6

) − κ∗
12

[
P 2

1

(
q2

5 + q2
6

) + P 2
2

(
q2

4 + q2
6

) + P 2
3

(
q2

4 + q2
5

)]
− κ∗

44(P1P2q4q5 + P1P3q4q6 + P2P3q5q6) − ζ44λ44

C44
(q2q3q5q6 + q1q2q4q5 + q1q3q4q6), (A4)

where the ∗ sign designates the renormalized coefficients, i.e.

α∗
11 = α11 − C11

(
g2

12 + 2g11g12
) − C12

(
g2

11 + 2g2
12

)
2(C11 − C12)(C11 + 2C12)

− g2
44

4C44
, α∗

12 = α12 − (g11 − g12)2

2(C11 − C12)
+ g2

44

4C44
,

β∗
11 = β11 − C11

(
λ2

12 + 2λ11λ12
) − C12(λ2

11 + 2λ2
12)

2(C11 − C12)(C11 + 2C12)
− λ2

44

4C44
, β∗

12 = β12 − (λ11 − λ12)2

2(C11 − C12)
+ λ2

44

4C44
,

γ ∗
11 = γ11 − C11

(
ς2

12 + 2ς11ς12
) − C12

(
ς2

11 + 2ς2
12

)
2(C11 − C12)(C11 + 2C12)

− ς2
44

4C44
, γ ∗

12 = γ12 − (ς11 − ς12)2

2(C11 − C12)
+ ς2

44

4C44
,

μ∗
11 = μ11 + C11(λ11ς11 + 2λ12ς12) + C12(λ11ς11 − 2λ11ς12 − 2λ12ς11)

(C11 − C12)(C11 + 2C12)
,

μ∗
12 = μ12 − C12(λ11ς11 + 2λ12ς12) − C11(λ12ς11 + λ11ς12 + λ12ς12)

(C11 − C12)(C11 + 2C12)
. (A5)

t∗11 = t11 + C11(λ11g11 + 2λ12g12) + C12(λ11g11 − 2λ11g12 − 2λ12g11)

(C11 − C12)(C11 + 2C12)
,

t∗12 = t12 − C12(λ11g11 + 2λ12g12) − C11(λ12g11 + λ11g12 + λ12g12)

(C11 − C12)(C11 + 2C12)
,

t∗44 = t44 + λ44g44

C44
, κ∗

11 = κ11 + C11(ς11g11 + 2ς12g12) + C12(ς11g11 − 2ς11g12 − 2ς12g11)

(C11 − C12)(C11 + 2C12)
,

κ∗
12 = κ12 − C12(ς11g11 + 2ς12g12) − C11(ς12g11 + ς11g12 + ς12g12)

(C11 − C12)(C11 + 2C12)
, κ∗

44 = κ44 + ς44g44

C44
.
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3. Normalizing the total free energy with thin film boundary condition

The thin film boundary condition is a mixed set of strain and stress boundary conditions. For (001) CaTiO3 thin film, there is a
biaxial strain in the x1-x2 plane, and all the stress components associated with x3 direction are equal to zero, i.e.

ε11 = ε22 = εS, ε12 = ε21 = 0,
(A6)

σ13 = σ23 = σ31 = σ32 = σ33 = 0,

where εS is the constraint strain. To satisfy the above stress-free condition it requires that

∂F

∂εij

= σij = 0 (ij = 13,23,31,32,33). (A7)

So we have

F = α′
1(T )

(
P 2

1 + P 2
2

) + α′
3(T )P 2

3 + α′
11

(
P 4

1 + P 4
2

) + α′
33P

4
3 + α′

12P
2
1 P 2

2 + α′
13

(
P 2

1 + P 2
2

)
P 2

3 + α111
(
P 2

1 + P 2
2 + P 2

3

)3

+α112
(
P 2

1 + P 2
2 + P 2

3

)(
P 4

1 + P 4
2 + P 4

3

) + α122(P1P2P3)2 + β ′
1(T )

(
q2

1 + q2
2

) + β ′
3(T )q2

3 + β ′
11

(
q4

1 + q4
2

) + β ′
33q

4
3

+β ′
12q

2
1q2

2 + β ′
13

(
q2

1 + q2
2

)
q2

3 + β111
(
q2

1 + q2
2 + q2

3

)3 + β112
(
q2

1 + q2
2 + q2

3

)(
q4

1 + q4
2 + q4

3

) + β122(q1q2q3)2

+ γ ′
1(T )

(
q2

4 + q2
5

) + γ ′
3(T )q2

6 + γ ′
11

(
q4

4 + q4
5

) + γ ′
33q

4
6 + γ ′

12q
2
4q2

5 + γ ′
13(q2

4 + q2
5 )q2

6 + γ111
(
q2

4 + q2
5 + q2

6

)3

+ γ112
(
q2

4 + q2
5 + q2

6

)(
q4

4 + q4
5 + q4

6

) + γ122(q4q5q6)2 − μ′
11

(
q2

1q2
4 + q2

2q2
5

) − μ′
33q

2
3q2

6 − μ′
12

(
q2

2q2
4 + q2

1q2
5

)
−μ′

13

(
q2

1 + q2
2

)
q2

6 − μ′
31(q2

4 + q2
5 )q2

3 − t ′11

(
P 2

1 q2
1 + P 2

2 q2
2

) − t ′33P
2
3 q2

3 − t ′12

(
P 2

1 q2
2 + P 2

2 q2
1

) − t ′13

(
P 2

1 + P 2
2

)
q2

3

− t ′31

(
q2

1 + q2
2

)
P 2

3 − t44P1P2q1q2 − t ′44(P1P3q1q3 + P2P3q2q3) − κ ′
11

(
P 2

1 q2
4 + P 2

2 q2
5

) − κ ′
33P

2
3 q2

6 − κ ′
12

(
P 2

1 q2
5 + P 2

2 q2
4

)
− κ ′

13

(
P 2

1 + P 2
2

)
q2

6 − κ ′
31

(
q2

4 + q2
5

)
P 2

3 − κ44P1P2q4q5 − κ ′
44(P1P3q4q6 + P2P3q5q6) − ζ44λ44

C44
(q2q3q5q6 + q1q3q4q6)

+ (C11 + 2C12)(C11 − C12)

C11
ε2
S, (A8)

where the ′ sign represents the renormalized coefficients with thin film boundary condition, i.e.

α′
1(T ) = α1(T ) −

(
g11 + g12 − 2C12

C11
g12

)
εS, α′

3(T ) = α1(T ) −
(

2g12 − 2C12

C11
g11

)
εS, α′

11 = α11 + α12 − g2
12

2C11
,

α′
33 = α11 + α12 − g2

11

2C11
, α′

12 = 2α11 − g2
12

C11
, α′

13 = 2α11 −
(

g11g12

C11
+ g2

44

2C44

)
,

β ′
1(T ) = β1(T ) −

(
λ11 + λ12 − 2C12

C11
λ12

)
εS, β ′

3(T ) = β1(T ) −
(

2λ12 − 2C12

C11
λ11

)
εS, β ′

11 = β11 + β12 − λ2
12

2C11
,

β ′
33 = β11 + β12 − λ2

11

2C11
, β ′

12 = 2β11 − λ2
12

C11
, β ′

13 = 2β11 −
(

λ11λ12

C11
+ λ2

44

2C44

)
,

γ ′
1(T ) = γ1(T ) −

(
ς11 + ς12 − 2C12

C11
ς12

)
εS, γ ′

3(T ) = γ1(T ) −
(

2ς12 − 2C12

C11
ς11

)
εS, γ ′

11 = γ11 + γ12 − ς2
12

2C11
,

γ ′
33 = γ11 + γ12 − ς2

11

2C11
, γ ′

12 =
(

2γ11 − ς2
12

C11

)
, γ ′

13 = 2γ11 −
(

ς11ς12

C11
+ ς2

44

2C44

)
,

μ′
11 = μ11 + ς12λ12

C11
, μ′

33 = μ11 + ς11λ11

C11
, μ′

12 = μ12 + ς12λ12

C11
, μ′

13 = μ12 + ς11λ12

C11
, μ′

31 = μ12 + ς12λ11

C11
,

t ′11 = t11 + g12λ12

C11
, t ′33 = t11 + g11λ11

C11
, t ′12 = t12 + ς12λ12

C11
, t ′13 = t12 + g12λ11

C11
,

t ′31 = t12 + g11λ12

C11
, t ′44 = t44 + g44λ44

C44
,

κ ′
11 = κ11 + g12ς12

C11
, κ ′

33 = κ11 + g11ς11

C11
, κ ′

12 = κ12 + ς12g12

C11
, κ ′

13 = κ12 + ς11g12

C11
,

κ ′
31 = κ12 + ς12g11

C11
, κ ′

44 = κ44 + ς44g44

C44
. (A9)
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