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ABSTRACT

We use 5000 cosmological N-body simulations of 1 h−3 Gpc3 box for the concordance ΛCDM model in order
to study the sampling variances of a nonlinear matter power spectrum. We show that the non-Gaussian errors
can be important even on large length scales relevant for baryon acoustic oscillations (BAOs). Our findings are
the following: (1) the non-Gaussian errors degrade the cumulative signal-to-noise ratios (S/Ns) for the power
spectrum amplitude by up to a factor of 2 and 4 for redshifts z = 1 and 0, respectively; (2) there is little
information on the power spectrum amplitudes in the quasi-nonlinear regime, confirming the previous results; (3)
the distribution of power spectrum estimators at BAO scales, among the realizations, is well approximated by
a Gaussian distribution with variance that is given by the diagonal covariance component. (4) For the redshift-
space power spectrum, the degradation in S/N by non-Gaussian errors is mitigated due to nonlinear redshift
distortions; (5) for an actual galaxy survey, the additional shot noise contamination compromises the cosmological
information inherent in the galaxy power spectrum, but also mitigates the impact of non-Gaussian errors. The S/N
is degraded by up to 30% for a Wide-Field Fiber-Fed Optical Multi-Object Spectrograph-type survey; (6) the finite
survey volume causes additional non-Gaussian errors via the correlations of long-wavelength fluctuations with the
fluctuations we want to measure, further degrading the S/N values by about 30% even at high redshift z = 3.

Key words: large-scale structure of universe – cosmology: theory

Online-only material: color figures

1. INTRODUCTION

Baryon acoustic oscillations (BAOs) are imprinted in the
distribution of galaxies, of which the characteristic length scale
can be used as a standard ruler in the universe (e.g., Eisenstein
et al. 1998; Blake & Glazebrook 2003; Seo & Eisenstein
2003; Matsubara 2004; Guzik et al. 2007). BAO provides a
powerful way of probing the nature of dark energy. Large galaxy
surveys such as the Sloan Digital Sky Survey (SDSS) and two-
degree Field Survey detected the BAO signature and provided
constraints on the dark energy equation of state (Cole et al.
2005; Eisenstein et al. 2005; Percival et al. 2007; Okumura
et al. 2008; Gaztanaga et al. 2008; Sanchez et al. 2009). Future
larger surveys are aimed at measuring the BAO scale more
accurately and hence yielding tighter constraints on the nature
of dark energy (see, e.g., Benitez et al. 2008).

The BAO signature in the galaxy power spectrum is very
small, of the order of a few percent modulation in amplitude, and
hence measurements of the precise length scale are hampered
by a number of effects. For example, nonlinear gravitational
evolution, redshift-space distortion, galaxy formation processes
and the associated scale-dependent bias, all compromise a
robust detection. Accurate theoretical models are clearly needed.
A number of authors resort to using numerical simulations
(Meiksin et al. 1999; Seo & Eisenstein 2005; Huff et al. 2007;
Smith et al. 2007, 2008; Angulo et al. 2008; Takahashi et al.
2008; Seo et al. 2008; Nishimichi et al. 2009) whereas others
use perturbation theory (PT; Crocce & Scoccimarro 2006,
2008; Jeong & Komatsu 2006, 2009; Nishimichi et al. 2007;

McDonald 2007; Matarrese & Pietroni 2007, 2008; Pietroni
2008; Matsubara 2008a, 2008b; Taruya & Hiramatsu 2008;
Takahashi 2008; Nomura et al. 2008; Rassat et al. 2008; Sanchez
et al. 2008). It is important to note that one needs accurate
estimates not only for the power spectrum but also for its
covariance (e.g., Scoccimarro et al. 1999; Meiksin & White
1999; Habib et al. 2007). The covariance describes statistical
uncertainties of the power spectrum measurement, and the band
powers at different wavenumbers are correlated with each other.
Hence once the well-calibrated covariance is obtained, one
can derive unbiased, robust constraints on the cosmological
parameter from the measured power spectrum (see Ichiki et al.
(2009) for such an example to show the importance of the
covariance estimation).

The power spectrum covariance matrix has only diagonal
elements for the Gaussian density fluctuations (e.g., Feldman
et al. 1994). The relative error of the power spectrum of
a given wavenumber is then simply given by the square
root of the number of Fourier modes available in the survey
volume. However, at small length scales, non-vanishing off-
diagonal parts of the covariance arise due to the mode coupling
(Scoccimarro et al. 1999; Meiksin & White 1999; Smith 2008).
This non-Gaussian contribution is described by the trispectrum
or the Fourier transform of the 4-point correlation function.
Cooray & Hu (2001) used the halo model to estimate the
trispectrum contribution and showed that the non-Gaussian
errors do degrade the precision of cosmological parameter
determination, and therefore cannot be ignored for planned
future surveys (see also Takada & Jain 2009; Eifler et al. 2008).
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Also recently, Smith (2008) studied the covariance matrix of
the halo power spectrum using numerical simulations. Sefusatti
et al. (2006) also studied the power spectrum covariance using
PT Halos (Scoccimarro & Sheth 2002).

In this paper, we use an unprecedentedly large number of
simulation realizations to estimate the covariance matrix of the
matter power spectrum in both real and redshift spaces. Our
sample is more than two orders of magnitude larger than those
used in the previous works, yielding well-converged estimates
on the power spectrum covariance. We compare our simulation
results with the analytical estimates based on PT and halo
model. In these comparisons we also include the new effect
of non-Gaussian errors that inevitably arise for a finite-volume
survey, as first pointed out in Rimes & Hamilton (2005; also
see Rimes & Hamilton 2006; Hamilton et al. 2006; Neyrinck
et al. 2006; Neyrinck & Szapudi 2007, and Lee & Pen 2008
for the observational implication based on the SDSS data).
By using this large number of the realizations, we also study
how the power spectrum estimates are distributed in different
realizations, i.e. the probability distribution of power spectrum,
and then compute the higher-order moments, skewness, and
kurtosis, to examine the overall impact of power spectra at high
sigma ends. Furthermore, we estimate the expected signal-to-
noise ratio (S/N) for measuring the power spectrum for a future
galaxy survey, taking into account the shot noise contamination
and the non-Gaussian errors.

Throughout the present paper, we adopt the standard ΛCDM
model with matter density Ωm = 0.238, baryon density Ωb =
0.041, cosmological constant ΩΛ = 0.762, spectral index
ns = 0.958, amplitude of fluctuations σ8 = 0.76, and expansion
rate at the present time H0 = 73.2 km s−1 Mpc−1, which are
consistent with the WMAP 3-year results (Spergel et al. 2007).

2. NUMERICAL SIMULATIONS

We use the cosmological simulation code Gadget-2 (Springel
et al. 2001; Springel 2005). We employ 2563 particles in
a volume of 1000 h−1 Mpc on a side. We generate initial
conditions of the seed density perturbations at z = 20 based
on the standard Zel’dovich approximation using the matter
transfer function calculated by Code for Anisotropies in the
Microwave Background (CAMB; Lewis et al. 2000). We ran
5000 realizations of Particle Mesh (PM) simulations for the
fiducial cosmological model, and use the snapshot outputs at
z = 3, 1, and 0 to study the power spectrum covariances.

To calculate the Fourier transform of the density field,
denoted as δ̃(k), we first assign the N-body particles onto
N3

grid = 5123 grids based on the cloud-in-cell method and
then perform fast Fourier transform (FFT).6 We also correct
the effect of the cloud-in-cell assignment scheme as δ̃(k) →
δ̃(k)× (sinc(kxL/2Ngrid)sinc(kyL/2Ngrid)sinc(kzL/2Ngrid))−2

with sinc(x) = sin x/x (Hockney & Eastwood 1988; Angulo
et al. 2008). The binned power spectrum for a given realization
is estimated as

P̂ (k) = 1

Nk

∑
|k|∈k

|δ̃(k)|2, (1)

where the summation runs over all the Fourier modes whose
length is in the range k − Δk/2 � |k| � k + Δk/2 for a given
bin width Δk. Here Nk is the number of modes taken for the
summation and is given as Nk = ∑

|k|∈k ≈ 4πk2Δk/(2π/L)3 =
6 FFTW home page: http://www.fftw.org/

V k2Δk/(2π2) for the limit k � 1/L, where L is the simulation
box size and V is the volume given by V = L3. The shot noise is
not subtracted, since this effect is very small. The ensemble aver-
age of the power spectrum estimator is then computed by averag-
ing the estimated spectra over the realizations: P (k) = 〈P̂ (k)〉.

We have checked that our simulation result for the power
spectrum agrees with the higher resolution TreePM result
within 1%(3%) at k < 0.2(0.4) h Mpc−17 (here the Nyquist
wavenumber is k = 0.8 h Mpc−1). If the initial redshift is set to
be higher, e.g., z = 50, the results agree within 2% for k < 0.2 h
Mpc−1 and 10% for k < 0.4 h Mpc−1 for z = 0, 1, 3. This is
sufficient for our purpose, which is to estimate the impact of
nonlinear clustering on the power spectrum covariances at BAO
scales.

3. COVARIANCE MATRIX

The covariance between the power spectra, P (k1) and P (k2),
is estimated from the simulation realizations and can be formally
expressed in terms of the Gaussian and non-Gaussian contribu-
tions (e.g., Scoccimarro et al. 1999; Meiksin & White 1999):

cov(k1, k2) ≡< (P̂ (k1) − P (k1))(P̂ (k2) − P (k2)) >

= 2

Nk1

P 2(k1)δK
k1,k2

+
1

V

∫
|k′

1|∈k1

∫
|k′

2|∈k2

d3k′
1

Vk1

d3k′
2

Vk2

× T
(
k′

1,−k′
1, k′

2,−k′
2

)
, (2)

where T is the trispectrum, and δK
k1k2

is the Kronecker-type delta
function defined such that δK

k1k2
= 1 if k1 = k2 within the bin

width, otherwise zero. The integration range in the second term
is, as in Equation (1), confined to the Fourier modes lying in the
range k1 − Δk/2 � k � k1 + Δk/2, and Vki

(i = 1, 2) denotes
the integration volume in Fourier space given by Vk1 ≈ 4πk2Δk
for the case of k � Δk.

The first term of the covariance matrix represents the Gaussian
error contribution ensuring that the two power spectra of
different wavenumbers are uncorrelated, while the second term
gives the non-Gaussian errors that include correlations between
power spectra at different k’s arising from nonlinear mode
coupling. Both the terms scale with the simulation box volume
as ∝ 1/V . It should also be noted that the non-Gaussian term
does not depend on the bin width (because

∫
|k′|∈k

d3k′/Vk ≈ 1),
so increasing Δk only reduces the Gaussian contribution via the
dependence Nk ∝ Δk. However, the cumulative S/N we will
study below is independent of the assumed Δk.

We will compare the simulation results with two analytical
approaches to estimate the covariance matrix: (1) PT, and
(2) halo model. In PT, following Scoccimarro et al. (1999;
also see Neyrinck & Szapudi 2008), the power spectrum and
trispectrum are, self-consistently including up to the third-order
perturbations of δ̃, expressed as

P 2(k1) = P 2
lin(k1) + 2Plin(k1)[P22(k1) + P13(k1)],

× T (k1,−k1, k2,−k2) = 12Plin(k1)Plin(k2)

× [F3(k1,−k1, k2)Plin(k1) + (k1 ↔ k2)] + 8Plin

× (|k1 − k2|)[F2(k1 − k2, k2)Plin(k2) + (k1 ↔ k2)]2,

(3)

7 The agreement is achieved in real space. In redshift space, PM simulations
somewhat underestimate the power spectrum by 20(10)% at z = 0, 1(3) at
small length scales (k = 0.4 h Mpc−1).

http://www.fftw.org/
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where Plin denotes the linear-order spectrum, and P22 and P13
are the one-loop corrections to the nonlinear power spectrum
(Makino et al. 1992; Jain & Bertschinger 1994) and F2 and F3 are
the kernels for the second- and third-order density perturbations
(e.g., Bernardeau et al. 2002).

In the halo model, the power spectrum is given by a sum
of two terms, the so-called one-halo term and two-halo term
(Seljak 2000; Ma & Fry 2000; Peacock & Smith 2000; also see
Cooray & Sheth 2002 for a review). Similarly, the trispectrum
consists of four terms, from one to four halo terms:

T = T 1h + T 2h + T 3h + T 4h. (4)

The explicit expressions of each term can be found in Cooray
& Hu (2001). In a nonlinear regime, i.e. large k, the 1-halo term
gives dominant contribution to the total power of the trispectrum,
while the different halos terms become more significant with
decreasing k and the 4-halo term that includes the PT trispectrum
contribution becomes dominant on very small k.

To complete the halo model approach, we need suitable
models for the three ingredients: the halo mass function (Sheth
& Tormen 1999), the halo bias parameters (Mo & White 1996;
Mo et al. 1997), and the halo mass density profile (Navarro et al.
1997), each of which is specified by halo mass m and redshift z
for a given cosmological model. The details of our halo model
implementation can be found in Takada & Jain (2003, 2009).

In our previous paper (Takahashi et al. 2008), we found that
a finite-size simulation causes the growth of large-scale den-
sity perturbations to be deviated from the linear theory predic-
tion, and the deviation is well described by the nonlinear mode
coupling. We proposed a method to “correct” the deviation in
the finite-size simulations to obtain the ensemble-averaged ex-
pectation of power spectrum without running ideal simulations
with infinite volume (practically a very large volume), as also
demonstrated in Nishimichi et al. (2009). In this paper, where
we discuss the power spectrum covariance for some finite sur-
vey volume, we do not have to “correct” the deviation in the
power spectrum of each realization, because the scatters are al-
ready included in the covariance formula (the terms with F2 in
Equation (3)).

We use 5000 realizations of each output redshift to directly
estimate the covariance matrix according to Equation (2). To be
more explicit, denoting the power spectrum of the ith realization
as P̂i(k), we can estimate the covariance as

cov(k1, k2) = 1

Nr − 1

Nr∑
i=1

[P̂i(k1) − P̄ (k1)][P̂i(k2) − P̄ (k2)],

(5)
where Nr is the number of realizations, i.e. Nr = 5000 in our
case, and P̄ (k) denotes the mean spectrum computed as P̄ (k) =
(1/Nr)

∑
i P̂i(k). As shown in the Appendix, the accuracy in

estimating the covariances scales with the number of realizations
used.8 For example, the relative accuracy of estimating the
diagonal covariance elements is found to scale approximately
as (Nr/2)−1/2. Hence, with the aid of 5000 realizations, we can
achieve a few %-level accuracies in estimating each elements of
the covariance, an improvement by an order of magnitude over
previous works.

8 More precisely, the accuracy of estimating the covariance is determined by
the covariance of the power spectrum covariance that includes up to the
8-point correlation functions (I. Kayo et al. 2009, in preparation).
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Figure 1. Diagonal components of the power spectrum covariance as a function
of wavenumbers, for redshifts z = 0, 1, and 3. The results are divided by the
Gaussian covariance of the linearly evolving power spectrum. Therefore, the
deviations from unity arise from both the nonlinear clustering and the non-
Gaussian errors. The symbols are the simulation results, while the solid curves
show the results obtained when the PT is used to compute the non-Gaussian
covariance. The dashed curves show the halo model results.

(A color version of this figure is available in the online journal.)

4. COMPARISON WITH THEORETICAL MODELS

4.1. Results in Real Space

Figure 1 shows the diagonal elements of the covariance
matrix as a function of wavenumbers. The diagonal elements
plotted are divided by the Gaussian covariances of linear power
spectra at each redshift such that the values become unity in
the linear regime limit (k → 0). Therefore, the deviations
from unity arise from the nonlinear evolution of P (k) and the
non-Gaussian covariance contribution. The cross, triangle, and
circle symbols show the simulation results for redshifts z = 3,
1, and 0, respectively. Note that we adopt the bin width of
Δk = 0.01 h Mpc−1 throughout this paper. The deviations from
the Gaussian errors become more significant at lower redshifts.
For comparison, the solid curves show the analytical predictions
obtained when the PT is employed to estimate the covariances as
described around Equation (3). The PT fairly well reproduces
the simulation results within 20% up to k < 0.24 h Mpc−1

at z = 0 and k < 0.4 h Mpc−1 at z = 1 and 3, respectively.
However, at lowest redshift z = 0, stronger nonlinear effects are
seen even on these large length scales corresponding to the BAO
scales. The dashed curves show the halo model results which
take into account of this nonlinear effect. The halo model fairly
well fits the simulation results over the range of wavenumbers
studied. At z = 1, 3 the PT predicts the larger variance than
the halo model, because the one-loop power spectrum in the
Gaussian term (3) overestimates the power spectrum.

Figure 2 shows the off-diagonal elements of the covariance
matrix. For illustrative purpose we study the correlation coeffi-
cient matrix defined as

r(k1, k2) = cov(k1, k2)√
cov(k1, k1)cov(k2, k2)

. (6)

The coefficients are normalized so that r = 1 for the diagonal
components with k1 = k2. For the off-diagonal components,
r → 1 implies strong correlation between the two spectra,
while r = 0 corresponds to no correlation. Note again that the
matrix elements r depend on the bin width: a finer binning, i.e. a
smaller Δk, decreases the off-diagonal components. First of all,
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Figure 2. Correlation coefficient matrix r(k1, k2), defined in Equation (6), as a function of k2, where k1 is kept fixed at k1 = 0.035, 0.135, and 0.235 h Mpc−1 in the
left, middle, and right panels, respectively. The solid curves denote the PT predictions, while the dashed curves show the halo model results. The simulation results at
z = 0 and 1 show greater amplitudes in the off-diagonal covariances than the PT predictions.

(A color version of this figure is available in the online journal.)

comparing the three panels of Figure 2 manifests that the off-
diagonal components have greater amplitudes with increasing k.
The PT fits the data within 0.1 for k < 0.15 h Mpc−1 at z = 0,
for k < 0.24 h Mpc−1 at z = 1 and for k < 0.29 h Mpc−1 at
z = 3. For the redshift dependence, there is almost no cross-
correlations at redshift z = 3, while there are increasing cross-
correlations at lower redshifts.

The PT results start underestimating the correlation strengths
with increasing k and at lower redshifts due to the stronger
nonlinearities. Compared with Figure 1, the PT results are found
to be less accurate to describe the off-diagonal components at
z = 1 and 0. The dashed curves are the halo model results, which
are in a good agreement with the simulation results, especially
at z = 0. We found that an inclusion of the 2- and 3-halo
terms is important to describe the scale dependences of the
off-diagonal correlations. However, the halo model displays a
sizable disagreement at some scales, and is not well accurate.
Therefore, a further refinement of the model predictions based
on this kinds of large-scale simulations is needed to accurately
model the measurement errors of the power spectrum, especially
for future high-precision surveys.

4.2. Results in Redshift Space

In this section, we examine the covariance of the redshift-
space power spectrum that is a more direct observable in galaxy
surveys. The redshift-space power spectrum in each realization
is computed as follows. Assuming the distant observer approx-
imation, we first calculate the density perturbations in redshift
space as described in Section 2, but properly taking into account
modulations of N-body particle positions in redshift space due
to the peculiar velocities. The density perturbation field is thus
given as a function of wavenumbers k‖ and k⊥ that are parallel
and perpendicular to the line-of-sight (taken from one direction
in the simulation box). As a result, the redshift-space power
spectrum Ps is given as a two-dimensional function due to the
statistical isotropy: Ps(k⊥, k‖). In this paper, for simplicity, we
focus on the spherically averaged redshift-space spectrum over
the shell of a radius k with the width Δk:

P̂s0(k) ≡ 1

Nk

∑
|k′|∈k

|δ̃s(k
′
‖, k′

⊥)|2, (7)

where k′ =√
k′2‖ +|k′⊥|2 and Nk is the number of modes in the

spherical shell in redshift space. Likewise, the covariance matrix
of Ps0 can be estimated by averaging the spectrum estimators
among the simulation realizations as in Equation (5).

According to the linear PT of structure formation, the redshift-
space power spectrum can be simply related to the real-
space spectrum under the distant observer approximation as
Ps(k‖, k⊥) = (1 + f μ2)2P (k), where μ = k‖/k is the cosine
between the line-of-sight and the wavevector and f is the linear
redshift distortion, expressed in terms of the linear growth rate
D1 as f = (d ln D1/d ln a)/b (Kaiser 1987) with the bias
parameter b = 1 for the dark matter power spectrum. Note
that all the spectra we have considered are for the total matter
distribution. Averaging the redshift-space spectrum over the
cosine angle μ yields the linear theory prediction that is to
be compared with the simulation result given by Equation (7):

Ps0(k) = [1 + (2/3)f + (1/5)f 2]P (k). (8)

The prefactor in front of P (k) on the r.h.s. of Equation (8)
does not depend on the wavevector. Hence, from Equations (2)
and (8), the linear theory tells that the covariance of the redshift-
space power spectrum (8) can be simply expressed as9

covs(k1, k2) ≡< (P̂s0(k1) − Ps0(k1))(P̂s0(k2) − Ps0(k2)) >

= 2

Nk1

P 2
s0(k1)δK

k1k2

1 + 4
3f + 6

5f 2 + 4
7f 3 + 1

9f 4(
1 + 2

3f + 1
5f 2

)2 .

(9)

Due to the additional factor that depends solely on f, the co-
variance amplitude of Ps0 is greater than the standard Gaussian
error, (2/Nk)P 2

s0, by 6, 16 and 20% at z = 0, 1 and 3 for the
ΛCDM model, respectively. Note that the covariance form (9)
is valid only for the asymptotic limit of large length scales, and
in general the nonlinear clustering effects cause deviations from
the Kaiser formula on the BAO scales (e.g., Scoccimarro 2004).

The diamond symbols in Figure 3 show the diagonal com-
ponents of the redshift-space power spectrum covariances as a
function of wavenumbers and at three output redshifts. The di-
agonal components are divided by the standard Gaussian errors,
2/NkP

2
s0(k), where we have used the nonlinear power spectrum

measured from the simulations. Note the difference in the nor-
malization factor from that in Figure 1. The horizontal line in
each panel shows the prefactor in Equation (9), the amplification
factor expected from Kaiser’s formula at the large-scale limit.

9 The angular average of the covariance is proportional to
∫

dμ(1 + f μ2)4,
while the square of the angular averaged Ps (k) is proportional to
[
∫

dμ(1 + f μ2)2]2. Hence the two quantities are not same and the extra factor
in Equation (9) appears.



No. 1, 2009 SIMULATIONS OF BARYON ACOUSTIC OSCILLATIONS. II. 483

0 0.2 0.40 0.2 0.40 0.2 0.4

1

1.2

1.4

1.6
z=3

k (h/Mpc)

z=1

k (h/Mpc)

z=0

 k=0.01h/MpcΔ

k (h/Mpc)

c
o
v
(k

,k
)

P
2
(k

)

N
k

2
real space
redshift space

Figure 3. Diagonal covariance components as a function of wavenumbers, for real- and redshift-space power spectra. Note that the redshift-space power spectrum
studied here is the spherically averaged spectrum over a shell of a given radius k in redshift space (see text for the details). We show the covariances divided by the
Gaussian error contribution (the first term in Equation (2)): at a large length scale limit (k → 0), the real- and redshift-space values approach to unity (solid line) and
to the constant factor that is given by Kaiser’s linear distortion (dashed line), respectively. The non-Gaussian error contribution is relatively suppressed in redshift
space due to the nonlinear redshift distortions.

Figure 4. Correlation matrix at z = 0 (left panel) and z = 1 (right panel). In each panel, the upper-left matrix elements are the off-diagonal covariances in real space,
while the lower-right elements are for redshift space.

(A color version of this figure is available in the online journal.)

Therefore, the deviations from the horizontal line may come
from two contributions: (1) the non-Gaussian error contribution
caused by nonlinear clustering, and (2) the nonlinear redshift
distortions such as the effect caused by the virial motions within
and among halos, known as the finger-of-God effect. The circle
symbols denote the simulation results for the real-space spec-
trum computed in a consistent way, i.e., divided by the nonlinear
spectrum. The nonlinear effects on the covariance become more
significant with increasing wavenumber and at lower redshifts.
Interestingly, however, comparing the real- and redshift-space
results manifests that the relative importance of the non-
Gaussian covariances is weaker in redshift space, implying
that the finger-of-God redshift distortions at small length scales
more preferentially suppress the covariance amplitudes than the
power spectrum amplitudes (also see Meiksin & White 1999).

Figure 4 shows both off-diagonal components of the covari-
ances in real space (the left-upper elements in each panel) and
redshift space (right-lower), at redshifts z = 0 and z = 1, respec-
tively. The cross-correlations are more significant with increas-
ing wavenumbers, while the correlation strengths are relatively
weaker in redshift space.

5. PROBABILITY DISTRIBUTION OF THE POWER
SPECTRUM ESTIMATOR

We have so far discussed the non-Gaussian covariance of the
power spectrum estimator P̂ . It would also be intriguing to study

how the nonlinear clustering causes a non-Gaussian distribution
in the power spectrum estimators of a given k among our
5000 realizations. For example, if the estimators have a skewed
distribution, a prior knowledge on the full distribution may be
needed to obtain an unbiased estimate on the ensemble-averaged
band power at each k from a small number of realizations or a
finite volume survey. Note that the power spectrum covariance
simply reflects the width (variance) of the full distribution at
each k’s but does not contain full information on the probability
distribution.

Figure 5 shows the probability distribution of the power
spectrum estimators P̂ among 5000 realizations, where we mean
by “probability” that the distribution is normalized so as to
give unity if the distribution is integrated over the x-axis values
(see below). The cross, triangle, and circle symbols show the
results for k = 0.05, 0.2, and 0.4 h Mpc−1, respectively. The
distribution is plotted as a function of (Nk/2)1/2(P̂ /P̄ − 1) for
each k such that the mean and variance of the distribution are
equal to zero and unity when the power spectrum distribution
obeys the linear-regime Gaussian distribution. The simulation
results show that the distribution is broadened with increasing
k due to the stronger nonlinearities. The solid curves show the
expected Gaussian distribution where its variance is set to the
diagonal covariance measured from the simulations at each k, i.e.
the variance includes the non-Gaussian covariance contribution
as given in Figure 3. Interestingly, the simulation results are
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Figure 5. Probability distribution of the power spectrum estimators P̂ in the
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mean and variance that is set to the diagonal covariance component measured
from the simulations at a given wavelength.

(A color version of this figure is available in the online journal.)

rather well approximated by the Gaussian distribution even in
the nonlinear regime.

The remaining small deviations from the Gaussian distribu-
tion can be quantified by studying the skewness S3 and kurtosis
S4 defined as

S3 = 〈(P̂ (k) − P (k))3〉
〈(P̂ (k) − P (k))2〉3/2

,

S4 = 〈(P̂ (k) − P (k))4〉
〈(P̂ (k) − P (k))2〉2

− 3. (10)

The S3 and S4 are vanishing for the Gaussian distribution. If
the density field obeys the random Gaussian fields, which is a
good approximation in the linear regime, the power spectrum
estimator of a given k (see Equation (1)) obeys the χ2

Nk
-

distribution in analogy with the CMB power spectrum (Knox
1995). In this case, as derived in Appendix B, the skewness and
kurtosis can be analytically computed as

S3 =
√

8

Nk

, S4 = 12

Nk

. (11)

Figure 6 shows the simulation results for S3 and S4 as a
function of k at z = 20 and 0. The results are for a volume
of V = 1 h−3 Gpc3, and the S3,4 scale as S3 ∝ V −1/2 and
S4 ∝ V −1 from Equation (11). The solid curves are the
theoretical predictions of Equation (11) which well match the
simulation results. Note that the skewness is positive, because
the χ2-distribution has a long tail at large ends of P̂ . Both S3 and
S4 asymptote to zero at high k, i.e., the probability distribution
approaches to a Gaussian distribution at high k. The skewness
grows from z = 20 to 0 through the nonlinear gravitational
evolution, however, its value (S3 � 0.1) is very small.

6. EFFECTS OF NON-GAUSSIAN COVARIANCE ON THE
SIGNAL-TO-NOISE RATIO

A useful way to quantify the impact of the non-Gaussian
errors is to study the cumulative S/N for measuring the power
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Figure 6. Skewness (top panel) and the kurtosis (bottom panel) of the power
spectrum distribution shown in the previous figure, as a function of k for outputs
at z = 20 and 0. The circles and crosses are the simulation results, while the
solid curves are the theoretical predictions expected when the power spectrum
estimators obey the χ2-distribution.

(A color version of this figure is available in the online journal.)

spectrum over a range of wavenumbers, which is also sometimes
called the Fisher information content (e.g., Tegmark et al. 1997).
The S/N is defined, using the covariance (2), as

(S/N)2 =
∑

k1,k2<kmax

P (k1)cov−1(k1, k2)P (k2), (12)

where cov−1 denotes the inverse of the covariance matrix and
the summation is up to a given maximum wavenumber kmax.
Note that the S/N is independent of the bin width assumed, as
long as the power spectrum does not vary rapidly within the bin
widths.

Figure 7 shows the S/N as a function of kmax for the spectra
at z = 0, 1, and 3 in real space (left panel) and in redshift
space (right), respectively. The results for S/N shown here are
for a volume of V = 1 h−3 Gpc3 (the S/N scales with V as
S/N∝ V 1/2). For comparison, the solid curve shows the S/N
for the Gaussian error case, which scales as S/N ∝ k

3/2
max

independently of redshift. The simulation results show that the
non-Gaussian errors degrade the S/N. The degradation becomes
more significant with increasing kmax and at lower redshifts: for
the results in real space the S/N is degraded by up to a factor of
4 and 2 for z = 0 and 1, respectively, compared to the Gaussian
error case. It should be worth noting that the S/N becomes
nearly constant on kmax � 0.2 and 0.3 h Mpc−1, i.e., no gain
in the S/N even if including modes at the larger k, as has been
found in the previous works (Rimes & Hamilton 2005, 2006;
Hamilton et al. 2006; Neyrinck et al. 2006; Neyrinck & Szapudi
2007; Lee & Pen 2008; Angulo et al. 2008; Smith 2008).

In the dashed curves, we use the PT in Equation (3) to
calculate the covariance, while the power spectrum measured
from the simulations is used for the numerator in the S/N
calculation. The PT provides a better fit to the data in the linear
and weakly nonlinear regime, which is coincident within 10%
for kmax < 0.16 h Mpc−1 at z = 0, kmax < 0.23 h Mpc−1 at
z = 1 and kmax < 0.4 h Mpc−1 at z = 3, respectively. However,
at small scale the deviation is so large, since the theory predicts
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(A color version of this figure is available in the online journal.)

Table 1
WFMOS Survey Parameters

Redshift Volume Number Density Bias
(h−3 Gpc3) (h−3 Mpc−3)

0.5–1.3 4.0 5 × 10−4 1.7
2.3–3.3 1.0 5 × 10−4 3.2

the much smaller covariance than the data as shown in Figures 1
and 2.

The dotted curves in the left panel of Figure 7 show the
halo model results, which fairly well fit the simulation results
at z = 0. At higher redshifts (z = 1, 3), the halo model
reproduces a saturation in the S/N amplitude on the small kmax,
but underestimates the impact of the non-Gaussian errors, which
is due to the underestimation in the off-diagonal elements of the
covariances in the halo model (see Figure 2).

The impact of the non-Gaussian errors on S/N is mitigated in
redshift space as in Figure 3. Also note that the S/N in redshift
space continues to increase for the smaller scales kmax > 0.2 h
Mpc−1. This is again because the nonlinear redshift distortions
cause strong suppression in the non-Gaussian covariances,
making the S/N closer to the Gaussian error case.

We make a more realistic estimate for the S/N taking into
account the shot noise effect of galaxies that are biased tracers
of a large-scale structure. To do this, we consider a galaxy
survey that resembles the planned survey by Wide-Field Fiber-
Fed Optical Multi-Object Spectrograph(WFMOS), and assume
the fiducial survey parameters given in Table 1 (see also the
WFMOS feasibility report10). The target galaxies are supposed
to be emission-line galaxies and Lyman-break galaxies, at z ∼ 1
and z ∼ 3, respectively. To compute the power spectrum and
covariance of galaxies, we employ a linear bias model for
simplicity. This assumption is not accurate since the bias is
generally nonlinear and scale dependent (Smith et al. 2007),
and hence our results below just give a rough estimate on the
S/N. The bias parameters in Table 1 are chosen such that the
rms density fluctuations of galaxies within a sphere of radius
8 h−1 Mpc become σg8 = 0.8 (Glazebrook et al. 2005). We
simply include the effects of the linear bias and the shot noise

10 Feasibility Study Report: http://www.gemini.edu/files/docman/science/
aspen/WFMOS_feasibility_report_public.pdf
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Figure 8. Expected S/N for model WFMOS surveys of z ∼ 1 and z ∼ 3
slices (see Table 1). Note that the shot noise contribution to the covariance is
included. The solid curves denote the S/N without the non-Gaussian covariance
contribution. The bottom panel shows the ratio between the simulation result
and the solid curve for each redshift slice. The Gaussian error assumption
overestimates the S/N by 30% (7%) at z = 1(3) for kmax = 0.4 h Mpc−1.

(A color version of this figure is available in the online journal.)

by replacing the power spectrum and the covariance in the S/N
evaluation as P → b2P and cov → b4cov + 2b2P n̄−1

g + n̄−2
g ,

where n̄g is the mean number density of galaxies. The above
replacement is done in real space.

The symbols in Figure 8 show the simulation results in
real space. The expected S/N is found to be very significant:
S/N � 400 and 200 for the slices of z = 1 and 3 for kmax =
0.4 h Mpc−1, respectively. This implies that the WFMOS-type
survey allows a precision of measuring the power spectrum
amplitudes at a sub-percent level.11 The solid curves are the

11 The Fisher information matrix for the power spectrum measurement is
given as Fij = ∑

k1,2
[∂P (k1)/∂θi]cov−1(k1, k2)[∂P (k2)/∂θj], where θi is a set

of cosmological parameters of interest. Roughly speaking, the unmarzinalized
uncertainty in estimating a parameter θi is given as
σ 2(θi ) = [Fii ]−1/2 ∝ (S/N )−1 (this exactly holds if the power spectrum
amplitude, for the fixed shape, is considered as the parameter). Therefore, the
S/N amplitude gives a rough estimate on the precision of parameter estimation
provided the power spectrum measurement: the greater S/N means the higher
precision.

http://www.gemini.edu/files/docman/science/aspen/WFMOS_feasibility_report_public.pdf
http://www.gemini.edu/files/docman/science/aspen/WFMOS_feasibility_report_public.pdf
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results obtained assuming the Gaussian covariances with the
shot noise contribution, which do not scale as S/N ∝ k

3/2
max

on scales where the shot noise is relevant in the covariance
(n̄gP � 1). Compared with Figure 7, one can find that the shot
noise causes positive and negative effects on S/N: it reduces the
overall amplitudes of S/N, but mitigates the degradation due to
the non-Gaussian errors.

Since the precision of constraining individual cosmological
parameters such as dark energy parameters roughly scales with
the S/N amplitude11, Figure 8 implies that the constraining
power of the fiducial WFMOS survey is degraded by the non-
Gaussian errors, compared with the Gaussian error case. The
impact of the non-Gaussian errors on cosmological parame-
ter estimations will be presented in a subsequent paper (R.
Takahashi et al. 2009, in preparation).

7. EFFECTS OF LONG-WAVELENGTH FLUCTUATIONS

We have so far employed, as usual, the simulations with
periodic boundary conditions, where there is no clustering
power on scales greater than the simulation box. Obviously,
however, the real universe never obeys the periodic boundary
condition and does contain the density perturbations of scales
greater than a surveyed volume. In particular, Rimes & Hamilton
(2006) pointed out a new source of the non-Gaussian errors
that inevitably arises when the power spectrum is estimated
from a finite-size volume, called the beat-coupling (BC) effect
(2006; also see Hamilton et al. 2006; Sefusatti et al. 2006).
If the survey region is embedded in a large-scale overdensity
or underdensity region, then the small-scale fluctuations we
measure may have grown more rapidly or slowly than the
ensemble average. There are thus non-vanishing correlations
of the small-scale fluctuations with the unseen large-scale
fluctuations. This physical correlations may add uncertainties
in measuring the power spectrum on scales of interest.

In this section, therefore, we study how the periodic boundary
conditions and the density perturbations larger than a survey
volume (the volume where the Fourier transform is performed)
affect the power spectrum estimation and the covariance. For
this purpose we study the following three cases:

Case 1. We first divide each simulation region of 1 h−3 Gpc3 into
eight cubic sub-boxes of equal volume. Each sub-box has
a volume of (500 h−1 Mpc)3 and contains about 1283

particles. We then randomly select only one sub-box and use
the particle distribution to resemble the density perturbation
field. The density perturbation field outside the sub-box is
zero padded within the whole box of 1 h−3 Gpc3. The mean
mass density is computed from the number of the particles
within the sub-box. Then we perform the FFT of 5123 grids
for the whole box to estimate the power spectrum.

Case 2. Similar to Case 1, but the FFT of 2563 grids is performed
only within the sub-box of volume (500 h−1 Mpc)3 that
contains the N-body particles (therefore no zero-padded
region).

Case 3. We run new simulations of volume (500 h−1 Mpc)3 using
1283 particles and employing the periodic boundary condi-
tion. Then the power spectrum is estimated from the whole
box using the FFT of 2563 grids.

Note that the effective mass and spatial resolutions are the
same in all the cases. We use 400 realizations for each case.
Cases 1 and 2 do not employ the periodic boundary condition and
contain the density fluctuations larger than the FFT-used volume
in structure formation. However, these two cases are different
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Figure 9. Real-space power spectra at z = 0, computed based on the procedures
of Cases 1, 2, and 3 in Section 7. Note that the power spectra are divided by
the non-wiggle linear power spectrum of Eisenstein & Hu (1999) for illustrative
purpose. The dotted symbols show the spectrum estimated from the simulations
with the periodic boundary condition. The cross and plus symbols show the
results without the periodic boundary condition: the results include contributions
from the density perturbations of scales greater than the Fourier-transformed
volume. The density perturbation fields for the cross and plus symbols are
equivalent, but the Fourier-transformed volume for the cross symbol is set to
contain the zero-padded region (see text for the details). The solid curve denotes
the linear theory prediction. The dashed curve is the same as the solid curve,
but convolved with the window function.

(A color version of this figure is available in the online journal.)

in that the fundamental mode of Fourier transform, given as
ε ≡ 2π/L (L is the size of FFT volume), is smaller in Case 1 by
factor 2 than in Case 2. Therefore, the density fluctuation field
is sampled by the finer Fourier modes in Case 1. Also note that
Case 1 corresponds to a case that the FFT transform is applied
to a survey with a complex geometry. Case 3 has the periodic
boundary condition, and is equivalent to the procedure we have
employed up to the preceding section. By comparing these three
cases, we will below address the effects of the periodic boundary
condition, the finite Fourier sampling, and the BC effect.

Figure 9 shows the real-space power spectra at z = 0,
estimated according to the procedures described above, where
the simulated power spectra are divided by the non-wiggle
linear power spectrum in Eisenstein & Hu (1999) for illustrative
purpose. The cross, plus, and dotted symbols are the results for
Cases 1, 2, and 3, respectively. All the results agree well on scales
k � 0.1 h Mpc−1. However, the results for Cases 1 and 2, which
do not impose the periodic boundary condition, underestimate
the power spectrum amplitudes at the linear regime k ∼ 0.1 h
Mpc−1 by up to 10%. This is because the non-periodic density
fluctuation field is expanded by the FFT transform that has
periodic basis eigenfunctions within the box size (see Sirko
2005 for the similar discussion). This underestimation can be
corrected for if the Fourier kernel of the non-periodic field is
properly taken into account. The dashed curve is the linear power
spectrum convolved with the window function which is given
as W (x) = 1 (= 0) inside (outside) the sub-box:

PW (k) = 1

V

∫
d3k′

(2π )3
P (k′)|W̃ (k − k′)|2. (13)

The window function in Fourier space is

W̃ (k) = V
∏

i=x,y,z

sin(kiL/2)

kiL/2
, (14)
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model the non-Gaussian covariances. The dashed curves show the results when
the additional non-Gaussian errors due to the long-wavelength fluctuations,
modeled by Equation (15), are further included.

(A color version of this figure is available in the online journal.)

with L = 500 h−1 Mpc. The dashed curve is the spherical
averaged power spectrum, PW0(k) = ∫

dΩk/(4π )PW (k), which
reproduces the dumping of the power spectrum at k < 0.1 h
Mpc−1.

Figure 10 compares the power spectrum covariances. The top
two panels show the diagonal parts normalized by the linear
power spectrum (upper-left) and the spectrum measured from
simulations (upper-right), which are similar to Figures 1 and 3,
respectively. The number of modes Nk in the vertical axis is used
for the (500 Mpc/h)3 box for all the cases. First, comparing the
results for Cases 2 and 3, we find that there are stronger non-
Gaussian errors at k � 0.2 h Mpc−1 for Case 2: the presence of
the density fluctuations larger than the survey volume, as in the
real universe, increases the non-Gaussian error strengths due to
the mode coupling between the large- and small-scale density
fluctuations. Next, let us compare Case 1 with Cases 2 and 3.
The results for Case 1 are clearly smaller than Cases 2 and 3 even
at the linear scales such as k � 0.1 h Mpc−1, but show stronger
non-Gaussian errors than Case 3 on the large k’s as in Case 2. The
differences between Cases 1 and 2 are caused by the presence
of the zero-padded regions within the FFT volume and the finer
Fourier sampling. For Case 1, the density perturbations of scales
comparable to the FFT volume are non-periodic due to a mixture
of the zero-padded region and the N-body particle distribution
in the sub-volume. Therefore, the Fourier transform causes arti-
ficial cross-correlations between the Fourier modes of different
k’s even in the linear regime. Due to the cross-correlations,
the off-diagonal covariances are amplified as shown in the

lower panels, while the diagonal covariances are relatively
suppressed.

The behaviors of the off-diagonal covariances shown in the
lower panels are similarly understood. Comparing the three
cases one can find that the long-wavelength fluctuation effect
and the zero-padding plus the finer Fourier sampling cause
stronger cross-correlations between the spectra of different k’s
over the range of k we have considered.

More important results are given in Figures 11, showing the
cumulative S/N values for Cases 1, 2, and 3, computed properly
taking into account the covariances in Figures 10. Each panel
shows the results at redshifts of z = 0 (left), 1 (center), and 3
(right). First of all, all the results agree well with the Gaussian
error case on the linear scales, k � 0.1 h Mpc−1. At the larger
k’s, the results for Cases 1 and 2 show that the presence of long-
wavelength fluctuations further degrades the S/N amplitudes by
20% at redshift z = 0 and by 30% at z = 1 and 3, respectively,
compared to the results with the periodic boundary condition
(Case 3). This implies that, even for high redshifts and at the
BAO scales, the additional non-Gaussian errors due to the long-
wavelength fluctuation effect need to be included in the analysis
for an actual survey. Interestingly, the S/N values for Cases 1 and
2 become to agree well, even though their covariances are very
different as shown in Figure 10. This agreement is reasonable,
because Cases 1 and 2 contain the similar mass density fields of
same volume; therefore the amount of cosmological information
to be extracted is similar. These are different only in the FFT
procedures.

A full physical understanding of the complex covariance
behaviors is beyond the scope of this paper. Nevertheless, it
would be interesting to compare the simulation results with
an analytical model. A crude model to describe the long-
wavelength fluctuation effect on the non-Gaussian covariance is
proposed in Hamilton et al. based on the PT (also see Takada &
Jain 2009):

covBC(k1, k2) = 1

V
16

(
17

21

)2

Plin(ε)Plin(k1)Plin(k2), (15)

where ε ≡ π/L (L = 500 h Mpc−1 for Cases 1 and 2).
This model ignores the Fourier transform effect of the non-
periodic density field and rests on a simplified assumption that
the long-wavelength fluctuation effect arises from a correlation
of the fundamental Fourier mode ε with the wavenumbers
we want to measure. Developing a more accurate analytical
model of the long-wavelength fluctuation effect is now in
progress and will be presented elsewhere (I. Kayo et al. 2009, in
preparation).

The solid curves in Figure 10 show the S/N for the Gaussian
error case, and roughly explains the simulation results up to
the linear regimes. The dashed curves show the PT model
predictions including the BC effect modeled by Equation (15),
which are intended to reproduce the results for Case 2. The
dotted curves show the results obtained when the halo model
contribution to the covariance is further included. These analytic
models do not describe the complex behaviors of the diagonal
and off-diagonal covariances seen in the simulations. Also the
simulation results for S/N cannot be explained by the analytic
models. The analytical model in Equation (15) overestimates the
BC effect. This conclusion agrees with a recent study of Reid
et al. (2008), where they showed that the simulation results are
fairly well explained if Equation (15) reduced by a factor 3 is
added to the Gaussian covariance.
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(A color version of this figure is available in the online journal.)

8. DISCUSSION AND CONCLUSION

Having well-calibrated, accurate covariances of the power
spectrum is clearly needed in order to obtain unbiased, ro-
bust cosmological constraints from ongoing/future BAO exper-
iments. In previous studies, the covariance matrix is calculated
either by using analytic models which cannot be applied to fully
nonlinear regimes, or by using a limited number of simulation
realizations (Scoccimarro et al. 1999; Meiksin & White 1999;
Rimes & Hamilton 2005; Neyrinck & Szapudi 2008). In this
paper, we used a very large number (5000) of the realizations to
study the power spectrum covariances, allowing us to achieve
the convergence at a few % level.

We have carefully studied how the non-Gaussian error contri-
butions to the covariance vary with scales and redshifts for the
concordance ΛCDM model. As expected in the CDM model,
the non-Gaussian errors become more significant on smaller
length scales and at lower redshifts. For redshifts z = 0, 1, and
3, the cumulative S/Ns for measuring the power spectrum over
0.01 � k � 0.4 h Mpc−1 are degraded due to the non-Gaussian
errors by a factor of 1.3, 2.3, and 4, respectively, compared to
the Gaussian error cases. This degradation is slightly mitigated
in redshift space because the nonlinear redshift distortions cause
a stronger suppression in the covariance amplitudes than in the
power spectrum amplitudes.

We also estimated how the density fluctuations of scales
greater than a survey size cause additional non-Gaussian errors
via the correlations with the fluctuations we want to measure,
which inevitably arises for a finite-size survey—the so-called
BC effect. This effect disappears when estimating the power
spectrum covariances from simulations with the periodic bound-
ary condition. Thus we rather used the sub-region of the original
simulation to estimate the new non-Gaussian errors, and showed
that the BC effect can be important even in the weakly nonlinear
regime and for high redshifts: it further suppresses the S/N by
20% at z = 0, and 30% at z = 1 and 3, respectively. However,
the behaviors of these non-Gaussian errors cannot be described
by the naive analytic models with and without the BC effect.
Therefore, it will be worth exploring a more accurate analyti-
cal model of the non-Gaussian covariances. Such a model will
help us to obtain physical interpretation and to calibrate the de-
rived covariance for arbitrary cosmological models and survey
parameters (I. Kayo et al. 2009, in preparation).

We also studied the probability distribution of the power
spectrum estimators among the 5000 realizations. We found that
the distribution is nearly Gaussian even in the nonlinear regime.
More precisely, the mean of the power spectrum estimators is
not largely biased from the ensemble average, and the scatters
are well given by the diagonal power spectrum covariance at a
given wavenumber.

A more important question would be how an actual galaxy
survey is affected by the non-Gaussian errors. For this purpose,
we made a simplified estimate on the S/N expected for a
WFMOS-type survey, further taking into account the shot noise
contamination to the covariance due to finite number densities
of galaxies. Since the shot noise contributes only to the Gaussian
errors (in an ideal case), including the shot noise not only reduces
the total S/N amplitude, but also mitigates the influence of the
non-Gaussian errors. Thus the impact of the non-Gaussian errors
does vary with survey parameters. Since the precision of a given
survey for constraining cosmological parameters roughly scales
with the S/N amplitude, an optimal survey design needs to be
realized by taking into account the non-Gaussian errors, given
the resources and observing times for a survey. Furthermore,
the non-Gaussian errors may cause the best-fitting parameters
to be biased if the model fitting is done improperly assuming
the Gaussian covariances, because the non-Gaussian errors are
more significant on smaller length scales and cause correlated
uncertainties between the band powers. These issues will be
studied in a forthcoming paper (R. Takahashi et al. 2009, in
preparation).

Our simulation results of the power spectrum P (k) and the
covariance matrix cov(k1, k2) are available as numeric tables
upon request (contact takahasi@a.phys.nagoya-u.ac.jp).
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Figure 12. Dispersions among the power spectrum covariances each of which is estimated from the Nr realizations (a subset of the while 5000 realizations), as a
function of Nr. The dispersion is estimated using Equation (A1). The left (right) panel shows the results for the diagonal (off-diagonal) parts for varying the wavenumber
bins and the bin widths. The color symbols are the simulation results, while the solid curves denote the approximate fittings (see the text for details). The plots explicitly
show that the power spectrum covariances are estimated at a sub-percent level accuracy by using our whole 5000 realizations.

(A color version of this figure is available in the online journal.)
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APPENDIX A

CONVERGENCE OF THE COVARIANCE MATRIX

It is useful to estimate the necessary number of realizations
to achieve a desired accuracy for estimating the power spectrum
covariance. In this appendix, we examine the numerical conver-
gence of the covariance estimation. Let us define the dispersion
of the covariance matrix as

σ 2
cov(k1, k2) = 〈(cov(k1, k2) − 〈cov(k1, k2)〉)2〉

〈cov(k1, k2)〉2
. (A1)

Here, 〈cov(k1, k2)〉 is the ensemble average over all the real-
izations, while cov(k1, k2) is the covariance estimated from
a subset of the realizations whose number is denoted as Nr.
Figure 12 shows the dispersion in Equation (A1) as a function
of the number of realizations Nr. The left panel is for the diago-
nal elements, and each color symbols correspond to k1,2 = 0.05
(green), 0.2 (blue), and 0.4 h Mpc−1 (red) with the bin width
Δk = 0.01 (circles) and 0.005 h Mpc−1 (crosses). The solid
line represents 2/Nr which fits the data very well. Hence, we
numerically find the scaling of the dispersion given by

σ 2
cov(k1, k1) � 2

Nr

. (A2)

Note that the above result is independent of the scale k, the bin
width Δk, and the simulation box volume.

The right panel is for the off-diagonal elements for (k1, k2) =
(0.05, 0.2), (0.05, 0.4), and (0.2, 0.4) h Mpc−1, respectively.
The solid lines represent 10/Nr and 100/Nr. Similar to the
diagonal parts, we obtain

σ 2
cov(k1, k2) ∝ 1

Nr

1

(Δk)2
∝ 1

Nr

1

ΔNk1ΔNk2
, (A3)

for k1 �= k2. Here ΔNki
(i = 1, 2) are the numbers of modes

available for the bins ki with the bin width, and the proportional-
ity factor would depend on the scale ki. The analytical derivation

for Equations (A2) and (A3) will be presented in I. Kayo et al.
(2009, in preparation).

APPENDIX B

PROBABILITY DISTRIBUTION OF THE POWER
SPECTRUM ESTIMATOR IN GAUSSIAN LIMIT

In the linear regime, the real and imaginary parts of the
density fluctuation (Re[δk] and Im[δk]) follow the Gaussian
distribution with mean 0 and dispersion P (k)/2. The power
spectrum estimator for a given realization P̂ is the summation of
the squared Gaussian fluctuations, P̂ (k) = (1/Nk)

∑
k(Re[δk]2+

Im[δk]2). Then the distribution of P̂ obeys the chi-square
distribution (e.g., Abramowitz & Stegun 1970):

F (P̂ (k);Nk/2) = 1

Γ(Nk/2)

(
Nk

2

P̂ (k)

P (k)
e−P̂ (k)/P (k)

)Nk/2
1

P̂ (k)
(B1)

for P̂ > 0 and F = 0 for P̂ < 0. Its mean and dispersion are
P and P 2/(Nk/2), respectively. The skewness and kurtosis are
given in Equation (11). In the limit of Nk → ∞ it reduces to
the Gaussian distribution. The factor 2 in the number of modes
Nk/2 arises because δk and δ−k are not independent.

REFERENCES

Abramowitz, M., & Stegun, I. A. 1970, Handbook of Mathematical Functions
(New York: Dover)

Angulo, R. E., Baugh, C. M., Frenk, C. S., & Lacey, C. G. 2008, MNRAS, 383,
755

Bernardeau, F., Colombi, S., Gaztanaga, E., & Scoccimarro, R. 2002, Phys.
Rep., 367, 1

Benitez, N., et al. 2008, ApJ, 691, 241
Blake, C., & Glazebrook, K. 2003, ApJ, 594, 665
Cole, S., et al. 2005, MNRAS, 362, 505
Cooray, A., & Hu, W. 2001, ApJ, 554, 56
Cooray, A., & Sheth, R. 2002, Phys. Rep., 372, 1
Crocce, M., & Scoccimarro, R. 2006, Phys. Rev. D, 73, 063519
Crocce, M., & Scoccimarro, R. 2008, Phys. Rev. D, 77, 023533
Eifler, T., Schneider, P., & Hartlap, J. 2008, A&A, submitted (arXiv:0810.4254)
Eisenstein, D. J., & Hu, W. 1999, ApJ, 511, 5
Eisenstein, D. J., Hu, W., & Tegmark, M. 1998, ApJ, 504, L57
Eisenstein, D. J., et al. 2005, ApJ, 633, 560

http://adsabs.harvard.edu/cgi-bin/bib_query?2008MNRAS.383..755A
http://adsabs.harvard.edu/cgi-bin/bib_query?2008MNRAS.383..755A
http://dx.doi.org/10.1016/S0370-1573(02)00135-7
http://dx.doi.org/10.1088/0004-637X/691/1/241
http://adsabs.harvard.edu/cgi-bin/bib_query?2009ApJ...691..241B
http://adsabs.harvard.edu/cgi-bin/bib_query?2009ApJ...691..241B
http://dx.doi.org/10.1086/376983
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...594..665B
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...594..665B
http://dx.doi.org/10.1111/j.1365-2966.2005.09318.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2005MNRAS.362..505C
http://adsabs.harvard.edu/cgi-bin/bib_query?2005MNRAS.362..505C
http://dx.doi.org/10.1086/321376
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...554...56C
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...554...56C
http://dx.doi.org/10.1016/S0370-1573(02)00276-4
http://adsabs.harvard.edu/cgi-bin/bib_query?2002PhR...372....1C
http://adsabs.harvard.edu/cgi-bin/bib_query?2002PhR...372....1C
http://dx.doi.org/10.1103/PhysRevD.73.063519
http://adsabs.harvard.edu/cgi-bin/bib_query?2006PhRvD..73f3519C
http://adsabs.harvard.edu/cgi-bin/bib_query?2006PhRvD..73f3519C
http://dx.doi.org/10.1103/PhysRevD.77.023533
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhRvD..77b3533C
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhRvD..77b3533C
http://www.arxiv.org/abs/0810.4254
http://dx.doi.org/10.1086/306640
http://adsabs.harvard.edu/cgi-bin/bib_query?1999ApJ...511....5E
http://adsabs.harvard.edu/cgi-bin/bib_query?1999ApJ...511....5E
http://dx.doi.org/10.1086/311582
http://adsabs.harvard.edu/cgi-bin/bib_query?1998ApJ...504L..57E
http://adsabs.harvard.edu/cgi-bin/bib_query?1998ApJ...504L..57E
http://dx.doi.org/10.1086/466512
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...633..560E
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...633..560E


490 TAKAHASHI ET AL. Vol. 700

Feldman, H. A., Kaiser, N., & Peacock, J. A. 1994, ApJ, 426, 23
Gaztanaga, E., Cabre, A., & Hui, L. 2008, arXiv:0807.3551
Glazebrook, K., et al. 2005, arXiv:astro-ph/0507457
Guzik, J., Bernstein, G., & Smith, R. E. 2007, MNRAS, 375, 1329
Habib, S., Heitmann, K., Higdon, D., Nakhleh, C., & Williams, B. 2007, Phys.

Rev. D, 76, 083503
Hamilton, A. J. S., Rimes, C. D., & Scoccimarro, R. 2006, MNRAS, 371, 1188
Hockney, R. W., & Eastwood, J. W. 1988, Computer Simulations Using Particles

(New York: Taylor and Francis)
Huff, E., et al. 2007, Astropart. Phys., 26, 351
Ichiki, K., Takada, M., & Takahashi, T. 2009, Phys. Rev. D, 79, 023520
Jain, B., & Bertschinger, E. 1994, ApJ, 431, 495
Jeong, D., & Komatsu, E. 2006, ApJ, 651, 619
Jeong, D., & Komatsu, E. 2009, ApJ, 691, 569
Kaiser, N. 1987, MNRAS, 227, 1
Knox, L. 1995, Phys. Rev. D, 52, 4307
Lee, J., & Pen, U.-L. 2008, ApJL, 686, 1
Lewis, A., Challinor, A., & Lasenby, A. 2000, ApJ, 538, 473
Ma, C.-P., & Fry, J. N. 2000, ApJ, 543, 503
Makino, N., Sasaki, M., & Suto, Y. 1992, Phys. Rev. D, 46, 585
Matarrese, S., & Pietroni, M. 2007, J. Cosmol. Astropart. Phys.,

JCAP6(2007)026
Matarrese, S., & Pietroni, M. 2008, Mod. Phys. Lett. A, 23, 25
Matsubara, T. 2004, ApJ, 615, 573
Matsubara, T. 2008a, Phys. Rev. D, 77, 063530
Matsubara, T. 2008b, Phys. Rev. D, 78, 083519
McDonald, P. 2007, Phys. Rev. D, 75, 043514
Meiksin, T., & White, M. 1999, MNRAS, 308, 1179
Meiksin, T., White, M., & Peacock, J. A. 1999, MNRAS, 304, 851
Mo, H. J., Jing, Y. P., & White, S. D. M. 1997, MNRAS, 284, 189
Mo, H. J., & White, S. D. M. 1996, MNRAS, 282, 347
Navarro, J., Frenk, C., & White, S. D. M. 1997, ApJ, 490, 493
Neyrinck, M. C., & Szapudi, I. 2007, MNRAS, 375, L51
Neyrinck, M. C., & Szapudi, I. 2008, MNRAS, 384, 1221
Neyrinck, M. C., Szapudi, I., & Rimes, C. D. 2006, MNRAS, 370, L66
Nishimichi, T., et al. 2007, PASJ, 59, 1049

Nishimichi, T., et al. 2009, PASJ, 61, 321
Nomura, H., Yamamoto, K., & Nishimichi, T. 2008, J. Cosmol. Astropart. Phys.,

JCAP10(2008)031
Okumura, T., et al. 2008, ApJ, 676, 889
Peacock, J. A., & Smith, R. E. 2000, MNRAS, 318, 1144
Percival, W. J., et al. 2007, MNRAS, 381, 1053
Pietroni, M. 2008, J. Cosmol. Astropart. Phys., JCAP10(2008)036
Rassat, A., et al. 2008, MNRAS, submitted (arXiv:0810.0003)
Reid, B. A., Spergel, D. N., & Bode, P. 2008, ApJ, submitted (arXiv:0811.1025)
Rimes, C. D., & Hamilton, A. J. S. 2005, MNRAS, 360, L82
Rimes, C. D., & Hamilton, A. J. S. 2006, MNRAS, 371, 1205
Sanchez, A. G., Baugh, C. M., & Angulo, R. 2008, MNRAS, 390, 1470
Sanchez, A. G., et al. 2009, MNRAS, submitted (arXiv:0901.2570)
Scoccimarro, R. 2004, Phys. Rev. D, 70, 083007
Scoccimarro, R., & Sheth, R. K. 2002, MNRAS, 329, 629
Scoccimarro, R., Zaldarriaga, M., & Hui, L. 1999, ApJ, 527, 1
Sefusatti, E., Crocce, M., Pueblas, S., & Scoccimarro, R. 2006, Phys. Rev. D,

74, 023522
Seljak, U. 2000, MNRAS, 318, 203
Seo, H. J., & Eisenstein, D. J. 2003, ApJ, 598, 720
Seo, H. J., & Eisenstein, D. J. 2005, ApJ, 633, 575
Seo, H. J. , Siegel, E. R., Eisenstein, D. J., & White, M. 2008, ApJ, 686, 13
Sheth, R. K., & Tormen, G. 1999, MNRAS, 308, 119
Sirko, E. 2005, ApJ, 634, 728
Smith, R. E. 2008, MNRAS, submitted (arXiv:0810.1960)
Smith, R. E., Scoccimarro, R., & Sheth, R. K. 2007, Phys. Rev. D, 75, 3512
Smith, R. E., Scoccimarro, R., & Sheth, R. K. 2008, Phys. Rev. D, 77, 3525
Spergel, D. N., et al. 2007, ApJ, 170, 377
Springel, V. 2005, MNRAS, 364, 1105
Springel, V., Yoshida, N., & White, S. D. M. 2001, New Astron., 6, 79
Takada, M., & Jain, B. 2003, MNRAS, 340, 580
Takada, M., & Jain, B. 2009, MNRAS, 395, 2065
Takahashi, R. 2008, Prog. Theor. Phys., 120, 549
Takahashi, R., et al. 2008, MNRAS, 389, 1675
Taruya, A., & Hiramatsu, T. 2008, ApJ, 674, 617
Tegmark, M., Taylor, A. N., & Heavens, A. F. 1997, ApJ, 480, 22

http://dx.doi.org/10.1086/174036
http://adsabs.harvard.edu/cgi-bin/bib_query?1994ApJ...426...23F
http://adsabs.harvard.edu/cgi-bin/bib_query?1994ApJ...426...23F
http://www.arxiv.org/abs/0807.3551
http://www.arxiv.org/abs/astro-ph/0507457
http://dx.doi.org/10.1111/j.1365-2966.2006.11385.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2007MNRAS.375.1329G
http://adsabs.harvard.edu/cgi-bin/bib_query?2007MNRAS.375.1329G
http://dx.doi.org/10.1103/PhysRevD.76.083503
http://adsabs.harvard.edu/cgi-bin/bib_query?2007PhRvD..76h3503H
http://adsabs.harvard.edu/cgi-bin/bib_query?2007PhRvD..76h3503H
http://dx.doi.org/10.1111/j.1365-2966.2006.10709.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2006MNRAS.371.1188H
http://adsabs.harvard.edu/cgi-bin/bib_query?2006MNRAS.371.1188H
http://dx.doi.org/10.1016/j.astropartphys.2006.07.007
http://adsabs.harvard.edu/cgi-bin/bib_query?2007APh....26..351H
http://adsabs.harvard.edu/cgi-bin/bib_query?2007APh....26..351H
http://dx.doi.org/10.1103/PhysRevD.79.023520
http://adsabs.harvard.edu/cgi-bin/bib_query?2009PhRvD..79b3520I
http://adsabs.harvard.edu/cgi-bin/bib_query?2009PhRvD..79b3520I
http://dx.doi.org/10.1086/174502
http://adsabs.harvard.edu/cgi-bin/bib_query?1994ApJ...431..495J
http://adsabs.harvard.edu/cgi-bin/bib_query?1994ApJ...431..495J
http://dx.doi.org/10.1086/507781
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...651..619J
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...651..619J
http://dx.doi.org/10.1088/0004-637X/691/1/569
http://adsabs.harvard.edu/cgi-bin/bib_query?2009ApJ...691..569J
http://adsabs.harvard.edu/cgi-bin/bib_query?2009ApJ...691..569J
http://adsabs.harvard.edu/cgi-bin/bib_query?1987MNRAS.227....1K
http://adsabs.harvard.edu/cgi-bin/bib_query?1987MNRAS.227....1K
http://dx.doi.org/10.1103/PhysRevD.52.4307
http://adsabs.harvard.edu/cgi-bin/bib_query?1995PhRvD..52.4307K
http://adsabs.harvard.edu/cgi-bin/bib_query?1995PhRvD..52.4307K
http://dx.doi.org/10.1086/592820
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...686L...1L
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...686L...1L
http://dx.doi.org/10.1086/309179
http://adsabs.harvard.edu/cgi-bin/bib_query?2000ApJ...538..473L
http://adsabs.harvard.edu/cgi-bin/bib_query?2000ApJ...538..473L
http://dx.doi.org/10.1086/317146
http://adsabs.harvard.edu/cgi-bin/bib_query?2000ApJ...543..503M
http://adsabs.harvard.edu/cgi-bin/bib_query?2000ApJ...543..503M
http://dx.doi.org/10.1103/PhysRevD.46.585
http://adsabs.harvard.edu/cgi-bin/bib_query?1992PhRvD..46..585M
http://adsabs.harvard.edu/cgi-bin/bib_query?1992PhRvD..46..585M
http://dx.doi.org/10.1088/1475-7516/2007/06/026
http://adsabs.harvard.edu/cgi-bin/bib_query?2007JCAP...06..026M
http://dx.doi.org/10.1142/S0217732308026182
http://adsabs.harvard.edu/cgi-bin/bib_query?2008MPLA...23...25M
http://adsabs.harvard.edu/cgi-bin/bib_query?2008MPLA...23...25M
http://dx.doi.org/10.1086/424561
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...615..573M
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...615..573M
http://dx.doi.org/10.1103/PhysRevD.77.063530
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhRvD..77f3530M
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhRvD..77f3530M
http://dx.doi.org/10.1103/PhysRevD.78.083519
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhRvD..78h3519M
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhRvD..78h3519M
http://dx.doi.org/10.1103/PhysRevD.75.043514
http://adsabs.harvard.edu/cgi-bin/bib_query?2007PhRvD..75d3514M
http://adsabs.harvard.edu/cgi-bin/bib_query?2007PhRvD..75d3514M
http://dx.doi.org/10.1046/j.1365-8711.1999.02825.x
http://adsabs.harvard.edu/cgi-bin/bib_query?1999MNRAS.308.1179M
http://adsabs.harvard.edu/cgi-bin/bib_query?1999MNRAS.308.1179M
http://dx.doi.org/10.1046/j.1365-8711.1999.02369.x
http://adsabs.harvard.edu/cgi-bin/bib_query?1999MNRAS.304..851M
http://adsabs.harvard.edu/cgi-bin/bib_query?1999MNRAS.304..851M
http://adsabs.harvard.edu/cgi-bin/bib_query?1997MNRAS.284..189M
http://adsabs.harvard.edu/cgi-bin/bib_query?1997MNRAS.284..189M
http://adsabs.harvard.edu/cgi-bin/bib_query?1996MNRAS.282..347M
http://adsabs.harvard.edu/cgi-bin/bib_query?1996MNRAS.282..347M
http://dx.doi.org/10.1086/304888
http://adsabs.harvard.edu/cgi-bin/bib_query?1997ApJ...490..493N
http://adsabs.harvard.edu/cgi-bin/bib_query?1997ApJ...490..493N
http://adsabs.harvard.edu/cgi-bin/bib_query?2007MNRAS.375L..51N
http://adsabs.harvard.edu/cgi-bin/bib_query?2007MNRAS.375L..51N
http://dx.doi.org/10.1111/j.1365-2966.2007.12803.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2008MNRAS.384.1221N
http://adsabs.harvard.edu/cgi-bin/bib_query?2008MNRAS.384.1221N
http://adsabs.harvard.edu/cgi-bin/bib_query?2006MNRAS.370L..66N
http://adsabs.harvard.edu/cgi-bin/bib_query?2006MNRAS.370L..66N
http://adsabs.harvard.edu/cgi-bin/bib_query?2007PASJ...59.1049N
http://adsabs.harvard.edu/cgi-bin/bib_query?2007PASJ...59.1049N
http://adsabs.harvard.edu/cgi-bin/bib_query?2009PASJ...61..321N
http://adsabs.harvard.edu/cgi-bin/bib_query?2009PASJ...61..321N
http://dx.doi.org/10.1088/1475-7516/2008/10/031
http://dx.doi.org/10.1086/528951
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...676..889O
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...676..889O
http://dx.doi.org/10.1046/j.1365-8711.2000.03779.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2000MNRAS.318.1144P
http://adsabs.harvard.edu/cgi-bin/bib_query?2000MNRAS.318.1144P
http://dx.doi.org/10.1111/j.1365-2966.2007.12268.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2007MNRAS.381.1053P
http://adsabs.harvard.edu/cgi-bin/bib_query?2007MNRAS.381.1053P
http://dx.doi.org/10.1088/1475-7516/2008/10/036
http://adsabs.harvard.edu/cgi-bin/bib_query?2008JCAP...10..036P
http://www.arxiv.org/abs/0810.0003
http://www.arxiv.org/abs/0811.1025
http://adsabs.harvard.edu/cgi-bin/bib_query?2005MNRAS.360L..82R
http://adsabs.harvard.edu/cgi-bin/bib_query?2005MNRAS.360L..82R
http://dx.doi.org/10.1111/j.1365-2966.2006.10710.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2006MNRAS.371.1205R
http://adsabs.harvard.edu/cgi-bin/bib_query?2006MNRAS.371.1205R
http://adsabs.harvard.edu/cgi-bin/bib_query?2008MNRAS.390.1470S
http://adsabs.harvard.edu/cgi-bin/bib_query?2008MNRAS.390.1470S
http://www.arxiv.org/abs/0901.2570
http://dx.doi.org/10.1103/PhysRevD.70.083007
http://adsabs.harvard.edu/cgi-bin/bib_query?2004PhRvD..70h3007S
http://adsabs.harvard.edu/cgi-bin/bib_query?2004PhRvD..70h3007S
http://dx.doi.org/10.1046/j.1365-8711.2002.04999.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2002MNRAS.329..629S
http://adsabs.harvard.edu/cgi-bin/bib_query?2002MNRAS.329..629S
http://dx.doi.org/10.1086/308059
http://adsabs.harvard.edu/cgi-bin/bib_query?1999ApJ...527....1S
http://adsabs.harvard.edu/cgi-bin/bib_query?1999ApJ...527....1S
http://dx.doi.org/10.1103/PhysRevD.74.023522
http://adsabs.harvard.edu/cgi-bin/bib_query?2006PhRvD..74b3522S
http://adsabs.harvard.edu/cgi-bin/bib_query?2006PhRvD..74b3522S
http://dx.doi.org/10.1046/j.1365-8711.2000.03715.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2000MNRAS.318..203S
http://adsabs.harvard.edu/cgi-bin/bib_query?2000MNRAS.318..203S
http://dx.doi.org/10.1086/379122
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...598..720S
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...598..720S
http://dx.doi.org/10.1086/491599
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...633..575S
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...633..575S
http://dx.doi.org/10.1086/589921
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...686...13S
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...686...13S
http://dx.doi.org/10.1046/j.1365-8711.1999.02692.x
http://adsabs.harvard.edu/cgi-bin/bib_query?1999MNRAS.308..119S
http://adsabs.harvard.edu/cgi-bin/bib_query?1999MNRAS.308..119S
http://dx.doi.org/10.1086/497090
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...634..728S
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...634..728S
http://www.arxiv.org/abs/0810.1960
http://dx.doi.org/10.1103/PhysRevD.75.063512
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhRvD..77D3525S
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PhRvD..77D3525S
http://dx.doi.org/10.1086/513700
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2005MNRAS.364.1105S
http://adsabs.harvard.edu/cgi-bin/bib_query?2005MNRAS.364.1105S
http://dx.doi.org/10.1016/S1384-1076(01)00042-2
http://adsabs.harvard.edu/cgi-bin/bib_query?2001NewA....6...79S
http://adsabs.harvard.edu/cgi-bin/bib_query?2001NewA....6...79S
http://dx.doi.org/10.1046/j.1365-8711.2003.06321.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2003MNRAS.340..580T
http://adsabs.harvard.edu/cgi-bin/bib_query?2003MNRAS.340..580T
http://dx.doi.org/10.1111/j.1365-2966.2009.14504.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2009MNRAS.395.2065T
http://adsabs.harvard.edu/cgi-bin/bib_query?2009MNRAS.395.2065T
http://dx.doi.org/10.1143/PTP.120.549
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PThPh.120..549T
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PThPh.120..549T
http://dx.doi.org/10.1111/j.1365-2966.2008.13731.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2008MNRAS.389.1675T
http://adsabs.harvard.edu/cgi-bin/bib_query?2008MNRAS.389.1675T
http://dx.doi.org/10.1086/526515
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...674..617T
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...674..617T
http://dx.doi.org/10.1086/303939
http://adsabs.harvard.edu/cgi-bin/bib_query?1997ApJ...480...22T
http://adsabs.harvard.edu/cgi-bin/bib_query?1997ApJ...480...22T

	Simulations of Baryon Acoustic Oscillations. II. Covariance Matrix of the Matter Power Spectrum
	Recommended Citation

	1. INTRODUCTION
	2. NUMERICAL SIMULATIONS
	3. COVARIANCE MATRIX
	4. COMPARISON WITH THEORETICAL MODELS
	4.1. Results in Real Space
	4.2. Results in Redshift Space

	5. PROBABILITY DISTRIBUTION OF THE POWER SPECTRUM ESTIMATOR
	6. EFFECTS OF NON-GAUSSIAN COVARIANCE ON THE SIGNAL-TO-NOISE RATIO
	7. EFFECTS OF LONG-WAVELENGTH FLUCTUATIONS
	8. DISCUSSION AND CONCLUSION
	APPENDIX A. CONVERGENCE OF THE COVARIANCE MATRIX
	APPENDIX B. PROBABILITY DISTRIBUTION OF THE POWER SPECTRUM ESTIMATOR IN GAUSSIAN LIMIT
	REFERENCES

