
Václav Chlumský
Dalibor Klusáček
Miroslav Ruda

THE EXTENSION OF TORQUE SCHEDULER
ALLOWING THE USE OF PLANNING
AND OPTIMIZATION IN GRIDS

Abstract In this work we present a major extension of the open source TORQUE Resource

Manager system. We have replaced a naive scheduler provided in the TORQUE

distribution with complex scheduling system that allows to plan job execution

ahead and predict the behavior of the system. It is based on the application of

job schedule, which represents the jobs’ execution plan. Such a functionality is

very useful as the plan can be used by the users to see when and where their jobs

will be executed. Moreover, created plans can be easily evaluated in order to

identify possible inefficiencies. Then, repair actions can be taken immediately

and the inefficiencies can be fixed, producing better schedules with respect to

considered criteria.

Keywords grid, scheduling, TORQUE, schedule, planning, predictability, evaluation

2012/06/18; 22:18 str. 1/15

Computer Science • 13 (2) 2012 http://dx.doi.org/10.7494/csci.2012.13.2.5

5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AGH (Akademia Górniczo-Hutnicza) University of Science and...

https://core.ac.uk/display/229289452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

In this work we present an extension of the open source TORQUE Resource Manager

(RM) [4, 26], which is used in the Czech National Grid Infrastructure MetaCen-

trum [27]. Nowadays, all major production resource management systems such as

PBS Pro [14], LSF [36], Sun Grid Engine (SGE) [11], TORQUE, etc. use the classical

queueing approach when scheduling jobs on the resources. On the other hand, in the

past decade many works have shown that the use of a planning represents several

advantages [34, 21, 28]. Unlike the queueing approach where scheduling decisions are

taken in an ad hoc fashion often disregarding previous and future scheduling decisions,

planning-based approach allows to make plans concerning job execution. The use of

such a plan (job schedule) brings several benefits. It allows us to make a prediction

of job execution providing the user information concerning the expected start time

of their jobs thus improving predictability [28]. Moreover, the prepared plan can be

evaluated with respect to selected optimization criteria, using proper objective func-

tions. Then, it can be optimized with some advanced scheduling technique such as

Local Search in order to improve the schedule’s quality. However, as far as we know

there is no working implementation of such a plan-based scheduler in a production

open source resource management system. Therefore, we have decided to develop

a plan based scheduler in the TORQUE Resource Manager that would allow such

a functionality.

So far we have developed a working implementation of job schedule that can

be used to plan job execution onto one or more computing sites such as a computer

cluster. The schedule is created subject to dynamically arriving jobs. Then, it is used

to schedule jobs on the available computing resources. The schedule is continuously

maintained in order to remain consistent with the changing situation in the system.

Thus, all important events such as job arrivals and (early) job completions or machine

failures and restarts are reflected in order to keep the schedule up-to-date with respect

to the changing situation. Moreover, the users can now query the scheduler to get

information from the job schedule. It means that they can ask the scheduler when and

where their jobs will be executed and the scheduler provides them such a prediction

according to the current job schedule. Also, several evaluation criteria has been

implemented allowing for the use of schedule optimization techniques.

The structure of this paper is as follows. In the next section we introduce some

basic terminology and we discuss the related work. In Section 3 we describe the

extension of the TORQUE Resource Manager, describing the details of schedule im-

plementation (Section 3.3). Also, the crucial methods needed to construct and main-

tain the schedule are presented (Section 3.4). Next, an experimental evaluation of

the schedule-based solution is presented, discussing the performance of the applied

solution. Finally, we conclude the paper and we discuss future work.

2012/06/18; 22:18 str. 2/15

6 Václav Chlumský, Dalibor Klusáček, Miroslav Ruda

2. Related work

2.1. Queue-based systems

All major production systems such as PBS Pro [14], LSF [36], Sun Grid Engine

(SGE) [11], Condor [32], Maui and Moab [3] as well as higher level metaschedul-

ing systems such as GridWay [13], gLite WMS [7], QCG-Broker [23], etc., are so

called queueing systems. It means that these systems typically follow the queue-

based scheduling approach, using one or more incoming queues where jobs are stored

until they are scheduled for execution. A scheme of a basic (local) queueing system

is shown in Fig. 1 (left).

Figure 1. The scheme of queue-based (left) and schedule-based (right) systems

The scheduling process consists of several steps that define the behavior of the

whole scheduler. Upon each job arrival a queue and a position among other jobs is

established. If there are more queues in the system, the proper one is selected1. The

order of the jobs in a given queue is either based on a First Come First Served (FCFS)

principle or some priority-based ordering can be applied [16]. Once the ordering is

established, the scheduling policy either attempts to run one job from each queue

or all jobs from the currently selected queue are checked before the next queue is

processed. Also, the combination of these approaches can be used [14].

The job is selected for execution if all the resources it requires are currently avail-

able on some cluster. The decision is made by a scheduling policy which is typically

some form of heuristic algorithm which selects jobs from the queue for execution.

Within a given queue, various scheduling policies can be used to decide which job will

be scheduled. Frequently, either a simple First Come First Served (FCFS), some pri-

ority based policy such as Shortest Job First [14], Earliest Deadline First [6], or some

1Typically, the target queue is directly specified upon each job submission.

2012/06/18; 22:18 str. 3/15

The extension of TORQUE scheduler allowing the use of planning (...) 7

form of backfilling [29, 28] are typically used for this purpose. With the exception

of backfilling, where reservations can be used, the final scheduling decision is often

made at the very last moment — once some machine(s) become available. Therefore,

the scheduling is done in an ad-hoc fashion with limited consideration of previous or

future decisions.

2.2. Schedule-based systems

Schedule-based systems represent a significantly different approach with respect to the

queue-based solutions. Schedule-based systems use job schedule as a more complex

data structure that maps jobs onto available machines in time [2, 12]. This schedule

represents de facto a plan of future job execution. In the same fashion as, e.g.,

backfilling algorithms require information about expected job runtime, also schedule-

based solutions need such information to construct the schedule. A scheme of the

general schedule-based system is shown in Fig. 1 (right).

Clearly, there are no incoming queues that would store the jobs [12]. Instead of

that a two dimensional data structure is being built that assigns to each job its own

space and time slot on a given machine. The x-axis represents system time and the y-

axis represents a particular machine on a particular cluster. There are other aspects

that differentiate the design of schedule-based systems from queue-based systems.

The major difference is that a nontrivial scheduling decision must be taken every

time some new job arrives. Such an immediate decision is necessary to find a suitable

place for the job in the schedule. As discussed in Section 2.1, queue-based methods

usually perform such decision when the job is selected for execution, i.e., at the

“last possible moment” (when machine(s) become available). An exception represents

those queue-based methods that use reservations. When machine(s) become available,

scheduling decisions are trivial for schedule-based methods. At that point in time,

a scheduler simply sends on such machine(s) those jobs that are stored in the schedule

on corresponding coordinates.

The use of a schedule offers three major advantages. First, the schedule allows us

to make predictions, i.e., to guarantee for each job its start time, expected completion

time, and the target machine(s). Such information can be very valuable to users since

they can use it to better organize and plan their work [10]. Second, since the schedule

holds detailed information about the expected execution time of each job, it is possible

to evaluate the quality of the solution which is represented by such a schedule. None

of these functionalities are typically available when classical queueing systems are

used as this information is not known in advance. Several criteria can be used [22]

for evaluation, allowing us to identify possible problems concerning job performance,

the efficiency of resource utilization or, e.g., fairness issues. Next, an optimization

procedure can be launched that tries to improve the quality of the schedule with

respect to the applied optimization criteria [21, 22].

As far as we know, no major production system works by default in a schedule-

based mode. An experimental Computing Center Software (CCS) scheduling sys-

2012/06/18; 22:18 str. 4/15

8 Václav Chlumský, Dalibor Klusáček, Miroslav Ruda

tem [15] uses a schedule-based approach. However, the schedule is only used for

prediction and no evaluation or optimization has been implemented [12]. In [31],

another experimental schedule-based system designed for scheduling sequential and

parallel jobs as well as workflows has been presented. Sadly, these systems are either

no longer operational or they represent proprietary solutions which are not freely

available. On the other hand, many current systems [24] support so called advanced

reservation (AR) [30, 24], where jobs can obtain reservations based on the users’ re-

quests. However, the use of ARs represent several problems. Usually, only a fraction

of jobs/users is allowed to request ARs. Then, problems occur as guaranteeing ARs

may cause degradation of the overall performance [30]. Next, as the runtime estimates

of non-AR jobs are usually significantly longer than their actual runtime, idle periods

often appear before reservations. As ARs are typically fixed, it may not be possible

to fill appearing gaps with non-AR jobs (too long estimates) and the performance

degrades again [24]. As a result, the use of advanced reservations is often restricted

by the system administrators.

From this point of view we distinguish between an AR-enabled system and a truly

schedule-based system. The first difference is that in schedule-based system every job

gets a “reservation”. Second, this “reservation” is not strict and it can be shifted

to an earlier as well as to a later time, if desirable. It allows us to perform more

aggressive improvements, e.g., via metaheuristics. These changes are controlled by

the evaluation procedure to guarantee good quality of the resulting solution. There

are several works that propose the applications of schedule-based approaches in the

literature [1, 2, 25, 34]. A nice survey of recent applications can be found in [35].

3. Extension of the TORQUE Resource Manager

The major result of this work is the development of a new scheduler in a production

open source resource management system that uses job schedule to plan job execution.

In the following text we describe the implementation details of our solution.

3.1. TORQUE Resource Manager

TORQUE Resource Manager is an advanced open-source product based on the orig-

inal PBS project which provides control over batch jobs and distributed computing

resources. TORQUE consists of three main entities — the server (pbs server), the

scheduler (pbs sched), and the node daemons (pbs mom). The scheduler makes the

scheduling decisions and interacts with the pbs server in order to allocate jobs onto

available nodes. In our work, we have replaced the original simple queue-based FCFS

scheduler [4] available in the TORQUE’s scheduler entity (pbs sched). The remain-

ing entities such as Server (pbs server) or node daemons (pbs mom) are mostly un-

changed. The solution builds and manages the job schedule according to the dynam-

ically arriving events from the pbs server. One schedule is created for each virtual

or physical site (e.g., computer cluster). The design of the schedule data structure

was the key problem here and we describe it in the following section.

2012/06/18; 22:18 str. 5/15

The extension of TORQUE scheduler allowing the use of planning (...) 9

3.2. Problem description

The design of the schedule data structure is the key factor. Let us first formally

describe the requirements concerning the schedule data representation. We consider

n jobs and a Grid system that consists of r nodes that all together have m CPUs.

Each node k has a fixed amount of available RAM memory RAMk. Each job j

is characterized by its processing time pj , estimated processing time epj , by the

number of requested CPUs usagej and by the amount of requested RAM memj . In

reality, the Grid typically consists of one or more sites such as computer clusters. For

each cluster, we would create a separate instance of schedule. For simplicity let us

assume that the Grid consists of a single cluster so there is only one schedule instance.

Intuitively, the schedule defines when and where jobs will be executed, introducing

a two dimensional rectangular representation such that for each job the set of assigned

CPUs and the time interval is specified. Here the x-axis represents the time and the

y-axis represents the CPUs of the system. An example of such a schedule is shown

in Fig. 2 (left).

Figure 2. Original schedule (left) as represented by gap list (middle) and job list (right)

Formally, the schedule assigns each job j a set of CPUs (CPUj) it will use,

where the size of CPUj is equal to usagej . The schedule also specifies the time

interval during which the job j will be executed. This interval is denoted by the

expected start time Sj and completion time Cj . We do not consider job preemption,

therefore Cj − Sj = pj holds. Clearly, if the executions of two different jobs j1 and

j2 overlap in time then CPUj1 ∩ CPU j2 = ∅. Furthermore, let us assume that at

some point in time jobs j1, j2, ..., jp are executed on node k at the same moment.

Then,
∑p
i=1memji ≤ RAMk. This formula guarantees that the amount of available

RAM on given node k is greater than or equal to the amount of requested RAM of

jobs running on that node k. We now proceed to the description of the applied data

representation.

2012/06/18; 22:18 str. 6/15

10 Václav Chlumský, Dalibor Klusáček, Miroslav Ruda

3.3. Data representation of job schedule

In [28], so called profile of free CPUs represented as a linked list is used to determine

whether jobs from a queue can be backfilled without delaying the execution of some

older waiting jobs. A similar structure is often used for cumulative scheduling [5].

In our recent work [20] we have proposed a representation, where the schedule is

represented as a linear list of jobs (job list) and a list of so called gaps (gap list) that

represents the free CPUs. The gap list is an analogy of the profile used in [28]. Gaps

and jobs in these lists are ordered according to their expected start times. Each job in

this list stores its Sj , Cj , CPUj . Therefore, complete information as required by the

definition in Section 3.2 is stored in a single cell of the list. All these parameters are

computed when the job is added into the schedule. Of course, because the schedule

can change dynamically in time, the parameters can be lately updated according to

the new situation.

Gaps represent unused periods of CPU time and the amount of free RAM across

nodes within a cluster. Gaps appear every time the number of available CPUs in the

existing schedule is greater than the number of CPUs requested by the job(s) in the

given time period. Similarly, a gap can appear when the amount of requested RAM is

higher than is currently available in a given time period2. Similar to jobs, gaps hold

information about their start time, duration, usage, and free RAM. Here, the usage

expresses the number of available (idle) CPUs in this gap. It is stored as an array of

such available CPUs with a pointer to appropriate node and the node’s free RAM.

Moreover, each gap has a pointer to the nearest following job. If there is no following

job (gap at the end of the schedule) this pointer is set to null. For given time t,

there is always at most one gap in the gap list. Two successive gaps in the gap list

have either different usage, contain different nodes, contain different amounts of free

RAM for the given node or the completion time of the earlier gap is smaller than

the start time of the later gap. Otherwise, such gaps are merged into a single, longer

gap. Fig. 2 (right) shows an example of the applied data structure that represents

the schedule. As discussed in Section 3.2, only one cluster is considered for simplicity,

i.e., only one schedule is shown in the figure.

3.4. Schedule-related auxiliary procedures

The proposed schedule structure is used by several procedures that are used either to

retrieve information from the schedule or to keep the schedule up-to-date subject to

the dynamically changing state of the system.

A backfill-like procedure is used to build the schedule, i.e., to add newly arriving

job into the currently known schedule. It finds the earliest suitable gap for the new

jobs [21]. This is a common scenario used in several popular algorithms such as in

EASY or Conservative backfilling [28]. In this case, the applied data representation

2In such situation two or more jobs cannot be planned to the same time period and some of
them must be delayed to a period when enough RAM is available. As a result, gap(s) appears.

2012/06/18; 22:18 str. 7/15

The extension of TORQUE scheduler allowing the use of planning (...) 11

represents a major benefit as all gaps in the current schedule are stored in a separate

list (gap list) which speeds up the whole procedure [20]. This “gap-filling” approach

is very useful as it significantly increases system utilization while respecting the start

times of previously added jobs.

Often the schedule must be updated as events such as (early) job completions

or machine failures appear [20]. In such a situation the pbs server contacts the

pbs sched module which launches a time efficient schedule update procedure that

updates the internal jobs’ parameters in the job list while recomputing the gap list

as well [20]. Commonly, job finishes earlier than expected as the schedule is built

using processing time estimates which are typically overestimated. In such a case,

the schedule is immediately compressed. The compression shifts jobs into earlier

time slots that could have appeared as a result of an earlier job completion. During

a compression, the relative ordering of job start times is kept [17]. This procedure is

an analogy to the method used in Conservative backfilling [28].

Previous methods guarantee that the schedule will remain consistent with the

current state of the system. Obviously, the schedule is also useful when predicting

the behavior of the system. As the schedule holds all information concerning planned

job execution it is typically used when an user’s request concerning the status of his

or hers jobs arrives to the pbs server via the qstat command3. In such a case the

pbs server contacts the pbs sched module which queries the schedule. Then, the

information is returned to the user in a standard qstat response. An example of such

a query is shown in Fig. 3 where the user can see the currently planned start time of

his or her job.

Figure 3. The output of the modified qstat command presenting the planned start time

of a given job according to the current schedule

3In TORQUE, the qstat command is used to request the status of submitted jobs.

2012/06/18; 22:18 str. 8/15

12 Václav Chlumský, Dalibor Klusáček, Miroslav Ruda

Last but not least, we have developed an evaluation procedure which analyzes an

existing schedule with respect to several optimization criteria. Currently, we support

makespan, slowdown, response time and wait time criteria [9]. The evaluation allows

us to analyze the quality of constructed schedule. Moreover, it is used as a decision

maker during a schedule optimization routine. For this purpose we use a Tabu Search-

based optimization metaheuristic which we have proposed in our earlier work [21].

4. Experimental evaluation

The purpose of the experimental evaluation was twofold. First, we have measured

the performance of a developed schedule-based solution with respect to the growing

size of considered job scheduling problem, to see whether the complex data structure

is capable of maintaining large schedules efficiently. Both runtime and memory re-

quirements were of interest here. Second, we have analyzed whether the Tabu Search

optimization procedure is able to improve the performance of the scheduler.

In the first experiment we have analyzed the time and memory needed when

adding newly arriving jobs into the schedule. To analyze the influence of the grow-

ing size of the schedule the number of waiting jobs stored in the schedule has been

subsequently increased and the effect on the runtime and memory consumption of

the scheduler has been measured. We have started with an empty schedule and in

a job-by-job fashion have increased its size up to 25,000 jobs. For each such setup, we

have measured the time needed to add new job into the schedule and the amount of

consumed RAM. The size of the Grid system was fixed according to the current status

of the Czech NGI MetaCentrum [27] which includes 22 clusters having 219 nodes with

1494 CPUs. Data representing jobs were taken from the MetaCentrum workload log

(July – November 2011). The main characteristics of jobs are depicted in Fig. 4. The

jobs are rather heterogeneous in terms of duration and the level of parallelism. This

workload log contained some 250,000 jobs that has been divided into 10 data sets.

Each such a data set was then used to simulate the growing size of schedule (up to

the 25,000 limit). The experimental installation of TORQUE was hosted on an Intel

Pentium Dual Core E5700 3.0 GHz machine having 4 GB of RAM.

0
10 k
20 k
30 k
40 k
50 k
60 k
70 k

0-30 s

30-60 s

1-10 m

10-30 m

30-60 m

1-2 h
2-5 h

5-10 h

10-24 h

1-30 d

nu
m

be
r o

f j
ob

s

0
20 k
40 k
60 k
80 k

100 k
120 k
140 k
160 k
180 k

1 2 3-4 4-8 9-16 17+

nu
m

be
r o

f j
ob

s

Figure 4. The distribution of job durations (left) and the distribution of job parallelism (right)

The results of the first experiment are shown in Fig. 5. The graph in the top left

corner shows the average time (in microseconds (µs)) needed to add one job into an

2012/06/18; 22:18 str. 9/15

The extension of TORQUE scheduler allowing the use of planning (...) 13

existing schedule. It is the runtime of the “gap-filling” scheduling policy that finds

suitable gap(s) for the incoming job. The size of such a schedule is depicted on the

x-axis. As soon as the position is found and the job is added into the schedule both

the gap list and job list must be updated. The runtime of the update procedure is

shown in the top right corner of Fig. 5. The total time (sch. policy + update) is shown

in the bottom left part of Fig. 5. The last graph (see Fig. 5 bottom right) shows the

amount of used RAM as measured by the C mallinfo function4. This memory is

allocated by the malloc during the construction of the schedule. The malloc function

is used for allocating all schedule related structures. The experimental results indicate

reasonable performance of the proposed solution as both a runtime and a memory

consumption grows linearly with respect to the size of the schedule. Even for very

large schedules the time needed to add a new job into an existing schedule is bellow

35 milliseconds, allowing us to solve frequent job arrivals without major delays.

 0

 500

 1000

 1500

 2000

 2500

0 5k 10k 15k 20k 25k

tim
e

(m
ic

ro
se

c)

number of jobs

Add job

avg

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

0 5k 10k 15k 20k 25k

tim
e

(m
ic

ro
se

c)

number of jobs

Update schedule

avg

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

0 5k 10k 15k 20k 25k

tim
e

(m
ic

ro
se

c)

number of jobs

Add job + Update schedule

avg

 0

 5

 10

 15

 20

 25

 30

 35

0 5k 10k 15k 20k 25k

us
ed

 R
A

M
 (M

B
)

number of jobs

RAM used by schedule

1
2
3
4
5
6

7
8
9

10
avg

Figure 5. Runtime and memory requirements of the proposed schedule-based solution

In the second experiment the performance of applied Tabu Search (TS) optimiza-

tion algorithm has been measured. This algorithm is designed to improve the quality

of the initial schedule as generated by the “gap-filling” policy. TS is executed period-

ically every 5 minutes, and its runtime is currently bounded by 2 seconds. In order to

4Results for all 10 experiments are shown together with the average value.

2012/06/18; 22:18 str. 10/15

14 Václav Chlumský, Dalibor Klusáček, Miroslav Ruda

allow comparison with other existing algorithms we have implemented our algorithm

in a simulator since the TORQUE scheduler only supports FCFS and our conserva-

tive backfill-like scheduling policy. We have used Alea [18] simulator that contains

implementations of popular algorithms such as FCFS, EASY backfilling (BF-EASY),

Conservative backfilling (BF-CONS) or aggressive backfilling without reservations

(BF). First, we have tested the simulator to see whether it generates reliable results.

For this purpose, we ran an experiment where the same workload was loaded both

into the TORQUE scheduler and into the Alea simulator5. Then, the results for FCFS

and CONS, were compared between TORQUE and Alea. The results were almost

the same, e.g., the difference in the avg. response time has been only 0.19% and

0.33% for FCFS and CONS respectively. Therefore, Alea has been found acceptable

to perform reliable evaluation. Six different data sets from the Parallel Workloads

Archive [8] have been used: MetaCentrum, HPC2N, KTH SP2, CTC SP2, SDSC SP2

and SDSC BLUE. We have chosen avg. wait time and the avg. slowdown criteria to

be optimized simultaneously by the TS.

 4500

 5000

 5500

 6000

 6500

BF BF-EASY
BF-CONS

TS

MetaCentrum

 4500

 5000

 5500

 6000

 6500

BF BF-EASY
BF-CONS

TS

MetaCentrum

sd = 47.0
sd = 36.8

sd = 41.0

sd = 9.7

 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

BF BF-EASY
BF-CONS

TS

CTC SP2

 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

BF BF-EASY
BF-CONS

TS

CTC SP2

sd = 31.9

sd = 34.3

sd = 31.2

sd = 7.5 2000

 4000

 6000

 8000

 10000

BF BF-EASY
BF-CONS

TS

SDSC BLUE

 2000

 4000

 6000

 8000

 10000

BF BF-EASY
BF-CONS

TS

SDSC BLUE

sd = 37.4
sd = 33.4

sd = 37.4

sd = 7.3

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

BF BF-EASY
BF-CONS

TS

HPC2N

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

BF BF-EASY
BF-CONS

TS

HPC2N

sd = 174.5

sd = 134.4
sd = 132.2

sd = 26.1

 8000
 10000
 12000
 14000
 16000
 18000
 20000
 22000
 24000

BF BF-EASY
BF-CONS

TS

SDSC SP2

 8000
 10000
 12000
 14000
 16000
 18000
 20000
 22000
 24000

BF BF-EASY
BF-CONS

TS

SDSC SP2

sd = 85.0

sd = 72.2
sd = 67.2

sd = 22.1

 3000

 4000

 5000

 6000

 7000

 8000

BF BF-EASY
BF-CONS

TS

KTH SP2

 3000

 4000

 5000

 6000

 7000

 8000

BF BF-EASY
BF-CONS

TS

KTH SP2

sd = 108.2
sd = 102.5

sd = 96.3

sd = 36.6

Figure 6. The comparison of average wait time and average slowdown as achieved by Tabu

Search (TS) and remaining algorithms

The results of the second experiment are shown in Fig. 6. Here, the y-axis repre-

sents the avg. wait time while the diameter of the circle depicts the avg. slowdown.

For better visibility FCFS is not presented in the figures as it produced very bad

off-scale high results. The results show how evaluation and optimization can improve

5The experiment involved a sample from the HPC2N workload (jobs 187,306–188,307) that
represented 6 days of job execution including a large peak of user activity.

2012/06/18; 22:18 str. 11/15

The extension of TORQUE scheduler allowing the use of planning (...) 15

the performance of the scheduler. Clearly, TS was able to outperform the remaining

backfilling algorithms in all considered cases, decreasing both wait time and slow-

down. These results support our idea that schedule-based solution accompanied by

evaluation and optimization represents an advantageous scheduling approach.

The experiment presented above used precise processing time estimates. Natu-

rally, when estimates are inaccurate, the performance of scheduling algorithms may

get worse [33] and the schedule becomes inefficient unless a schedule compression is

performed as discussed in Section 3.4. Moreover, the optimization metaheuristic, e.g.,

the Tabu Search can be efficiently used as a “recovery procedure” that helps to re-

store the good quality of the compressed schedule as we have shown in our recent

works [19, 17].

5. Conclusion and future work

In this paper we have presented major extension to the widely used TORQUE Re-

source Manager. The extension replaces the original “naive” FCFS-like queue-based

pbs sched module with a complex schedule-based solution. Thanks to the applied

schedule-based paradigm the solution supports planning, optimization and allows pre-

dictability. Users can now query the resource manager using standard tools such as

qstat command to get up-to-date information concerning the expected start times

of their jobs. Using it, they can better plan their work as the system’s behavior

becomes more predictable even for unskilled users. Also, the solution has been de-

signed in order to allow for the application of advanced scheduling methods such as

metaheuristics that would allow us to increase the quality of generated solutions with

respect to selected optimization criteria. Initial synthetic tests presented in this paper

as well as our earlier works [21, 17, 22] indicate that such optimization techniques al-

low us to achieve significantly better performance compared to the standard solutions

such as EASY, Conservative backfilling, FCFS, etc. Typically, slowdown, response

time and wait time can be improved once optimization is applied. Success is based on

the fact that the use of a schedule (i.e., planning of future job execution) allows us to

evaluate a constructed solution and improve it using local search-based optimization.

In the near future the developed scheduler will be thoroughly tested using real

computer test-bed and real workloads with inaccurate runtime estimates. Last but

not least, the software package will be made available to the public.

Acknowledgements

The access to the MetaCentrum computing facilities provided under the programme

“Projects of Large Infrastructure for Research, Development, and Innovations”

LM2010005 funded by the Ministry of Education, Youth, and Sports of the Czech

Republic is highly appreciated. The workload logs used in this paper were generously

provided by the Parallel Workloads Archive.

2012/06/18; 22:18 str. 12/15

16 Václav Chlumský, Dalibor Klusáček, Miroslav Ruda

References

[1] Abraham A., Buyya R., Nath B.: Nature’s heuristics for scheduling jobs on

computational Grids. [in:] The 8th IEEE International Conference on Advanced

Computing and Communications (ADCOM 2000), pp. 45–52, 2000.

[2] Abraham A., Liu H., Grosan C., Xhafa F.: Nature inspired meta-heuristics for

Grid scheduling: Single and multi-objective optimization approaches. [in:] Meta-

heuristics for Scheduling in Distributed Computing Environments [34], pp. 247–

272.

[3] Adaptive Computing Enterprises, Inc. Moab workload manager administrator’s

guide, version 6.1.4, February 2012. http://www.adaptivecomputing.com/

resources/docs/.

[4] Adaptive Computing Enterprises, Inc. TORQUE Admininstrator Guide, version

3.0.3, February 2012. http://www.adaptivecomputing.com/resources/docs/.

[5] Baptiste P., Pape C. L., Nuijten W.: Constraint-based scheduling: Applying

constraint programming to scheduling problems. Kluwer, 2001.

[6] Baruah S., Funk S., Goossens J.: Robustness results concerning EDF scheduling

upon uniform multiprocessors. IEEE Transactions on Computers, 52(9):1185–

1195, 2003.

[7] Burke S., Campana S., Peris A. D., Donno F., Lorenzo P. M., Santinelli R., Sciaba

A.: gLite 3 user guide. Worldwide LHC Computing Grid, January 2007.

[8] Feitelson D. G.: Parallel workloads archive (PWA), February 2012. http://www.

cs.huji.ac.il/labs/parallel/workload/.

[9] Feitelson D. G., Rudolph L., Schwiegelshohn U., Sevcik K. C., Wong P.: Theory

and practice in parallel job scheduling. [in:] Feitelson D. G., Rudolph L., editors,

Job Scheduling Strategies for Parallel Processing, volume 1291 of LNCS, pp. 1–34.

Springer Verlag, 1997.

[10] Feitelson D. G., Weil A. M.: Utilization and predictability in scheduling the IBM

SP2 with backfilling. [in:] 12th International Parallel Processing Symposium,

pages 542–546. IEEE, 1998.

[11] Gentzsch W.: Sun Grid Engine: towards creating a compute power Grid. [in:]

Proceedings of the First IEEE/ACM International Symposium on Cluster Com-

puting and the Grid, pp. 35–36, 2001.

[12] Hovestadt M., Kao O., Keller A., Streit A.: Scheduling in HPC resource manage-

ment systems: Queuing vs. planning. [in:] Job Scheduling Strategies for Parallel

Processing, volume 2862 of LNCS, pp. 1–20. Springer, 2003.

[13] Huedo E., Montero R., Llorente I.: The GridWay framework for adaptive schedul-

ing and execution on Grids. Scalable Computing: Practice and Experience, 6(3):1–

8, 2005.

[14] Jones J. P.: PBS Professional 7, administrator guide. Altair, April 2005.

[15] Keller A., Reinefeld A.: Anatomy of a resource management system for HPC

clusters. Annual Review of Scalable Computing, 3:1–31, 2001.

2012/06/18; 22:18 str. 13/15

The extension of TORQUE scheduler allowing the use of planning (...) 17

[16] Kleban S. D., Clearwater S. H.: Fair share on high performance computing sys-

tems: What does fair really mean? [in:] Third IEEE International Symposium

on Cluster Computing and the Grid (CCGrid’03), pp. 146–153. IEEE Computer

Society, 2003.

[17] Klusáček D.: Event-based Optimization of Schedules for Grid Jobs. PhD thesis,

Masaryk University, 2011.

[18] Klusáček D., Rudová H.: Alea 2 – job scheduling simulator. [in:] Proceedings

of the 3rd International ICST Conference on Simulation Tools and Techniques

(SIMUTools 2010). ICST, 2010.

[19] Klusáček D., Rudová H.: Handling inaccurate runtime estimates by event-based

optimization. [in:] Cracow Grid Workshop 2010 Abstracts (CGW’10), Cracow,

Poland, 2010.

[20] Klusáček D., Rudová H.: Efficient data representation of large job schedules. In

Mathematical and Engineering Methods in Computer Science (MEMICS 2011)

selected papers, volume 7119 of LNCS. Springer, 2011. To appear.

[21] Klusáček D., Rudová H.: Efficient Grid scheduling through the incremental

schedule-based approach. Computational Intelligence: An International Journal,

27(1):4–22, 2011.

[22] Klusáček D., Rudová H., Baraglia R., Pasquali M., Capannini G.: Comparison

of multi-criteria scheduling techniques. [in:] Grid Computing Achievements and

Prospects, pp. 173–184. Springer, 2008.

[23] Kurowski K., Back W., Dubitzky W., Gulyás L., Kampis G., Mamonski M.,

Szemes G., Swain M.: Complex system simulations with qoscosgrid. [in:] Pro-

ceedings of the 9th International Conference on Computational Science: Part I,

volume 5544 of LNCS, pp. 387–396. Springer, 2009.

[24] Kurowski K., Oleksiak A., Piatek W., Weglarz J.: Hierarchical scheduling strate-

gies for parallel tasks and advance reservations in grids. Journal of Scheduling,

11(14):1–20, 2011.

[25] Maŕıa M. López E. H., Senar M. A.: Sensitivity analysis of workflow scheduling

on Grid systems. Scalable Computing: Practice and Experience, 8(3):301–311,

2007.

[26] Matyska L., Ruda M., Šimon Tóth.: Work towards peer-to-peer scheduling ar-

chitecture for the czech national grid. [in:] Cracow Grid Workshop (CGW 2010).

Cyfronet AGH, 2010.

[27] MetaCentrum, February 2012. http://www.metacentrum.cz/.

[28] Mu’alem A. W., Feitelson D. G.: Utilization, predictability, workloads, and user

runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Transactions

on Parallel and Distributed Systems, 12(6):529–543, 2001.

[29] Skovira J., Chan W., Zhou H., Lifka D.: The EASY – LoadLeveler API project.

[in:] Feitelson D. G., Rudolph L., editors, Job Scheduling Strategies for Parallel

Processing, volume 1162 of LNCS, pp. 41–47. Springer, 1996.

[30] Smith W., Foster I., Taylor V.: Scheduling with advanced reservations. [in:] In-

2012/06/18; 22:18 str. 14/15

18 Václav Chlumský, Dalibor Klusáček, Miroslav Ruda

ternational Parallel and Distributed Processing Symposium (IPDPS ’00), pp. 127–

132, 2000.

[31] Süß W., Jakob W., Quinte A., Stucky K.-U.: GORBA: A global optimising

resource broker embedded in a Grid resource management system. [in:] Interna-

tional Conference on Parallel and Distributed Computing Systems, PDCS 2005,

pp. 19–24. IASTED/ACTA Press, 2005.

[32] Thain D., Tannenbaum T., Livny M.: Condor and the Grid. [in:] Berman F., Fox

G., Hey T., editors, Grid Computing: Making the Global Infrastructure a Reality.

John Wiley & Sons Inc., 2002.

[33] Tsafrir D.: Using inaccurate estimates accurately. [in:] Frachtenberg E.,

Schwiegelshohn U., editors, Job Scheduling Strategies for Parallel Processing, vol-

ume 6253 of LNCS, pages 208–221. Springer Verlag, 2010.

[34] Xhafa F., Abraham A.: Metaheuristics for Scheduling in Distributed Computing

Environments, volume 146 of Studies in Computational Intelligence. Springer,

2008.

[35] Xhafa F., Abraham A.: Computational models and heuristic methods for Grid

scheduling problems. Future Generation Computer Systems, 26(4):608–621, 2010.

[36] Xu M. Q.: Effective metacomputing using LSF multicluster. [in:] CCGRID ’01:

Proceedings of the 1st International Symposium on Cluster Computing and the

Grid, pp. 100–105. IEEE, 2001.

Affiliations

Václav Chlumský
CESNET z.s.p.o., Prague, Czech Republic, vchlumsky@cesnet.cz

Dalibor Klusáček
CESNET z.s.p.o., Prague, Czech Republic, klusacek@cesnet.cz

Miroslav Ruda
CESNET z.s.p.o., Prague, Czech Republic, ruda@cesnet.cz

Received: 9.12.2011

Revised: 14.02.2012

Accepted: 23.04.2012

2012/06/18; 22:18 str. 15/15

The extension of TORQUE scheduler allowing the use of planning (...) 19

