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We compare the model power spectrum, computed based on perturbation theory, with the power

spectrum of luminous red galaxies (LRG) measured from the Sloan Digital Sky Survey Data Release 7

catalog, assuming a flat, cold dark matter–dominated cosmology. The model includes the effects of

massive neutrinos, nonlinear matter clustering and nonlinear, scale-dependent galaxy bias in a

self-consistent manner. We first test the accuracy of the perturbation theory model by comparing the

model predictions with the halo power spectrum in real- and redshift-space, measured from 70 simulation

realizations for a cold dark matter model without massive neutrinos. We show that the perturbation theory

model with bias parameters being properly adjusted can fairly well reproduce the simulation results. As a

result, the best-fit parameters obtained from the hypothetical parameter fitting recover, within statistical

uncertainties, the input cosmological parameters in simulations, including an upper bound on neutrino

mass, if the power spectrum information up to k ’ 0:15 hMpc�1 is used. However, for the redshift-space

power spectrum, the best-fit cosmological parameters show a sizable bias from the input values if using

the information up to k ’ 0:2 hMpc�1, probably due to nonlinear redshift distortion effect. Given these

tests, we decided, as a conservative choice, to use the LRG power spectrum up to k ¼ 0:1 hMpc�1 in

order to minimize possible unknown nonlinearity effects. In combination with the recent results from

Wilkinson Microwave Background Anisotropy Probe (WMAP), we derive a robust upper bound on the

sum of neutrino masses, given as
P

m� � 0:81 eV (95% C.L.), marginalized over other parameters

including nonlinear bias parameters and dark energy equation of state parameter. The upper bound is only

slightly improved to
P

m� � 0:80 eV if including the LRG spectrum up to k ¼ 0:2 hMpc�1, due to

severe parameter degeneracies, although the constraint may be biased as discussed above. The neutrino

mass limit is improved by a factor of 1.85 compared to the limit from the WMAP5 alone,
P

m� � 1:5 eV.

DOI: 10.1103/PhysRevD.83.043529 PACS numbers: 98.80.Es, 14.60.Pq, 95.80.+p, 98.65.Dx

I. INTRODUCTION

Combining the cosmic microwave background (CMB)
with large-scale structure probes provides a powerful
means of constraining the sum of neutrino masses [1,2].
Massive neutrinos imprint a characteristic suppression
in the clustering of galaxies at scales below the free-
streaming scale of neutrinos in a cold dark matter
(CDM)–dominated structure formation scenario. In par-
ticular, for neutrino masses of �0:1 eV inferred from
terrestrial experiments, a wide-field galaxy redshift survey
can directly probe the scales comparable with the neutrino
free-streaming scale �100 Mpc, which is incidentally
close to the baryonic acoustic oscillation scales. The ex-
isting galaxy surveys have provided a stringent upper limit
on the neutrino mass ([3–5]; see Reid et al. 2009 [6] for the
most recent study, hereafter R10). However, all the pre-
vious studies employed a rather empirical approach to
model the nonlinear effects in galaxy clustering such as
the Qnl-model [4] or the method to use polynomial func-
tions of wave numbers with additional nuisance parameters
[6]. We also note that these modelings have been tested

using mock catalogs without neutrino effects being taken
into account.
In order to derive a robust, reliable constraint on neu-

trino masses from the observed galaxy distribution, an
accurate modeling of galaxy clustering is clearly needed,
properly taking into account the effects of nonlinear
clustering, redshift distortion and nonlinear, scale-
dependent galaxy bias. Simulation-based approach may
be the most powerful method; however, such a study for
a mixed dark matter model (CDM plus massive neutrinos)
is still in developing stages, especially for small neutrino
mass scales of interest & 1 eV [7–9]. An analytical
approach is complementary, and allows us to study the
effect of massive neutrinos as a function of different
cosmological models. Recently we have developed the
new analytical method to compute the nonlinear galaxy
power spectrum based on the perturbation theory (PT)
approach [10,11], where the effects of nonlinear clustering
and nonlinear galaxy bias are included in a self-consistent
manner within the PT framework. The PT-based model
(see also [12–14]) is a natural extension of the
well-established linear theory, and the validity has been
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extensively studied by comparing withN-body simulations
in a CDM model (e.g. [15–18]).

In this paper, we present the first application of the PT
model to the power spectrum of luminous red galaxies
(LRGs) measured from the Data Release 7 catalog of the
Sloan Digital Sky Survey (SDSS) in R10. We then derive a
robust constraint on neutrino masses, combined with the
WMAP 5-year (WMAP5) data [19], including marginali-
zation over the uncertainties of galaxy bias parameters,
residual shot noise contribution, and dark energy parame-
ters. We mention the recent study [20], where the PT-based
model is compared to the SDSS main galaxies (not LRGs).

II. MODELING OF THE NONLINEAR GALAXY
POWER SPECTRUM

A. PT model

In our previous papers [10,11] we developed a PT-based
method for computing the nonlinear galaxy power spec-
trum in a mixed dark matter model:

Pgðk;zÞ ¼ b21½PNL
m ðk;zÞþb2Pb2ðk;zÞþb22Pb22ðk;zÞ�þN:

(1)

Here b1 and b2 are the linear and nonlinear bias parameters
and N denotes the residual shot noise parameter, which are
derived by renormalizing the galaxy bias parameters based
on PT prescription [21]. The expressions for power spectra
PNL
m , Pb2 and Pb22 are given in [11]. Note that Pb2 > 0 and

Pb22 < 0 over a range of relevant scales. The nonlinear
matter power spectrum PNL

m is given as

PNL
m ðkÞ ¼ f2cb½PL

cbðkÞ þ Pð22Þ
cb ðkÞ þ Pð13Þ

cb ðkÞ�
þ 2fcbf�P

L
cb�ðkÞ þ f2�P

L
�ðkÞ; (2)

where the subscripts ‘‘cb’’ and ‘‘�’’ denote ‘‘CDM plus

baryon’’ and ‘‘massive neutrinos,’’ respectively, and Pð13Þ
cb

and Pð22Þ
cb describe the perturbative corrections to the power

spectrum at next-to-leading order. The coefficient fi is the
mass fraction of each species relative to the present-day
energy density of total matter, �m0: f� � ��0=�m0 ¼P

m�=ð�m0h
2 � 94:1 eVÞ and fcb ¼ 1� f�. The nonlin-

ear galaxy power spectrum at a given redshift z [Eq. (1)]
can be computed once the linear-order power spectra of
CDM, baryon and neutrino perturbations at the same red-
shift z are given for an assumed cosmological model and
the bias parameters b1, b2 and N are specified, as exten-
sively studied in [11].

B. Testing PT model with simulations

To assess the validity of the PT model [Eq. (1)] in
estimating model parameters, we implement a hypothetical
experiment: By fitting the PT model to the halo power
spectrum measured from N-body simulations, we
address whether the cosmological parameters assumed in
N-body simulations can be properly recovered. We used 70

simulation realizations, each of which is carried out with
5123 N-body particles and volume of 1 h�3 Gpc3, compa-
rable with the volume covered by the SDSS survey. (The
N-body simulations are kindly provided by Issha Kayo,
and also see [22].) We created the halo catalogs from
N-body simulation outputs at z ¼ 0, based on the friend-
of-friend method with the linking length of b ¼ 0:2 (20%
of the mean separation ofN-body particles). The catalog in
each realization contains halos with masses greater than
Mmin ’ 1013 h�1 M�, where the mass threshold is deter-
mined such that the resulting number density of halos
becomes �nhalo ’ 3� 10�4 h�1 Mpc�3, comparable with
that of the SDSS LRGs.
Figure 1 shows the halo power spectra in real and

redshift space, measured from the 70 simulation realiza-
tions above. The redshift-space power spectrum shown
here is the monopole spectra, i.e. obtained by azimuthally
averaging the 2D power spectrum in redshift space over
circular annulus of a given radius of k, where the line-of-
sight direction is taken as the z-direction of each simulation
box. The filled circle at each k bin shows the mean band
power computed from the 70 realizations, while the error
bar is the scatter corresponding to the statistical measure-
ment uncertainty for a survey volume of 1 ½h�1 Gpc�3. The
upper and lower panels show the real- and redshift-space
power spectra, respectively, where the redshift-space
power spectrum is affected by redshift distortion effect
due to peculiar velocities of halos. The redshift distortion
effect considered here arises from the bulk motion of halos,
because the peculiar velocity of each halo in simulation is
defined by the mean of velocities of member N-body
particles in the halo and therefore the internal virial mo-
tions are averaged out. The linear theory predicts that the
redshift distortion effect by the bulk motion causes only an
overall shift in the power spectrum amplitude [23], and
does not change the shape of power spectrum. However, as
can be found from the lower panel, the redshift-space halo
spectrum, which is normalized so as to match the real-
space power spectrum amplitude at small k, shows a scale-
dependent enhancement in the amplitudes compared to the
real-space spectrum. This implies nonlinear redshift dis-
tortion due to the halo velocity field. (Also see [24] for
discussion on velocity bias of halos.) Recently, the authors
of [18] developed a model to compute the nonlinear,
redshift-space power spectrum taking into account non-
linearity effects such as mass clustering and redshift dis-
tortion, based on perturbation theory. Interestingly, this
work showed that such a scale-dependent enhancement
in the redshift-space power spectrum amplitude may be
caused by the nonlinear peculiar velocity, which qualita-
tively explains the results shown in Fig. 1. However, a
further exploration of this effect is beyond the scope of
this paper and will be studied elsewhere.
In Fig. 1 we compare the halo spectra, measured from

the simulations, with the model predictions computed
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based on linear theory or the PT model. For the PT pre-
dictions, we show the mass power spectrum (thin solid
curve) assuming the cosmological model assumed in the
simulations, and also show the best-fit halo power spec-
trum (bold solid curve), computed from Eq. (2), where the
best-fit model parameters including bias parameters are
obtained by fitting the PTmodel to the simulation spectrum
up to k ¼ 0:1 hMpc�1 (also see below for details). The
figure clearly demonstrates that the simulation halo spectra
cannot be explained by either the linear theory or the PT
model for mass power spectrum over a range of wave
numbers of interest. Although the linear theory may
appear to give a good fit to the simulation result up to
k ’ 0:12 hMpc�1, a closer look reveals that the linear
theory overestimates the band powers at scales around

k ’ 0:07 hMpc�1, where the PT model gives a better fit.
On the other hand, interestingly, the PT-based halo
spectrum with bias parameters being properly adjusted
fairly well reproduces the simulation results. The PT
model can give a reasonably good fit up to
k ’ 0:15 hMpc�1, but begins to increasingly deviate
from the simulation results at the larger k due to stronger
nonlinearity effects.
Next let us move on to details of the hypothetical pa-

rameter fitting:; can the PT model for halo power spectrum
recover the cosmological parameters assumed in the simu-
lations? In the parameter fitting, we employ 6 parameters:
�b0=�m0ð¼ 0:172Þ, �m0hð¼ 0:174Þ, Pm�ð¼ 0 eVÞ, and
the parameters of galaxy bias and shot noise, b1, b2 and N.
(The values in parentheses are the input values assumed
in the N-body simulations.) Other parameters are fixed to
the input values of N-body simulations. Note that adding
the neutrino mass as a free parameter causes an asym-
metric effect on the model spectra due to the sharp limitP

m� � 0: it causes only a scale-dependent suppression,
not an increase, in the power spectrum amplitudes.
We imposed the Gaussian prior �ð�b0Þ=�b0 ¼ 0:05, and
assumed the residual shot noise N to be smaller than
the power spectrum amplitudes over the range of wave
numbers used. Finally, we used the power spectrum
information up to the maximum wave number kmax ¼
0:1 hMpc�1, motivated by the fact that the PT model stays
fairly accurate down to the wave number k & 0:1 hMpc�1

for mass power spectrum at z ¼ 0 in a CDM model, as
carefully studied in [16,17].
Figure 2 shows the resulting posterior distribution of

each model parameter. It is found that the input values of
�b0=�m0, �m0h and

P
m� are well recovered within the

68% C.L. statistical uncertainties as denoted by the shaded
regions. A closer look reveals that the best-fit values
slightly deviate from the input values. The origin of the
offsets can be explained by the dotted curves, which show
the posterior distribution obtained by fixing the neutrino
mass to zero (i.e., the input value for the CDM simula-
tions). Adding neutrino masses as a free parameter causes
such a bias in the best-fit values of�b0,�m0h and b1. This
bias direction in �b0, �m0h and b1 is found to all increase
the power spectrum amplitudes so as to compensate a
scale-dependent suppression caused by nonzero neutrino
masses. Accordingly an upper limit on

P
m� is obtained

due to the sharp cutoff
P

m� � 0. It should also be noted
that adding neutrino masses increases the marginalized
error of b1, implying a strong degeneracy between b1
and

P
m�.

A nonzero value of b2 is favored for the PT model to
match the halo power spectrum or equivalently a simple
linear bias is disfavored even for kmax ¼ 0:1 hMpc�1, as
also inferred from Fig. 1. The bimodal distribution of b2 is
also apparent. For the favored values of b2, the term
proportional to b22 in Eq. (1) is dominant over the term

FIG. 1 (color online). Upper panel: The filled circles at each k
bin show the mean halo power spectrum measured from 70
simulation realizations at z ¼ 0 (see text for details), while the
error bar shows the statistical measurement uncertainty at the k
bin for a simulation volume of 1 h�3Gpc3, roughly comparable
with the SDSS survey volume. For illustrative purpose the halo
spectrum is divided by the no-wiggle, linear power spectrum,
multiplied by the linear halo bias squared, b21P

L
m;nwðkÞ (b1 ¼

1:66). For comparison, the thin dotted and thin solid curves show
the linear theory and PT predictions for mass power spectrum,
respectively, for the cosmological model assumed in the simu-
lations. The bold solid curve shows the best-fit PT model for halo
power spectrum, computed from Eq. (2), where the best-fit
model parameters including bias parameters are obtained by
fitting the model predictions to the simulation spectrum up to
k ¼ 0:1 hMpc�1 (see Fig. 2). Lower panel: Similar to the upper
panel, but for redshift-space power spectrum (b1 ¼ 1:81). The
redshift-space power spectrum is modified by redshift distortion
effect due to peculiar velocities of halos. For comparison, the
circle points without error bars show the simulation halo spec-
trum in real space (the same as in the upper panel).
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proportional to b2, and therefore both positive and negative
values of b2 become acceptable.

How is the parameter estimation changed if using the PT
model up to higher kmax than 0:1 hMpc�1, where the PT
model ceases to be accurate, at least for the mass power
spectrum [16,17]? Some of the previous works sometimes
attempted to use the power spectrum information up to
such higher k-range, motivated by the fact that the power
spectrum of higher-k modes contains a more constraining
power of parameters. However, because of complex non-
linearity effects, the best-fit parameters derived from
such high-k information may be biased from the under-
lying true values. On the other hand, the PT model predicts
a complex scale-dependent, nonlinear bias function as a
function of cosmological model and bias parameters
(see [11]). As implied in Fig. 1, the PT model can give a
good fit to the simulation halo spectrum at scales greater
than k ¼ 0:1 hMpc�1, by adjusting the bias parameters.
Therefore it is interesting to study whether or not fitting the

PT model to the simulation halo spectrum up to the higher
k-values causes a bias in the best-fit parameters.
Figure 3 shows the 1� marginalized errors on �m�,

�b0=�m0 and �m0h as a function of the maximum wave-
number kmax employed in the parameter fitting. First,
let us focus on the results for the real-space power spec-
trum. Even though the PT model breaks down at
k * 0:1 hMpc�1 and overestimates the ‘‘mass’’ power
spectrum amplitudes at such high-k range (see the upper
panel of Fig. 1), the best-fit parameters are found to recover
the input values within the 1-� statistical uncertainties.
It is also clear that the statistical errors of the parameter
and the upper bound on �m� are improved at kmax �
0:1 h�1 Mpc�1 compared to our fiducial choice of kmax ¼
0:1 hMpc�1, due to a gain in the constraining power con-
tained in the high k-range. This may reflect that the PT
model has more degrees of freedom to describe the non-
linear halo power spectrum by adjusting the bias parame-
ters, which may allow one to overcome the limitation of PT
model for mass power spectrum.
However, this is not the case for the redshift-space halo

power spectrum. Again note that, if the halo power spec-
trum measured from simulations is affected only by the
Kaiser effect, the redshift distortion effect causes only an
overall shift in the power spectrum amplitude, independent
of k, which can be absorbed by changing the linear bias
parameter in the PT modeling. The figure shows that the
input parameters are recovered up to kmax ’ 0:15 hMpc�1,
but the best-fit parameters at kmax ¼ 0:2 hMpc�1 show a
sizable deviation, more than the statistical uncertainties,
compared to the input values for �m0h

2 and �b0=�m0.
This deviation implies that the residual nonlinear redshift

FIG. 2 (color online). Testing the perturbation theory (PT)
based model with the halo power spectrum measured from
N-body simulations (70 realizations used). The solid curve in
each panel is the posterior distribution of parameter, estimated
by comparing the PT model with the halo power spectrum up to
the maximum wave number kmax ¼ 0:1 hMpc�1. The input
values of �b0=�m0 and �m0, denoted by the vertical lines, are
properly recovered within the statistical errors for the volume
1 h�3Gpc3, which is comparable with the SDSS volume. For
neutrino masses, which are not included in the N-body simula-
tions, an upper limit is derived. Nonzero values of bias parame-
ters (b1 and b2) and shot noise parameter (N) are obtained,
implying that the parameters are needed to describe the halo
power spectrum. The dotted curves represent the posterior dis-
tribution obtained by fixing the neutrino mass to zero, showing
that the input values of the parameters �b0=�m0 and �m0 are
correctly reproduced together with a tighter constraint on the
linear bias parameter.

FIG. 3 (color online). The best-fit parameters and the margi-
nalized errors obtained by fitting the PT model with the halo
spectrum up to a given maximum wave number kmax, denoted in
the horizontal axis. For each kmax the left-side point with error
bar shows the results for real-space halo spectrum, while the
right-side point shows the results for the redshift-space halo
spectrum. The horizontal dashed line denotes the input value
of each parameter.
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distortion cannot be described by the PT model, even if
changing the model parameters.

Note that, on the contrary, at low kmax � 0:05 hMpc�1,
there are less statistical powers, giving larger uncertainties
in model parameters. In addition, severe parameter degen-
eracies give only a very weak upper bound on neutrino
mass, and cause a bias in �m0h as discussed above.

Given the results in Figs. 1 and 2, we will use, as a
conservative choice, the SDSS LRG power spectrum
up to k ¼ 0:1 hMpc�1 to compare with the PT model.
For the LRG power spectrum measured in R10, the non-
linear redshift distortion, known as the Fingers-of-God
effect, is suppressed by clipping possible satellite LRGs.
However, as we have shown, there may be a residual
contamination from the nonlinear redshift distortion
effect. Therefore, in order to derive a robust constraint
on neutrino mass, we will adopt kmax ¼ 0:1 hMpc�1 for
the following results, although wewill also discuss how the
neutrino mass constraint is changed by including
the information beyond k ¼ 0:1 hMpc�1, to be more
comprehensive.

III. RESULTS

We now apply the PT model to the power spectrum of
SDSS LRG samples in order to constrain neutrino mass.
We use the halo power spectrum measured by R10, where
104 337 halos were first reconstructed from the observed
110 576 LRGs’ distribution, and the angle-averaged
redshift-space power spectrum was estimated based on
the method in [25]. The halo power spectrum is less
affected by the Fingers-of-God effect, because the contri-
bution from satellite galaxies was eliminated in the mea-
surement. Thus the halo power spectrum in R10 is
appropriate to compare with the PT model.

In estimating parameters, we combine the LRG power
spectrum with the WMAP5 data. Note that our results
would remain almost unchanged even with the latest
WMAP7 result [26]. We assume that the likelihood func-
tion of the LRG power spectrum is given as

� 2 lnLSDSS /
X

ki;j<kmax

�i½C�1�ij�j; (3)

where �i is the difference between the measured and
model power spectra at the i-th wave number bin ki,

�i � P̂haloðkiÞ � PNL
haloð�kijpÞ, with p being a set of model

parameters (see below). Note that the effect of survey
window function is properly taken into account in comput-
ing the model power spectrum following R10. The matrix
C is the covariance matrix for which we use the matrix
provided in R10, and C�1 is its inverse matrix. Note
that we employ kmax ¼ 0:1 hMpc�1 and assume the
single redshift slice z ¼ 0:35 for simplicity. The stretch
factor ‘‘�’’ in the argument of the model power spec-
trum describes the cosmological distortion [27,28].
This factor is given as � ¼ Dref

V ðzÞ=DVðz;pÞ, where

DVðzÞ � ½ð1þ zÞ2DAðzÞ2z=HðzÞ�1=3 and Dref
V is the dis-

tance for the reference cosmological model used in the
LRG spectrum measurement. The likelihood for the
joint analysis of WMAP5 plus SDSS is simply given as
lnL ¼ lnLSDSS þ lnLWMAP.
We include a fairly broad range of parameters that can

cover variants of CDM cosmology such as models includ-
ing massive neutrinos and dark energy equation of state
parameter. We vary 12 model parameters in total:

p ¼ ðf�;�b0h
2;�DM0h

2; �	; w; �;�2
R; ns; ASZ; b1; b2; NÞ;

(4)

where �DM0h
2 is the sum of CDM and massive neutrinos;

�	 is the parameter to characterize the angular scale of
CMB acoustic oscillations; � is the optical depth to the last
scattering surface; ns and �

2
R are the parameters to specify

the primordial power spectrum following the convention in
[19]; ASZ is the parameter to control a contamination of the
Sunyaev-Zel’dovich effect to the CMB spectrum; w is the
dark energy equation of state parameter. Note that the
parameters � and ASZ affect only the CMB information.
We used the COSMOMC code [29] to explore parameter
estimations in the multidimensional parameter space.
The upper panel of Fig. 4 shows the marginalized error

on neutrino masses. We obtain the upper limit
P

m� �
0:81 eV (95% C.L.) for the SDSS Data Release 7 plus
WMAP5. This is a factor of 1.85 improvement compared
to the limit derived from the WMAP5 alone,

P
m� �

1:5 eV. Our neutrino mass limit can be compared with
the result derived using the method in R10, where the
empirical treatment based on halo model prescription
was used to account for nonlinear, scale-dependent galaxy
bias. Note that R10 employed kmax ¼ 0:2 hMpc�1 and
then derived an upper bound on the neutrino mass given
as

P
m� � 0:63 eV.

Figure 5 shows that the best-fit PT model matches the
measured LRG power spectrum well over a range of the
working wave numbers, k � 0:1 hMpc�1. If the neutrino
mass is changed to the 95% C.L. upper bound,

P
m� ¼

0:81 eV, but other parameters are kept fixed to the best-fit
values, the model spectrum significantly underestimates
the measured spectrum amplitudes at the small scales.
Also note that the best-fit model rather continues to match
the measured spectrum beyond kmax ¼ 0:1 hMpc�1. In
fact, even if including the information up to kmax ¼
0:2 hMpc�1, the neutrino mass limit is only slightly
changed to

P
m� � 0:8 eV, reflecting less cosmological

information at the higher wave numbers due to severe
degeneracies of cosmological parameters with nonlinear
bias parameter and/or shot noise parameter.
The lower two panels of Fig. 4 show how the neutrino

mass constraint is degenerate with w and the nonlinear
bias parameter b2. The marginalized constraint on w is
�1:08<w<�0:79 (68% C.L.). While a change of w
leads to a suppression in the power spectrum amplitudes,
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Fig. 4 shows that degeneracy between w and the neutrino
mass is rather weaker than expected. This implies that the
constraint on w comes mainly from the baryonic acoustic
oscillation information as studied in [28]. Figure 4 also
shows that a simple linear bias model with b2 ¼ 0 is
disfavored at 68% C.L. That is, the nonlinear scale-
dependent bias is needed to match the measured power
spectrum, as can be found from Fig. 5. Similar to Fig. 2,
bimodal structure of the constraint on b2 is found, implying
that the term proportional to b22 in Eq. (1) is dominant over

other terms in the nonlinear power spectrum.

IV. SUMMARY

In this paper, we explore the robustness of the PT-based
model to interpret the measured galaxy power spectrum,
focusing on constraining the neutrino mass. The model
successfully include the effects of nonlinear clustering
and nonlinear, scale-dependent galaxy bias in a self-
consistent manner within the PT framework. We have
tested the accuracy of the PT model by comparing the
model predictions with the halo power spectrum measured
in the N-body simulation without massive neutrinos. A
careful and detailed comparison shows that the PT model

can reproduce the simulated halo power spectrum and
recover the cosmological parameters input in the simula-
tions within statistical uncertainties, if the power spectrum
is used up to k ’ 0:15 hMpc�1. However, in the case of the
redshift-space power spectrum, the best-fit cosmological
parameters show a biased estimation from the input values
if the information up to k ’ 0:2 hMpc�1 is used. Thus, it is
unclear to choose the maximum range of wave number but
we decided to conservatively use the observed power spec-
trum up to k ¼ 0:1 hMpc�1 in order to minimize possible
unknown nonlinear systematic effects.
Based on the test against the mock power spectra, we

have applied this PT model to the SDSS LRG samples, and
derived the neutrino mass limit

P
m� � 0:81 eV (95%

C.L.). The parameter constraints including neutrino masses
would be further improved by including the redshift dis-
tortion measurement and/or the higher-order clustering
information, which help to break the degeneracies with
galaxy bias parameters. On a theory side, the PT-based
model needs to be further refined by including higher-order
loop corrections and/or by calibrating the model with a suit
of high-resolution simulations (see [18] for such a study),
although a careful treatment of massive neutrinos, non-
linear galaxy bias and redshift distortion is definitely
needed. Once such refined models are available, a more
stringent constraint on neutrino masses can be obtained
from high-precision measurements of galaxy clustering via
ongoing and future galaxy redshift surveys. We hope that
this paper gives the first attempt to step in this direction.
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FIG. 4 (color online). The parameter constraints obtained by
comparing the PT model with the SDSS LRG power spectrum up
to kmax ¼ 0:1 hMpc�1, in combination with the WMAP5 con-
straint, where we include 12 parameters given by Eq. (4). The
upper panel shows the posterior distribution of neutrino masses,
yielding the upper limit

P
m� � 0:81 eV (95% C.L.), a factor

1.85 improvement over the limit
P

m� � 1:5 eV from the
WMAP5 alone. The lower two panels show how the neutrino
mass is degenerate with the dark energy equation of state
parameter w and the nonlinear bias parameter b2, respectively,
with 68% C.L. (dark shaded) and 95% C.L. (light shaded)
regions. A nonzero b2 or equivalently a scale-dependent bias
is favored at 68% C.L. Our results are compared with the results
derived using the halo-model based method in R10 for the same
maximum wave number cutoff kmax ¼ 0:1 hMpc�1.

FIG. 5 (color online). Comparing the best-fit PT model with
the SDSS LRG spectrum, where the best-fit model is obtained
from the fitting to kmax ¼ 0:1 hMpc�1. For illustrative clarity the
power spectra are divided by the linear matter power spectrum
for the best-fit cosmological model. For comparison, we also
show the PT model, where the neutrino mass is changed toP

m� ¼ 0:81 eV, corresponding to the 95% C.L. upper bound in
Fig. 4, but other parameters are kept fixed to the best-fit values.
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