
Tomasz Szydło
Paweł Suder
Jakub Bibro

MESSAGE-ORIENTED COMMUNICATION
FOR IPV6-ENABLED PERVASIVE DEVICES

Abstract An increasing number of electronic devices are being equipped with radio in-
terfaces intended for communication with and control by other devices and
applications. Wireless communication in this class of devices may be exposed
to a number of situations that can occur, including limited energy resources,
equipment failures, node mobility, and loss of communication between nodes.
Ultimately, commonly-used standards and protocols for sharing services are not
practical and do not take into account the occurrence of such problems. This
paper presents a concept of communication that relies on the exchange of mes-
sages between wireless-pervasive devices commonly found in our environment.

Keywords sensor setworks, IPv6, message-oriented middleware

2 lutego 2014 str. 1/11

Computer Science • 14 (4) 2013 http://dx.doi.org/10.7494/csci.2013.14.4.667

667

http://journals.agh.edu.pl/csci/


1. Introduction

The majority of pervasive devices installed in our homes, cars, and offices are expec-
ted to be embedded with small and low-cost microprocessors integrated with radio
transceivers. These devices will be able to offer their functionality as services enabling
other devices, and smart applications to interact with them dynamically composing
a complex systems. In order to enable interoperability with existing applications and
services, several design decisions should be made according to the network communi-
cation and service exposition.

There are several middlewares [12] for sensor networks developed to simplify the
process of sharing and utilizing functionalities exposed by the devices, but it might
be difficult to design applications composed of services provided by heterogeneous
devices such as sensor networks, embedded devices and servers due to potential in-
compatibility of network communication mechanisms. A different approach assumes
the usage of the technology used to develop and compose applications in Service
Oriented Architecture (SOA) [3]. We think that these devices should use the widely-
adopted network communication protocol stack and the service exposition protocols.
This will enable the possibility of seamlessly integrating services that are exposed by
pervasive devices with other existing services.

Most of the networked devices use the Internet Protocol (IP) suite. This provides
interoperability between wired and wireless communication media despite the fact
that they express different behaviors in the terms of quality guarantees. Each device
that attempts to communicate using the IP protocol stack requires an IP address. It
has been predicted that by 2020, there will be 50 billion Internet-enabled devices in
the world, so the currently used 4.3 billion IPv4 addresses are insufficient, and the
IPv6 protocol is necessary where the address has 128 bits instead of 32 bits. There
are a few operating systems for small embedded devices that provide IP connectivity
and might be utilized in real world applications.

Service-enabled pervasive devices will rely on error-prone wireless communica-
tion technologies that might influence the usage of the services which represent their
functionality. Wireless communication between pervasive devices faces several issues,
including power consumption constraints for nodes using batteries or energy harve-
sting, node failures, mobility of nodes, and communication failures. Services imple-
mented using standards such as REST or WS* are typically conveyed using HTTP
protocol with XML serialization; thus, clients have to deal with the lack of availabili-
ty of services, asynchronous invocations, and other problems that might appear more
frequently in pervasive devices than in a typical client-server applications. Another
approach to such communication relies on the concept of messages. Sending messages
across channels decreases the complexity of the end application, thereby allowing the
developer of the application to focus on true application functionality instead of the
intricate needs of communication protocols. Message-oriented middleware (MOM) [1]
is a specific class of middleware supporting the sending and receiving of messages
between distributed systems. MOM allows application modules to be distributed over

2 lutego 2014 str. 2/11

668 Tomasz Szydło, Paweł Suder, Jakub Bibro



heterogeneous platforms and reduces the complexity of developing applications that
span multiple operating systems and network protocols. The middleware creates a
distributed communications layer that insulates the application developer from the
details of the various operating systems and network interfaces. Message-oriented mid-
dleware may provide reliable asynchronous communication mechanisms that might be
used to carry i.e. SOAP messages or other remote communication messages.

The usage of IPv6 by pervasive devices enables the possibility of reusing existing
network infrastructure for device communication, while MOM introduces asynchro-
nous communication between entities, providing message caching, reliable commu-
nication, and location transparency. Such communication may handle the issues in
wireless communication between pervasive devices. Nodes mobility can be handled by
the queue and the topic names, while connectivity problems or the sleeping nodes can
be handled by the message caching in the message brokers.

In this paper, we propose MOM for IPv6 enabled devices with constrained reso-
urces. Section 2 discusses the related work. Section 3 shows the proposed protocol for
constrained devices, while section 4 its implementation details for modern operating
system designed for constrained resources devices. Section 5 presents the example use
case while section 6 sums up the article and discusses future work.

2. Related work

There are several MOM’s that differ in details and offered functionality. Two of the
most common MOM [4] paradigms are message queuing and publish/subscribe mes-
saging. Message queuing provides buffering between pairs of hosts over point-to-point
paths, an approach that is most suitable for applications requiring persistence but
less useful for applications requiring responsiveness. In pub/sub messaging, subscri-
bers specify their interest in messages typically by requesting a type of messages or
the topic on which they are published. When a publisher sends a message, subscribers
who have registered their interest in the message receive it asynchronously. A publi-
sh/subscribe model follows a many-to-many communication pattern, allowing for a
decoupling between publishers and subscribers, while the queuing model follows a one-
to-one model. The architecture of MOM systems includes an additional component
which act as the message transfer agents – message brokers. Depending on the tech-
nology and implementation message, brokers might be implemented as single hosts
or might be federated to improve scalability and high availability of communication.

The Java EE programming environment provides a standard API called Java
Message Service(JMS) [8], which is implemented by most MOM vendors and aims to
hide the particular MOM API implementations. JMS does not define the format of
the messages that are exchanged, so JMS systems are not inter-operable. The Ad-
vanced Message Queuing Protocol (AMQP) is an emerging standard that defines the
protocol and formats used in the messaging server and client, so implementations
are inter-operable. AMQP is defined to provide flexible routing, including common
messaging paradigms like point-to-point, publish/subscribe, and request-response. It

2 lutego 2014 str. 3/11

Message-oriented communication for IPv6-enabled pervasive devices 669



also supports transaction management, queuing, distribution, security, management,
clustering, federation, and heterogeneous multi-platform support. Message Queue Te-
lemetry Transport (MQTT) is an open-message protocol that enables the transfer of
telemetry-style binary data in the form of messages from pervasive devices, along high
latency or constrained networks, to a server, or a small message broker. Simple (or
Streaming) Text Oriented Message Protocol (STOMP), formerly known as TTMP, is a
simple text-based protocol designed to work with MOM. It provides an inter-operable
wire format that allows STOMP clients to talk with any Message Broker supporting
the protocol. Thus, it is language-agnostic, meaning a broker developed for one langu-
age or platform can receive communications from client software developed in another
language. There are other message-oriented protocols such as OpenMAMA or DDS,
but those presented are the ones that have well-established community and which
have proven their reliability in production systems.

3. MOM for IPv6 enabled pervasive devices

Requirements for the message-oriented protocol that might be applied to pervasive
devices are different from those for desktop computers. The first requirement is con-
cerned with the simplicity of the messaging protocol, while second concentrates on the
transport-layer protocol that must be adequate to the profile of constraint resources
devices and wireless connectivity.

The trends in current pervasive development involves the re-usage of web stan-
dards to connect the number of embedded devices that appear in the environment.
Well-accepted and -understood concepts and standards, such as URI, HTTP or REST,
are used to access the functionality of smart objects, mainly due to the self-descriptive
semantics of the operations offered by these standards and straightforward imple-
mentation. Message-oriented middleware for pervasive devices should fit the current
trends, providing easy access to the underlying infrastructure by providing a well-
defined programming interface.

Most pervasive electronic devices use wireless communication in the physical
layer of the protocol stack. A majority of existing technologies use 2.4GHz ISM band
due to its unlicensed access. There are heavy constraints on the data link layer for
service-enabled real world devices due to the power efficiency requirements of these
devices. Broadly-used wireless standards such as IEEE 802.11 b/g/n do not meet these
requirements, so the IEEE 802.15.4 [7] standard has been designed to be supported
by semiconductor vendors. Any introduction of IP protocol for such devices must be
preceded by several conceptual decisions. In the network layer, IPv4 does not have
sufficient addressing space; thus, IPv6 should be used for addressing, as its size is
large enough for future usage. The header of the IPv6 frame would fill the major part
of energy-efficient data link protocol as IEEE 802.15.4, so there is a need to use the
adaptation layer defined in 6LoWPAN [9] specification. Usage of the TCP protocol in
the transport layer might introduce unnecessary overhead for communications. On the
other hand, usage of UDP protocol might result in the lack of guarantees necessary for

2 lutego 2014 str. 4/11

670 Tomasz Szydło, Paweł Suder, Jakub Bibro



the proper workage of service-orientation protocols, such as WS* and others, based
on reliable communication.

Several messaging protocols and message brokers were analyzed, and we finally
decided to use the STOMP protocol that is a frame-based protocol, with frames
modeled on HTTP. A frame consists of a command, a set of optional headers and an
optional body. STOMP is text based, but it also allows for the transmission of binary
messages. The default encoding for STOMP is UTF-8, but it supports the specification
of alternative encodings for message bodies. It distinguishes itself by covering a small
subset of commonly-used messaging operations rather than providing a comprehensive
messaging API.

Figure 1. Concept of environment emulation.

The STOMP protocol uses TCP in the transport layer, which is not sufficient
for pervasive devices due to the introduced overhead; thus, we decided to introduce a
mediator between message broker and the clients, as presented in Figure 1. The TCP-
UDP mediator is an application that is used to transfer data from UDP datagrams
to the appropriate TCP connection. Mapping between the reliable TCP protocol and
the unreliable UDP protocol is possible only because STOMP protocol introduces
acknowledgments and retransmissions of messages in the application layer. Mapping
of the UDP datagram to the TCP connection is based on the source address of the
datagram. If there is no mapping, the TCP connection to the broker is established
as soon as first UDP datagram is received. This strategy is justified by the fact
that devices use IPv6; thus, there is no unambiguous mapping. The next section
discusses implementation details of the communication library for embedded devices
with constraint resources.

2 lutego 2014 str. 5/11

Message-oriented communication for IPv6-enabled pervasive devices 671



4. Implementation details

There are a few operating systems for small embedded devices that provide IP con-
nectivity. TinyOS [5] is a free and open-source component-based operating system
written in the nesC programming language as a set of cooperating tasks and proces-
ses. It contains the BLIP library, which is an implementation of a number of IP-based
protocols. The second (and most promising) operating system is Contiki, which is
an open-source implementation for networked, memory-constrained systems with a
particular focus on low-power wireless devices. Examples of where Contiki is used in-
clude street lighting systems, sound monitoring for smart cities, radiation monitoring
systems, and alarm systems. Contiki provides three network mechanisms: the uIP
TCP/IP stack [2], which provides IPv4 and IPv6 networking, and the Rime stack,
which is a set of custom lightweight networking protocols designed specifically for
low-power wireless networks. The IPv6 stack was contributed by Cisco and was, at
the time of release, the smallest IPv6 stack to receive IPv6-Ready certification.

Contiki OS is not multi-threading, but it provides the protothreads library
which uses an event-driven mechanism built into the system. Events are sent by the
processes to the dispatcher which notifies other processes of occurred events. It is po-
ssible that the process waits for an event from another process, enabling inter-process
communication. The template for blocking functions used in our implementation is
presented in Listing 1. This allows synchronization of the processes performing related
tasks.

Listing 1: Template for blocking functions for Contiki OS

#define STOMP_ <COMMAND >(<arg >, ...)
stomp_ <command >(<arg >, ...);
PROCESS_WAIT_EVENT_UNTIL(ev == PROCESS_EVENT_CONTINUE );

The network communication library for Contiki extensively uses eventing mecha-
nisms. Sending and receiving data should be done in the same process which initiated
the connection. The networking library handles several TCP states, while in UDP
communication there is only information about number of bytes to send. It is impor-
tant to strictly follow the introduced pattern because the communication is based on
the shared memory buffers, and the data is not copied between memory blocks.

The implemented stomp library for Contiki OS provides the API that follows the
STOMP 1.1 specification and handles the UDP communication as discussed in the
previous section. It allows applications to connect to the message broker, send a mes-
sage to a specific queue, manage subscriptions queues to receive messages, and confirm
and report operations in the transaction. Listing 2 shows the subset of implemented
API, while Listing 3 the example usage of the library. The prototype implementation
meets significant resource constraints as it is characterized by a small memory foot-
print. The size of the core Contiki OS is about 50kB of flash memory, while the stomp

2 lutego 2014 str. 6/11

672 Tomasz Szydło, Paweł Suder, Jakub Bibro



library footprint is about 15kB. This means that, for the typical micro-controller with
128kB of flash memory, 60kB is left for user application.

Listing 2: Subset of stomp library API

#define STOMP_CONNECT(host , login , pass)
#define STOMP_SUBSCRIBE(id , destination , ack)
#define STOMP_SEND(destination , type , length ,

receipt , tx , message)
#define STOMP_ACK(subscription , message_id , tx)
#define STOMP_NACK(subscription , message_id , tx)

Listing 3: Example usage of the stomp library

PROCESS_THREAD(stomp_client_process , ev, data) {
PROCESS_BEGIN ();
register_callback ();
STOMP_NETWORK_CONNECT (&ipaddr , port);
forever {

if (not connected) {
STOMP_CONNECT (" apollo", "admin", "password ");
STOMP_SUBSCRIBE (" income", "/queue /"+UUID , "auto ");
for (sensor in sensors) {

STOMP_SUBSCRIBE (" income "+ sensor.name ,
"/ queue /"+ sensor.name , "auto ");

}
STOMP_SEND ("/ queue/manager", "text/plain",

NULL , NULL , NULL ,
"HELLO "+UUID+" temp ,hum ,pres);

} if (connected) {
wait (15s);
STOMP_BEGIN ("tx");
// internal operations
STOMP_SEND (...);
STOMP_COMMIT ("tx");

}
}
PROCESS_END ();

}

In the prototype, the TCP-UDP mediator has been implemented as a multi-
threaded Java program. During the development, we used an Apache Apollo message
broker that is based on ActiveMQ. Apollo is a multi-protocol broker and supports

2 lutego 2014 str. 7/11

Message-oriented communication for IPv6-enabled pervasive devices 673



STOMP, Openwire, MQTT, SSL, and WebSockets. In our solution, the TCP-UDP
mediator has been deployed on the same server as Apollo.

5. Use Case

We have designed and developed a sample application for testing purposes. It con-
sists of Manager Application and Sensor Node Application that might be installed
on wireless devices equipped with various sensors. The manager is able to discover
wireless nodes and sensor types, configure wireless nodes, and collect measured data
from sensors (e.g., temperature and humidity). There are several different design ap-
proaches for such an application [11, 6, 10], but none of them uses message-oriented
communication. In our case, the wireless communication issues are handled by the
messaging middleware that is easily accessible by software clients implemented using
various programming languages. We have implemented manager application using
Java programming language, and the sensor node application in C for Contiki OS.

Figure 2. Usage of the MOM in the example application.

The application uses a simple text-based protocol developed to describe the ope-
rations and measured values that are transmitted using MOM. There are four kinds of
messages used for exchanging information between nodes and manager application:
HELLO (advertise presence), GET (last measurement), UPDATE (take a new measure-
ment), and SET (configure device). The application sends (publishes) a measurement
request via message broker on a specific device queue on which the device is sub-
scribed. Then, sensor nodes receive the message, performs a task, and replies with a
measured value, placing the message on the manager queue as depicted in Figure 2.
Then, the application receives the message and extracts the included information.
The main window of Manager Application, as presented in Figure 3, splits into two
panels:

• Nodes list – after running the application, a tree-panel shows up on the left. It
consists of available wireless nodes and provides additional information such as
device queue name – queue is responsible for gathering messages published by
Manager Application, sensors list – list of available sensors (e.g. temperature,

2 lutego 2014 str. 8/11

674 Tomasz Szydło, Paweł Suder, Jakub Bibro



pressure, pollution meter etc.), last successful measurement, update parameter
– determines situations when manager should to receive a message (i.e. always,
on change), and time intervals. The list is updated any time a new wireless node
appears.
• Visualization panel – is split into tabs according to available sensor nodes. For

every node, it displays graphs showing measurements obtained from different
sensors. It is refreshed when new measurement message are received and a new
tab is added if a new wireless node appears.

Figure 3. Screenshot of Manager Application.

For concept-verification purposes, we have developed a simple wireless device ba-
sed on a Zigduino circuit board, which incorporates a very-low-cost ATmega128RFA1
microcontroller and IEEE 802.15.4 radio. As a router for IPv6 and 6LowPAN com-
munication, we have used a Linux-based device equipped with an additional network
card driven by STM32W108 micro-controller and customized Contiki OS image.

Figure 4 shows the results of the benchmarking test which we performed. Messa-
ges have been sent from the single wireless device to the manager. The throughput is
lower than the bandwidth of the IEEE 802.15.14 due to the fact that construction of
6LowPAN frame and STOMP is time-consuming for the 8-bit microprocessor we used.
Nevertheless, the acquired efficiency is satisfactory for most embedded applications.

6. Conclusions

In this paper, we have presented the concept of message-oriented communication for
IPv6 enabled pervasive devices. It provides reliable communication mechanisms that
might be used for service provisioning that express functionality of pervasive devices.

2 lutego 2014 str. 9/11

Message-oriented communication for IPv6-enabled pervasive devices 675



Figure 4. Results of benchmarking tests.

The concept has been verified by the sample application deployed on the physical
devices. The small footprint of the library enables its possibility to be used in various
applications. The work might be further extended of discoverability mechanisms, sim-
plifying the initial configuration of the system. A message broker could be discovered
on the network using one of the service discoverability protocols such as uPnP or SLP
in order to provide address of the message broker.

Acknowledgements

The work reported in this paper was supported by the AGH-UST grant
no. 15.11.120.263.

References

[1] Curry E.: Message-Oriented Middleware. In: Q. H. Mahmoud, ed., Middleware for
Communications, chap. 1, pp. 1–28. John Wiley and Sons, Chichester, England,
2004. ISBN 978-0-470-86206-3.

[2] Dunkels A.: The uIP Embedded TCP/IP Stack The uIP 1.0 Reference Manual,
2006.

[3] Erl T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2005. ISBN 0131858580.

[4] Kim M., Karenos K., Ye F., Reason J., Lei H., Shagin K.: Efficacy of techniques
for responsiveness in a wide-area publish/subscribe system. In: Proceedings of the
11th International Middleware Conference Industrial track, Middleware Industrial
Track ’10, pp. 40–45. ACM, New York, NY, USA, 2010. ISBN 978-1-4503-0456-6.
http://dx.doi.org/10.1145/1891719.1891726.

[5] Levis P., Madden S., Polastre J., Szewczyk R., Whitehouse K., Woo A., Gay D.,
Hill J., Welsh M., Brewer E., Culler D.: TinyOS: An operating system for sensor
networks. In: Ambient Intelligence. Springer Verlag, 2004.

[6] Madden S. R., Franklin M. J., Hellerstein J. M., Hong W.: TinyDB: an acquisi-
tional query processing system for sensor networks. ACM Trans. Database Syst.,

2 lutego 2014 str. 10/11

676 Tomasz Szydło, Paweł Suder, Jakub Bibro



vol. 30(1), pp. 122–173, 2005. ISSN 0362-5915. http://dx.doi.org/10.1145/
1061318.1061322.

[7] Man L. A. N., Committee S.: IEEE Standard for Information technology- Tele-
communications and information exchange between systems- Local and metropo-
litan area networks – Specific requirements – Part 15.4: Wireless MAC and PHY
Specifications for Low-Rate WPANs. Control, vol. 2006(September), p. 323.

[8] Microsystems I. S.: Java Message Service, Version 1.0.2 (JMS specification).
Tech. rep., Sun Microsystems, Inc., 1998. http://java.sun.com/products/jms.

[9] Montenegro G., Kushalnagar N., Hui J., Culler D.: Transmission of IPv6 Packets
over IEEE 802.15.4 Networks. RFC 4944 (Proposed Standard), 2007. http:
//www.ietf.org/rfc/rfc4944.txt.

[10] Muller R., Alonso G., Kossmann D.: SwissQM: Next Generation Data Processing
in Sensor Networks. In: CIDR 2007, Third Biennial Conference on Innovative
Data Systems Research, Asilomar, CA, USA, January 7–10, 2007, Online Proce-
edings, pp. 1–9. 2007. http://dx.doi.org/http://www.cidrdb.org/cidr2007/
papers/cidr07p01.pdf.

[11] Niec M., Pikula P., Mamla A., Turek W.: Erlang-based sensor network mana-
gement for heterogeneous devices. Computer Science, vol. 13(3), pp. 139–151,
2012.

[12] Raychoudhury V., Cao J., Kumar M., Zhang D.: Middleware for pervasive com-
puting: A survey. Pervasive and Mobile Computing, 2012. ISSN 15741192.
http://dx.doi.org/10.1016/j.pmcj.2012.08.006.

Affiliations

Tomasz Szydło
AGH University of Science and Technology, Krakow, Poland, tszydlo@agh.edu.pl

Paweł Suder
AGH University of Science and Technology, Krakow, Poland, suder@agh.edu.pl

Jakub Bibro
AGH University of Science and Technology, Krakow, Poland, bibro@agh.edu.pl

Received: 2.03.2013
Revised: 30.05.2013
Accepted: 2.06.2013

2 lutego 2014 str. 11/11

Message-oriented communication for IPv6-enabled pervasive devices 677


