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ABSTRACT

We study the sample variance of the matter power spectrum for the standard Λ cold dark matter universe. We use a
total of 5000 cosmological N-body simulations to study in detail the distribution of best-fit cosmological parameters
and the baryon acoustic peak positions. The obtained distribution is compared with the results from the Fisher matrix
analysis with and without including non-Gaussian errors. For the Fisher matrix analysis, we compute the derivatives
of the matter power spectrum with respect to cosmological parameters using directly full nonlinear simulations.
We show that the non-Gaussian errors increase the unmarginalized errors by up to a factor of five for kmax = 0.4 h
Mpc−1 if there is only one free parameter, provided other parameters are well determined by external information.
On the other hand, for multi-parameter fitting, the impact of the non-Gaussian errors is significantly mitigated due
to severe parameter degeneracies in the power spectrum. The distribution of the acoustic peak positions is well
described by a Gaussian distribution, with its width being consistent with the statistical interval predicted from
the Fisher matrix. We also examine systematic bias in the best-fit parameter due to the non-Gaussian errors. The
bias is found to be smaller than the 1σ statistical error for both the cosmological parameters and the acoustic scale
positions.

Key words: cosmology: theory – large-scale structure of universe

Online-only material: color figures

1. INTRODUCTION

The baryon acoustic oscillation (BAO) is imprinted in the dis-
tribution of galaxies as is found in the temperature fluctuations
in the cosmic microwave background. The acoustic length scale
is determined by the sound horizon of the photon–baryon fluid
at recombination epoch; it can thus be used as a standard ruler
which provides us with a robust method to measure distance
scales out to essentially any epoch (e.g., Eisenstein et al. 1998;
Blake & Glazebrook 2003; Seo & Eisenstein 2003; Matsubara
2004; Guzik et al. 2007). Using the observed distance–redshift
relation, we can obtain an accurate cosmic expansion history,
which in turn gives strong constraints on the nature of dark
energy. The large-area galaxy surveys such as the two-degree
Field Survey and Sloan Digital Sky Survey (SDSS) detected
the BAO signature in the galaxy distribution (Cole et al. 2005;
Eisenstein et al. 2005; Percival et al. 2007; Okumura et al.
2008; Gaztanaga et al. 2009; Sanchez et al. 2009). The latest
result of the SDSS DR7 showed a constraint on the distance
to a redshift z = 0.28 within 2.7% accuracy (Percival et al.
2010; Reid et al. 2010; Kazin et al. 2010). Future and ongoing
surveys such as the Baryon Oscillation Spectroscopic Survey,7

the Hobby-Eberly Dark Energy Experiment,8 and the WiggleZ
surveys9 will measure the distance to higher redshifts within a
few percent accuracy.

7 http://www.sdss3.org/cosmology.php
8 http://hetdex.org/
9 http://wigglez.swin.edu.au/Welcome.html

The BAO signature appears as a small wiggle pattern in the
galaxy power spectrum. Since the amplitude of the BAO wig-
gle is very small (∼ a few percent), rather accurate theoretical
models are needed. In order to determine the distance within a
percent accuracy for the planned or ongoing surveys, we espe-
cially need to be able to predict the acoustic scale with much
higher accuracies (∼0.1%). However, there are complicated as-
trophysical processes such as nonlinear gravitational evolution,
scale-dependent bias of galaxies, redshift-space distortion, and
the effect of massive neutrinos. Many authors tackled these prob-
lems using numerical simulations (Meiksin et al. 1999; Seo &
Eisenstein 2005; Huff et al. 2007; Smith et al. 2007, 2008;
Angulo et al. 2008; Takahashi et al. 2008; Seo et al. 2008;
Nishimichi et al. 2009; Kim et al. 2009; Heitmann et al. 2010)
and analytical perturbation theories (Crocce & Scoccimarro
2006, 2008; Jeong & Komatsu 2006, 2009; Nishimichi et al.
2007; McDonald 2007; Matarrese & Pietroni 2007, 2008;
Eisenstein et al. 2007; Pietroni 2008; Matsubara 2008a, 2008b;
Taruya & Hiramatsu 2008; Takahashi 2008; Nomura et al. 2008;
Rassat et al. 2008; Sanchez et al. 2008; Padmanabhan & White
2008; Saito et al. 2009; Shoji et al. 2009; Taruya et al. 2009;
Montesano et al. 2010).

It is crucial to use not only accurate power spectra but also
accurate covariance matrices in order to determine cosmological
parameters from the galaxy power spectrum. If the matter
density fluctuations obey a Gaussian distribution, the covariance
matrix only has diagonal elements and the relative error is
simply given by the square root of the number of modes in
the survey area (e.g., Feldman et al. 1994). However, when the
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density fluctuations grow to the nonlinear regime, the mode
coupling between different wavenumbers generates non-zero
off-diagonal elements, and the so-called non-Gaussian error
is induced (e.g., Scoccimarro et al. 1999; Meiksin & White
1999). Rimes & Hamilton (2005, 2006) first pointed out that
there is little information contained in the power spectrum at
the quasi-nonlinear regime (k = 0.2–0.8 h Mpc−1) due to the
non-Gaussian error (see also Hamilton et al. 2006; Neyrinck
et al. 2006; Neyrinck & Szapudi 2007, 2008; Lee & Pen
2008; Neyrinck et al. 2009; Lu et al. 2010; Sato et al. 2009).
For weak-lensing (cosmic shear) analysis, the non-Gaussian
error contributes to the total error substantially (Cooray & Hu
2001; Sefusatti et al. 2006; Dore et al. 2009; Takada & Jain
2009; Pielorz et al. 2010) but also may systematically shift the
best-fitting parameter (Hartlap et al. 2009; Ichiki et al. 2009).
Especially if there are a small number of parameters to be
determined, the non-Gaussianity affects the errors significantly
(see the discussion in Takada & Jain 2009).

In our previous paper (Takahashi et al. 2009a, hereafter
T09), we used 5000 cosmological simulations to obtain the
accurate covariance matrix of the matter power spectrum.
This is the largest number of realizations ever done for the
cosmological N-body simulation. We studied the non-Gaussian
error contribution to the signal-to-noise ratio (S/N) for the
measurement of the power spectrum and found that the non-
Gaussian error is important at small length-scales k > 0.2 h
Mpc−1. In this paper, we further investigate the non-Gaussian
error contribution to the cosmological parameter estimation
and the best-fit values using the χ2 likelihood analysis. We
calculate the distribution of the best-fit parameters among the
5000 realizations and compare it with the results using the Fisher
matrix analysis. We also study the distribution of the acoustic
scale positions among the realizations. Our results in this paper
can be used not only for the BAO analysis but also for the more
general issue in the likelihood analysis of the nonlinear matter
power spectrum.

Throughout the present paper, we adopt the standard ΛCDM
model with matter density Ωm = 0.238, baryon density Ωb =
0.041, dark energy density Ωw = 0.762 with equation of state
w = −1, spectral index ns = 0.958, amplitude of fluctuations
σ8 = 0.76, and expansion rate at the present time H0 = 73.2
km s−1 Mpc−1, consistent with the three-year WMAP results
(Spergel et al. 2007).

2. MATTER POWER SPECTRUM AND ITS COVARIANCE
MATRIX FROM NUMERICAL SIMULATIONS

We follow the gravitational evolution of 2563 collisionless
dark matter particles in a volume of 1000 h−1 Mpc on a side
using the cosmological simulation code Gadget-2 (Springel et al.
2001; Springel 2005). We generate initial conditions following
the standard Zel’dovich approximation using the matter transfer
function calculated by CAMB (Code for Anisotropies in the
Microwave Background: Lewis et al. 2000; see also Seljak &
Zaldarriaga 1996). The initial redshift is set to be z = 20. We use
outputs at z = 3, 1, and 0. To calculate the density fluctuations,
we assign the N-body particles onto a 5123 rectangular grid
using the cloud-in-cell scheme. Then we perform the Fourier
transform and calculate the power spectrum in both real space
and redshift space. We run 5000 Particle-Mesh (PM) simulations
to follow the nonlinear evolution of the power spectrum and its
covariance matrix in detail. We have checked that the power
spectra of our simulations agree well with the result of the higher
resolution TreePM simulation, within 1(3)% for k < 0.2(0.4) h

Mpc−1 (here the Nyquist wavenumber is k = 0.8 h Mpc−1). If
the initial redshift is set to be higher, z = 50, the results agree
within 2(10)% for k < 0.2(0.4) h Mpc−1.10 This is sufficient
accuracy for our purpose, which is to investigate the nonlinear
evolution of the power spectrum at BAO scales.

Denoting P̂i(k) as the power spectrum computed from the
ith realization, the ensemble-averaged power spectrum is
estimated from the mean of the power spectra between 5000
realizations:

P̄ (k) = 1

Nr

Nr∑
i=1

P̂i(k), (1)

where Nr = 5000, the number of our realizations. Similarly, the
covariance matrix between the spectra of k1 and k2 is estimated
as

cov(k1, k2) = 1

Nr − 1

Nr∑
i=1

[P̂i(k1)−P̄ (k1)][P̂i(k2)−P̄ (k2)]. (2)

The accuracy of the covariance is analytically estimated
for the Gaussian density fluctuations (see the Appendix). For
example, the relative errors in the diagonal covariance terms
are found to scale with the number of realizations as (2/Nr )1/2;
our 5000 simulations provide a few percent accuracy. Clearly,
our study achieves an unprecedented accuracy of the covariance
matrix estimation on BAO scales.

The power spectrum covariance is formally expressed as a
sum of the two contributions, the Gaussian and non-Gaussian
terms (e.g., Scoccimarro et al. 1999; Meiksin & White 1999):

cov(k1, k2) ≡ 〈(P̂ (k1) − P (k1))(P̂ (k2) − P (k2))〉
= 2

Nk1

P 2(k1)δK
k1,k2

+
1

V

∫
|k′

1|∈k1

∫
|k′

2|∈k2

d3k′
1

Vk1

d3k′
2

Vk2

× T (k′
1,−k′

1, k′
2,−k′

2). (3)

The first term arises from the Gaussian fluctuations, while the
second term is the non-Gaussian error arising from the mode
coupling during the nonlinear evolution. Here, P (k) = 〈P̂ (k)〉
is the mean power spectrum, T is the trispectrum, the integral is
done over the shell of the radius k1,2 with the width Δk in Fourier
space, and Vk1,2 is the volume of the shell given by Vk = 4πk2Δk.
The expression in Equation (3) depends on the bin width: the
first term is proportional to 1/(V Δk), while the second term
is ∝ 1/V . Hence, for the finer bin width, the impact of the
Gaussian term becomes relatively enhanced. Note however that
the parameter estimation shown in the following is independent
of the bin width. Throughout this paper, the bin width is set to
Δk = 0.01 h Mpc−1.11

In this paper, we do not consider another non-Gaussian term in
Equation (3) arising from the finite survey volume (the so-called
beat-coupling effect; Rimes & Hamilton 2006). Fluctuations
with wavelength larger than the survey region may contribute to
the covariance on smaller scale. Although this effect can increase
the covariance by over 10% (T09), the main conclusions we
draw in the present paper remain robust to the uncertainty.

10 The agreement is achieved in real space. In redshift space, PM simulations
somewhat underestimate the power spectrum at small scales
(k = 0.4 h Mpc−1) by 20%.
11 We also try the half bin width, Δk = 0.005 h Mpc−1, but our results in the
following sections are almost same.
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3. EFFECTS OF NON-GAUSSIAN ERROR ON
LIKELIHOOD ANALYSIS OF COSMOLOGICAL

PARAMETERS

3.1. Parameter Estimation for Cosmological Parameters

In this section, we study the effects of the non-Gaussian
errors on the cosmological parameter estimation given the power
spectrum measured from a hypothetical survey of (1 h−1 Gpc)3

volume. We use the Fisher matrix formalism to estimate the
accuracy of parameter estimation12 (Tegmark et al. 1997):

Fij =
∑

k1,2<kmax

cov−1(k1, k2)
∂P (k1; x)

∂ ln xi

∣∣∣∣
fid

∂P (k2; x)

∂ ln xj

∣∣∣∣
fid

, (4)

where xi denotes cosmological parameters, and the partial
derivative such as ∂P/∂xi is evaluated around the fiducial model.
We include five parameters (i.e., i = 1, 2, . . . , 5): the primordial
power spectrum parameters,13 the normalization parameter As
(not σ8) and the spectral index ns, the baryon density Ωbh

2, the
dark matter density Ωch

2, and the dark energy equation of state
parameter w. We assume a flat universe throughout the present
paper. In Equation (4), we use ln xi (not xi) as the variables
such that the Fisher matrix gives the relative accuracy of a
given parameter estimation: the marginalized error is then given
as Δxi/xi = (F−1)1/2

ii . Note that for w, which has a negative
value for the fiducial value, we simply compute w∂ ln P/∂w
for the derivative. From Equations (3) and (4), the estimation
error Δxi/xi is inversely proportional to the survey volume as
Δxi/xi ∝ V −1/2.

We need to compute the derivatives of the power spectrum to
compute the Fisher matrix in Equation (4). For each cosmolog-
ical parameter, we ran simulations with one parameter slightly
varied, while fixing other parameters to the fiducial values. We
then compute the derivatives by the two-side differences of steps
Δxi/xi = ±0.05. We use 40 realizations for each parameter
variation. Figure 1 shows the derivatives of the power spectrum
with respect to each cosmological parameter in real space (left
column) and in redshift space (right column), respectively. The
symbols are our simulation results: the red circles are for z = 0,
the blue triangles for z = 1, and the green crosses for z = 3.
The sensitivity of the power spectrum to cosmological param-
eters appears differently between real space and redshift space,
due to the redshift distortion effects. For example, for a model
with higher power spectrum normalization, i.e., larger As, the
power spectrum amplitudes are increasingly enhanced at larger
k due to the stronger nonlinearities in real space. In redshift
space, however, the enhancement is significantly suppressed by
the stronger finger-of-God effect, which arises from random ve-
locity dispersion of dark matter particles in nonlinear objects.
The relative amplitude of BAOs is enhanced with increasing
the baryon density. Finally, a change in w affects the power
spectrum via the effect on the growth rate. We naively expect
that the dependence of P (k) on w becomes scale dependent in
the nonlinear regime. However, the induced scale dependence is
weak and the dark energy parameter is very likely degenerated
with the galaxy bias in the measured galaxy power spectrum.

The simulation results are compared with the analytical
predictions computed from the linear theory (the dashed curve)

12 Here, we do not consider the Alcock–Paczynski effect (Alcock & Paczynski
1979) which would affect the measurement accuracy for the dark energy.
13 We assume the primordial power spectrum given as P0(k) ∝ A2

s (k/k0)ns ,
where the pivot wavenumber k0 is set to k0 = 0.002 Mpc−1 as employed by
Komatsu et al. (2009).
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Figure 1. Derivatives of nonlinear power spectrum with respect to cosmological
parameters (As, ns, Ωbh

2, Ωch
2, w) in real space (left panel) and redshift space

(right). The cross, triangle, and circle symbols show the simulation results at
redshifts z = 3, 1, and 0, respectively. The dashed curves are the linear theory
predictions, the dotted curves are for the halo fit.

(A color version of this figure is available in the online journal.)

and the halo fit (the short-dashed curve: Smith et al. 2003),
respectively.14 The redshift-space power spectrum derivatives
are compared with the linear theory. In the linear power spectrum
in redshift space, we use the Kaiser approximation and do not
include the finger-of-God term. All the analytical predictions
agree well with the simulation results at small k. In particular,
the halo fit agrees with the simulations to within 10% accuracy.

In our previous paper (T09), we studied the impact of the non-
Gaussian error on the S/N of power spectrum measurement:

(
S

N

)2

=
∑

k1,2<kmax

cov−1(k1, k2)P (k1)P (k2). (5)

It was found that, in the linear regime, the S/N keeps
increasing with increasing the maximum wavenumber kmax as
(S/N) ∝ k3/2

max. However, the S/N saturates at some kmax in
the weakly nonlinear regime and stays nearly constant at larger

14 We also compare the Lagrangian perturbation theory (LPT: Matsubara
2008a) with the simulation results in the manuscript in previous version
(Takahashi et al. 2009b). For the redshift-space spectrum, the LPT agrees well
with the simulations at small k, but deviates significantly in the weakly
nonlinear regime due to a too significant exponential damping,
PLPT(k) ∝ exp[−const × k2] (Matsubara 2008a).
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dashed and dotted curves are the analytical predictions that are derived using
linear theory and halo fit for the power spectrum and Gaussian covariance,
respectively.

(A color version of this figure is available in the online journal.)

kmax > 0.2 h Mpc−1 due to the non-Gaussian errors. From these
results, one may naively guess that the parameter estimation is
also significantly affected by the non-Gaussian errors when the
power spectrum information to the larger kmax is included. In the
following, we will study the impact of the non-Gaussian errors
on the parameter estimation.

Figure 2 shows the marginalized error on each parameter,
Δxi/xi = (F−1)1/2

ii , as a function of kmax, where the power
spectrum information up to a given kmax is included. In each
panel, the symbols show the simulation results including the
full covariance matrix. The simulation results are almost in-
distinguishable from the solid curves that are computed only
by including the Gaussian error covariances, computed from
simulations, in Equation (3). The agreement indicates that the
Gaussian error assumption actually provides a good approxima-
tion for the parameter estimation over scales of interest, even
though the non-Gaussian errors have a significant impact on the
S/N at kmax > 0.2 h Mpc−1. A more quantitative interpretation
of these results will be given later. For comparison, the dashed
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set of five cosmological parameters as shown in each panel. For comparison
the dashed curves show the results for the unmarginalized errors or equivalently
for the case of one-parameter fitting in each panel. Also, in the panels for As
and ns the dotted curves show the results for the two-parameter fitting of (As,
ns), which appear to be between the solid and dashed curves. It is clear that the
non-Gaussian errors degrade the unmarginalized errors by up to a factor of five.

(A color version of this figure is available in the online journal.)

and dotted curves show the results obtained by using the lin-
ear theory and halo fit to estimate the power spectrum as well
as the Gaussian error covariances. These analytical predictions
are far from the simulation results due to their inaccuracies in
comparison with the simulations. Although the power spectrum
and its derivatives in the halo fit agree within ∼10% with the
simulations (see Figure 1), the parameter estimations are largely
different as shown in Figure 2. This is because when calculating
the inverse matrix of the Fisher matrix, even small errors in the
Fisher matrix generate large errors in the inverse matrix.

Figure 3 shows the relative accuracies of each parameter
estimation as a function of kmax. There, we compare the results
derived from the covariances with and without the non-Gaussian
error contributions. The solid curves are the results where all
the five parameters are included in the Fisher analysis, while
the dashed curve shows the unmarginalized error on each
parameter, i.e., the error is obtained by considering only one
free parameter, Δxi/xi = F

−1/2
ii . In other words, the dashed

curves correspond to the case where other parameters are well
constrained by external data sets. The difference between the
solid and dashed curves is caused by the parameter degeneracies;
the marginalized error becomes same as the unmarginalized

4
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(A color version of this figure is available in the online journal.)

error when the parameters are independent in the measured
power spectrum. It is clear that, for the unmarginalized errors,
including the non-Gaussian covariances degrades the parameter
errors by a factor 4–5 for the redshift z = 0 and by a factor 2–3
for z = 1, respectively. The level of the degradation is similar
to that of the S/N as found in T09. Therefore, the impact of
non-Gaussian covariance errors is significantly mitigated by the
parameter degeneracies (see also Neyrinck & Szapudi 2007;
Takada & Jain 2009). The degradation of S/N increases the full
Fisher ellipsoid volume, and then individual parameters are not
tightly constrained due to the parameter degeneracies in such a
high-dimensional parameter space. As shown in Figure 3, the
non-Gaussian effect becomes negligible for the multi-parameter
fitting. We comment that this conclusion is independent of the
volume of the survey.

In the upper two panels for As and ns the short dashed curves
show the results for the two-parameter fitting case (As, ns),
which are very similar to the solid curves. In reality, parameters
that describe galaxy bias need to be further included. We
thus conclude that the impact of the non-Gaussian errors is
less important than the parameter degeneracies, and that the
Gaussian covariances can provide a good approximation to
obtain the statistical uncertainty of given parameters.

3.2. Distribution of Best-fit Parameters

Nonlinear structure formation causes non-Gaussian distribu-
tions of the power spectrum estimators at small scales, as studied
in, e.g., T09, in detail. Here, utilizing our 5000 realizations, we
quantify the distribution of parameter estimation taking into
account the non-Gaussian covariances and the marginalization
over other parameters. To this end, we simply use the χ2-fitting
analysis given as

χ2
i (x) =

∑
k1,2<kmax

cov−1(k1, k2)[P (k1; x) − P̂i(k1)]

× [P (k2; x) − P̂i(k2)], (6)

where x = (As, ns, Ωbh
2, Ωch

2, w), P̂i(k) is the power spec-
trum estimator of the ith realization, and P (k; x) is its mean.
For this analysis we simply use the real-space power spectrum.

The variation in the power spectrum around the fiducial model
can be expressed as

P (k; x) 
 P (k; xfid) +
∂P (k; x)

∂x

∣∣∣∣
fid

· (x − xfid) . (7)

Recall that the best-fit parameters are estimated by minimiz-
ing the χ2. The best-fit parameters for the ith realization can
be estimated by inserting Equation (7) into Equation (6) (e.g.,
Huterer & Takada 2005; Joachimi & Schneider 2009):

(xbf − xfid)i =
∑

j

(F−1)ij
∑

k1,k2<kmax

cov−1(k1, k2)

× [Pi(k1) − P (k1, xfid)]
∂P (k2; x)

∂xj

∣∣∣∣
fid

. (8)

Thus, the best-fit parameters are generally different from
the fiducial values depending on the distribution of Pi or how
Pi deviates from the ensemble average expectation P at each
wavenumber. Strictly speaking, we need to vary the covariance
as a function of cosmological models in Equation (8), but
we here simply employ the covariance for the fiducial model
assuming that the variations in the covariance are small (see
Eifler et al. 2009 for this issue).

Figure 4 shows how the best-fit values of w are dis-
tributed among 5000 realizations. Note that, as can be seen in
Equation (8), the dark energy constraint includes the power spec-
trum amplitude information in addition to the BAO features.
The left panel shows the result for one-parameter fitting (w),
while the right panel for the three-parameter fitting (w,As, ns),
where the best-fit w is derived by including marginalization over
the two parameters (As, ns). The latter corresponds to the case
where the other parameters (Ωch

2, Ωbh
2) are well constrained

by external information such as the cosmic microwave back-
ground and/or the big bang nucleosynthesis. The red (black)
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Figure 5. As in the previous figure, but for the distribution of the differences between the best-fit values of w computed from Equation (8) with and without
non-Gaussian errors. The σNG is the 1σ error computed from the Fisher matrix with the non-Gaussian errors.

curve shows the result obtained when the non-Gaussian errors
in the Fisher matrix and the covariance in Equation (8) are
included (not included). The corresponding best-fit parameter
deviations are plotted in the unit, [(w/wfid) − 1]/σ , where σ
is set to the Fisher errors with and without the non-Gaussian
errors for the red and black curves, respectively. For example,
the parameter deviations |(w/wfid) − 1|/σ � 3 mean that the
parameter deviations are within ±3σ confidence level regions.

The distribution of the best-fit w looks nearly symmetric:
the nonlinear power spectrum does not shift the w-parameter
to either of negative and positive sides from the fiducial value.
The left panel (one-parameter fitting case) shows that including
only the Gaussian errors makes the distribution of the best-
fit w broader than the statistical confidence region. Clearly, a
strong evidence on w �= −1 may be incorrectly derived with
high chances under the Gaussian assumptions. However, the red
curves demonstrate that such apparent deviations can be cor-
rected if we properly take into account the non-Gaussian errors
for the statistical confidence regions. The right panel shows that,
for a multi-parameter fit, the difference between the results with
and without the non-Gaussian errors is significantly suppressed
due to the parameter degeneracies. Note that our results in Fig-
ure 4 is independent of the assumed survey volume, because
[w/(w)fid − 1] ∝ V −1/2 from Equation (8) and σ ∝ V −1/2.
Although we show the result only for w, essentially the same
results are obtained for other parameters (As, ns, Ωbh

2, Ωch
2).

In Figure 5, we quantify how the best-fit values of w are
systematically different when including or ignoring the non-
Gaussian errors. The horizontal axis is the difference between
the best-fit parameters, (wG −wNG)/wfid, divided by the 1σ sta-
tistical confidence error derived by including the non-Gaussian
errors. The left panel shows that the differences are smaller than
the 1σ confidence regions, and the right panels show even much
smaller differences for the three-parameter fitting. Therefore, we
again conclude that the non-Gaussian errors do not cause any
significant bias in the best-fit value compared to the statistical
confidence regions including the non-Gaussian errors.

4. ACOUSTIC PEAK POSITIONS

A more robust method to constrain dark energy is using the
BAO peak positions. The BAO peak positions are characterized

0 0.1 0.2

0.9

1

1.1

real space

z=3
z=1
z=0

k(h/Mpc)

P
(k

)/
P

sm
oo

th
(k

)

linear P(k)

k=0.01h/MpcΔ
V=(1Gpc/h)3

Figure 6. Real-space power spectrum divided by the smoothed spectrum for
z = 0, 1, and 3, respectively. The symbols denote the mean of the power spectra
among 5000 realizations of (1 h Gpc−1)3 volume, while the error bars denote
the 1σ scatters. The solid curve is for the linear P (k). The BAO features are
more erased at higher k and at lower redshifts due to stronger nonlinearities.

(A color version of this figure is available in the online journal.)

basically by one parameter, the stretch parameter (see below),
and therefore the non-Gaussian errors may significantly affect
the accuracy of the peak position determination. Here, we use the
distribution of the BAO peak positions obtained from our 5000
realizations. We employ the method developed in Percival et al.
(2007) to estimate the peak positions (see also Nishimichi et al.
2009). We first divide the measured P (k) by a smooth model,
which is constructed by adopting the cubic B-spline function
to fit the binned power spectrum over a range of wavenumbers
binned with the width Δk = 0.01 h Mpc−1.

Figure 6 shows the power spectrum divided by the smooth
model: the data points are the average spectrum of 5000
realizations and the errors the 1σ variation ranges, ΔP (k) =
cov1/2(k, k). Clearly, the BAO features are smoothed out at
larger k and at lower redshifts due to stronger nonlinearities.
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computed from simulations, while the solid curves, which are almost on top
of the symbols, show the errors computed assuming Gaussian errors.

(A color version of this figure is available in the online journal.)

To make parameter forecasts, let us define the ratio power
spectrum, R(k), as

R(k) = P (k)

Psmooth(k)
. (9)

Then we can introduce the stretch parameter α which charac-
terizes a shift of the BAO peak phases via the transform k → αk
in R(k). The power spectrum with the stretch parameter α is
given as

P (k;α) = Psmooth(k)R(αk), (10)

and α = 1 is the fiducial model. The Fisher information matrix
for the stretch parameter α is computed as

Fαα =
∑

k1,2<kmax

cov−1(k1, k2)
dP (k1;α)

dα

dP (k2;α)

dα
. (11)

Since we focus on the BAO peak locations, we treat only α as
a free parameter, and hence the precision of determining α for
the given power spectrum measurement is given as Δα = F

−1/2
αα .

Figure 7 shows the 1σ error, Δα, as a function of kmax up to
which the power spectrum information is included. The symbols
are the results including the non-Gaussian errors in the Fisher
analysis, while the solid curves are for the Gaussian errors. The
Gaussian error assumption appears to be valid even for large
kmax. This is because the BAO features are erased at the weakly
nonlinear scales k > 0.2 h Mpc−1, where the non-Gaussian
errors are more significant. There is little information on the
acoustic scale at the nonlinear scales. At z = 0 the accuracy
improves significantly around the first peak (k ∼ 0.06 h Mpc−1)
and the second peak (k ∼ 0.12 h Mpc−1). Hence, almost
all the information on the acoustic peaks are obtained for
k � 0.15 h Mpc−1 at z = 0. From Figure 7, Δα ∼ 1% can
be achievable for a survey with (Gpc/h)3 volume coverage.

Finally, we investigate the distribution of best-fit α among
5000 realizations. Given the power spectrum measurement for
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Figure 8. Distribution of the shift parameter α for kmax = 0.2 (solid curves)
and 0.4 h Mpc−1 (dashed curves), respectively. The horizontal axis α − 1 is
divided by the 1σ error computed from the Fisher matrix. The red and black
curves are the results with and without the non-Gaussian errors, respectively.
The distribution of α is well described by a Gaussian distribution with the width
of the 1σ Fisher error.

(A color version of this figure is available in the online journal.)

the ith realization, the χ2 for estimating α is given as

χ2
i (α) =

∑
k1,2<kmax

cov−1(k1, k2)Psmooth(k1)Psmooth(k2)

× [R(αk1) − R̂i(k1)][R(αk2) − R̂i(k2)]. (12)

Here, we have used the power spectrum Pi(k) for the ith
realization, not the mean P (k), to obtain the smooth power
spectrum in the denominator of the ratio R̂i(k).

Figure 8 shows the distribution of the best-fit shift parameters
α for the cases of kmax = 0.2 and 0.4 h Mpc−1. The horizontal
axis is α − 1 divided by the 1σ error σα obtained by the Fisher
matrix. The red curves are the results including the non-Gaussian
errors, while the black curves are for the Gaussian errors. The
two results are indeed very similar. The distribution is well
described by a Gaussian function with the width given by the
1σ Fisher error. A recent work by Seo et al. (2010) compares the
distribution of the acoustic scales with the result from the Fisher
matrix analysis. Although their analysis is slightly different
from ours (they use a fitting formula for the nonlinear P (k)
when calculating the acoustic scale), their results are broadly
consistent with the results shown here.

Figure 9 shows the difference between the best-fit shift
parameters when including or ignoring the non-Gaussian errors
in Equation (12). The difference is smaller than ∼0.2σ . Hence,
we conclude that the non-Gaussian covariance does not cause a
substantial systematic error in the BAO peak determination.

5. DISCUSSION AND CONCLUSION

We have studied the effects of the non-Gaussian error on
the parameter estimations and the distribution of the best-fit
parameters for the cosmological parameters (in Section 3) and
the acoustic scale position (in Section 4). We have found that the
non-Gaussian error is important for the parameter errors if there
is only one fitting parameter. The measurement error degrades
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up to a factor of five for kmax = 0.4. However, if there are more
than two parameters, the impact of the non-Gaussian errors are
insignificant due to severe parameter degeneracies in the matter
power spectrum. For the acoustic scale, the non-Gaussian errors
do not affect the acoustic scale determination, even though there
is only one fitting parameter. This is because the acoustic scale is
determined mainly by the linear scales where the non-Gaussian
covariance is not important.

Throughout this paper, we discussed the covariance matrix of
the matter power spectrum. However, for real galaxy survey,
we should include the effects of the halo and galaxy bias.
However, addressing this issue is not easy at present, because
we need a large number of realizations of high-resolution
simulations including halo and galaxy formation. For large scale
(k � 0.1 h Mpc−1), the covariance of the halo power spectrum
is consistent with the Gaussian error with the shot noise term
(Angulo et al. 2008; Smith 2009). Because, in the linear regime,
only the sample variance dominates the covariance. For small
scale (k > 0.1 h Mpc−1), Smith (2009) recently showed that
the covariance is larger than the Gaussian error prediction
and the higher mass halos have stronger covariance due to
the nonlinear gravitational mode coupling. He compared the
cluster-sized halos in the two mass ranges (M > 1014 M
and 1 × 1013 M < M < 2 × 1013 M), and hence we
expect the galactic halo (M � 1013 M) would have a weaker
covariance.

In our previous paper (T09), we compare the power spectrum
covariance in numerical simulations with analytical models
such as perturbation theory and halo model. We calculated the
diagonal and off-diagonal terms of the covariance matrix and the
S/N in both models and found that the halo model reasonably
reproduces well the simulation results. Several authors also
compared them and reached the same conclusion (e.g., Cooray
& Hu 2001; Neyrinck et al. 2006; Neyrinck & Szapudi 2007;
Sato et al. 2009).

Our simulation results of the 5000 power spectra Pi(k), the
derivative of P (k) with respect to the cosmological parameters,
∂P (k)/∂xj, and the covariance matrix cov(k1, k2) are available
as numeric tables upon request.
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APPENDIX

VARIANCE OF THE COVARIANCE MATRIX FOR THE
GAUSSIAN DENSITY FLUCTUATIONS

The covariance matrix estimated from Nr realizations is
given by

cov(k1, k2;Nr) = 1

Nr

∑
i

[P̂i(k1) − P̄ (k1)][P̂i(k2) − P̄ (k2)],

= 1

Nr

∑
i

P̂i(k1)P̂i(k2)

− 1

Nr

∑
i

P̂i(k1)
1

Nr

∑
j

P̂j (k2). (A1)

The variance of the covariance is given by

var [cov(k1, k2;Nr)] ≡ 〈cov2(k1, k2;Nr)〉 − 〈cov(k1, k2;Nr)〉2

= 1

N2
r

∑
i,j

[〈P̂i(k1)P̂i(k2)P̂j (k1)P̂j (k2)〉

− 〈P̂i(k1)P̂i(k2)〉〈P̂j (k1)P̂j (k2)〉]
− 2

N3
r

∑
i,j,k

[〈P̂i(k1)P̂i(k2)P̂j (k1)P̂k(k2)〉

− 〈P̂i(k1)P̂i(k2)〉〈P̂j (k1)P̂k(k2)〉]
+

1

N4
r

∑
i,j,k,l

[〈P̂i(k1)P̂j (k2)P̂k(k1)P̂l(k2)〉

− 〈P̂i(k1)P̂j (k2)〉〈P̂k(k1)P̂l(k2)〉]. (A2)

The above equation further reduces to

var [cov(k1, k2;Nr)] = 1

Nr
[〈P̂ 2(k1)P̂ 2(k2)〉 − 〈P̂ (k1)P̂ (k2)〉2]

− 2

Nr
[〈P̂ 2(k1)P̂ (k2)〉〈P̂ (k2)〉

− 〈P̂ (k1)P̂ (k2)〉〈P̂ (k1)〉〈P̂ (k2)〉 + (k1 ↔ k2)]

+
1

Nr
[(〈P̂ 2(k1)〉 − 〈P̂ (k1)〉2)〈P̂ (k2)〉2 + (k1 ↔ k2)]

+
2

Nr
[〈P̂ (k1)P̂ (k2)〉− 〈P̂ (k1)〉〈P̂ (k2)〉]〈P̂ (k1)〉〈P̂ (k2)〉.

(A3)
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function of Nr. In the vertical axis, the dispersion is defined in Equation (A7). The
panel shows the result for the off-diagonal parts for varying the wavenumber bins
and the bin widths. The color symbols are the simulation results, while the solid
curves denote the theoretical prediction for the Gaussian density fluctuation.
The plots explicitly show that the power spectrum covariances are estimated at
a sub-percent level accuracy by using our whole 5000 realizations.

(A color version of this figure is available in the online journal.)

Here, we ignored the terms of the order of (1/Nr)2 and higher.
For the Gaussian density fluctuations, the nth moments 〈P̂ n〉

can be obtained using the probability distribution function of
P (k) (the chi-squared distribution function, see Equation (B1)
in T09). For the diagonal parts, we have

var [cov(k1, k1;Nr)] = 1

Nr

(
8

N2
k

+
48

N3
k

)

 8

NrN
2
k

P 4(k).

(A4)
Hence, we have

var [cov(k1, k1;Nr)]

cov2(k1, k1)
= 2

Nr
, (A5)

which is consistent with our numerical finding in our previous
paper (see the left panel of Figure 12 in T09). Hence, if we
need 10%(5%) accuracy in the covariance, we have to prepare
200(800) realizations.

For the off-diagonal parts we have

var [cov(k1, k2;Nr)] = 1

Nr

2

Nk1

2

Nk2

P 2(k1)P 2(k2). (A6)

Let us define the relative errors as

σ 2
cov = var [cov(k1, k2;Nr)]

cov(k1, k1)cov(k2, k2)
. (A7)

In Figure 10, we show the relative errors σ 2
cov in Equation (A7)

as a function of Nr. The solid line is the theoretical prediction in
Equation (A7), and the symbols are the results of our numerical
simulation for various scales (k = 0.05, 0.2, 0.4 h Mpc−1) and
bin width (Δk = 0.005, 0.01 h Mpc−1). Analytical results in
Equation (A6) fit our simulation data well.
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