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Abstract The idea of a new evolutionary algorithm with a memory aspect included is
proposed to find a multi-objective optimized solution for the vehicle routing
problem with time windows. This algorithm uses a population of agents that
individually search for optimal solutions. The agent memory incorporates the
process of learning from the experience of each individual agent as well as from
the experience of the whole population. This algorithm uses crossover operation
to define each agent’s evolution. In this paper, we choose the Best Cost Route
Crossover (BCRC) operator as a base. This operator is well-suited for VPRTW
problems; however, it does not treat both parents symmetrically, which is not
natural for general evolutionary processes. A part of the paper is devoted to fin-
ding an extension of the BCRC operator in order to improve the inheritance of
chromosomes from both parents. Thus, the proposed evolutionary algorithm is
implemented with the use of two crossover operators: BCRC and its extended-
modified version. We analyze the results obtained from both versions applied
to Solomon’s and Gehring & Homberger’s instances. We conclude that the
proposed method with the modified version of the BCRC operator gives sta-
tistically better results than those obtained using the original BCRC. It seems
that an evolutionary algorithm with the memory and modification of the Best
Cost Route Crossover Operator leads to very promising results when compared
to other solutions presented in the literature.
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1. Introduction

The Vehicle Routing Problem (VRP) is one of the most-recognized of all of the known
NP-hard problems in computer science. The problem was proposed by Dantzig and
Ramser in 1959’s [6]. Since then, many versions of VRP have been introduced to the
literature; e.g., with a time window, truck capacity, trip multiplicity, multi-depots,
and other constraints [30]. This paper focuses on the Vehicle Routing Problem with
Time Windows (VRPTW).

VRPTW can be described as a task for a single depot with an associated fleet
of trucks delivering cargo to many customers with respect to their time constraints.
Here are the following rules that must be taken into account during the search for an
optimal solution:
• each customer can be visited only once,
• each customer has defined a demand of cargo,
• each customer has defined an opening time window (ready and due time),
• each customer has defined a service time,
• the time of travel between customers is equal to the distance,
• each truck has defined a capacity and has to deliver supplies to customers within
the defined time windows,
• a vehicle that arrives too early to a customer has to wait until service would start
at the open time for a given customer,
• the customer cannot be serviced if a vehicle arrives after the due time.
Many different approaches to solve VRP have already been proposed: exact [8,12,

31], tabu search [5,20], heuristic [1,14], genetic algorithms [2–4,19,21,29], and swarm
intelligence [9,17,23,29]. In order to be able to compare the numerical results of dif-
ferent methods, some classified benchmark tasks were defined. The best-known ben-
chmarks are known as Solomon’s benchmarks [27] and Gehring and Homberger’s [10].

The complexity of VRPTW problems makes all approaches that use the exact
methods computationally difficult. For large instances with 100 customers or more,
it is rarely possible to obtain an optimal route in a reasonable amount time [16].
Moreover, none of existing exact methods can optimally solve all VRPTW benchmark
instances with at least 100 customers. For these reasons, the meta-heuristic methods
seems to be a better choice for these types of problems.

In this paper, we present an evolutionary algorithm with memory that can be
used to solve VRPTW problems. The algorithm uses a population of agents to search
for an optimal solution for a given task; each agent stores an actual solution and,
additionally, keeps the best historical results already obtained in its memory. The
actual solution is the position of an agent in the search space of a VRPTW problem,
and an agent movement in this space is obtained due to agent evolution. During
the exploration and exploitation processes, the agents evolve and search for better
solutions; the new solutions for an agent are created on the basis of its actual solution
and historical information gathered using crossover operations. This approach has
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been applied to the known benchmarks. After the first numerical experiments, we
have discovered that the used crossover operator (Best Cost Route Crossover Operator
BCRC) can be modified in order to obtain better results. The mentioned modification
is also presented in this paper. The experimental results presented in this paper are
interesting and comparable with best-known results from the literature.

The article is organized as follows. Section 2 describes how the aspect of me-
mory can be introduced into the population of agents used in evolutionary algorithm.
Section 3 is devoted to the BCRC crossover operator for VRPTW and its modifica-
tion. Section 4 summarizes the obtained numerical results, while Section 5 focuses on
their statistical analysis. Section 6 concludes the paper.

2. Evolutionary algorithm for VRPTW

Evolutionary Algorithms (EA) are based on the evolution of a population of agents,
and this evolution should provide a way to search for at least a near-optimal solution
for a given problem. A fitness measure is implemented in order to control the evolution
of the population in the right direction. The task is to steer the population to search
for the most-optimal solution to a given problem. Usually, Evolutionary Algorithms
are connected strictly to Genetic Algorithms (GA), but this is not the only possible
case. In this paper, we propose an evolutionary algorithm with the use of its memory
designed specifically to solve VRPTW tasks.

The algorithm is based on a population of agents, each of which lives in the
space of solutions for a given VRPTW instance. The agent stores information about
its actual solution (position in search space); additionally, it remembers the best
solution already found by this agent and the best solution found by any member of
the population. During the evolution process, an agent changes its actual solution
(move in search space). The evolutionary changes of the solution for an agent takes
into account its actual solution and the historical data stored (memory effect). The
solutions of the VRPTW instance is given by chromosome representation known from
the usual GA approaches to VRPTW, and the changes of a solution is implemented
using a genetic crossover operator.

2.1. Chromosome representation of VRPTV solution

Solution s of the VRPTV problem has to contain information about the routes of all
vehicles va used in the solution. Each of the vehicles starts and ends at the depot.
Then, it services its customers, which means it forms an ordered list of all customers
to be visited by a given vehicle.

The customers are denoted by an unique integer number (c > 0), while the depot
is denoted by 0. Each solution is a sequence of serviced customers for all vehicles
separated with 0. For example, sequence s in form s = {0, 2, 4, 5, 0, 1, 7, 0, 3, 6, 0}
describes a solution of the VRPTW problem that uses three trucks to service seven
customers.
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The overall length of route s is a sum of the distances covered by all vehicles
used in the solution.

|s| =
∑

a |va|,
|va| =

∑
b dist(c

b
a, c

b+1
a )

(1)

where cba denotes a customer serviced by vehicle va, and function dist(, ) is the distance
between two customers. The graphical representation of such a solution is presented
in Figure 1. Additionally, solution s has to fulfill all additional constraints, such as
truck capacity and the time constraints of the customers.
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Figure 1. Graphical representation of solution s = {0, 2, 4, 5, 0, 1, 7, 0, 3, 6, 0} for VRPTW
problem with seven customers and three vehicles.

2.2. Evolution of the population

As mentioned above, we record actual solution sk and best historical solution sabk for
each member of the population; additionally, we also record the population’s best
solution (denoted as spb).

The evolution of the k-th agent is ruled by the following equation:

sk,i =

{
sk,i−1 ⊗ sabk , with probability νab

sk,i−1 ⊗ spb, with probability νpb,
(2)

where ⊗ denotes the crossover operator.
Probabilities νab and νpb depend on the overall lengths of sabk and spb:

νab = |spb|
|sab

k |+|spb|
,

νpb =
|sab

k |
|sab

k |+|spb|
,

νab + νpb = 1,

(3)

where sk,i is the solution obtained by the k-th agent in the i-th iteration of the al-
gorithm. In the presented approach, genetic crossover operator ⊗ is used for the
generation of a new solution for an agent and represents a rule that defines the evolu-
tion of the agent. There are many available crossover operators in the literature. As
the basis for our approach, we have chosen the Best Cost Route Crossover Operator
(BCRC) [21].
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From (2) and (3), we can observe that, when the historically-best solution found
by agent sabk is much longer than the best solution found by population spb, the
agent prefers to operate with the population’s best solution. Thus, the proposed
evolutionary algorithm for the VRPTW problem has the following form.

Algorithm 1 Evolutionary algorithm
1: Begin
2: initialize the population,
3: repeat
4: for all agents in the population, do
5: count new solution of an agent using (2),
6: update an agent best solution if needed,
7: update the population best solution if needed,
8: end for
9: until the maximal number of iterations is reached

10: End
11: Algorithm result: return the population best solution as an optimization result.

It is worth mentioning that the evolutionary algorithm for solving problems by
searching needs to balance between the exploration and exploitation of the search
space [7]. The former is the process of penetrating entirely new regions, while the
latter addresses the local search close to the previously found solutions. The presented
evolutionary approach incorporates the learning from the experience of each individual
agent as well as from the experience of the population (see (2)). In this way, the
exploitation process is being incorporated into the method. On the other hand, we
will see below that the idea of the modified Best Cost Route Crossover Operator will
lead us to the exploration procedure (Sec. 3.2).

2.3. Multi-objectivity and fitness function
In a proposed evolutionary algorithm, very often we have to decide if an actual solution
is better than the best from an agent’s historical results or the historically best from
the population. For the VRPTW problem (which is a multi-objective optimization
problem), we should take into consideration both the number of vehicles involved
in the solution as well as the route length of all of these vehicles. Thus, we can
distinguish between four different fitness criteria:
• Distance – sum of the distances travelled by the vehicles in the selected solution.
The lower the value, the better the solution.
• Distance and Vehicle Count – we try to minimize both of these values, but we
set a higher priority on distance.
• Vehicle Count and Distance – similar to the previous criterion, but distance has
a lower priority.
• Weighted Method – we try to find the minimum of fitness function F (s) =

α|vs|+ β|s|, where |vs| denotes the vehicle count in solution s and |s| is the dis-
tance travelled by the vehicles in s. Parameters α and β are usually established
empirically, and the values are most-often set to: α = 100 and β = 0.001 [19,21].
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During our experiments, we decided to use the Weighted Method as the best
suited model to represent needs of logistic companies. Analyzing the cost of such
types of activities, one can stress that overall distance is connected to the costs of
fuel, and the number of vehicles is connected to the costs of the workforce. The choice
of the Weighted Method and parameters α and β express the idea that, for a logistic
company, it is better (in economical aspects) to spend a little more on fuel than on an
additional truck and driver. On the other hand, we should emphasize that the choice
of a fitness policy has an important impact on the final results of the multi-objective
decisions.

3. Crossover operators
In the literature, many crossover operators that can be used for combinatorial pro-
blems exist; some of them have already been used in VRP [22]. Unfortunately, most
of these operators were designed for other combinatorial problems (like TSP), and
when applied to VRPTW, one looses’ main information about customers distribution
among vehicles in chromosome. This is why such operators enforce the use of additi-
onal repair mechanisms in order to obtain a proper VRPTW solution. On the other
hand, the Best Cost Route Crossover Operator was designed especially for VRP and
does not require any additional repair procedures [21].

3.1. Best Cost Route Crossover Operator

The BCRC recombination operator can be defined as follows. Let us have the chro-
mosomes of two parents P1 and P2; we can compute P1⊗ P2 using algorithm 2. In
order to obtain the final result, we should generate two offspring (O12 and O21), ex-
changing the role of parents P1 and P2 in algorithm 2 and choosing the best according
to the chosen fitness function.

The presented procedure ensures that, if parents P1 and P2 respect the condi-
tions on time and capacity, the obtained offspring also will respect these constraints.
A simple example of such a procedure is presented below.
Example BCRC operator (see Fig. 2)

Assume that we have two parents of the following forms:

P1 = {0, 2, 4, 5, 0, 1, 7, 0, 3, 6, 0},
P2 = {0, 1, 6, 0, 5, 7, 2, 0, 3, 4, 0}.

Suppose that we randomly select vehicle v = {5, 7, 2} from P2. At the begin-
ning, we copy P1 into offspring O12 and erase from O12 all customers from selected
vehicle v; at this point, the offspring would have the following form:

O12 = {0, 4, 0, 1, 0, 3, 6, 0}.

Now, we start the procedure of reinserting the missing customers serviced by
vehicle v into offspring O12. We randomly select an element from v (let us assume that
it is customer 5) then we find the best place in O12 where we can insert this customer.
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In the example, the best choice is to insert customer 5 after customer 4 serviced by
the second car. We have to repeat the same operation for the rest of the elements in v.

Algorithm 2 BCRC Crossover
1: Task: Create offspring chromosome O12.
2: Inputs: parent chromosomes P1,P2, fitness function f

¯
it(x).

3: Begin
4: O12 = P1

5: selectedV ehicle = Rand(P2vehicles.size)

6: candidates = P2vehicles[selectedV ehicle].customers

7: for all customer in candidates do
8: Erase customer from O12

9: Update cargo free space for all vehicles in O12

10: end for
11: for all customer in candidates do
12: min = infinity
13: placeid = −1
14: for all place in places in O12 do
15: TempO = O12

16: insert customer in place to TempO
17: if TempO respects constraints then
18: actualLength = f

¯
it(TempO)

19: if actualLength < min then
20: placeid = place
21: min = actualLength
22: end if
23: end if
24: end for
25: if placeid == −1 then
26: add new vehicle with customer to O12

27: else
28: insert customer in placeid into O12

29: end if
30: end for
31: End
32: Algorithm result: New offspring O12.

At the end, we obtain offspring of the following form (see Figure 2):

O12 = {0, 4, 5, 0, 1, 7, 0, 2, 3, 6, 0}

One can observe that most of the edges from parent P1 were copied into offspring
O12 and none of edges from parent P2 were copied into offspring O12. A similar
procedure is used to create a second offspring (O21). At the end, the best-suited
offspring between O12 and O21 is used as a result of the presented recombination
procedure. The best-worse relationship for two chromosomes is described in detail in
Section 2.3.
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Figure 2. Graphical representation of BCRC operator example: a) parent P1; b) parent P2;
c) offspring O12 ; d) offspring O21.

3.2. Modification of BCRC operator for VRPTW

The first numerical experiments of the proposed algorithm with the use of the BCRC
crossover operator shows that the BCRC operator can be modified in order to obtain
better results. The chromosome of the offspring obtained from the application of
BCRC on the parent chromosomes shows a similarity to only one of the two parents.
This behavior is natural if we analyze the structure of the BCRC operator; the off-
spring contains parts copied from only one of the parents, and the other parent only
introduces some random mixing. This observation leads to a new Modified BCRC
operator that incorporates parts of both of the parents into the offspring chromosome.

First, we introduce mean route length dm for vehicle v as an overall length of
the route travelled by a vehicle v divided by the number of visited customers. We
denote the distance function between customers ca and cb as dist(ca, cb). Assuming
that vehicle v visits n customers in sequence c1, c2, ..., cn, we can write the formula
for mean route length as follows:

dm(v) =
dist(0, c1) +

[∑n−1
i=1 dist(ci, ci+1)

]
+ dist(cn, 0)

n
. (4)

Using the proposed mean route length, we can order all vehicles in a solution from
the lowest to the highest values of dm. Then, we denote the vehicle with the lowest
mean route length as the best vehicle in the solution and the vehicle with the highest
dm as the worst vehicle in the solution.

The modified BCRC operator applied to parents P1 and P2 is presented in
Algorithm 3. As in the case of BCRC, we should have to choose the best from offspring
O12 and O21 obtained by using 3.
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Algorithm 3 Modified BCRC Crossover
1: Task: Create offspring chromosome O12.
2: Inputs: parent chromosomes P1,P2, fitness function f

¯
it(x).

3: Begin
4: for all vehicle in P1vehicles, P2vehicles do
5: count value of mean length for vehicle
6: end for
7: identify the vehicles vb1, vw1 , vb2 and vw2
8: O12 = P1

9: candidates = P1vehicles[vw1 ]

10: candidates.add(P2vehicles[vb2])

11: selectedV ehicle = Rand(P2vehicles.size)

12: candidates.add(P2vehicles[selectedV ehicle].customers)

13: for all customer in candidates do
14: Erase customer from O12

15: Update cargo free space for all vehicles in O12

16: if customer in P2vehicles[vb2] then
17: customers.erase(customer)
18: end if
19: end for
20: O12.vehicles.add(P2vehicles[vb2])

21: for all customer in candidates do
22: min = infinity
23: placeid = −1
24: for all place in places in O12 do
25: TempO = O12

26: insert customer in place to TempO
27: if TempO respects constraints then
28: actualLength = f

¯
it(TempO)

29: if actualLength < min then
30: placeid = place
31: min = actualLength
32: end if
33: end if
34: end for
35: if placeid == −1 then
36: add new vehicle with customer to O12

37: else
38: insert customer in placeid into O12

39: end if
40: end for
41: End
42: Algorithm result: New offspring O12.

The proposed Modified BCRC operator incorporates elements of chromosomes
from both parents and, at the same time, finds the best-possible places for some of
the customers (line 21 in 3). An example of such a procedure is presented below.
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Example Modified BCRC operator (see Fig. 3)
Taking into account the same parents as in the example for BCRC of forms:

P1 = {0, 2, 4, 5, 0, 1, 7, 0, 3, 6, 0},
P2 = {0, 1, 6, 0, 5, 7, 2, 0, 3, 4, 0}

we can identify the best and worst vehicles in both parents: vb1 = {1, 7}, vw1 = {2, 4, 5},
vb1 = {1, 6}, vw1 = {5, 7, 2}. At the beginning, we copy P1 into offspring O12 and ex-
change vehicle vw1 with vb2; thus, it has the following form: O12 = {0, 1, 6, 0, 7, 0, 3, 0}.
Suppose that we randomly select vehicle v = {3, 4} from P2; in that case, we tempo-
rarily have O12 = {0, 1, 6, 0, 7, 0}.

Now, we start the procedure of reinserting missing customers 2, 3, 4, 5 into off-
spring O12. Assuming that we look for the best place for all of the elements in random
order 3, 4, 2, 5, we obtain new solution O12 = {0, 1, 6, 3, 0, 2, 4, 7, 0}. A similar proce-
dure is used to create the second offspring O21 (see Fig. 3).
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Figure 3. Graphical representation of modified BCRC operator example: a) parent P1;
b) parent P2; c) offspring O12 ; d) offspring O21.

4. Experimental results

The presented evolutionary algorithm was implemented with each of the two cross-
over operators (BCRC and Modified BCRC). The implementation was applied to the
known Solomon’s and Ghering & Homberger’s benchmarks with 50, 100, and 200 cus-
tomers. During our experiments, we used a population of 30 agents. In each algorithm
run, we set the maximal number of iterations to 2500. The results presented bellow
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suggest that, the bigger the task considered, the more-efficient the results obtained
from the Modified BCRC crossover operator are as compared to the original BCRC
operator (see Tables 1, 2, and 3).

Table 1
Results for Solomon’s VRPTW benchmark instances with 50 customers. Best means the
best result obtained in 100 algorithm runs, Worst is the worst result. Results are presented
in the form of #V/#D, where #V is the number of vehicles used and #D is the overall

distance. The best-known results are taken from [11,13,15].

Problem
BCRC Modified BCRC Best

known
#V/#D

Best Worst Best Worst
#V/#D #V/#D #V/#D #V/#D

R101 12/ 13/ 12/ 14/ 12/
1057.0 1109.8 1058.5 1111.4 1044 [13]

R201 4/ 6/ 4/ 7/ 6/
817.7 873.5 817.7 883.0 791.9 [11]

R202 4/ 5/ 4/ 6/ 5/
729.1 880.4 730.7 825.6 689.5 [11]

C101 5/ 6/ 5/ 6/ 5/
363.2 403.6 363.2 406.8 362.5 [13]

C201 3/ 4/ 3/ 4/ 3
361.8 459.5 361.8 469.2 360.2 [15]

RC101 8/ 10/ 8/ 10/ 8/
949.8 1067.4 949.8 1065.4 944 [13]

Table 2
Results for Solomon’s VRPTW benchmark instances with 100 customers. Best means the
best result obtained in 100 algorithm runs, Worst is the worst result. Results are presented
in the form of #V/#D, where #V is the number of vehicles used and #D is the overall

distance. The best-known results are taken from [24,25,28].

Problem
BCRC Modified BCRC Best

known
#V/#D

Best Worst Best Worst
#V/#D #V/#D #V/#D #V/#D

R101 20/ 21/ 19/ 20/ 19/
1692.6 1758.2 1689.8 1775.8 1650.8 [24]

R102 18/ 19/ 17/ 20/ 17/
1541.4 1581.5 1562.8 1600.7 1486.1 [24]

R105 15/ 17/ 15/ 17/ 14/
1447.4 1582.5 1434.6 1642.7 1377.1 [25]

C101 10/ 11/ 10/ 11/ 10/
828.9 872.4 828.9 869.3 828.9 [24]

RC101 15/ 17/ 15/ 18 14
1706.5 1811.2 1684.0 1894.4 1696.9 [28]
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Table 3
Results for Ghering & Homberger’s VRPTW benchmark instances with 200 customers. Best
means the best result obtained in 100 algorithm runs for each class of instances. Results are
presented in the form of #V/#D, where #V is the number of vehicles used and #D is the

overall distance. The best-known results are taken from [26].

Problem
BCRC MBCRC Best known [26]
#V/#D #V/#D #V/#D

C1 18.9/ 18.9/ 18.9/
2722.06 2718.48 2718.41

C2 6.0/ 6.0/ 6.0/
1850.07 1833.25 1831.59

R1 18.2/ 18.2/ 18.2/
3642.22 3629.17 3611.86

R2 4.0/ 4.0/ 4.0/
2932.18 2930.12 2929.41

RC1 18.0/ 18.0/ 18.0/
3185.37 3179.20 3176.23

RC2 4.3/ 4.3/ 4.3/
2539.52 2537.19 2535.88

The computation times for both of the methods are similar; thus, the better
results obtained using Modified BCRC are not due to a longer computation time. In
the case of RC101 with 100 customers, our result has a higher number of vehicles
and shorter overall distance travelled. However, according to the economic decisions
presented in Section 2.3 and the chosen fitness criteria, the best-known solution is
still better than the one we obtained. In most of the cases, the number of vehicles for
Modified BCRC is optimal; however, the overall distance is only slightly longer than
for the best-known solutions.

Our best results are also very similar to the best-known solutions from the lite-
rature.In each case, the best-known solution and its reference is given.

5. Statistical comparison of obtained results

The distribution of results obtained in the numerical experiments suggest that the
approach utilizing MBCRC gives better results than that with BCRC (Figs. 4–8).
In order to prove this hypothesis, we can use the Mann-Whitney U test [18]. This
nonparametric statistical test allows us to decide if two independent statistical samples
come from the same population (have the same statistical distribution). The test
defines a statistical number called U based on elements from both samples; the value
of U describes a mixing of results in both samples (for details, see original paper [18],
where the construction of U is defined explicitly). In many cases, the Mann-Whitney
U test allows us to prove if one sample represents the population that has statistically
larger values than the other.



Multi-objective optimization of vehicle routing problem (. . . ) 281

a) b)

1,900 2,000 2,100 2,200 2,300

0

20

40

60

80

F

BCRC

O
cc
ur
re
nc
e
C
ou

nt

1,900 2,000 2,100 2,200 2,300

0

20

40

60

80

F

Modified BCRC

O
cc
ur
re
nc
e
C
ou

nt
Figure 4. Histogram of distribution of the the weighted fitness function (F ) values for
instance R101 with 100 customers using BCRC (a) and Modified BCRC (b) operators.

F (p) = α|vp|+ β|p|, where α = 100 and β = 0.001.

At first, we have to formulate our null hypothesis (H0) and appropriate alternative
hypothesis (H1); then, we apply the Mann-Whitney U test in order to decide if we
can accept hypothesis H0.

Hypothesis H0 The distributions of the results for both crossover operators BCRC
and MBCRC are statistically the same.

Hypothesis H1 The distributions of the results for both crossover operators BCRC
and MBCRC are statistically different.
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Figure 5. Histogram of distribution of the the weighted fitness function (F ) values for
instance R102 with 100 customers using BCRC (a) and Modified BCRC (b) operators.

F (p) = α|vp|+ β|p|, where α = 100 and β = 0.001.
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For each of obtained result distribution, we have calculated statistical value U
and the appropriate zU given by (5):

zu =
|U − (n1n2/2)|√

n1n2(n1+n2+1)
12

, (5)

where n1, n2 – are sizes of statistical ensembles.
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Figure 6. Histogram of distribution of the the weighted fitness function (F ) values for
instance R105 with 100 customers using BCRC (a) and Modified BCRC (b) operators.

F (p) = α|vp|+ β|p|, where α = 100 and β = 0.001.
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Figure 7. Histogram of distribution of the the weighted fitness function (F ) values for in-
stance RC101 with 100 customers using BCRC (a) and Modified BCRC (b) operators.

F (p) = α|vp|+ β|p|, where α = 100 and β = 0.001.
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Figure 8. Histogram of distribution of the the weighted fitness function (F ) for results obtai-
ned for instance RC201 with 100 customers using BCRC (a) and Modified BCRC (b) ope-

rators. F (p) = α|vp|+ β|p|, where α = 100 and β = 0.001.

Hypothesis H0 can be accepted with a significance set to 0.05 if zU < 2.575.
The results of our statistical tests for instances with 100 customers are presented
in Table 4. We can conclude that, for all considered cases, Hypothesis H0 must be
rejected.

Table 4
Results of Mann-Whitney U test calculated for distributions of obtained results for instances

with 100 customers.

Problem U zU
R101 963 9.86
R102 137 11.88
R105 43 12.11
RC101 968 9.85
RC201 250 11.60

6. Conclusions

In this paper, we present an evolutionary approach to the vehicle routing problem
with time windows. This algorithm uses agents equipped with private and social
memory. This is implemented for numerical experiments with two crossover opera-
tors: the Best Cost Route Crossover Operator, and its modified version described
explicitly in Section 3.2. The original BCRC operator was specially derived for the
VRPTW task; the introduction of the presented modification ensures that the parts
of chromosomes from both parents can be found in an offspring in contrast to the
case with original operator. The results show that, for the analyzed Solomon’s and
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Ghering & Homberger’s benchmark tasks, the introduced Modified BCRC operator
gives better results than the original one when used in the proposed algorithm for
instances with 100 and 200 customers. No mutation operation is included in the
presented algorithm due to the conclusion obtained during the preliminary numerical
experiments. No significant contribution to algorithm efficiency was observed with
mutation applied. Comparing the obtained results with the known optimal results
and other presented in the literature, we conclude that the proposed method gives
satisfying results statistically better than those obtained using the BCRC operator
(Tabs. 3, 4). However, there is still room for improvement; the next modifications of
the presented algorithm will be investigated in future works.
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