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ABSTRACT

We critically examine how well the evolution of large-scale density perturbations is followed
in cosmological N-body simulations. We first run a large volume simulation and perform
a mode-by-mode analysis in three-dimensional Fourier space. We show that the growth of
large-scale fluctuations significantly deviates from linear-theory predictions. The deviations
are caused by non-linear coupling with a small number of modes at largest scales owing to
finiteness of the simulation volume. We then develop an analytic model based on second-order
perturbation theory to quantify the effect. Our model accurately reproduces the simulation
results. For a single realization, the second-order effect appears typically as ‘zig-zag’ patterns
around the linear-theory prediction, which imprints artificial ‘oscillations’ that lie on the real
baryon acoustic oscillations. Although an ensemble average of a number of realizations ap-
proaches the linear-theory prediction, the dispersions of the realizations remain large even
for a large simulation volume of several hundred megaparsecs on a side. For the standard
A cold dark matter (ACDM) model, the deviations from linear growth rate are as large as
10 per cent for a simulation volume with L = 500 ~~! Mpc and for a bin width in wavenumber
of Ak = 0.005 hMpc~!, which are comparable to the intrinsic variance of Gaussian random
realizations. We find that the dispersions scales as oc L™/ Ak~!'/? and the mean disper-
sion amplitude can be made smaller than a per cent only if we use a very large volume of
L > 2h~! Gpc. The finite box size effect needs to be appropriately taken into account when
interpreting results from large-scale structure simulations for future dark energy surveys using
baryon acoustic oscillations.

Key words: methods: N-body simulations — cosmology: theory — large-scale structure of
Universe.

1 INTRODUCTION

Understanding the nature of dark energy that dominates the energy
content of the universe is one of the main challenges in cosmology.
The time evolution of the mysterious dark component is accessible
only by astronomical observations. Baryon acoustic oscillations
(BAO) can be used as a standard ruler by which precise measurement
of the cosmological distance scale is achievable (e.g. Eisenstein, Hu
& Tegmark 1998; Seo & Eisenstein 2003; Matsubara 2004).

*E-mail: takahashi @a.phys.nagoya-u.ac.jp
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Recent large galaxy redshift surveys, the Sloan Digital Sky Sur-
vey and the 2dF survey, detected the signature of the baryon acoustic
peaks and thus provide constraints on the dark energy (Cole et al.
2005; Eisenstein et al. 2005; Okumura et al. 2007; Percival et al.
2007). Future observational programs will utilize the distribution
of millions of high-redshift galaxies to detect BAO with higher
accuracy. In order to properly interpret these observations, it is nec-
essary to make accurate theoretical predictions for the length scale
and other characteristic features of BAO (e.g. Nishimichi et al. 2007;
Smith, Scoccimarro & Sheth 2008). Theoretically, a crucial issue is
the non-linear evolution of matter and galaxy distributions (e.g. Seo
& Eisenstein 2005; Angulo et al. 2007; Guzik, Bernstein & Smith
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2007; Smith, Scoccimarro & Sheth 2007). One usually resorts to
using cosmological N-body simulations for this, but various effects
— both physical and numerical — need to be understood in order to
extract useful information. First of all, the power spectrum for a
realization of a Gaussian random field has intrinsic deviations from
expected values at any wavenumber, that is the mode amplitudes are
Rayleigh distributed (see e.g. Matsubara 2007). A realization may
thus show an additional oscillatory feature on large scales which
compromises the true BAO signature (Huff et al. 2007). There are
also a number of numerical issues. Accurate time integration is
necessary in order to follow the evolution of large-scale density
perturbations which have small amplitudes. Finite-box size limits
the sampling of wavenumbers at the largest scales, where the power
amplitude is dominated by only a few modes. (Bagla & Prasad 2006
studied the finite box size effect on the mass function of dark matter
haloes.)

In this paper, we examine how accurately the evolution of large-
scale density perturbations is followed in standard cosmological
N-body simulations. In particular, we study the characteristic ‘wig-
gle’ features which are often found in the matter power spectra
calculated from N-body simulations in previous studies. We use an
approach based on perturbation theory to study non-linear effects
in detail. A further extensive study is presented in a separate paper
by Nishimichi et al. (in preparation).

Throughout the present paper, we adopt the standard A cold dark
matter (ACDM) model with matter density €2,, = 0.241, baryon
density €2, = 0.041, cosmological constant 2, = 0.759, spectral
index n, = 0.958, amplitude of fluctuations o' = 0.76 and expansion
rate at the present time Hy = 73.2kms~! Mpc~!, consistent with
the 3-yr WMAP (Wilkinson Microwave Anisotropy Probe) results
(Spergel et al. 2007).

2 METHOD

2.1 The cosmological simulations

We use the cosmological simulation code GADGET-2 (Springel,
Yoshida & White 2001; Springel 2005). For our fiducial runs, we
employ 256° particles in a volume of L = 500 4~! Mpc on a side.
We dump snapshots at a number of time-steps (redshifts) to study
the evolution of the density power spectrum. The simulation param-
eters are chosen such that sufficient convergence is achieved in the
measured power spectrum at the present epoch (Takahashi et al., in
preparation).

We generate initial conditions for our runs based on the stan-
dard Zel’dovich approximation using the matter transfer function
calculated by cams (Code for Anisotropies in the Microwave Back-
ground; Lewis, Challinor & Lasenby 2000). The initial redshift is
set to be z;, = 30. When we generate a realization for a Gaussian
random field, the amplitude of each k mode is assigned such that
the ensemble follows the Rayleigh distribution. While the mean of
the power is expected to approach the input value at k for an en-
semble of large modes, the actual assigned power in a finite k bin
can deviate significantly from the expected value. Note also that a
Rayleigh distribution has a positive skew, which causes the median
to be smaller than the mean.

2.2 Fourier mode analysis

We first compute the density field for each output of the N-body
simulation. We use the cloud-in-cell interpolation when assigning
particles on grids. We check that the interpolation method does not

1.2r L-500n""Mpc
2;,=30 (initial)
1.1

(E 0.9
-0 1st I
0.8k i peak
0 0.05

k (h/Mpc)

Figure 1. We plot the evolution of the power spectrum from the initial
epoch (black line) to z = 3 (green line), z = 1 (blue line) and z = O (purple
line). The measured power spectrum is divided by the no-wiggle model of
Eisenstein & Hu (1999). We subtract the intrinsic deviations from the input
power spectrum at the initial epoch. The numbers indicate integer sums of
n% + n% + n% of wavenumber vectors. The dashed lines are the one-loop
power spectra at each redshift (see the text).

affect the scales of interest (k = 0.1) by comparing various schemes.
We then apply a fast Fourier transform' to obtain the density field
8(k) in three-dimensional Fourier space. We will examine both the
amplitudes and the phases in detail in subsequent sections.

In order to study closely the Fourier mode coupling, we cal-
culate the mean amplitude of modes for a given realization with
wavenumber vector k = (ky, ko, k3) as

X 1
Py =+ > 1sthr, (1)

k| =k

where the summation is for all the wavenumbers of |k| = k = (k% +
K2 + k3)!/2, Ny is the number of modes in k and the wavenumber
is discretized as k; = (27t/L)n; with an integer n;. An ensemble
average of a number of realizations provides its expectation value
of P(k) = (P(k)).

In order to study the evolution of power spectrum, we divide the
measured power spectrum in equation (1) at redshift z by the initial
one at z;, = 30, and then multiply it by the input power spectrum. In
this way, the initial random scatter included in the power spectrum
is removed.

3 RESULTS

Fig. 1 shows the evolution of power spectrum P(k) for a single
realization. We show the mean amplitude for modes which have
exactly the same wavevector norm, |k|*> = k? + k3 + k3, rather
than binning in k. The vertical axis is the power spectrum divided
by the no-wiggle model of Eisenstein & Hu (1999). The black line
with symbols is the linear-theory prediction with cams. The green,
blue and purple lines with dots are the measured mean values at
each wavenumber at z = 3, 1 and 0, respectively. The numbers in

! Fastest Fourier Transform in the West (FFTW) home page:
http://www.fftw.org/
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the figure indicate integer sums of n3 + n3 + n3 of wavenumber
vectors.

As clearly seen in the figure, the power amplitudes deviate from
the linear-theory prediction at low redshifts. The deviations appear
to grow in time monotonically. Some modes (e.g. n*=4,13, 19,25,
27) grow more rapidly than the linear growth, while other modes
(e.g. n* = 8, 12, 20, 26, 32) grow less. These features can be
seen even in higher resolution simulation of Springel et al. (2005)
(see their fig. 6). Since the initial randomness of the amplitude of
each mode has been already subtracted in the figure as described
in Section 2.2, the remaining differences plotted in Fig. 1 are due
either to numerical integration errors or to some unknown physical
effects. The deviations are indeed large, with the amplitudes being
more than 10 per cent at the scale of the first peak of the BAO. It
is thus important to understand and correct the apparent oscillatory
features if these are artificial effects.

In the next section, we show that the deviations are not owing to
numerical integration errors but due to the finite number of modes
at the largest scales. We use second-order perturbation theory to
explain the systematic deviations.

4 PERTURBATION THEORY

Second-order perturbation theory describes the evolution of a den-
sity perturbation as (e.g. Bernardeau et al. 2002)

D(z)

8k 1) = — D)

81(k) + { D

in

in

2
} 82(k), 2

where §,(k) and Dy, are the linear density and the linear growth
factor evaluated at the initial redshift. The second-order term is
given by

8 (k) = Z Fy(p, k — p)3i(p)di(k — p), (3)
P

with
5 pg(1 1 2(p-q)

F(p,q) = 7 + N <? + ;) + 7 7 . “4)

We sum up all the modes up to the Nyquist frequency (256° modes
in total) in equation (3). Here, equation (4) includes the fastest
growing mode. Bernardeau, Crocce & Scoccimarro (2008) recently
present the correct formula of F, including the subleading growing
mode.

Let us explicitly write the amplitude and the phase of a mode as

3(k, z) = [8(k, 2)| explig(k, )], ®)
then the evolution of amplitude in each mode is

Pk, 2)/ Pk, zin) 1
—_— =14 — 2Re|8,(k)85(k
DD — ‘;ﬂ e[8,(0)83 ()]
1 D(z)
X —— ,
P(k, zin) Din
whereas the phase evolution is

¢k, 2) — pin(k) = sin @iy (k) cos ¢in (k)
Im é,(k) _ Re8,(k) | D(z) (N
Im 51(’() Re 51(’() D;, ’

(©)

up to second order. The expressions in equations (6) and (7) are
independent of the initial redshift for the late time (D > D;,), since
81 o« Dy, and 8, o P(k, zjn) o Dizn. We do not distinguish between
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8 and §; at the initial redshift (z;, = 30), since &, is much smaller
than 8, at that time.?

It is clear from equation (4) that non-linear mode coupling occurs
with particular sets of wavenumber vectors such that p +q =k.
From equation (4), we obtain

3 5 k?
F(p, k— p) — ﬁ—76089 P (8)
for k « p, and
1k
Fy(p,k — p) > ——cosf 9
2p

for k > p. Here 6 is an angle between k and p. Hence, the coupling
to the mode of much smaller scale p(>>k) is negligibly weak, while
the coupling to much larger scale p(<k) is strong. In summary,
most of the contribution to the second-order evolution of a mode
comes from the modes of comparable scales or larger.

For a Gaussian random field, the mode amplitudes are Rayleigh
distributed, and thus there is a finite probability that a mode has a
very large or a very small amplitude with respect to the expected
mean value. Some peculiar modes, which have very large or very
small amplitudes compared to the mean, strongly affect the growth
of other modes through the mode coupling as described in the above.

In an ideal situation where there are infinite number of
modes, the second term in equation (6) vanishes. In that case,
the leading correction arises from the fourth order of 4.
Then the resultant power spectrum with the one-loop correction
is

D(z)

D(z
Plloop(ka Z) = |: D (Z)

2
} Py (k) + [ D

in in

4
} [Pr(k) + Pi3(k)], (10)
where Py = (|81 %), P2» = (|82]*) and P13 = 2(Re[§,58%]) (Makino,
Sasaki & Suto 1992; Jain & Bertschinger 1994; Jeong & Komatsu
2006). We integrate from k = 27t/L to the Nyquist frequency in the
calculation of Py, and Pi3.

The dashed lines in Fig. 1 are the one-loop power spectrum at
each redshift. It suggests that the linear theory is applicable for
k < 0.07 hMpc~! at z = 0. However, the finite-mode coupling in
the second term of equation (6) significantly changes the evolution
of the power spectrum even in the linear regime.*

Fig. 2 shows the evolution of the mean amplitude of modes
with identical wavenumber n” in the range 1-32. Here, n> ~ 30
corresponds to the position of the first peak (see Fig. 1). The
four panels are for n> = 1-8 (upper left-hand panel), n?> = 9-
16 (upper right-hand panel), n> = 17-24 (lower left-hand panel)
and n?> = 25-32 (lower right-hand panel). The dots are the mea-
surement from simulation outputs, and red solid lines are the
theoretical prediction from the initial density fields at z;, = 30
in equation (6). The second-order perturbation theory reproduces
the simulation results rather well. The theory fits the data within
0.5 per cent at z = 2 and 2 per cent at z = 0 for larger scale (n?
= 1-8), whereas within 1 per cent at z = 2 and 10 per cent at z
= 0 for smaller scale (n*> = 25-32). This is because the second-
order perturbation theory is applicable at large scales and/or at high
redshift.

2 Nishimichi et al. (in preparation) distinguish & from 8; at the initial epoch
with the 2LpT initial condition (Crocce, Pueblas & Scoccimarro 2006) and
provide more detailed analysis.

3 Muecket et al. (1988) examined the growth of the small-scale perturbation
on the background of the large-scale perturbation.

4 Seto (1999) also investigated the finite mode effect on the one-loop cor-
rection terms, Py + Pj3, in equation (10).

© 2008 The Authors. Journal compilation © 2008 RAS, MNRAS 389, 1675-1682
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Figure 2. Evolution of the deviation of the power amplitude with respect to the linear-theory prediction. The dots are the measurements from our simulation,
and red solid lines are the model prediction using the second-order perturbation theory. The integers denote n*> = n% + n% + ng of wavenumbers, and the figures
show different range of n?, n?> = 1-8 (upper left-hand panel), n> = 9-16 (upper right-hand panel), n> = 17-24 (lower left-hand panel) and n> = 25-32 (lower

right-hand panel).

Fig. 3 is the same as Fig. 2, but for phase evolution. We plot
the results only for modes with n; > n, > nj, because the mean
of the phase at k, Y ¢(k), is zero [since ¢(k) + ¢(—k) = 0]. The
phase shifts are typically ~0.1rad at z = 0. Perturbation theory
well reproduces the results. Even if there are infinite modes, the
right-hand side of equation (7) still remains. The phase shift is not
due to the finite box size effect.

Previously, Ryden & Gramann (1991) and Gramann (1992) stud-
ied the evolution of amplitude and phase in each mode using two-
dimensional simulations. They also calculated second-order pertur-
bation theory and found the deviation from the linear theory grows
in proportional to the scale factor in the Einstein—de Sitter (EdS)
model. Suginohara & Suto (1991), Soda & Suto (1992) and Jain &
Bertschinger (1998) also examined the non-linear evolution in each
mode. However, they did not compare the theoretical prediction
with the simulation results in detail. Their motivations were to un-
derstand the evolution of the density fluctuations in the non-linear
regime, whereas our interest here is in the growth of perturbations
at the linear scale.

5 STATISTICAL ANALYSIS

The previous section considers second-order effects for a single
realization. In this section, we run 100 simulations to calculate

dispersions of amplitude and phase deviations from linear theory.
We prepare the 100 realizations for each of three box sizes of L =
500 h~! Mpc, 1 and 2 A~! Gpc, and z;, = 30, 20 and 10, respectively.

Fig. 4 shows the remaining amplitude dispersions from the linear-
theory prediction after correcting for the initial randomness at z =
0 for L = 500 h~! Mpc (top panel), L = 1 h~! Gpc (middle panel)
and L = 2k~ Gpc (bottom panel). Since we already subtract the
initial deviations due to the Gaussian distribution, the residuals arise
from the mode coupling during the evolution. The grey dots with
error bars are the means with 1o scatters. By using a sufficiently
large number of realizations, the means converge to the true values
(solid line), and the magnitude of the dispersions is insensitive to
the number of realizations. For L = 500 ! Mpc, the dispersions
are ~10 per cent near the first peak, and ~5 per cent even for a
very large volume of 2/4~! Gpc on a side. The dashed lines show
the theoretical prediction of the 1o scatter, which is the rms of the
second term in equation (6):

Lo [[Pearpeay T
m =\ |7 e/,

_ 4Pn(k, i) | {D(Z)r

Py (k, zin) AN | Dy, an

© 2008 The Authors. Journal compilation © 2008 RAS, MNRAS 389, 1675-1682
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Figure 3. Same as Fig. 2, but for phase evolution in units of radians. We plot the results only for modes with n; > ny > n3.

Here, AN, is the number of modes in the bin, AN, = 47tn?> An with
n = (L/27)k. In this unbinning case, the number of modes is AN,
= kLAn* (with An?> = 1). The dashed lines well reproduce the
results.

Fig. 4 also shows the results for the binned data of Ak =
0.005 2 Mpc~! by the black big symbols. In this case, we use the
power spectrum defined as Pk) = (1 /AN S |8(k)|?, summing
up all the modes between (k — Ak/2, k + Ak/2), instead of equa-
tion (1). Here, the number of modes in the bin is

AN, = (LK /@) Ak. (12)

We calculate the means and error bars for the binned P(k).

Fig. 5 shows the amplitude dispersions calculated from our sim-
ulation outputs for Ak = 0.005 hMpc~! (filled circle) and the the-
oretical prediction (solid line). From this figure with equations (11)
and (12), we find that the dispersion is approximated as

32 Ak —12
o.mp(z2 = 0) >~ 2 per cent ,
amp(2 =0)=2p (1Gpch—1) <0.005hMpc—1)

(13)
12

at k = 0.02-0.1 hMpc~!. The dispersion is proportional to AN,
o L732Ak™'/? from equation (12). Note that even with a large
simulation volume of L ~ 1 Gpc with k binning, the dispersions still
remain at the level of a few per cent.

So far we have discussed the amplitude of deviations from lin-
ear theory. Here, we also consider the intrinsic scatter of the initial

Gaussian random realizations. In Fig. 5, the dashed line is the dis-
persion for the initial distribution, which is given by’ (AN, /2)~'/2.
Fig. 5 shows that the dashed lines decrease as oc (AN;)™!/2 o k71,
while the solid lines increase because P,,/P;; increases (see equa-
tion 11). These two dispersions are comparable at k ~ 0.1 A Mpc ™!
where 2P, /P; ~ 1 at z = 0. About a half of the dispersions near
the position of the BAO first peak (k ~ 0.07 hMpc ™) are attributed
to the second-order effects. The result suggests that, at large scales,
k < 0.1 hMpc~', the dispersions arise mainly from the initial Gaus-
sian random distribution, while at smaller scale £ > 0.1 hMpc*1
they are from the mode coupling (based on the second or higher
order perturbation) during the evolution. In Fig. 6, the blue symbols
are the results for our 100 realizations. The black symbols are same
as in the top panel of Fig. 4 for Ak = 0.005 2 Mpc~'. As expected,
the initial random realizations have larger scatters around the mean
expected power spectrum, especially at the largest scales.

We have also performed a similar analysis for the evolution of
the mode phases (equation 7). Fig. 7 shows the phase dispersion
calculated from our simulations (the dots). Here, we set —7t <
(¢ — ¢in) < 7 and calculate (|6;|* (¢ — ¢in)?) instead of ((¢p —
¢in)?). This is because (¢ — ¢;) oc 1/8; in equation (7) and its
dispersion diverges at §; = 0. We obtain the phase dispersion from

5 The number of modes ANy is divided by 2 because the Fourier modes of
8(k) and 6(—k) are not independent.

© 2008 The Authors. Journal compilation © 2008 RAS, MNRAS 389, 1675-1682
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P(k,z)/P(K,2)
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Figure 4. The amplitude dispersions of the 100 realizations at z =0 for L =
500 ~~! Mpc (top panel), L = 1 2~! Gpc (middle panel) and L = 22~ Gpc
(bottom panel). The grey dots with error bars are for the unbinned data,
while the black big symbols are for the binned data of Ak = 0.005 A Mpc~!.
The value of k for the binned data is the weighted mean of k with the number
of wavenumbers in the bin. The dashed lines are the theoretical prediction.

equation (7) as®

(81BN (¢, 2) = $n(OF) _ Paak, zin) {D(Z)r
(18:(l)I*) 6Pk, zin) | Din |

The solid lines are the theoretical prediction, which fit the simu-
lation results well. The phase dispersion in equation (14), as well
as the amplitude dispersion in equation (11), is independent of
the initial redshift. In the non-linear limit of k — oo, the phases
are distributed randomly, and the phase dispersion approaches to
7//3 rad (e.g. Ryden & Gramann 1991).

(14)

6 DISCUSSION AND CONCLUSIONS

In this paper, we critically examined how accurately cosmological
N-body simulations describe the evolution of large-scale density
distributions, particularly focusing on the linear and/or quasi-linear
scales. For the power spectrum calculated from a single realization,
we found that the growth of large-scale fluctuations significantly
deviates from the linear-theory prediction, and the enhanced or

6 Jain & Bertschinger (1996) previously derived equation (14) with an ap-
proximation for the long-wave mode coupling.
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Figure 5. The amplitude dispersions calculated from our simulation outputs
(filled circle, o) and the theoretical predictions (solid lines). We also show
the dispersions due to the initial Gaussian distribution (dashed lines). The
vertical dotted line is the position of the BAO first peak.
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Figure 6. We compare two dispersions. Blue points with error bars show
intrinsic scatter around the expected mean power spectrum for initial Gaus-
sian random density fields. Black points show the dispersions owing to the
finite non-linear mode-coupling effect.

suppressed growth of perturbations produces an ugly noisy pat-
tern in the matter power spectrum. This deviation is not due to
the numerical errors in the N-body code, but due to the non-linear
coupling between finite numbers of modes originating from the fi-
nite box size. To study the effect of the finite-mode coupling in
detail, we developed perturbation theory and quantitatively esti-
mated the finite-mode coupling to the power spectrum amplitude.
Mode-by-mode analysis in three-dimensional Fourier space reveals
that the finite-mode coupling from the second-order perturbation is
sufficient to explain the deviation from linear-theory prediction on
large scales. The dispersion of the mode-coupling effects estimated
from second-order perturbation scales as oc L™/2Ak~!/2, and this
may surpass the intrinsic scatter of the initial Gaussian distribution.
Since the finite-mode coupling does not vanish even for a large-
volume simulation, it is of critical importance to correct it properly
for high-precision studies of BAO.

We show that the perturbative approach is very helpful to quan-
tify the significance of finite-mode coupling and this can be utilized
as an efficient and powerful tool to correct the finite-mode cou-
pling. As an example, in Fig. 8, we evaluate the power spectrum
directly obtained from a single realization at z = 2, and subtract the
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Figure 7. The phase dispersion of the 100 realizations. The solid line is the
theoretical prediction.
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Figure 8. The power spectrum at z = 2. The green line is the simulation
output. In the red line, we subtract the second-order perturbation contribution
from the simulation output. The blue line is the one-loop power spectrum.

finite-mode coupling using the second-order perturbation. Com-
pared the result before subtraction with that after subtraction, the
deviation from linear theory is dramatically reduced and the noisy
structures are effectively wiped out. As a result, even the single re-
alization data of N-body simulation faithfully reproduces the linear-
theory prediction on large scales.

Although the present paper mainly concerns with the second-
order perturbation theory, higher order perturbations are also im-
portant for the relevant scales of the measurement of BAO, where
the acoustic signature tends to be erased by the effect of non-linear
clustering (e.g. Crocce & Scoccimarro 2007; McDonald 2007;
Matsubara 2008; Taruya & Hiramatsu 2008). The height of the
first peak is found to be reduced about 2 per cent (Wang et al.,
in preparation). Thus, the inclusion of the higher order terms may
be important for the estimation of the finite-mode coupling, which
would be helpful to further reduce the noisy structures on small
scales.

We note that the variance of the growth of matter power spectrum
with respect to the linear-theory prediction, ([(}3 / f’m) /(D/Dip)? —
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11%), which we have studied, is different from the variance of the
power spectrum itself, (P — P)2). It remains unclear if the nu-
merical effects studied here are important in evaluating covariance
matrices (e.g. Meiksin & White 1999; Scoccimarro, Zaldarriaga &
Hui 1999; Neyrinck & Szapudi 2007). In future work, we will study
non-linear and numerical effects in the power spectrum covariance
using a large set of simulations and analytic models.
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