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ABSTRACT 

Chemical source localization is a challenge for most of researchers. It has 

extensive applications, such as anti-terrorist military, Gas and oil industry, and 

environment engineering. This dissertation used wireless sensor and sensor networks to 

get chemical particle propagation mapping and chemical source localization. First, the 

chemical particle propagation mapping is built using interpolation and extrapolation 

methods. The interpolation method get the chemical particle path through the sensors, 

and the extrapolation method get the chemical particle beyond the sensors. Both of them 

compose of the mapping in the whole considered area. Second, the algorithm of sensor 

fusion is proposed. It smooths the chemical particle paths through integration of more 

sensors’ value and updating the parameters. The updated parameters are associated with 

including sensor fusion among chemical sensors and wind sensors at same positions and 

sensor fusion among sensors at different positions. This algorithm improves the accuracy 

and efficiency of chemical particle mapping.  Last, the reasoning system is implemented 

aiming to detect the chemical source in the considered region where the chemical particle 

propagation mapping has been finished.  This control scheme dynamically analyzes the 

data from the sensors and guide us to find the goal.  In this dissertation, the novel 

algorithm of modelling chemical propagation is programmed using Matlab. Comparing 

the results from computational fluid dynamics (CFD) software COMSOL, this algorithm 

have the same level of accuracy. However, it saves more computational times and 

memories. The simulation and experiment of detecting chemical source in an indoor 

environment and outdoor environment are finished in this dissertation. 
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1. INTRODUCTION

1.1. STATE OF THE RELATED WORK 

 There are a lot of previous works that have been done in this field about that 

using wireless sensors and networks program for chemical source localization.  Plenty of 

papers are talking about smell propagation, smell detection, smell localization, smell 

modelling. 

1.1.1. Technologies about Smell Propagate, Smell Transmit, Smell Spread. In 

the paper [1], Virtual slaughtering and dissection is a way to learn about anatomy and 

dissect animals without harming any real-life animals or feeling ill from that nauseating 

formaldehyde smell. The virtual slaughtering and dissections also have detailed scientific 

explanations. The authors developed interactive virtual environments that can simulate 

several common tasks performed during animal dissection. In this paper, it describes the 

imaging modality used to reconstruct the cow, provide an overview of the simulation 

environment and briefly discuss some of the techniques used to manipulate the virtual 

cow. The system will consists of an anatomically computer model of a cow, a simulation 

engine capable of providing soft-tissue modeling, rigid body dynamics, collision 

detection and response, haptic force calculations, and a number of user interface and 

display devices to interact with the user. The behavior of the tissue will be modeled by 

modulating the stiffness coefficients between adjacent internal organs in order 

to propagate the effects of grasping connected components. This simulation system will 

be written in C# using Open GL, GLUT and GLUI libraries for visualization and user 

interface. Several supporting virtual reality tools for grasping, cutting and probing will be 

used such as haptic devices, non-haptic devices, and display devices. 

 In this paper [2], digital image processing techniques to detect smell and PH 

value as well as surface color quality of lamb and other information was used. The article 

analyses and establishes multiple data fusion model with artificial neural network 

training. And designs finally corresponds to the lamb freshness standard TVB-N. Rapid 

and non-destructive testing of lamb freshness was researched.   

 In the paper [3], a low cost smell detection system for multimedia applications 

are proposed. A multimedia system is one of the most widely used consumer electronics 
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environments today in which humans can work or communicate through multi-sensory 

interfaces. Existing multimedia systems include audio systems and video displays that 

make use of the human auditory and visual systems. The minor sensory information 

namely, smell, taste and touch are generally not used. In order to use smell in multimedia 

environments, smell detectors and producers are required. The author propose a low cost 

smell detector that can be used in a multimedia environment. It is shown that a crude 

smell detection system, which can detect tens of smells can be developed at a low cost, 

compared to that of typical systems used in industrial applications. 

In the paper [4], the author discussed Odor Recognition for Intelligent Systems. 

Smell, it helps remind us when it's time to take out the garbage or change the baby's 

diaper. The author use it to detect danger, such as a gas leak or food burning on the stove. 

Industries that develop products to help us either smell good or prevent aromatic offense 

testify to the aesthetic importance of odors, as well as to economic value. Still, olfaction's 

significance is unparalleled in the animal kingdom, where many species' survival would 

be jeopardized without the ability to detect and recognize odors. Integrating electronic 

noses with other sensors on complex, intelligent platforms offers exciting application 

possibilities and considerable development challenges. 

In the paper [5], a guide to sensor design for land mine detection is discussed. The 

author discusses the use of smell by dogs to detect land mines. The author then discusses 

the concept of using a man-made odor detector to detect explosive vapors. The author 

highlights one sensor type which shows outstanding potential for land mine detector use 

at present: this is the conducting polymer sensor. This type of sensor has a high degree of 

sensitivity and other desirable features and has been in operation for some years now by a 

British company for the purpose of aroma analysis and quality control of industrial and 

agricultural products. It would certainly be possible to develop this type of sensor further 

for land mine detection. The principle of biological smell detection is outlined. 

   Early stage fire detection using reliable metal oxide gas sensors and artificial 

neural networks is addressed in the paper [6]. Conventional fire detectors use the smoke 

density or the high air temperature to trigger the fire alarm. These devices lack of ability 

to detect the source of fire in the early stage and they always create false alarms. In this 

paper, a reliable electronic nose (EN) system designed from the combination of various 
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metal oxide gas sensors (MOGS) is applied to detect the early stage of fire from various 

sources. The time series signals of the same source of fire in every repetition data are 

highly correlated and each source of fire has a unique pattern of time series data. 

Therefore, the error backpropagation (BP) method can classify the tested smell with 

99.6% of correct classification by using only a single training data from each source of 

fire. The results of the k-means algorithms can be achieved 98.3% of correct 

classification which also show the high ability of the EN to detect the early stage of fire 

from various sources accurately. 

Instant coffee classification by electronic noses has been implemented in the 

paper [7]. Normally, an electronic nose project uses two researches areas which are 

hardware for developing sensors to detect substance smell and software using pattern 

matching theorem for recognizing substance. For this research, the operation begins with 

sensors hit the coffee smell. The result is converted from analog to digital representation. 

An artificial intelligence is a tool of a thinking system which can create knowledge as if a 

human does. The objective of this research is to classify instant coffee by using electronic 

noses. the author used eight types of coffee in Thailand market for this project which are 

(1) Moccona-select, (2) Moccona-royal gold, (3) Nescafe redcup, (4) Nescafe gold, (5) 

Khao Shong brown, (6) Khao Shong red, (7) Oem-Big C and (8) Superclass. The author 

compared four structures of neural network to classify the coffee data. The precision of 

correctness is equal to 65.63 for a neural network structure as 7 input-layer nodes, 14 

hidden-layer1 nodes, 48 hidden-layer2 nodes and 8 output-layer nodes. 

Micro and Nano sensors snoop around are talked in the paper [8]. Vision and 

hearing, smell and taste, and the tactile senses are bridges between the external world and 

our brain. Micro and Nano sensors are miniaturized electronic devices which pick up 

physical, chemical, or biomedical signals and enter them into the computer. The 

miniaturization of most kinds of sensors has been achieved, but the "electronic nose" able 

to detect a broad range of "smells" caused by complex mixtures of airborne chemical 

compounds is still a dream. But application specific gas sensors or "narrow band noses" 

are being developed, which can detect and identify gas mixtures in given application 

areas, such as air conditioning, dry cleaning, oil refineries, or food production. Integrated 

gas sensors based on CMOS IC technology with on-chip micro structures (CMOS 
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MEMS) coated with gas absorbing polymers or metal oxides are presented. The quest of 

sensor selectivity is tackled by combining various polymers with different transducer 

principles (mass sensitive, capacitive, calorimetric). The combination of different types 

of transducers on a single CMOS MEMS chip with dedicated circuitry, and the assembly 

of several such chips, each with different chemically sensitive polymer layer, in a 

handheld "snooping instrument" are discussed. An outlook will address the combination 

of CMOS MEMS with bio materials and living cells. 

In the paper [9] ‘Smell Peak Prediction during Black Tea Fermentation Process 

Using Time-Delay Neural Network on Electronic Nose Data’, Fermentation process in 

black tea manufacturing plays the key role in determining the quality of finished tea. 

During this process, a complex chain of biochemical changes occurs and the process 

should be terminated once the optimum fermentation point is reached. Present day 

practice for detection of optimum fermentation point is purely subjective, and is carried 

out by experienced industry personnel. Even though chemical methods are available, but 

they are expensive, time-consuming and offline. A study has been made on real time 

smell monitoring of black tea during fermentation process using electronic nose and is 

reported in this paper. Time-delay neural network (TDNN) architecture has been used on 

time series data obtained from electronic nose for smell peak prediction during the 

fermentation process. The online predicted result using TDNN seems very promising to 

detect the optimum fermentation time for black tea manufacturing process. 

1.1.2. Technologies about Smell Detection. Gas sensors provide an artificial 

sense of smell for a mobile robot to track an airborne gas/odor plume and locate its 

source. However, a slow response of gas sensors has been the major factor limiting the 

development of plume-tracking robots. This paper [10] describes a new control algorithm 

that breaks the limitation. The basic idea is to detect onsets of gas sensor response and 

starts of recovery by monitoring the relative change in each sensor output. Fast plume 

tracking is accomplished by making the robot take appropriate actions immediately when 

the sensor outputs start changing from one state to another. Growing sensor outputs 

evoke an increase in the robot speed for further acceleration of plume tracking, whereas 

insufficient sensor outputs slow down the robot to avoid degrading the search success 

rate. In contrast to the previous algorithm, based on the absolute sensor output levels, the 
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detection of output change also leads to reliable plume detection, since it is insusceptible 

to drift in the gas sensor outputs. Experimental results have shown that the robot can 

track down a gas source within the distance of 2 m in 32 s, even though semiconductor 

gas sensors with a long recovery time (>60 s) are used. 

Multimedia systems are widely used in consumer electronics environments today, 

where humans can work and communicate through multi-sensory interfaces. 

Unfortunately smell detection and generation systems are not part of today's multimedia 

systems. In this paper [11], the author propose an electronic nose that can be used in a 

multimedia environment. The proposed electronic nose can detect a large number of 

smells and will have a significantly lower cost compared to the detection systems used in 

industrial applications. 

A Bayesian Approach for the Detection of Code and Design Smells is presented 

in paper [12].The presence of code and design smells can have a severe impact on the 

quality of a program. Consequently, their detection and correction have drawn the 

attention of both researchers and practitioners who have proposed various approaches to 

detect code and design smells in programs. However, none of these approaches handle 

the inherent uncertainty of the detection process. The author propose a Bayesian 

approach to manage this uncertainty. First, the author present a systematic process to 

convert existing state-of-the-art detection rules into a probabilistic model. The author 

illustrate this process by generating a model to detect occurrences of the Blob antipattern. 

Second, the author present results of the validation of the model: the author built this 

model on two open-source programs, Gantt Project v1.10.2 and Xerces v2.7.0, and 

measured its accuracy. Third, the author compare our model with another approach to 

show that it returns the same candidate classes while ordering them to minimize the 

quality analysts' effort. Finally, the author show that when past detection results are 

available, our model can be calibrated using machine learning techniques to offer an 

improved, context-specific detection. 

In the paper [13] Artificial Odor Discrimination System Using Electronic Nose 

and Neural Networks for the Identification of Urinary Tract Infection, Current clinical 

diagnostics are based on biochemical, immunological, or microbiological methods. 

However, these methods are operator dependent, time-consuming, expensive, and require 
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special skills, and are therefore, not suitable for point-of-care testing. Recent 

developments in gas-sensing technology and pattern recognition methods make electronic 

nose technology an interesting alternative for medical point-of-care devices. An 

electronic nose has been used to detect urinary tract infection from 45 suspected cases 

that were sent for analysis in a U.K. Public Health Registry. These samples were 

analyzed by incubation in a volatile generation test tube system for 4-5 h. Two issues are 

being addressed, including the implementation of an advanced neural network, based on a 

modified expectation maximization scheme that incorporates a dynamic structure 

methodology and the concept of a fusion of multiple classifiers dedicated to specific 

feature parameters. This study has shown the potential for early detection of microbial 

contaminants in urine samples using electronic nose technology. 

An Immune-Inspired Approach for the Detection of Software Design Smells is 

been implemented in [14]. The author proposed a parallel between object-oriented system 

designs and living creatures. The author suggest that, like any living creature, system 

designs are subject to diseases, which are design smells (code smells and anti patterns). 

Design smells are conjectured in the literature to impact the quality and life of systems 

and, therefore, their detection has drawn the attention of both researchers and 

practitioners with various approaches. With our parallel, the author propose a novel 

approach built on models of the immune system responses to pathogenic material. The 

author show that our approach can detect more than one smell at a time. The author build 

and test our approach on Gantt Project v1.10.2 and Xerces v2.7.0, for which manually-

validated and publicly available smells exist. The results show a significant improvement 

in detection time, precision, and recall, in comparison to the state-of-the-art approaches. 

1.1.3. Technologies about Smell Localization and Smell Detection. Odor 

plume tracking robot using semiconductor gas sensors has been implemented [15]. This 

paper reports on the development of a mobile robot equipped with semiconductor gas 

sensors which has been designed to track odor plumes in the natural environment to 

locate their sources. One principal application could be the automatic location of 

explosives and analogies can be made with animal behavior, particularly dogs, which can 

track both objects and persons using smell. A novel multi-sensor head is proposed and 

the design of the mobile robot and its tracking strategies presented. The system is 
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evaluated using isopropyl alcohol as the odor source. Results are presented for a number 

of different environmental conditions. 

To naively smell as no robot has smelt before. This paper [16] presents a new 

intelligent odor localization strategy, which enables a robot to locate the source of an 

odor in a cluttered indoor environment. Traditionally, work in this area has focused on 

open areas free of obstacles and having no walls or possessing walls without openings. 

Existing solutions predominantly use reactive algorithms to navigate along the entire 

length of the odor plume to the source. Not only is this slow, but in a cluttered indoor 

environment it may not be possible. In a constrained environment, airflows tend to 

circulate in sectors and well-defined plumes that lead upwind to the odor source do not 

exist. the author have developed a sense-map-plan-act style control strategy to model the 

airflow in the environment using naive physics, then use the model to reason about odor 

dispersal, move to key positions gathering information, and make a prediction of the most 

likely location for an odor source. The control strategy has located the odor source for a 

variety of room configurations. This paper describes details of the control strategy, 

practical experiments, and results. 

Reproduction of scent and video at remote site using odor sensing system and 

olfactory display together with camera is a novel technology [17]. The author proposed 

the new system for scent reproduction at remote site together with video. The odor is 

identified using odor sensing system and the result is transferred via Internet to the 

remote site, where the identified smell is regenerated using an olfactory display. It is also 

possible to reproduce the odor concentration change. Users can sniff the smell in real 

time at the location away from the odor source, simultaneously watching a video around 

the odor source. The author did the experiment on the tele olfaction between our campus 

and Tokyo Big Sights. The questionnaire survey revealed that our system provided the 

good performance of the tele olfaction. The proposed system can enhance the reality 

when smell is attached to the video. 

 In the paper ‘Product metrics for automatic identification of "bad smell" design 

problems in Java source-code’ [18],  Refactoring can have a direct influence on reducing 

the cost of software maintenance through changing the internal structure of the source-

code to improve the overall design that helps the present and future programmers evolve 
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and understand a system. Bad smells are a set of design problems with refactoring 

identified as a solution. Locating these bad smells has been described as more a human 

intuition than an exact science. This paper addresses the issue of identifying the 

characteristics of a bad smell through the use of a set of software metrics. Then by using 

a pre-defined set of interpretation rules to interpret the software metric results applied to 

Java source-code, the software engineer can be provided with significant guidance as to 

the location of bad smells. These issues are addressed in a number of ways. Firstly, a 

precise definition of bad smells is given from the informal descriptions given by the 

originators Fowler and Beck. The characteristics of the bad smells have been used to 

define a set of measurements and interpretation rules for a subset of the bad smells. A 

prototype tool has been implemented to enable the evaluation of the interpretation rules 

in two case studies. 

1.1.4. Technologies about Smell Modelling. An intelligent model approach for 

combination of sensor information has been built in the paper [19]. Humans gather 

information from the environment around them using different senses, e.g. sight, hearing, 

touch, smell and taste. By combining sensory information, the author are able to structure 

decisions and actions when interacting with the environment. Humans are capable of 

actively using perception capabilities in order to perform objectives in time and space. 

The objective of this paper is to discuss a biologically inspired sensor fusion model, 

named sensor fusion model with active perception (SEFMAP). The biological inspiration 

concept is not used to indicate biological plausibility in the sense of circuitry, networking 

architecture and information exchange modalities of proposed models, but the modeling 

point of view. SEFMAP has been developed by mimicking the human way of processing 

information received from sensory organs. This gives a simple and general model with 

great development potential, properties that in some degree are missing in existing 

models. SEFMAP was intended for modeling intelligent sensor fusion systems as well as 

traditional sensor fusion systems the model discussed in this paper, SEFMAP, includes 

three main processes (sensation, perception and active perception) as well as a knowledge 

base. SEFMAP reflects signal processing on sensory information that occurs on the way 

to the brain, as well as in the brain. The model also handles memory and decision-making 

to bring the system closer to an objective that may be changed during run-time. The 
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benefits of SEFMAP are demonstrated in three examples, a classification application, an 

auditory-visual target localization system and a fire indication system. The paper also 

considers how time affects the result of the sensor fusion algorithm. 

Context-Aware Virtual Agents in Open Environments [20], this paper presents a 

model for the interaction between context-aware virtual agents and the environment in 

which they are situated. This model applies to multi-agent based simulation systems 

dealing with human-like virtual agents in decentralized, continuous, and dynamic 

environments. The model supports an extensible agent perception module, allowing 

agents to perceive their environment through multiple senses (sight, hearing, smell, etc.). 

The environment reacts to agent influences as well as user-invoked stimuli by combining 

these influences to determine the next state of the environment. This paper introduces a 

formalization and an implementation of the model and discusses multiple scenarios 

involving context-aware virtual agents situated in dynamic environments. 

Signal Processing with temporal sequences in olfactory systems [21] is an import 

technology for this dissertation. The olfactory system is a very efficient biological setup 

capable of odor information processing with neural signals. The nature of neural signals 

restricts the information representation to multidimensional temporal sequences of spikes. 

The information is contained in the interspike intervals within each individual neural 

signal and interspike intervals between multiple signals. A mechanism of interactions 

between random excitations evoked by odorants in the olfactory receptors of the 

epithelium and deterministic operation of the olfactory bulb is proposed in this paper. 

Inverse Frobenius-Perron models of the bulb's temporal sequences are fitted to the 

interspike distributions of temporally modulated receptor signals. Ultimately, such 

pattern matching results in ability to recognize odors and offer a hypothetic model for 

signal processing occurring in the primary stage of the olfactory system. 

 ‘Dynamical analysis of neural oscillators in an olfactory cortex model’, in this 

paper [22] presents a theoretical approach to understand the basic dynamics of a 

hierarchical and realistic computational model of the olfactory system proposed by W. J. 

Freeman. While the system's parameter space could be scanned to obtain the desired 

dynamical behavior, our approach exploits the hierarchical organization and focuses on 

understanding the simplest building block of this highly connected network. Based on 
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bifurcation analysis, the author obtain analytical solutions of how to control the 

qualitative behavior of a reduced KII set taking into consideration both the internal 

coupling coefficients and the external stimulus. This also provides useful insights for 

investigating higher level structures that are composed of the same basic structure. 

Experimental results are presented to verify our theoretical analysis. 

An E-nose haar wavelet preprocessing circuit for spiking neural network 

classification has been built in paper [23]. A simulation model for polymer film chemical 

sensors is developed based on a 1 dimensional diffusion equation. Using this model, 

electronic nose smell prints produced by the 32 sensor array of a Cyranose 320 are 

simulated to test pattern classification. A Haar wavelet Alter reduces noise and captures 

information about the diffusion rate of the analyte in each sensor. Inputs are encoded into 

a binary Hamming pattern and fed into a binary spiking neural network for pattern 

classification. The preprocessing circuit for the spiking neural network, including the 

wavelet Alter, is designed using standard cells for a 180 nm process. Real and simulated 

results from the spiking neural network classification algorithm are favorably compared 

to Bayes, canonical, and PCA-PNN classifiers. 

The visual based framework for the model refactoring techniques [24] is popular 

in today’s research. Refactoring is one of the most important rules and practices of 

Extreme Programming from the family of the Agile Methodologies. The author propose 

the tool to refactor the UML model (Class Diagrams for now). In the first step the author 

need to find the flaws (bad smells) in the model with the OCL query and then in the 

second step the author transform the flaw to the correct fragment with the transformation 

script. The paper presents the set of methods and tools for the model adjustment, 

cooperating with the CASE systems. The author analyze the concept and algorithms for 

the refactoring, OCL queries and transformation scripts generating. The author have 

prepared functional prototype of the editor for the refactoring rules definition, OCL query 

generator and the transformation script generator. In the future, the author plan to extend 

the framework with alternative notations (e.g., QVT graph transformation rules, PICS, 

Viatra2) and the other techniques to find the flaws (e.g., rule-based system with 

predicates of the bad smells, XMI transformations and Abstract Syntax Tree algebra, Bit-

Vector and Similarity Scoring Algorithms). 
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1.2. COMPARISON AMONG DIFFERENT TECHNOLOGIES FOR SMELL 

DETECTION AND LOCALIZATION 

The problem of detecting and locating odor in a complicated environment is a 

challenging problem. The difficulty of modeling the propagation of the different odor 

sources and location of sensor has been addressed in many earlier works.  

  The ability to locate the source of an odor/chemical plume has many valuable 

applications. These applications include finding the source of dangerous substances such 

as airborne biological material, hazardous chemicals, gas and other pollutants, in 

industrial and other settings; detecting such things as plant matter and drugs in a customs 

or quarantine application; searching for survivors in earthquake-damaged buildings, 

landslides or avalanches; detecting fire in its initial stages; locating unexploded mines and 

bombs; and for inter-robot communication, particularly in robotic swarms. 

While research into robotic odor localization only began in the early 90s, there are 

several research groups currently working in the area. Nowadays, there are two research 

groups who both have done some research about detecting and locating the odor source. 

The first group is from intelligent robotics research center, Monash University, Australia. 

The members are Gideon Kowadlo and R. Andrew Russell. The second group is from 

Department of Physical Electronics, Tokyo Institute of Technology, Japan. The members 

are Hiroshi Ishida, Gouki Nakayama, Takamichi Nakamoto, and Toyosaka Moriizumi. 

The following sections introduce two research groups’ achievements and compare the 

two groups’ differences. 

The first group’s members are Gideon Kowadlo and R. Andrew Russell. They 

have developed a sense-map-plan-act style control strategy to model the airflow in the 

environment using naïve physics, then use the model to reason about odor dispersal, 

move to key positions gathering information, and make a prediction of the most likely 

location for an odor source. The following describes details of airflow modeling, 

reasoning system for source prediction and experimental analysis. 

A. Airflow modeling using naïve physics.

The airflow-modeling algorithm must be capable of producing a map of airflow 

that captures the broad features. It must divide the room into sectors of airflow including 

information of wind direction at the least, and if possible, also give information on the 
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velocity of the flow. The airflow modeling using naïve physics provide approximate 

information about patterns of airflow. 

Naïve physics is essentially the use of common sense knowledge and physical 

intuition to model the environment, as opposed to the traditional approach of using 

differential equations. Generally speaking, this is a qualitative and not a quantitative 

approach.  

They have developed a procedure for using such expressions, in our case in the 

form of naïve rules, to create an executable algorithm. 

 The naïve rules to describe the airflow were derived using a large data set of 

airflow patterns within the environment. These patterns were derived by running a range 

of simulations (using fluid dynamics software called Flo++), and key ‘real world’ 

experiments to: (a) verify simulation accuracy, and (b) ascertain the limitations of the 

simulations. The most important feature of the naïve rules is that they must be capable of 

modeling the airflow sectors.  

The naïve rules are encapsulated in an algorithm implemented with C++. It 

simulates actual flows, governed by the naïve rules. A flow is represented by a list of 

flow points, called FD (Flow Data) points. As the flow continues in a straight line, the 

position of the final FD point is advanced. If the flow is deflected (undergoes a change in 

direction), then a new flow point is added to the list. Each FD point has a position, 

direction and momentum (represented by a vector). The direction describes the angle of 

the preceding segment. The momentum is used to calculate the position of the following 

segment. 

Finally, the airflow modeling using naïve physics have a series of procedure. 

First, observe physical process; second, derive naïve rules to describe physical process; 

thirdly, create algorithm that encapsulates the rules; lastly, implement the algorithm. 

In addition, in 2009, the author did some improvement in the papers Improving 

the robustness of naive physics airflow mapping, using Bayesian reasoning on a multiple 

hypothesis tree and Bi-modal search using complementary sensing      (olfaction/vision) 

for odor source localization. 
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B. Reasoning system for source prediction.

The Reasoning System is a ‘Sense-Map-Plan-Act’ control scheme that emulates 

common sense style behavior. It is comprised of four phases. 

   The author used a robot to conduct experiments. The robot used for locating the 

source of an odor and investigating the airflow and odor conditions is named Roma. 

Roma is equipped with several sensors: a wind vane chemical sensor and bump sensor. 

The wind vane measures the airflow direction. The chemical sensor has a conductivity 

that is dependent on the concentration of reducing gasses 

The algorithm creates a list of candidates (potential odor sources), and a list of 

target positions. First, the candidates are identified: they include positions on objects, or 

the inlet. Legitimate flows and sectors that would contain odor from each candidate are 

identified as targets, and associated with that candidate. To be legitimate, a sector must 

be above a minimum size (area), and a flow must be above a minimum length. Using the 

list of candidates, a list of targets is compiled, where each target is associated with a 

unique set of candidates, so that there is at least one target for each candidate, and no 

redundant targets. 

The robot then moves to each of these target positions, governed by the path 

planning strategy (expanded below). The algorithm attempts to minimize the total 

distance moved, which is a form of the traveling salesman problem. The simple heuristic 

‘move to the next closest target’ is applied. With this strategy, the distance usually 

appears to be close to minimum; and otherwise, the penalty is not significant. At each 

position, the chemical concentration is sensed and recorded, the next target position is 

found, and the process repeated.  

After the robot has visited all relevant targets, the target list is sorted by 

descending chemical concentration. The list is segmented into groups of similar 

concentration. The odor source is predicted to be one of the candidates associated with 

the first group. The confidence of the prediction is determined by the position of the 

greatest disparity between segments.  

Path planning is divided into two levels of control: reactive bump response and 

path modification. Given the robot’s current position and target position, the path is 

determined by calculating two paths parallel to and on either side of, the direct path. If 
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there is a predicted collision, then an intermediate position is proposed to avoid the 

collision. The process is repeated recursively for the new path to a depth of four.  

C. Experimental analysis

The Australia group did some experiment to demonstrate their papers. The 

following experiments were conducted: The airflow and odor concentration conditions 

were investigated, a conventional reactive odor localizing robot was tested, and the odor 

localization system reported in this paper was tested. The environment and experiments 

are explained in this section. 

  The experiments were conducted with a small mobile robot named Roma. The 

experiments were conducted in a pseudo-2D mini ‘world’. Roma was placed in the ‘mini’ 

world with a number of objects, and then commanded to locate the odor source, which 

was placed at the inlet or within one of the objects.  The results demonstrate that this 

method is relatively robust and general. 

The group’s main member is Hiroshi Ishida, whose research interests are in 

biomimetic electronics with emphasis on chemical sensors and their applications in 

robotics. They have proposed using autonomous mobile sensing system to locate the odor 

source in a clean room. 

The probe with gas and anemometric sensors was used to determine an odor-

source direction. Four thermistor anemometric sensors located around a pillar were used 

to determine the wind direction. The eight normalized patterns measured at every 450 of 

the wind direction and the one with equal sensor outputs were stored in the computer. 

The wind direction is determined by selecting the pattern with the minimum Euclidean 

distance to the measured one.  

In addition to the anemometric sensors, four semiconductor gas sensors were 

placed at the vertices of a square. The output of a gas sensor, S, is defined as the ratio of 

the sensor resistance in gas, Rgas, to that in air, Rair. The relationship between S and 

vapor concentration C is almost linear while the concentration is low. The sensor 

responses were calibrated by determining the positive constant a in the following 

equation S = 1 – aC. 

  This linearity leads to a simple calculation of the concentration gradient vector G 

from the output differences of two pairs of the gas sensors located in diagonal vertices. 
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The most effective algorithm to localize an odor source in the wind tunnel was the 

combination of upwind searching and moving across the wind according to the gas-

concentration gradient. However, this exploratory algorithm was not always effective in 

the clean room.  The author gave a new algorithm with two strategies for the inside and 

for the outside of the plume. The algorithm is separated into five phases. 

Phase 1: Waiting for gas detection 

Odor-source localization is made to start when the presence of the target gas is 

detected. Setting a threshold eliminates the baseline drift of the gas sensors and used for 

determination of the presence of gas. 

Phase 2: Searching for plume along concentration gradient 

The stage is made to move according to the gas-concentration gradient G when 

the gas concentration is low. As the gradient across the wind is relatively steep, the stage 

approaches the central axis of the plume. 

Phase 3: Retreat 

When the target gas disappears, the stage is made to backtrack. The phase is 

changed back to Phase 2 when the target gas is detected again. If the stage reaches the 

point where the average of the four gas sensor outputs was minimized in the previous 

track, the stage is made to stop and the phase is changed to Phase 1. 

Phase 4: Tracking plume  

If the gas concentration is high enough, a gas source is expected to be situated in 

the upwind direction and, thus, upwind search is effective in the plume. The 

concentration gradient across the wind direction is also used to keep the stage heading 

toward the center of the plume.  

Phase 5: Searching for plume across wind 

When the plume is lost, the stage is made to move to and fro across the wind. The 

map described in Phase 3 is used to gradually expand the scanning width. If the gas 

sensor response becomes below the threshold, the phase is changed to Phase 4 since the 

stage is thought to reenter the plume. When the plume is not found after searching at right 

and left hand twice respectively, the plume is regarded as completely lost and the phase is 

changed to Phase 2. 
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The experiments were conducted in a clean room. The author has done three 

experiments, which are track of stage moving to upwind direction, track of stage moving 

along gas-concentration gradient and track of stage by full set of new algorithm. 

There are many useful and humanitarian applications for robots that can locate the 

source of a chemical plume in an open area free of obstacles. The Australia group used 

naïve physics for odor location in a cluttered indoor environment, while the Japanese 

group has used a ‘combination of plume acquisition and following’. They use absolute 

readings from wind direction and chemical sensors. 

  Australia group used naïve physics to model the airflow in the robot’s 

environment. Then a reasoning system uses the airflow model to propose the path of an 

odor plume and predict the most probable locations of the odor source. This approach has 

been shown to be effective for odor localization in a known indoor environment, without 

the need for the robot to travel to the source. 

Japanese group modeled the plume by fitting a chemical distribution model to the 

sensor dynamics (Ishida et al., 1997). This is reliable for source detection. However, the 

robot must continually re-calculate and alter its heading, making it partially reactive, and 

the robot must travel to within 20 cm of the source. The methods largely focus on basing 

robot sensing and algorithms on the odor localizing behavior, aiming for simplicity using 

reactive control schemes and local sensing. The main limitations are that robots must 

follow the plume along its entire length, which is time consuming and may not be 

possible. In addition, the effects of obstructing objects and walls on robot mobility are 

often neglected. 

Comparing the two group, the Australia group using the qualitative modeling, and 

the Japanese group using the quantitative approach. The Australia group did the 

experiment in an indoor environment, while the Japanese group in a clean room where 

there are always slight wind produced by air conditioner. 

1.3. THE STRUCTURE OF THE DISSERTATION 

In this dissertation, there are seven sections. The first section is literature review 

that talks the recent research. The second section is about particle paths mapping. Using 

interpolation and extrapolation methods, chemical particle paths mapping demonstrates 

the information of airflow and chemical particle at every position in the area of interest. 
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The third section is compare and validate about interpolation and extrapolation approach. 

The fourth section shows the results of simulations and real world experiments. In the 

fifth section, the algorithm of multi-sensor fusion is proposed. It can smooth the chemical 

particle paths by computing more sensor data. The updated mapping has the better 

precision than the old one. In the sixth section, reasoning system and control scheme are 

implemented, aiming to detect and localize the maximum likely-hood of chemical source. 

At the last section, it’s the conclusion and the future work.  
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2. USING INTERPOLATION AND EXTRAPOLATION METHOD TO GET

ODOR PROPAGATION FOR AIRBORNE CHEMICAL SOURCE 

DETECTION 

This section addresses the problem of mapping likely particle path derived from a 

chemical source using interpolation and extrapolation method. Order localization is the 

problem of finding the source of an odor or other volatile chemical. Most localization 

method require the robot to follow the odor plume along its entire length, which is time 

consuming and may be especially difficult in a cluttered environment. In this section, a 

map of sensors’ environment was used, together with the path line of airflow, to predict 

the pattern of air movement. The robot then used the airflow pattern to reason about the 

probable location of the odor source. This demonstrates that interpolation and 

extrapolation method can be used to assist odor localization search and indicates that 

similar techniques have great operating in an unstructured environment to reason about 

its surroundings. The author will present details of getting the model of particle path 

using interpolation and extrapolation method, model of particle path surrounding the 

obstacles and openings, result of practical odor source location simulation. 

2.1. INTRODUCTION 

The detection of the airborne chemicals presents a different type of challenge than 

the more traditional detection efforts, such as visual-based detection or propagating signal 

detection. The chemicals that are airborne tend to drift in various directions due to wind, 

up-draft, and obstacles. As a result, isolation of the source of such particles becomes 

considerable difficult and dependent on topography and environment. 

There has been some previous research on the detection and modeling of airborne 

particles, plume location and tracking. However, most of such research is based on sensor 

information on moving robots that are guided by the detectors. These types of sensing 

robots are assumed to move about freely following the trail of a chemical signature, while 

they’re continuously sensing for the particles. Both of these assumptions are not valid in 

inaccessible and hostile environments with sensors that can either function once or need 

along rejuvenation time cycles. 

In our approach to the problem of chemical particle detection and source location, 

the author use a small number of chemical sensors that are sparsely scattered around an 
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area only known by a two-dimensional map. In real-world problems, the author anticipate 

that a small unmanned aircraft would drop some of these sensors on the area of interest 

while taking some aerial pictures. the author assume that the sensor data along with the 

map are transmitted to a nearby location perhaps to a vehicle that will be traveling 

through the area of interest. The author would like to use the maximum available 

information content to generate first a model of the chemical particle distribution, and 

then locate the source of the particles based on the model. 

2.2. PROPERTIES OF CUBIC SPLINE INTERPOLATION 

In the computer science subfields of computer-aided design and computer 

graphics, the term spline more frequently refers to a piecewise polynomial (parametric) 

curve. Splines are popular curves in these subfields because of the simplicity of their 

construction, their ease and accuracy of evaluation, and their capacity to approximate 

complex shapes through curve fitting and interactive curve design. 

The spline curve was constructed by using a different cubic polynomial curve 

between each two data points. In other words, it is a piecewise cubic curve, made of 

pieces of different cubic curves glued together. The pieces are so well matched where 

they are glued that the gluing is not obvious. Cubic spline interpolation is a special case 

for Spline interpolation that is used very often to avoid the problem of Runge's 

phenomenon. This method gives an interpolating polynomial that is smoother and has 

smaller error than some other interpolating polynomials such as Lagrange polynomial 

and Newton polynomial. 

Suppose that 
0{(x , )}N

i i iy 
are N+1 points, where 0 1, ,..., na x x x b  .The function

S(t) is a real piece-wise function on the interval [a, b] composed of N 

subintervals 1[ , ]i ix x . The restriction of S(t) to an interval I is a polynomial 

1:[x , ]i i iP x  . So that,   

1 1

2 1 2

1

(x) P (x), x ,

(x) P (x), x ,

(x) P (x), x .

o

n n n

S x x

S x x

S x x

  

  

  
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Theorem 1:  Giving any two sensors’ coordinate location 1 1( , )i ix y  and ( , )i ix y , 

the particle path can be described by cubic hermit spline function 1:[x , ]i i iP x  . And 

the parameters of the function are unique. 

Proof:   

Each segment of the cubic polynomial function is a cubic polynomial: 

3 2 3 2(t) [ 1][a ]Tp at bt ct d t t t b c d    

Two dimensional polynomials, one for each coordinate: 

3 2

3 2

x(t)

y(t)

x x x x

y y y y

a t b t c t d

a t b t c t d

   

   

The functions should satisfy endpoints and tangents constraints 

1 1 1 2 2 2

' '

1 1 1 2 2 2

p(0) ( , y ) p(1) ( , y )

p (0) ( , y ) p (1) ( , y )

p x p x

p x p x

   

   

The four constraints can solve the four unknowns. In the matrix formulation, 

1 1

2 23 2

1 1

2 2

2 2 1 1

3 3 2 1
[ ] [ 1]

0 0 1 0

1 0 0 0

x y

x y
x y t t t

x y

x y

   
   
     
   
   
   

Theorem 2:  Let the author assume f be the actual particle path defined on[ , ]a b , 

with 0 1, ,..., na x x x b  , and let S be the cubic spline interpolant of f . The cubic spline 

has minimum curvature property '' 2 '' 2[s ( )] [f ( )]
b b

a a
x dx x dx  . 

Proof: 

 The curvature of f is  

''

''

2
' 3/2

( )
( ) ( )

(1 ( ) )

f x
k x f x

f x
 



Hence, '' 2[ ( )]
b

a
f x dx is a crude measure of the total curvature over an interval.

Algebra identity: 2 2 2( ) 2 ( )F S F S S S F     . 

Let ''( )F f x and ''( )S s x

'' 2 '' 2 '' '' 2 '' '' ''[f ( )] [s ( )] [f ( ) s ( )] 2 s ( )(s ( ) f ( ))
b b b b

a a a a
x dx x dx x x dx x x x dx       
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The first term is  0, the author will show that the second term is 0. 

1

1

1

1
'' '' '' '' '' ''

0

1
1'' '' '' ''' '' ''

0

1
''' '' ''

0

s ( )(s ( ) f ( )) s ( )(s ( ) f ( ))

(s ( )(s ( ) f ( )) s ( )(s ( ) f ( )) )

( s ( )(s ( ) f ( )) )

i

i

i

i

i

i

nb x

a x
i

n x
i

x
i i

n x

x
i

x x x dx x x x dx

x
x x x x x x dx

x

x x x dx




















  

   
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 

 

 

Telescoping sum and '''s ( )x is constant, and using ( ) ( ), 0,..., n.i is x f x i   the 

second term is equal to 0. 

Theorem 3:  let us assume the author use a parametric representation of a cubic 

spline curve to represent the particle path, ( ) ( ( ), ( )),s t x t y t  then, the shortest cubic 

spline interpolation between two sensor points 1 1( , )i ix y  and ( , )i ix y , is 

1
1

' 2 ' 2

0

min ( ( )) ( ( ))
i

i

n t

t
i

L x t y t dt






 
. 

Proof:  

The arc length of each spline segment on the curve is 

1 ' 2 ' 2( ( )) ( ( )) ( 1,2,..., )
i

i

t

i
t

l x t y t dt i n


  

Thus, the arc length of the whole curve is
1

0

n

i

i

L l




 .  

The arc length of the curve ( )s t can be approximation by the composite Simpson 

rule. The function is about 0 0 0( ) (x( ), y( ))s t t t and 1 1 1( ) (x( ), y( ))n n ns t t t   .the problem of 

the shortest cubic spline interpolation is to find suitable 0( )s t and 1( )ns t  . 

Error estimation. Now the author assume that the interpolation node ( , )n nx y , are

points from a smooth plane curve 2{( ( ), ( ) : 0 ;u, v [0, ]}C u s v s s S C S    , 

where s denotes a certain parameter, with the partition
0 1: 0 ...S ns s s     . 

The interpolation nodes then read as ( ) , ( )n n n nu s x v s y  . 

By {( ( ), ( )) : 0 }C x t y t t T   , the author denote the interpolating curve, where ,x y are 

polynomial splines. Each point if the curve C may be written in the form, 

1 1 1.( ( ), ( ), 0 1,n n n n n n nu s h v s h h s s         
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In the same manner the author write the points of C in the form 

1 1 1.( ( ), ( ), 0 1,n n n n n n nx t k y t k k t t         
. 

SinceC interpolates C , the points ( ( ), y( ))n nx t t and ( ( ), ( ))n nu s v s coincide.  

In each subinterval the author associate the point 1 1( ( ), ( )n n n nu s h v s h    of the 

curveC with the point 1 1( ( ), ( )n n n nx t k y t k    of curveC . So the author get a mapping 

between the parameters S and t , 1 1
1 1

( ) ( )
, ( [ , ], [ , ])n n

n n n n
n n

t t s s
t t t s s s

k h
 

 

 
   , and 

the functions u and v become functions of the parameter t : 

1 1

1 1

( ) ( ( ) ( ),

( ) ( ( ) ( ).

n n n n

n n n n

u s u s t t h k u t

v s v s t t h k v t

 

 

   

   

Using the error estimation separately for ( ) ( )x t u t and ( ) ( )y t v t we get, 

2( ) ( ) xx t u t C k 
, 

2( ) ( ) yy t v t C k 
, 

with 
2 3

3

8

x x xC M TM  , 
2 3

3

8

y y yC M TM  , 1max( )n nk t t   , 

where x

iM , y

iM are bounds for the i-th derivatives of ( )u t and ( )v t . 

Note that even in the caseC C we may not expect generally the equalities 

( ) ( ) 0x t u t  and ( ) ( )y t v t =0, however, the errors are bounded. 

2.3. DESCRIPTION OF THE METHODOLOGY 

As a test case, the author consider a three sensor configuration system as in Figure 

2.1. In the figure, the thick black lines are the boundaries of the room, the red dots are the 

sensor locations, and the red dotted lines designate the border of the boundary zone. 

Some chemical sensors are designed to detect simply the existence of a chemical 

particle and trigger a positive result when the concentration amounts are above a preset 

threshold level. In our design, instead of the threshold, the author make use of the actual 

concentration levels that are detected. This approach along with some other data enables 

us to model the flow of the particles and the location of the source. Each sensor provides 

the co-located sensory information of the wind velocity, the concentration of the 

particles, and the concentration differential preferably perpendicular to the wind 

direction. The concentration differential information is obtained not by an additional 
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sensory device but by an off-centered multi-orifice detection hardware configuration. In 

our derivations, the author assume that the differential information is perpendicular to the 

wind direction, but the author can accommodate any non-zero known angular orientation 

simply by a coordinate transformation. Designating the location of the sensors by (x, y), 

the author represent the flow of air by ,x y  . Similarly, the author represent the sensed 

particle concentration by s and the concentration gradient by s . 

Figure 2.1. The location of three sensors in a square enclosure. 
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Once the author obtain the sensory information, the author start with an 

approximation of the particle path. In order to avoid multiple solutions, the author make a 

number of assumptions. 

Assumption 1: The air-borne particles travel the most direct route. 

Based on Assumption 1, the author configure paths that go through the sensor 

locations, such that the paths satisfy the locations as well as the differentials. This 

approach leads to a parametric cubic-polynomial representation of the path in terms of a 

variable t. the author use the cubic Hermite splines with the end point differentials 

weighted three times, such that 

3

2

3

2

( ) (2( (0) (1)) 3( (0) (1))) 3( (1) (0))

3( (1) 2 (0))) 3 (0) (0),

( ) (2( (0) (1)) 3( (0) (1))) 3( (1) (0))

3( (1) 2 (0))) 3 (0) (0).

x t x x x x t x x

x x t x t x

y t y y y y t y y

y y t y t y

 

  

 

  

     

   

     

   

where the parametric curve starts at one sensor location at x(0), y(0) and ends at 

the other sensor location at x(1), y(1) as t goes from 0 to 1. Figure 2.2 shows the spline 

approximation of a particle path from one sensor to another with matching initial and 

final velocities. 

If the author strictly apply this interpolation method, the author end up two 

possible choices, one path going from Sensor 1 to Sensor 2 and another path going from 

Sensor 2 to Sensor 1. The author could explore both possibilities or have a decision 

making process based on other factors to eliminate one of the choices. Here, as a first 

step, the author choose the shortest path option. 

Assumption 2: The path of the air-borne particles has minimal length. 

Even though, the author now have a path from one sensor to another, there are 

still couple of issues to be resolved. The first issue is related to the underlying 

presumption that a particle somehow would travel from one sensor to the other even 

though the sensors are at arbitrary locations. To correct this problem, the author rely on 

the dissipation property of the particles. The author compute the expected concentration 

value along the computed path and compare it with the actual sensed concentration value. 

Based on the error and the measured gradient concentration, the author determine a new 

location perpendicular to the initial path where the expected and sensed concentration 
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values match. The author then compute the corrected path going through one of the 

sensors and the new location. When the author repeat the process forwards from one 

sensor and backwards from another one, the author end up getting two consistent paths 

with correct concentration values.  

Figure 2.2. An air-borne particle path with matching terminal velocities. 

The second issue is related to the choice of the parameter t. In our 

parametrization, the author chose t to start at 0 at one of the sensors and end at 0 initially 
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at another sensor at 1. The author would like to have the parameter be a good 

representative of actual travel time, since the author also would like to obtain connected 

paths. Figure 2.3 shows the two paths generated by matching the expected and sensed 

concentration values. 

Figure 2.3. Consistent air-borne particle paths between two sensors. 
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To correct this problem, the author compute the speed at every point along the 

path as a linear function of the distance from one sensor to the other one while matching 

the sensed speed values at the two end points. In the existence of multiple sensors, the 

author need to make sure that the paths continue smoothly passing through the 

neighborhood of sensors. Figure 2.4 shows the two paths with equally-timed distances.  

Figure 2.4. Paths with equally-timed distances among two sensors. 
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In this example, this extended path goes through Sensor 1 and the neighborhoods 

of Sensors 2 and 3 due to path updates for the consistency of the particle propagation. To 

obtain a general development of all possible paths passing through the neighborhoods of 

sensors, the author introduced a couple of more assumptions. 

Assumption 3: The individual segments of the paths that span multiple sensor 

regions have to have the same flow directions. 

Assumption 4: The paths that span multiple sensor regions always go through at 

least one sensor. 

Based on above assumptions, Figure 2.5 shows the curves that go through the 

three sensor regions, and Figure 2.6 shows the same paths with equally-timed distances. 

Figure 2.5. Consistent air-borne particle paths among three sensors. 
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As the author observe from the Figures 2.4 and 2.6, there’re are two set of 

possible particle flow directions. At this point, the author pursue both possibilities and 

make a decision on the actual flow path later by a conflict resolution layer. 

As the author described above, in the process of determining the particle paths 

that go through the sensors, the author primarily rely on the sensory values, the particle 

dissipation properties, and interpolation. However, in order to generate a full coverage of 

paths for the whole room, the author need to extrapolate as well. 

Figure 2.6. Paths with equally-timed distances among three sensors. 
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In the first step of the interpolation, the author extend the primary paths that go 

through the sensors with linear approximations of the air flow parameters, and the 

particle dissipation properties of the particle concentrations. Figures 2.7 and 2.8 show the 

path extensions, where the author purposely extended the paths beyond the room 

boundaries. The author will take care of the portions that go beyond the boundaries 

especially after the whole room coverage below. 

Figure 2.7. Primary air-borne particle path extensions going through two sensors. 
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Figure 2.8. Primary air-borne particle path extensions going through three sensors. 

In the next step of the extrapolation, the author fill the whole room with 

secondary paths.  

For the secondary paths that are between two adjacent primary paths, the author 

determine the normals (perpendicular lines to the tangents of the paths), and use the 

intersection points of the normals to generate a secondary path. The author assign the 

average values of the particle concentrations and the concentration gradients on these 

paths.  

For the secondary paths that are on the outside regions of the primary paths, the 

author use similar normal extensions, but the author extrapolate the particle 
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concentrations and the concentration gradients. Figures 2.9 and 2.10 shows the path 

extensions as well as the whole room coverage with primary and the secondary paths. 

Figure 2.9. Primary and secondary air-borne particle paths going through two sensors. 



33 

Figure 2.10. Primary and secondary air-borne particle paths going through three sensors. 

The extended primary and the secondary paths depend on the best data fit based 

on the sensory data. In the generation of these paths, the author excluded the effects of 

the room boundaries. Obviously, if the author truncate the paths at the boundary, we’ll 

generate unnatural particle behavior, where particle would originate on one side of the 

boundary and disappear on the other side. To model the particle path along these types of 

boundary structures, the author need to incorporate realistic flows of air in the 

neighborhood of the boundaries. 
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If the author denote the perpendicular distance of a point on one of the paths by d, 

then the author compute the new distance d  as tanh( )d w d w  , where w is the width of 

the buffer zone. This approach maps the paths at infinity onto the room boundary and 

enables all of the portions outside the room boundary to be in the buffer zone. Figures 

2.11 and 2.12 show the complete set of paths confined within the room bound 

Figure 2.11. Boundary confined air-borne particle paths going through two sensors. 
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Our approach to handle the boundaries is based on a convex buffer zone in the 

neighborhood of the room boundary, where the air-borne particle flow is distorted in the 

direction of the boundary. In this zone, the author map the portions of the paths, which 

are in the buffer zone or outside the room boundary, in a manner that preserves the 

continuity of the location and the derivative of a particle entering this zone. 

Assumption 5: The paths that go across the boundary regions always go close to 

the boundary infinitely. 

Figure 2.12. Boundary confined air-borne particle paths going through three sensors. 
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To further validate our approach, the author applied the same principles on a 

slightly larger room in Figure 2.13 and with twice the air speed in Figure 2.14. As the 

author can observe from these figures, our approach provides satisfactory and consistent 

air-borne particle flow paths based on few sensory data. 

Figure 2.13. Boundary confined air-borne particle paths going through two sensors in a 

rectangular room. 
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Figure 2.14. Boundary confined air-borne particle paths going through two sensors with 

twice the air speed. 

2.4. THE SUMMARY OF PLOTTING AND STOPPING RULES 

Step 1: confirm the order of the sensors 

There are several sensors in the room where the author want to detect the source, 

the author should got the correct order from the all permutations.  For excluding the 

incorrect and contradictory order, the author have set the rule that the author think the air 

flow can propagate along the shorter route. The process is showed below: 
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1. Using the cubic parameter interpolation method, the author can get the curve

between any two sensors. 

2. Calculate the length of the above-mentioned curve, such as LAB.

3. The author can get the length between the two sensors, when the sensors’ order

is flipped, such as LBA. 

4. Compare the lengths when the orders of the sensors are different. The author

think the shorter one is correct order. Such as If LAB < LBA, the correct order is A to B. 

5. Do a loop to get the correct order between each two sensors.

Step 2: interpolate the paths that connect the sensors 

In our modeling, the author assume that there’re only very few sensor data 

available, since it is difficult to place sensors and collect data in locations that aren’t very 

accessible and user friendly. With a few sensors, the author collect the concentrations 

levels of the chemical particle, the wind direction, and the local dissipation of the 

particle. Using cubic Hermite parameter interpolation, the author can get the paths that 

connect the sensors. Moreover, the author can adjust the parameter to get the 

extrapolation.  

The problem with Hermite interpolation is the need to specify the derivatives at 

the endpoints of each section of the curve.  Suppose the curve has n+1 data points 

(x0,y0), …， (xn, yn), and the author wish to parameterize the cubic to allow complex 

features. Then the author must specify '( )ix t  and '( )iy t for each i= 0, 1, …,n , where 

( , ) ( ( ), ( ))i i i ix y x t y t . This is not as difficult as it would first appear, however, since each 

portion can be generated independently, provided that the author ensure that the 

derivatives at the endpoints of each portion match those in the adjacent portion. 

Essentially, then, the author can simplify the process to one of determining a pair of cubic 

Hermite polynomials in the parameter t, where 0 0t   and 1 1t  , given the endpoint data 

(x(0), x(1), y(0), y(1)) and the derivatives dy/dx(at t= 0) and dy/dx(at t= 1). The natural 

form for determining x(t) and y(t) required the author specify ' ' ' '(0), (1), (0) (1)x x y and y . 

The explicit Hermite curve in x and y required specifying only the equations: 

' '

' '

(0) (1)
( 0) , ( 1) .

(0) (1)

dy x dy x
t t

dx y dx y
   
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By multiplying '(0)x  and ' (0)y by a common scaling factor, the tangent line to 

the curve at (x(0), y(0)) remains the same , but the shape of the curve varies. 

To further simplify the process, the derivative at an endpoint is specified 

graphically by describing a second point, called a guide point, on the desired tangent line. 

The farther the guide point is from the node, the more closely the curve approximates the 

tangent line near the node. 

The node occur at (x0,y0) and (x1,y1), the guide point for (x0,y0) is (x0+ 0 ,y0+

0 ), and the guide point for (x1,y1) is  (x1- 1 ,y1- 1 ). The cubic Hermite polynomial 

x(t) on [t0, t1] must satisfy 

X(0)= x0, x(1)= x1, x’(0)= 0 , x’(1)= 1 . 

It is easily verified that the unique cubic polynomial satisfying these conditions is 

3 2

0 1 0 1 1 0 1 0 0 0( ) [2( ) ( )] [3( ) ( 2 )] .x t x x t x x t t x             

In the similar manner, the unique cubic polynomial for y is 

3 2

0 1 0 1 1 0 1 0 0 0( ) [2( ) ( )] [3( ) ( 2 )] .y t y y t y y t t y             

Popular graphics programs use this type of system for their freehand graphic 

representations but in a slightly modified form. The Hermite cubics are described as 

Bezier polynomial, which incorporate a scaling factor of 3 when computing the 

derivatives at the endpoints. This modifies the parametric equation to 

3 2

0 1 0 1 1 0 1 0 0 0( ) [2( ) 3( )] [3( ) 3( 2 )] 3x t x x t x x t t x             

In the similar manner, the unique cubic polynomial for y is     

3 2

0 1 0 1 1 0 1 0 0 0( ) [2( ) 3( )] [3( ) 3( 2 )] 3y t y y t y y t t y             

We can construct a set of cubic Bezier curves (C0, C1,…，Cn-1) based on the 

parametric equations. 

 Where Ci is represented by 

2 3 2 3

0 1 2 3 0 1 2 3( ), ( ) ( , ).i i i i i i i i

i ix t y t a a t a t a t b b t b t b t      

Step 3: some rules to remove some unreasonable points and their links. 

Assuming the each two points can have a link, the author can get countless new 

points and links. So, the author should set up some rules to remove some unreasonable 

points and their links.  
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a. Check order

All the links should obey the region order. In our case, all links should follow the 

order (region 1 to region 3, region 1 to region 2 to region 3)  

b. Check process

We can get only one link derived from one link. It’s not allowed that there are two 

different links from one point. 

c. Check association

Firstly, the author give the definition of point association. If one point is 

generated by another point along another one’s perpendicular line, the author think there 

are belonged to a same group. The author think there are not link between each two 

points in the same group.   

d. Check group

If the link with the other existed one have same endpoints and beginning points 

that are belonged to the same group. The author think the new link should be removed. 

e. Check original points (sensors)

Every muti-links should go through one point that is the location of any one 

sensor. 

We should check each above rule. If one of rules isn’t obeyed, the link should be 

removed. Finally, the author find if there are n sensors, the author will have n*(n-1) links 

and n multi-links. 

Step 4: scaled correctly points on the path showing the speed of propagation 

In the points where there are the sensors, the author can get the speed of the 

airflow from the sensor data. But, the author want to show the speed of every point in the 

whole room in our map. 

In the step 2, the author have got the paths on which there are a few sensors. In 

this step, the author want to scale correctly points on the path showing the speed of 

propagation.  Using the speed of the points where the sensors are located, the author can 

get the speed of propagation on every point. In our case, the author think the speed has 

the linear change along the propagation paths. The beginning point is the sensor point as 

the author know the speed in these points. The author draw the speeding points using the 

equal time interval. Through the speed value and the time interval, it is simple to get the 
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next speed point. Step by step, the author can finish the all speed point along the 

propagation direction on the path. In the map, the author can find the longer the distance 

between to speeding point indicate the speeding on this part is faster than the other one. 

Step 5: map the whole room using interpolation and extrapolation  

In the step 2, the author have got the paths on which there are a few sensors. But, 

the author want to topographically generate the flow diagram on a map of the 

surroundings and determine the probable source location of the chemical particles. There 

are two different cases when the author map the whole room.  One is the region between 

two paths, the other is the region between a path and the boundary.  When the author 

meet the first case, the author can use the method of bisection. Using two points from two 

different paths the author can get the midpoint. The author apply this method in a loop, 

the author can compute the whole path. As far as the other region, the author use a 

different method that based on the former method. The author calculate the normal vector 

of each points with a path that is belonged to the former region in order to get the 

crossing point. Then, the author generate a new point in the opposite direction. The 

distance from initial point and crossing point is proportional with the distance from initial 

point to the new point.  

We’re able to improve on the accuracy of the route as well as generate more 

viable routes. With the added accuracy and flexibility, we’re also able to eliminate 

unfeasible options and conflicting sources. 

Because every path is consisted of many discrete points, the author can using 

dichotomization to get several new points. Then, the new points together form a new 

path. Finally, the author can map the whole room in order to mark the chemical situation 

everywhere. 

Step 6: considering boundary condition to modify and stop the airflow path 

Several difficulties arise when formulating a shape transformation. The instance 

in which boundary information signals the presence of a shape is not clear. The decision 

of which boundary information to include and exclude in a description of shape is also 

nontrivial. This decision process poses both a local and a global problem. Over a 

localized region of a shape, the transformation should separately shape boundary 

information elements related to different shapes, even if shapes extend over a very wide 
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spatial region. On a more global scale the transformation must be able to integrate local 

shape encodings as subparts of the same global structure. 

It’s known that the boundary of room can affect the airflow’s propagation. If there 

is not the boundary, the path would pass it. But, in fact, the propagating paths are affected 

by the boundary, they will spread along the boundary. The airflow near the boundary 

cannot swerve suddenly, so the author can assume an area that is very near the boundary, 

if the airflow enters into the area, it will be changed by the boundary. If the airflow is out 

off this area, it will not be affect by the boundary. 

The method using proportional squeeze is used for the obstacles. If there is not the 

boundary existed, the airflow will go beyond it. the author find using tanh function to 

squeeze the distance between boundary and airflow can make the airflow approximate the 

real airflow path. Firstly, the author calculate the normal vector of each points that are 

beyond the inside boundary, and the normal will have a crossing point with the inside 

boundary. Secondly, the author can calculate the distance between the point and the 

crossing point, then the author make the distance shorter using tanh function. Finally, the 

author can get a new point that is in the boundary area. The author find the tanh can make 

our path satisfy this really condition that the closer the point with the inside boundary, it 

will get more effect by the boundary. When the point is near the inside boundary, the path 

just have a tiny change with the path without considering the boundary. When the points 

is far from the boundary, the path will be squeezed sharply. The author apply this method 

in a loop, the author can compute the whole path. 

When the airflow curve is in the boundary region, the blocking stop the airflow 

curve when it is parallel with the boundary.   

The error cause by the odor values, and the error between the assumed odor 

values is bounded. 

A．assume ds/dx is perfect 

We assume the propagation is totally correct, and the sensed values at two 

sensor’s locations are S1 and S2. 

The decay ratio along the propagation can be expressed by the alS Ae , so the 

values on the perpendicular direction should be 1

1

als e and 2

2

als e . 
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We assume the sensed value’s function on the perpendicular direction should 

be S ml n  , then in our case 1 3 1S m l n  and 2 4 2S m l n  . 

Plugging 1

1

als e and 2

2

als e into 1 1S m l n  and 2 2S m l n  , 

We get S= 1

1 3 1

alm l s e and 2

2 4 2

alm l s e . Because the author assume the ds/dx is 

perfect, the updated path should be identical with the original, which mean the 

S= 1

1 3 1

alm l s e and 2

2 4 2

alm l s e should be equal.

If the sensed value’s function on the perpendicular direction should be S ml n 

cannot satisfy the physical propagation, the errors exist between the assumed odor values. 

The bound of the error is 1 2

1 3 1 2 4 2[0, ]
al al

m l s e m l s e


   . Obviously, the author can easily 

prove the region is bounded. 

The error the author get is based on the derivative of sensed values (ds/dl) and the 

sensed values (s). 

B. assume the derivative of sensed values (ds/dl) has some percentage off.

We assume the correct sensed value’s function on the perpendicular direction 

is dS m l n  , so the desired parameter and designed parameter’s deviation 

is %d

d

m m

m



 . 

So, the bound of error 1 2

1 3 1 2 4 2

al alml s e m l s e   should be based 

on %d

d

m m

m



 , the maximum error can be derived, 

1 2

1 3 1 2 4 2

al alml s e m l s e   1 2

1 3 1 2 4 2

al al

d dm l s e m l s e   

1 1 3 2 2 4( ) (m ) ld dm m l m   
. 

Moreover, the author can get the error percentage is 

1 2

1 1 3 2 2 4

1 3 1 2 4 2

2( ) 2(m ) ld d

al al

d

m m l m

m l s e m l s e

  

 
%, and the percentage is based on the %d

d

m m

m



 . 
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2.5.  USING MATLAB TO STIMULATE THE PARTICLE PATHS 

1. Identify the number of different s values.

Endpoints are at (x0, y0) and (x1, y1). The guide point for (x0, y0) is (x0+ 0 , 

y0+ 0 ), and the guide point for (x1, y1) is (x1- 1 , y1- 1 ). 

2. Find new vectors array for each s value.

3. Do the interpolation.

This parametric equation for x is 

3 2

0 1 0 1 1 0 1 0 0 0( ) [2( ) 3( )] [3( ) 3( 2 )] 3x t x x t x x t t x              . 

In the similar manner, the unique cubic polynomial for y is     

3 2

0 1 0 1 1 0 1 0 0 0( ) [2( ) 3( )] [3( ) 3( 2 )] 3y t y y t y y t t y              . 

4. Plot the same s value trajectories.

We can construct a set of cubic Bezier curves (C0, C1,…，Cn-1) based on the 

above parametric equations, where Ci is represented by 

2 3 2 3

0 1 2 3 0 1 2 3( ), ( ) ( , ).i i i i i i i i

i ix t y t a a t a t a t b b t b t b t      

Strep 1; 

For each i=0, 1, …， n-1 do step 2 and 3. 

Step 2; 

 Set 
0

i

ia x ; 

   
0

i

ib y ; 

  
1 03ia  ; 

  
1 03ib  ; 

 
2 1 0 1 03( ) 3( 2 )ia x x      ; 

     
2 1 0 1 03( ) 3( 2 )ib y y      ; 

     
3 0 1 0 12( ) 3( 2 )ia x x      ; 

     
3 0 1 0 12( ) 3( 2 )ib y y      ; 

Step 3; 

Output the all above coefficient. 
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The Matlab Script is attached below. 

clear all  

close all 

clc 

n=3; % n is the # of sensors 

x=[3,2,6]; 

y=[6,2,6];  % give the value of the endpoint(x,y)  

xjia = [3.3,2.8];  

yjia =[6.5,3.0];    % give the value of the left guide point 

xjian = [0,2.8,2.5];  

yjian =[0,3.0,2.8];  % give the value of the left guide point 

a0 = [0,0]; 

a1 = [0,0]; 

a2 = [0,0]; 

a3 = [0,0]; 

b0 = [0,0]; 

b1 = [0,0]; 

b2 = [0,0]; 

b3 = [0,0];   % initiate  the coefficient of the curve 

%generate the coefficient of the curve 

for i=1:n-1 

    a0(i)=x(i); 

    b0(i)=y(i); 

    a1(i)=3*(xjia(i)-x(i)); 

    b1(i)=3*(yjia(i)-y(i)); 

    a2(i)=3*(xjia(i)+xjian(i+1)-2*x(i)); 

    b2(i)=3*(yjia(i)+yjian(i+1)-2*y(i)); 

    a3(i)=x(i+1)-x(i)+3*xjia(i)-3*xjian(i+1); 

    b3(i)=y(i+1)-y(i)+3*yjia(i)-3*yjian(i+1); 

end 

% generate the cubic bezier curves Co, C1 in parametric 

for i=1:n-1; 

    p1=[a3(i),a2(i),a1(i),a0(i)]; 

    xt=poly2sym(p1,'t'); 

    p2=[b3(i),b2(i),b1(i),b0(i)]; 

    yt=poly2sym(p2,'t'); 

end 

figure(1) 

plot(x,y,[0,1]);  % plot the smell trajectories 
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3. COMPARE AND VALIDATE INTERPOLATION AND EXTRAPOLATION

APPROACH 

3.1. USING COMPUTATIONAL FLUID DYNAMICS TO GET THE 

ANALYTICAL SOLUTION 

To compare and validate our approach, the author use exact analytical methods 

for simpler cases and use finite-element method based software (such as COMSOL) for 

more complicated cases. 

The analysis of airborne particle motion is identical to the fluid motion analysis in 

physics. The fluid motion is governed by the Navier-Stokes nonlinear partial differential 

equation [25], such that motion in the two dimensional space satisfies: 

2 2

2 2

2 2

2 2

0,

1
( ),

1
( ),

u v

x y

u u P u u
u v

x y x x y

v v P v v
u v

x y y x y







 
 

 

    
    

    

    
    

    

(1) 

Where u and v are the components of the velocity in the x  and y directions,  is 

the fluid density, and P is the pressure. 

The analytical solutions to the Navier-Stokes equations depend on the initial and 

the boundary conditions, and the exact solutions exist only for simple cases. 

In this section, the author will assume that the particle flow dynamics is two 

dimensional, and it’s uncompressible, inviscid, and irrotational. If D is a simply 

connected domain in (x, y) and the flow is irrotational, the integral udx vdy is

independent of path in D. If the author integrate from a fixed point ( , )a b  to a variable 

point ( , )m n , then the integral becomes a functions of the point ( , )m n : 

( , )

( , )
( , ) ( )

m n

a b
m n udx vdy   (2)
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The function ( , y)x is called velocity potential of the motion. Since the integral is 

independent of path, udx vdy is an exact differential, namely, the differential of 

function ( , y)x , that is, 

                        udx vdy dx dy
x y

 
  

 
                                                      (3) 

Form (3), 

                         ,u v
x y

 
 
 

                                                                  (4) 

By substituting u and v in (4), into (1) the author see that ( , y)x satisfies 

Laplace’s equation:   

                       
2 2

2

2 2
0

x y

   
    

 
                                                             (5) 

By the above theoretical derivation, the author use Laplace’s equation to model 

fluid motion.  

Let ( , y)x be a conjugate function of ( , y)x .The function ( , y)x is called the 

stream function of the flow. The curves ( , )x y const  are the streamlines of the fluid. 

The author know that both ( , y)x and ( , )x y have continuous second derivatives. Then 

the complex function 

                         (x, y) ( , y) ( , y)F x i x                                                       (6) 

is analytic in the region of the flow. This function is called the complex potential 

of the flow. 

The velocity of the flow can be obtained by differentiating (6) and using Cauchy-

Riemann equations; the author find  

                       (x, y)xF i i u iv
x x x y

   
     
   

                               (7) 

General solution to (7) can be complicated and unnecessary for the simple cases 

that the author are considering. Indeed, the author will assume the function F from the 

initial flow and determine the specifics by substituting the functions into the differential 

equations. Because of the uniqueness of the solution to the differential equation under 
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initial and boundary conditions, if the function F satisfies (5) and the boundary 

conditions, then it’s the unique solution. 

Case 1: fluid flow with free boundary. 

 As the first case, the author choose the no boundary case with a uniform infinite 

width flow of particles at a certain angle , as shown in Figure 3.1. Since the solution of 

the partial differential equation is unique, the author can firstly assume a solution and 

then check it satisfies or not.  If the author represent 1 2(x, y) kzF k x ik y   (K real 

number) describe a uniform flow in the x y plane. 

Figure 3.1. A uniform parallel flow. 
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If the flow is irrotational then 0F   is automatically satisfied by 

writing F   , where   is termed the velocity potential, hence 
yF

y


 



and
yF

y


 


. On the other hand, if the flow is incompressible then 

xF
y


 



and
yF

x





, where is termed the stream function. 

Therefore, substituting 1 2(x, y) kzF k x ik y   into the differential equations, the 

author can get the velocity potential is 1 2( , )x y k x k y   and the stream function 

is 2 1( , )x y k x k y   , where the author can find the streamlines and potential lines are 

orthogonal. 

The velocity of the flow can be obtained: 

'

1 2 1 2(x, y) F (x, y)V k x ik y k x ik y    

The streamlines are parallel lines given by the equation 2 1 constantk x k y  and 

are inclined at an angle 2

1

arctan( )
k

k
   . 

Picking arbitrary two points in the x y plane ( 1 1( , )x y and 2 2( , )x y ) be the two 

sensor’s locations, the author use the interpolation method can get the fluid propagation 

path between the two points. However, after considering the chemical concentration, the 

endpoints of the path should be modified. When the two points are chosen on a same 

streamline, the streamline can be calculated to 2 1 constantk x k y  . The two methods get 

the same path, so that the error term is equal to zero. 

The below Figure 3.2 gives the error curve between fluid dynamic method and 

our proposed method. The left one is fluid path plot using our proposed method, the right 

one is the error curve. For a certain path, the author select this red path be the considered 

path, then fix one point 1 1x  , change 2x in the region (0, ) . The error curve shows the 

error value of fluid path derived by our proposed method. 
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Figure 3.2. The performance of interpolation and extrapolation for a uniform parallel 

flow. 

Case 2: fluid flow with infinite wall. 

In this case, as shown in Figure 3.3, the complex potential 

is 2 2 2(x, y) ( )
2 2

A A
F z x y iAxy    , where A is a positive real number. The velocity 

potential and stream function are given by 2 2( , ) ( )
2

A
x y x y   , ( , )x y Axy  . 

The streamlines ( , ) constantx y  are from a family of hyperbolas with 

asymptotes along the coordinate axes. The velocity vector 

'

1 2(x, y) F (x, y) (k )V A x k y   indicates that in the upper half-plane Im(z) 0 , the fluid 

flows down along the streamlines and spreads out along the x axis, as against a wall. 

Picking arbitrary two points in the x y  plane ( 1 1( , )x y and 2 2( , )x y ) be the two 

sensor’s locations, the author use the interpolation method can get the fluid propagation 

path between the two points. However, after considering the chemical concentration, the 

endpoints of the path should be modified. When the two points are chosen on a same 

streamline, the streamline can be calculated to 3 2y ax bx cx d    . 
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The error term is
2 2

1 1

( , )
3 2 2

( , )
( )

x y

x y

k
ax bx cx d dx

x
    , where the K is a real number 

and (a,b,c,d) are four parameters that is related with the coordinates of the two points and 

derivatives of the two points . In this case, substituting the (a,b,c,d), the author get the 

error term is 

2 5 5 4 4 2 2 3 31 2
2 1 2 1 1 2 1 2 2 1

2 2 2 2

1 2 1 2 2 1 1 2 2 1

( )1 1
( ( ) ( ) ( 4 )( )
5 2 3

( )( ) ( )

x x
E k x x x x x x x x x x

x x x x x x x x x x


       

    

Figure 3.3. The fluid flow around infinite wall. 

The below figure give the error curve between fluid dynamic method and our 

proposed method. The left one is fluid path plot using our proposed method, the right one 
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is the error curve. For a certain path, the author select this red path be the considered 

path, then fix one point 1 1x  , change 2x in the region (0, ) . In the Figure 3.4, the error 

curve shows the error value of fluid path derived by our proposed method. 

Figure 3.4. The performance of interpolation and extrapolation for the fluid flow around 

infinite wall. 

Case 3: inviscid flow past a cylindrical obstacle. 

In this case, as shown in Figure 3.5, the complex potential for an ideal fluid 

flowing from left to right across the complex plane and around the unit 

circle
2 2 1z x y   . 
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We use the fact that the conformal mapping 
1

( )w S z z
z

   maps the domain 

{z : 1}D z  one-to-one and onto the w plane slit along the segment 2 2, 0u v    . 

The complex potential for a uniform horizontal flow parallel to this slit in the w plane 

is 1( )F w Aw , where A is a positive real number. The stream function for the flow in 

the w plane is (u, )v Av  so that the slit lies along the streamline ( , ) 0x y  . 

Figure 3.5. Fluid flow around a circle. 
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The composite function 2 1( ) (S(z))F z F determines the fluid flow in the domain 

D, where the complex potential is
2 1

1
( ) (S(z)) A(z )F z F

z
   , where 0A  . the author 

can use polar coordinates to express 2 ( )F z as 

2 2

2

( ) ( )

1
A( )

1
(r )

(cos sin )
(r )

1 1
A(r )cos (r )sin

i

i

i

F z F re

re
re

A cos irsin
rcos irsin

r ir
A cos irsin

r

iA
r r







 
 

 
 

 



 

  



  

   

The streamline 
1

( , ) ( )sin 0r A r
r

     consists of the rays 

1, 0 1,r and r      along the x axis and the curve
1

0r
r

  , which is the unit

circle 1z r  . Thus the unit circle can be considered as a boundary curve for the fluid 

flow. 

The approximation 
2 1

1
( ) (S(z)) A(z ) AzF z F

z
     is valid for large values of z, 

so the author can approximate the flow with a uniform horizontal flow having speed 

( , )V x y A at points that are distant from the origin.

Picking arbitrary two points in the x y  plane ( 1 1( , )x y and 2 2( , )x y ) be the two 

sensor’s locations, the author use the interpolation method can get the fluid propagation 

path between the two points. However, after considering the chemical concentration, the 

endpoints of the path should be modified. When the two points are chosen on a same 

streamline, the streamline can be calculated to 3 2y ax bx cx d    . The error term 

is
2 2

1 1

( , )
3 2 2

( , )
( )

x y

x y

k
ax bx cx d dx

Ax
    , where the A is a positive real number and (a,b,c,d) 

are four parameters that is related with the coordinates of the two points and derivatives 

of the two points . 
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The below Figure 3.6 give the error curve between fluid dynamic method and our 

proposed method. The left one is fluid path plot using our proposed method, the right one 

is the error curve. For a certain path, the author select this red path be the considered 

path, then fix one point 1 1x  , change 2x in the region (0, ) . In the Figure 3.6, the error 

curve shows the error value of fluid path derived by our proposed method. 

Figure 3.6. The performance of interpolation and extrapolation for the fluid flow around a 

circle. 

In summary, based on all of the above results, they can conclude that the error 

term is related with the coordinates and derivatives of two sensors and the boundary 

condition. Obviously, it’s coincident with the natural law. The closer distance of two 

sensors, the error term of the chemical propagation path is smaller. In the other words, the 
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more sensors the author use, the better result the author get, since the distance of any two 

sensors become closer. As for the boundary condition, the simplest condition is free 

boundary in which the error is equal to zero. It’s because the cubic hermit Spline function 

can approximate any function, however, the path on the complex boundary will bring 

higher order error term. When the order of Spline function is infinite, the error of 

approximation should be zero. 

3.2. LIPSCHITZ CONDITION 

 Theorem 4: Cubic spline function (x(t), y(t)) that is used to describe the particle 

paths satisfies Lipschitz continuity , such that, 

1 2 1 2

1 2 1 2

( ) ( )

y( ) ( )

x t x t L t t

t y t L t t

  

  
, there exists a constant 0L  . 

Proof: 

Each segment of the cubic polynomial function is a cubic polynomial: 

3 2 3 2(t) [ 1][a ]Tp at bt ct d t t t b c d    

then, 3 2

1 1 1 1(t )p at bt ct d    and 3 2

2 2 2 2(t )p at bt ct d   

3 3 2 2

1 2 1 2 1 2 1 2( ) ( ) a(t ) (t ) c(t )p t p t t b t t      

2 21 2
1 2 1 2 1 2

1 2

( ) ( )
( ) ( )

p t p t
a t t t t b t t c

t t


     



Select 1 2max{t ,t }mt  , 

21 2

1 2

( ) ( )
3 2m m

p t p t
at bt c

t t


  


, 

Then, let 23 2m mat bt c L   , 1 2

1 2

( ) ( )p t p t
L

t t





. 

Theorem 5: Given M and 
'M to represent chemical concentration and its 

derivative, Let (S, )M d and ' ' '(S , )M d be metric spaces and ':S Sf  be a mapping , 

then f is Lipschitz continuous mapping. Such that, 

'

1 2 1 2 1 2,s : d ( ( ) (s )) ( s )s S f s f Ld s     . 

Proof: 

Assume the ':S Sf  is continuously differentiable function, 
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For every there exists ( ) 0    such that 1 2S S   imply 1 2( ) (s )f s f   . 

Using Taylor’s Theorem 

0 0 0(s) ( ) ( (1 ) ) (s s ), t [0,1]Tf f s f ts t s     

Here (s)f is the gradient of function. 

1

1 2 1 2 1 2
0

( ) ( ) ( (1 ) ) (s s )Tf s f s ts t s dt     
1

1 2 1 2
0

s s ( (1 ) )Tts t s dt    

Using sup ( )zL f s  , the above inequality can be 

'

1 2 1 2 1 2,s : d ( ( ) (s )) ( s )s S f s f Ld s    
. 
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4. EXPERIMENTAL RESULTS OF INDOOR AND OUTDOOR ENVIRONMENT

4.1. SIMULATION AND ANALYSIS IN AN EXPERIMENTAL ENVIRONMENT 

In the above method, the author know the airflow is affected by the boundary. 

But, most of real cases have openings and obstacles. As a test case that exist obstacles 

and openings, the author consider a two sensor configuration system as in Figure 4.1 and 

a three sensor configuration system as in Figure 4.2.  

Figure 4.1. Boundary confined air-borne particle paths going through two sensors in a 

rectangular room with two openings.  



59 

The environment has the same basic information as follows: a search space with 

10×10 m2, two air openings with width 1 m and an ethanol source of 100 ppm 

concentration. The coordinates of the two air inlets are (x = 0, y = [3, 4]) and (x = 7, y = 

[3, 4]), respectively.  

Figure 4.2.  Boundary confined air-borne particle paths going through three sensors in a 

rectangular room with two openings. 

In the figures, the black zones are walls and obstacles that block the chemical 

particle propagation. The orange zones are the neighborhood of the obstacles and walls. 
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The paths should be affected by any obstacles that may have been in the room. 

However, the change on the paths should be gradual in order to make them be the smooth 

curves.  

At the same time, if the room has two opening on the walls, the paths will go 

through the opening rather than distorting the paths using the boundary condition. To 

solve the case with obstacles and openings, the author propose the following couple of 

assumptions. Figures 4.3 and 4.4 show a circle obstacle existed in the room. 

Figure 4.3. Air-borne particle paths going through two sensors in a rectangular room with 

a circle obstacle. 
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Assumption 6:  The obstacles in the room make the path spread along their outline 

of obstacles. 

Assumption 7: The chemical particle paths should depart the openings with a 

certain angle between the boundary and the original path.  

Figure 4.4.  Air-borne particle paths going through three sensors in a rectangular room 

with a circle obstacle. 

Base on the above assumptions, the chemical particle paths are distorted in the 

neighborhood of obstacles. Using above approach handling the obstacles, the author can 

map the paths inside the obstacles and the neighborhood of the obstacles onto the buffer 
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zone. The approach is similar with the one that used in handling boundaries.  Hence, it 

enables the consistent location and derivative on the boundary of obstacles.  

When the paths go through the opening, the portions outside the room boundary 

should neither follow the original path nor squeeze the path onto the buffer zone. If the 

author had applied the previous approach, the paths will be mapped onto the buffer zone. 

Obviously, it’s unreasonable because the opening of wall cannot block paths. It’s like a 

outlet for the room. The paths need depart the wall with a certain angle (0~45 degree) 

between the wall and the original path. The angle is depended on the velocity of the wind, 

density of the fluid and so on. In our case, this angle is set at 45 degree. 

4.2. SIMULATION AND ANALYSIS ON AN REAL WORLD MAP  

From the Google Earth, a real map of Missouri University of science and 

technology can be derived. Using the edge detection method, the processed map only 

exits the main buildings. Figure 4.5 showed the real map captured from Google Earth. 

Edge detection includes a variety of mathematical methods that aim at identifying 

points in a digital image at which the image brightness changes sharply or, more 

formally, has discontinuities. The points at which image brightness changes sharply are 

typically organized into a set of curved line segments termed edges. The same problem of 

finding discontinuities in 1D signals is known as step and the problem of finding signal 

discontinuities over time is known as change detection. Edge detection is a fundamental 

tool in image processing, machine vision and computer vision, particularly in the areas 

of feature detection and feature extraction. Figure 4.6 shows the real map processed by 

the edge detection approach. 

There are many methods for edge detection, as shown in Figure 4.6, but most of 

them can be grouped into two categories, search-based and zero-crossing based.  

The search-based methods detect edges by first computing a measure of edge 

strength, usually a first-order derivative expression such as the gradient magnitude, and 

then searching for local directional maxima of the gradient magnitude using a computed 

estimate of the local orientation of the edge, usually the gradient direction. The zero-

crossing based methods search for zero crossings in a second-order derivative expression 

computed from the image in order to find edges, usually the zero-crossings of the 

Laplacian or the zero-crossings of a non-linear differential expression. As a pre-

https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Luminous_intensity
https://en.wikipedia.org/wiki/Change_detection
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Machine_vision
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Feature_detection_(computer_vision)
https://en.wikipedia.org/wiki/Feature_extraction
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processing step to edge detection, a smoothing stage, typically Gaussian smoothing, is 

almost always applied (see also noise reduction). 

Figure 4.5. A real map of Missouri University of Science and Technology from the 

Google Earth. 
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Figure 4.6. The campus map after different edge detection algorithms. 
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The edge detection methods that have been published mainly differ in the types of 

smoothing filters that are applied and the way the measures of edge strength are 

computed. As many edge detection methods rely on the computation of image gradients, 

they also differ in the types of filters used for computing gradient estimates in the x- and 

y-directions.

In the Figure 4.7, the map will be used to analyze the chemical particle 

propagation. After the edge detection, the feature has been extracted. The only buildings 

are left, because the buildings are the obstacles at which the chemical particle cannot be 

distributed. 

Figure 4.7. A real map of Missouri University of Science and Technology processed by 

edge detection method. 
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Using all of above approaches, the author can extend the path unlimitedly. 

However, in fact the entire paths are not completely exact. The author should know 

where the author can start a path and where the path ends to decide the effective range of 

the paths. The following assumption is introduced for the paths’ credible section. 

Assumption 8: Based on the measurement range of sensors, only the sections of 

the paths where are surrounded by sensors are credible. 

Because the information collected by the sensors is local variable, only the data 

on the sensor location is completely correct and the entire paths are constructed based on 

the sensors’ data.  

The section of the paths where are near the sensors have more credible level, 

while the sections of the paths where are far from the sensors should have a low credible 

level. Using all sensors be the vertices, the author can plot a convex polygon in which the 

author believe the paths are completely correct. Keeping an equal distance with the 

polygon, the author get a zone which is encircled. In this encircled section, the paths are 

correct in certain probability.  

In the Figures 4.8, the green dotted lines show the exact zone, the yellow dotted 

lines designate the uncertain region. At the same time, the boundary lines of uncertain 

zone truncate the particle paths. Hence, the author are able to obtain both the starting 

points and ending points of the paths.  Beyond this uncertain zone, the path is not thought 

be credible. It’s because the portions beyond the uncertain zone are derived by 

extrapolation without any updated data from nearby sensors. 

To verify the effectiveness of the proposed assumptions, real simulation is 

developed by COMSOL software that is used to analyze complex flow of fluid dynamics. 

COMSOL Multiphysics is a finite element analysis, solver and simulation software / FEA 

software package for various physics and engineering applications, especially coupled 

phenomena, or multi-physics.  

The package is cross-platform (Windows, Mac, Linux). In addition to 

conventional physics-based user interfaces, COMSOL Multiphysics also allows entering 

coupled systems of partial differential equations (PDEs).  

The PDEs can be entered directly or using the so-called weak form. Since version 

5.0 (2014), COMSOL Multiphysics is also used for creating physics-based apps. These 
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apps can be run with a regular COMSOL Multiphysics license but also with a COMSOL 

Server license. An early version (before 2005) of COMSOL Multiphysics was called 

FEMLAB. 

(a) 

Figure 4.8. The credible sections of chemical path using different number of working 

sensor. 
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   (b) 

  (c) 

Figure 4.8. The credible sections of chemical path using different number of working 

sensor (cont.). 
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 (d) 

 (e) 

Figure 4.8. The credible sections of chemical path using different number of working 

sensor (cont.). 
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(f) 

 (g) 

Figure 4.8. The credible sections of chemical path using different number of working 

sensor (cont.). 
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 (h) 

Figure 4.8. The credible sections of chemical path using different number of working 

sensor (cont.). 

Especially, this software has CFD module. The CFD Module is the platform for 

simulating devices and systems that involve sophisticated fluid flow models. As is the 

case with all modules in the COMSOL Product Suite, the CFD Module provides ready-

made physics interfaces that are configured to receive model inputs via the graphical user 

interface (GUI), and to use these inputs to formulate model equations. The particular 

physics interfaces that the CFD Module is equipped with enable you to model most 

aspects of fluid flow, including descriptions of compressible, noisothermal, non-

Newtonian, two-phase, and porous media flows – all in the laminar and turbulent flow 

regimes. The CFD Module can be used as a standard tool for simulating computational 

fluid dynamics (CFD), or in collaboration with the other modules in the COMSOL 

Product Suite for Multiphysics simulations where fluid flow is important. 
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We assume that the wind is from southwest 45 degrees and the configuration is on 

same size and position with the Google map. This software is accorded to Finite Element 

method to process the fluid dynamic issue, so the author want to use the result from this 

software to do a comparison. From the results produced COMSOL, the author are able to 

obtain the velocity of airflow at every point and the particle paths. The author select ten 

points, and record its locations and velocities on these points. Figure 4.9 shows the steam 

line of airflow propagation which illustrates the chemical particles dispersion. 

Figure 4.9. Air-borne particle paths going through ten sensors in a real map processed by 

COMSOL. 
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If the results using our proposed approach and the results using COMSOL are 

identical, it can support our proposed approach is correct.  Our approach uses the same 

map, locations and velocities of sensors that are selected from the result of COMSOL. 

The circles signify the locations where the author fixed sensors. The red circles mean the 

sensors are working, and the blank circles mean the sensors are not working. Comparing 

the Figure 4.8 and Figure 4.9, the author can find the airflow path is almost same.  Figure 

4.8 shows the cases where different number of working sensors existed.  When the 

working sensors are changed from eight to one, the maps of the airflows are different. A 

larger number of working sensor produce results closer to the real data obtained from 

COMSOL. The sensor’s dispatch affects the result of simulation also. It is obvious that 

optimized dispatch can collect more information for the system. For an extreme example, 

if the author fix all of the sensors in a small area together, the effective paths will existed 

in this small area only. 

4.3. CONCLUSION 

There are many useful and humanitarian applications that can locate the source of 

a chemical source. Currently, the majority of work in this area uses reactive control 

schemes that track an odor plume along its entire length, which is slow and difficult in 

cluttered environments. This paper employs a high-level control scheme. The 

interpolation and extrapolation method is used to model the particle path in the sensors’ 

environment. Then a reasoning system use the path model to get the velocity, chemical 

concentration at any point on the map and predict the most probable locations of the odor 

source. This approach has been shown to be effective for odor localization in a known 

environment, without the need for the robot to travel to the source. 

With the further development there is great potential for this approach to lead to 

many valuable applications by generalization to a wider range of environmental 

configurations. The paper present development to solve the problem there exist obstacles 

and opening in the environment. The approach gives the mode of the particle path 

surrounding the obstacles and openings. The development has successfully applied in 

general environment, because the propagation of the chemical particle can go through 

obstacles and opening in actual case. In addition, this paper is the first example of using 
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interpolation and extrapolation method to model the particle path that applied in a real 

environment. 

In addition, the result of simulating the particle path in the real map of campus is 

approximate with the result from the fluid dynamic analysis software, COMSOL. Hence, 

this approach can approximately map the particle path in real cases. Future work will 

concentrate on two areas of development: development of more general particle path 

modeling algorithm, and implementation of a range data acquisition system to enable 

autonomous map the building. 
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5. MULTI-SENSOR INTEGRATION TO MAP ODOR DISTRIBUTION FOR

THE DETECTION OF CHEMICAL SOURCES 

Last section addresses the problem of mapping the continuous particle paths 

which are most likely taken by the odor particle detected by the concentration sensors and 

anemometer sensors. The estimated particle paths are useful for odor source localization. 

However, when the sensor system collect s more information from the new imported 

sensors, the problem of updating particle paths and chemical  particles propagation is 

faced to be solved. The simplest solution is using both primary sensors and new imported 

sensors to repeat the process that is mentioned at last section. In this way, the author need 

to redo the whole computation using a new sensor set.  But, this way has a high 

computational cost and a more time consumption. Due to the new imported sensors are 

local, changing the whole particle paths and chemical particles propagation is not 

necessary.  The author don’t need to abandon the whole result from the previous 

computation. The only needed thing is updating the particle paths and chemical particles 

propagation around the new imported sensors. 

In this section, a novel algorithm is proposed that smooth particle paths using the 

new imported sensors.  In the real experiment, the new imported sensors are some micro-

drones.  The new imported sensors are scattered randomly in the considering area.  They 

collect the new data about velocities, chemical concentrations, and the gradients of 

chemical concentrations at locations of new imported sensors.  At the same times, 

depending on the particle paths and chemical particles concentration mapping that are 

derived by the primary sensors , the author can know the about velocities, chemical 

concentrations, and the gradients of chemical concentrations at locations of new imported 

sensors. Comparing the measured values from sensor and computational values from the 

above method, they are not identical.  Hence, the particle paths and chemical particles 

concentration mapping need to be modified.  

The new imported sensors are local, the data from these sensors only can estimate 

the particle paths and chemical particles concentration mapping around them. The author 

design a novel algorithm that modifies the parameters of particle paths around the new 

imported sensors.  This novel algorithm uses the new imported sensors and the sensors 

that are adjoining the new sensors.  
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In the cases that more sensors are randomly scattered into the considered area for 

getting more precise particle paths, the author should propose the algorithm to use the 

additional sensors to smooth the particle paths. 

This section addresses the problem of mapping odor distribution derived from a 

chemical source using multi-sensor integration and reasoning system design. Odor 

localization is the problem of finding the source of an odor or other volatile chemical. 

Most localization methods require a mobile vehicle to follow an odor plume along its 

entire path, which is time consuming and may be especially difficult in a cluttered 

environment. To solve both of the above challenges, this paper proposes a novel 

algorithm that combines data from odor and anemometer sensors, and combine sensors’ 

data at different positions. Initially, a multi-sensor integration method, together with the 

path of airflow was used to map the pattern of odor particle movement. Then, more 

sensors are introduced at specific regions to determine the probable location of the odor 

source. Finally, the results of odor source location simulation and a real experiment are 

presented. 

5.1. DETECTION OF ODOR SOURCE 

The detection of airborne chemicals presents a different type of challenge than 

more traditional detection efforts, such as visual-based detection or propagating signal 

detection Chemicals that are airborne tend to drift in various directions due to wind, up-

draft, and obstacles. As a result, isolation of the source of such particles becomes 

considerably difficult and dependent on topography and environment. 

There has been some previous research on the detection and modeling of airborne 

particles, plume location and tracking. However, most of such research is based on sensor 

information on moving robots that are guided by the detectors. In [26], the author 

developed the model using naive physics airflow mapping. In [27], the odor localization 

used a bi-modal search with the complementary sensing of olfaction and vision. In [28], 

the author set up a mobile sensing system for localization of an odor source using gas and 

anemometric sensors. These types of sensing robots are assumed to move about freely 

following the trail of a chemical signature, while continuously searching for the particles. 

Both of these assumptions may be invalid in inaccessible and hostile environments with 

sensors that can either function one time or need long rejuvenation time cycles. To solve 
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these problems, the author proposed a novel algorithm of mapping continuous particle 

paths using discrete sensors for odor source localization, an application of a radial basis 

function neural network for chemical source detection, and odor source localization using 

spline interpolation with the complementary Hermite spline function neural network. 

In our approach to the problem of chemical particle detection and source location, 

the author use a small number of chemical sensors that are sparsely scattered around an 

area only known by a two-dimensional map. In real-world problems, the author anticipate 

that an aircraft would drop some of these sensors on the area of interest while taking 

some aerial pictures. the author assume that the sensor data along with the map are 

transmitted to a nearby location, perhaps to a vehicle that will be traveling through the 

area of interest. the author would like to use the maximum available information content 

to generate first a model of the chemical particle distribution, and then locate the source 

of the particles based on the model. Because the author obtain the mapping of airflow by 

utilizing interpolation methods instead of finite element analysis, our approach saves time 

and computer processing. Finally, through a reasoning system, the author localize the 

area where the chemical source is located. 

5.2.  ODOR SENSOR AND ANEMOMETER SENSOR  

The important aspects of detecting and tracking chemical sources are odor sensors 

and anemometer sensors. The odor sensors are for measuring the concentration of 

chemical particles, and the anemometer sensors are used for the direction of the airflow 

carrying chemical particles. 

Over the last decade, "electronic sensing" or "e-sensing" technologies have 

undergone important developments from a technical and commercial point of view. The 

expression "electronic sensing" refers to the capability of reproducing human senses 

using sensor arrays and pattern recognition systems. Recent research has been conducted 

to develop technologies, commonly referred to as electronic noses that could detect and 

recognize odors and flavors [29]. The stages of the recognition process are similar to 

human olfaction and are performed for identification, comparison, quantification and 

other applications, including data storage and retrieval. These devices have undergone 

much development and are now used to fulfill industrial needs. The most commonly 
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available odor sensors detect the presence of airborne substances through changes in the 

electrical resistances of chemically sensitive carbon-doped polymer films. 

An anemometer mounted on the sensor can provide relative velocity between the 

airflow and the anemometer. Wind speed and wind direction can be measured with a 

variety of tools. The most common, included with complete home weather stations, is the 

anemometer, which typically consists of a rotating vane to measure direction and a shaft 

with cups attached that spins with the wind to measure its speed. An anemometer looks 

like a weather vane, but instead of measuring which direction the wind is blowing with 

pointers, it has four cups so that it can more accurately measure wind speed. Each cup is 

attached to the end of a horizontal arm, each of which is mounted on a central axis, 

similar to the spokes on a wheel. 

5.3.  THE FRAMEWORK OF MULTI-SENSOR INTEGRATION 

The framework of multi-sensors integration has two parts. First, it’s the 

integration of the odor sensor and anemometer sensor. Second, it’s the integration of the 

historical sensor and new sensor. 

5.3.1. The Integration of the Odor Sensor & Anemometer Sensor. Particle-

laden flow refers to a class of two phase fluid flow, in which one of phase is continuously 

connected (referred to as the continuous or carrier phase) and the other phase is made of 

small, immiscible and typically dilute particles (referred to as the dispersed or particle 

phase). The problem of detecting an odor source is typically about particle-laden flow. 

The chemical particle is the dispersed phase, and the air is the carrier phase. 

An anemometer is a device used for measuring wind speed, and is a 

common weather station instrument. The term is derived from the Greek word anemos, 

which means wind, and is used to describe any wind speed measurement instrument used 

in meteorology. The first known description of an anemometer was given by Leon 

Battista Alberti in 1450. 

A simple type of anemometer was invented in 1845 by Dr. John Thomas Romney 

Robinson, of Armagh Observatory. It consisted of four hemisphericalcups mounted on 

horizontal arms, which were mounted on a vertical shaft. The air flow past the cups in 

any horizontal direction turned the shaft at a rate that was proportional to the wind speed. 

Therefore, counting the turns of the shaft over a set time period produced a value 

https://en.wikipedia.org/wiki/Wind
https://en.wikipedia.org/wiki/Weather_station
https://en.wikipedia.org/wiki/Meteorology
https://en.wikipedia.org/wiki/John_Thomas_Romney_Robinson
https://en.wikipedia.org/wiki/John_Thomas_Romney_Robinson
https://en.wikipedia.org/wiki/Armagh_Observatory
https://en.wikipedia.org/wiki/Hemispherical
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proportional to the average wind speed for a wide range of speeds. On an anemometer 

with four cups, it is easy to see that since the cups are arranged symmetrically on the end 

of the arms, the wind always has the hollow of one cup presented to it and is blowing on 

the back of the cup on the opposite end of the cross. 

When Robinson first designed his anemometer, he asserted that the cups moved 

one-third of the speed of the wind, unaffected by the cup size or arm length. This was 

apparently confirmed by some early independent experiments, but it was incorrect. 

Instead, the ratio of the speed of the wind and that of the cups, the anemometer factor, 

depends on the dimensions of the cups and arms, and may have a value between two and 

a little over three. Every previous experiment involving an anemometer had to be 

repeated. 

The three-cup anemometer developed by the Canadian John Patterson in 1926 and 

subsequent cup improvements by Brevoort & Joiner of the USA in 1935 led to a cup 

wheel design which was linear and had an error of less than 3% up to 60 mph (97 km/h). 

Patterson found that each cup produced maximum torque when it was at 45° to the wind 

flow. The three-cup anemometer also had a more constant torque and responded more 

quickly to gusts than the four-cup anemometer. 

The three-cup anemometer was further modified by the Australian Dr Derek 

Weston in 1991 to measure both wind direction and wind speed. Weston added a tag to 

one cup, which causes the cup wheel speed to increase and decrease as the tag moves 

alternately with and against the wind. Wind direction is calculated from these cyclical 

changes in cup wheel speed, while wind speed is determined from the average cup wheel 

speed. 

Three-cup anemometers are currently used as the industry standard for wind 

resource assessment studies & practice. 

A chemical sensor is a device that transforms chemical information (composition, 

presence of a particular element or ion, concentration, chemical activity, partial 

pressure…) into analytically useful signal. The chemical information, mentioned above, 

may originate from a chemical reaction of the analytic or from a physical property of the 

system investigated. They can have applications in different areas such as medicine, 

home safety, environmental pollution and many others. 

https://en.wikipedia.org/wiki/John_Patterson_(meteorologist)
https://en.wikipedia.org/wiki/Wind_resource_assessment
https://en.wikipedia.org/wiki/Wind_resource_assessment
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Chemical sensors usually contain two basic components connected in series: a 

chemical (molecular) recognition system (receptor) and a physicochemical transducer. In 

the majority of chemical sensors, the receptor interacts with analytic molecules. As a 

result, its physical properties are changed in such a way that the appending transducer can 

gain an electrical signal. 

Receptor: The function of the receptor is fulfilled in many cases by a thin layer 

which is able to interact with the analytic molecules, catalyze a reaction selectively, or 

participate in a chemical equilibrium together with the analytic. The receptor layer can 

respond selectively to particular substances or to a group of substances. The term 

molecular recognition is used to describe this behavior. Among the interaction processes, 

the most important for chemical sensors are adsorption, ion exchange and liquid-liquid 

extraction. Primarily these phenomena act at the interface between analytic and receptor 

surface.  

Transducer: Nowadays, signals are processed almost exclusively by means of 

electrical instrumentation. Accordingly, every sensor should include a transducing 

function, i.e. the actual concentration value, a non-electric quantity must be transformed 

into an electric quantity, voltage, current or resistance. Some of them develop their sensor 

function only in combination with an additional receptor layer. In other types, receptor 

operation is an inherent function of the transducer. 

If the mass fraction of the dispersed phase is small, one-way coupling between the 

two phases is a reasonable assumption; that is, the dynamics of particle phases are 

affected by the carrier phase, but the reverse is not the case. In our case, the particles are 

very small and occur in low concentrations; hence the dynamics are governed by the 

carrier phase. The particle phase is typically treated in a Gaussian distribution [30] along 

the flow direction 

2( , ) exp[ ( ) ]
2 2

q u
C x y d d

skd K
s


   , 
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C is the concentration (ppm), q is the emitted rate (mL/s), u is the wind speed 

(m/s), K is turbulent diffusion coefficient (m2/s), and θ is the angle from the x-axis to the 

upwind direction. 

Figure 5.1 shows the two paths generated by matching the expected and sensed 

concentration values, as well as the initial and final velocities. 

Figure 5.1. The two paths generated by matching the expected and sensed concentration 

values. 
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The second issue is related to the choice of the parameter t. In our 

parametrization, the author chose t to start at 0 at one of the sensors and end at 1 at 

another sensor. The author would like to have the parameter be a good representation of 

actual travel time, since the author also would like to obtain connected paths. To correct 

this problem, the author compute the speed at every point along the path as a linear 

function of the distance from one sensor to the other one while matching the sensed speed 

values at the two end points. Figure 5.2 shows the two paths with equally timed distances. 

Figure 5.2. The two paths generated by matching the expected and sensed concentration 

values with equally timed distances. 
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Even though the author now have a path from one sensor to another, there are still 

several issues to be resolved. The first issue is related to the underlying presumption that 

a particle would somehow travel from one sensor to the other even though the sensors are 

at arbitrary locations. To correct this problem, the author rely on the dissipation property 

of the particles. The author compute the expected concentration value along the 

computed path and compare it with the actual sensed concentration value. Based on the 

error and the measured gradient concentration, the author determine a new location 

perpendicular to the initial path where the expected and sensed concentration values 

match. The author then compute the corrected path going through one of the sensors and 

the new location. When the author repeat the process forwards from one sensor and 

backwards from another one, the author end up getting two consistent paths with correct 

concentration values. 

5.3.2. The Integration of the History Sensors & New Sensors. When more 

sensors are introduced to the region, the author need to incorporate the new data and 

update the particle flow paths. The author can integrate the data from the newly added 

sensors by processing the complete set of sensor data, or the author can update the 

existing air flow paths in the neighborhoods of the new sensors. In this paper, the author 

utilize a novel approach to update the particle paths described by the interpolation 

functions. 

In the original particle path calculations, the author generated some primary paths 

that go through each of the original sensor location and match the sensed values of the 

particle concentrations. When new sensors are added in between theses primary paths, the 

author need to interpolate and determine secondary paths that go through the new 

sensors. Since the particle concentration values on these interpolated secondary paths 

don’t necessary match the observed values from the new sensors, the author need to 

update the primary path data as well. 

As a test case, the author initially place 3 sensors and obtain the primary paths 

from the sensed values.  Using the primary paths, the author can get secondary paths that 

map the whole considered area, as shown in Figure 5.3. The author then place another 

sensor inside the region of interest.  Naturally,   the sensed values at the new sensor 
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doesn’t match the extrapolated values based on the perpendicular extensions from the 

primary paths exactly.  

Figure 5.3.  Primary air-borne particle paths going through three sensors and an 

additional sensor. 

When the new sensor is placed at ( , )x y  , the author only need to update the 

relevant primary paths. The location of the new sensors in relation to the neighboring 

primary paths determines the paths to be changed.  The region where is needed to be 

changed is defined by the closest primary paths and the perpendicular lines through the 

sensors on the primary paths. The author denote the two sensors on these primary paths 
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as ( , )i ix y and ( , )j jx y . The author model the odor propagation between two primary 

sensors as two connected particle paths that relate the two primary sensors and the 

additional sensor. The author then use our method to update the parameters of the 

primary paths to join the piecewise particle paths.  

The updated path equations are modeled by two pieces of particle paths. 

The first path, denoted by 1L , is from ( , )i ix y to ( , )x y  , such that 

3 2

3 2

( ) (2( ) 3( )) 3( ) 3( 2 )) 3

( ) (2( ) 3( )) 3( ) 3( 2 )) 3

i i i i i i

i i i i i i

x t x x x x t x x x x t x t x

y t y y y y t y y y y t y t y

    

    

   

   

         

         
    (1) 

The piecewise connected second path, denoted by 2L , is from ( , )x y  to ( , )j jx y , 

such that 
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Comparing the particle paths between the updated path and two pieces of particle 

paths, the author define the error term as 
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 indicates it’s the path without the additional sensor. 

In Equation (3), 
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where ( ˆ
jx , 1ˆ cosjy  ) represents the updated location for the jth sensor (

jx ,
jy ), 

and the path L


 is from ( , )i ix y  to ( ˆ
jx , ˆ

jy ).

When the author substitute Equations (1), (2) and (4) into Equation (3), the author 

get an equation in terms of the unknown parameters ˆ
jx , ˆ

jy , ˆ
jx , and ˆ

jy . The author 

assume that the velocity variables ˆ
jx and ˆ

jy  are preserved, and the updated endpoint 

( ˆ
jx , ˆ

jy ) is on the perpendicular line to the primary path going through the jth sensor.   
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Based on Equation (3), the minimization of the error can be determined 

by
ˆ ˆ,

ˆ ˆarg min ( , )
j j

j j
x y

E x y , the arguments of the minimum is the point at which the error term E 

attains its smallest value. The most ideal situation is when 
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We use ( ,j jx y ) to denote the optimal parameters. Since ( ,j jx y ) is on the 

perpendicular line to the primary path going through the sensor, ( ,j jx y ) satisfies 
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Therefore, the updated law is such that
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Using ( ,j jx y ) to substitute ( ˆ
jx , ˆ

jy ), the author can get the updated forward 

particle path as 
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Similarly, the author can get the backward particle paths using the same method 

to update the variables for the ith sensor. Figure 5.4 shows the updated map of the 

particle paths.  

One of the important applications of chemical sensing is odor localization. This is 

the act of finding the location of a chemical source in the environment and is the topic of 

this paper. Odor localization is performed by many type of mechanism, in a variety of 



87 

methods. Sensing and responding to chemical is now a burgeoning area of robotics 

research.   

Figure 5.4.  Updated air-borne particle paths going through three sensors and an 

additional sensor. 

 The ability to locate of an odor/chemical source has many valuable applications. 

These applications include finding the source of dangerous substances such as airborne 

biological material, hazardous chemical, gas and other pollutants, in industrial and other 

settings; searching for survivors in earthquake-damaged buildings; detecting fire in its 

initial stages; locating unexploded mines and bombs. These applications have been 
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tackled by researchers in a variety of methods. Most of their works have focused on 

mobile robots to detect plume and trace plume. Odor dispersal occurs through carriage by 

the fluid current. Many researchers has used a chemical gradient method that is acquiring 

the plume firstly, and then moving upwind along the plume. But, their limitations are that 

robots must follow the plume along its entire length, which is time consuming and may 

not be possible in some environment where a well-defined plume does not be formed. In 

addition, the effects of objects and the walls on both airflow and robot mobile are often 

neglected.   In this paper, the author have attempted to overcome these limitations. By 

exploiting more information from the environment in addition to local wind and chemical 

reading,  the airflow map and chemical distribution can be derived  first, then basing the 

aforementioned result a „sense-map-plan-act‟ control scheme is built. However, when the 

sensor system collects more data, the problem of updated mapping is faced to be solved. 

Because the information is local, which does not affect the whole mapping, the author 

just need update the airflow and chemical dispersion around the sensors that gather new 

data. Neural networks using splines function can update its weights to satisfy the new 

data from sensors. 

In this section, the theory of spline approximation is adequately combined with 

the neural network principle by these advantages of spline function, as shown in Figure 

5.5. 

The neural network model based on m times spline basis function is constructed, 

where jw is the weight of neural network and the ( )j t  is spline basis function. That is 
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cubic Hermite splines, the weights of the neural networks are the parameters of the 

splines function. 

The error function is 
' '(k) ( ) ( ), 0,1, 2,n ne X t f t n N    where 2n N  , N is 

the number of new sensor points, 
'( )nf t is from the new data and 

'( )nX t  is from the 
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spline function. Therefore, the error function is the difference between splines 

interpolation and the real data. 

0( )x

1
1( )x

1
2( )x

1
3( )x

0w

1w

2w

3w

t (X,Y)

1

1

1

1

Figure 5.5. Neural network model based on spline basic function. 

The performance index is 
2

0

1
( ).

2

n

k

J e k


  and the weight adjustment 

is (k 1) (k) (k) (k)W W J    . 

5.4.  CONVERGENCE THEOREM OF NEURAL NETWORK MODEL 

Theorem 3: Let  be the learning rate. Then the neural network algorithm is 

convergent, when
2

0

2
0

( )
m

jj
t






 


, where m is the number of hidden layer neurons. 
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Proof:  Let the Lyapunov function 21
(k) ( )

2
V e k . 

Then 2 21 1
( ) ( 1) ( )

2 2
V k e k e k    , 

And
( ) ( )

( 1) ( ) ( ) ( ) ( )Te k e k
e k e k e k e k

W W

 
    

 
, 

( )
( )

e k
W e k

W



  


, 

So, 

2

2

( ) ( ) ( )
( ) ( )( ) ( )Te k e k e k

e k e k e k
W W W

 
  

    
  

, 

Where 2

2
.    is the Euclidean norm. So Lyapunov function can be 

written as 

2 2

2 2

2 2

2 2

2

2 2

1 1
( ) [e(k) e(k)] ( )

2 2

1
e(k)[e(k) e(k)]

2

( ) 1 ( )
( ) [e(k) ( ) ]

2

( ) 1 ( )
e(k)( )

2

V k e k

e k e k
e k e k

W W

e k e k

W W

 

 

    

   

 
  

 

 
  

 

To make the neural network algorithm convergent, the author have 

2

2

2

1 ( )
0, 0

2

e k

W
  


   


, 

That is
2

2

2
0

( )e k

W

 




. 

We get, 

( ) ( ) ( )
( )( ) (t)

( )

e k e k X t

W X t W

  
  

  
. 

According to 1( ) [ , , , ]T

o mt     , it can be proved 
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2
22

2
02

( )
(t)

m

j

j

e k

W





  


 . 

when
2

0

2
0

( )
m

jj
t






 


, the author have 0V  . 

Consequently, it is shown that the neural network algorithm is convergent. 

5.5. ALGORITHM OF NEURAL NETWORK MODEL  

As a test case, the author assume to use n sensors to collect information in the 

environment. In Figure 5.6, however, when the author make one more sensor in the 

search are, the aforementioned method of mapping can only be changed around the new 

sensor.  

Figure 5.6.  The particle paths going through two primary sensors. 
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According to the neural network model based on the slpine function which is 

discussed above, the author get the following neural network algorithm for update the 

airflow path: 

Take the learning rate satisfying theorem, to make sure convergence of the neural 

network; 

Calculate the output '( )nf t t of neural network:   

0

( , ) ( ) ( )
m

T

j j

j

X x y w t W t


   ; 

Calculate the error function: 

' '(k) ( ) ( ), 0,1, 2,n ne X t f t n N   

Where, '

,( )n kX t  demonstrate the gradient of the particle path, and 
'( )nf t  is given 

by the real data; 

Calculate the performance index of the neural network: 

2

0

1
( )

2

n

k

J e k


 
; 

Adjust the neural network weight: (k 1) (k) (k) (k)W W J    . 

In the Figure 5.6, the top two sensors are primary sensor. Using the data from 

these sensors the author can get the airflow path and chemical dispersion that are shown 

in the figure.  The bottom sensor is not used in this case.  

When the new data from the bottom sensor, the author can consider neural 

network method that can get the updated map by training the weights of the network. In 

this case, the t is considered to the input and the position ( , y)x is considered to the output, 

and the error term is the difference between spline functions that are derived from output 

and the real data from sensors. In the Figure 5.7, the new map using the new data from 

the bottom sensor is shown below. 
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Figure 5.7.  The new particle path map using 3 sensors. 

5.6. CONCLUSION 

There are many useful and humanitarian applications that can locate the source of 

a chemical source. Currently, the majority of work in this area uses reactive control 

schemes that track an odor plume along its entire length, which is slow and difficult in 

cluttered environments. This paper employs a high-level control scheme. The 

interpolation and extrapolation method is used to model the particle path in the sensors’ 

environment. Then a reasoning system use the path model to get the velocity, chemical 

concentration at any point on the map and predict the most probable locations of the odor 
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source. This approach has been shown to be effective for odor localization in a known 

environment, without the need for the robot to travel to the source. 

With the further development there is great potential for this approach to lead to 

many valuable applications by generalization to a wider range of environmental 

configurations. The paper present development to solve the problem there exist obstacles 

and opening in the environment. The approach gives the mode of the particle path 

surrounding the obstacles and openings. The development has successfully applied in 

general environment, because the propagation of the chemical particle can go through 

obstacles and opening in actual case. In addition, this paper is the first example of using 

interpolation and extrapolation method to model the particle path that applied in a real 

environment. 
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6. DETECTION AND TRACKING OF AN ODOR SOURCE IN SENSOR

NETWORKS USING A REASONING SYSTEM 

6.1. INTRODUCTION 

The detection of the airborne chemicals presents a different type of challenge than 

the more traditional detection efforts, such as the visual-based detection or propagating 

signal detections. The chemicals that are airborne tend to drift in various directions due to 

wind, up-draft, and obstacles. As a result, isolation of the source of such particles 

becomes considerable difficult and dependent on topography and environment. There has 

been some previous research on the detection and modeling of airborne particles, plume 

location and tracking. However, most of such research is based on sensor information on 

moving robots that are guided by the detectors. These types of sensing robots are 

assumed to move about freely following the trail of a chemical signature, while they’re 

continuously sensing for the particles. Both of these assumptions are invalid in 

inaccessible and hostile environments with sensors that can either function once or need 

along rejuvenation time cycles. In our approach to the problem of chemical particle 

detection and source location, the author use a small number of chemical sensors that are 

sparsely scattered around an area only known by a two-dimensional map. In real-world 

problems, the author anticipate that a small unmanned aircraft would drop some of these 

sensors on the area of interest while taking some aerial pictures. the author assume that 

the sensor data along with the map are transmitted to a nearby location perhaps to a 

vehicle that will be travelling through the area of interest. The author would like to use 

the maximum available information content to generate first a model of the chemical 

particle distribution, and then locate the source of the particles based on the model. 

6.2. PARTICLE PATHS MAPPING AND ODOR DISPERSAL 

A. Particle path algorithms using interpolation and extrapolation.

Using the sensors that can collect the sensors position, wind velocity, chemical 

concentration, and the author can determine the particle paths that describe the 

propagation in the environment. This map is a prerequisite for the detection the odor 

source. 
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In this paper, the author start with the interpolation of two nodes points 0 0( , )x y  

and 1 1( , )x y , where the points are the locations of two sensors with odor particle values of 

0s and 1s , respectively. Since a direct interpolation of a path between the two points 

would be inconsistent with the odor propagation and the air flow, the author generate two 

more localizations, a propagation parameter “t” where 0 1t  , and consistent 

interpolation functions xH and
yH , such that 

( ( ), ( )) ( ( ), ( )),x yx t y t H t H t                         

where 0 (0),xx H  1 (1),xx H  
0 (0),yy H  

1 (1).yy H  

In this approximation, the author use Hermite polynomials. In the above equation, 

the author match the boundary values of the location; however the author also need to 

match the velocities 0 01 1

, , , .
x yx y

and
t t t t

  
   

 

From the sensor data, the author can only collect the derivatives of y with respect 

to t, but the author need the derivatives of x and y with respect to t. However, these 

derivatives aren’t too hard to determine from using the identity 

        
y

x

y
t

x
t










                                        

Consequentially, the author chose 

0

1

0
0

0
0 0

1
1 1

1
1

,

,

,

.

t

t

t

t

x

y

xx

t t

yy
y

t t

xx
x

t t

yy

t t
















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 

 


 

 


 

 


 

 

                             

We, then, proceed to construct the two Hermite polynomials in the usual way, 

such that 
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,where
,n jL denotes the jth Lagrange coefficient of the 2 1n is the order

polynomial. 

Similarly, the author have 

2 2

0 0

2 2

1 1

( ) (1 2 )( 1) ( 1) ( )

(3 2 ) ( 1) ( )

yH t t t y t t y

t t y t t y





    

   

As a test case, the author consider a three sensor configuration system as in Figure 

6.1. In the figure, the thick black lines are the boundaries of the room, the red dots are the 

sensor locations, and the red dotted lines designate the border of the boundary zone. 

Some chemical sensors are designed to detect simply the existence of chemical 

particles and trigger a positive result when the concentration amounts are above a preset 

threshold level. In our design, instead of the threshold, the author make use of the actual 

concentration levels that are detected. This approach along with some other data enables 

us to model the flow of the particles and the location of the source. Each sensor provides 

the co-located sensory information of the airflow information that is obtained not by an 

additional sensory device but by an off-centered multi-orifice detection hardware 

configuration. In our derivations, the author assume that the differential information is 

perpendicular to the wind direction, but the author can accommodate any non-zero 
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known angular orientation simply by a coordinate transformation. Designating the 

location of the sensors by (x, y), the author represent the flow of air by (δx, δy). 

Similarly, the author represent the sensed particle concentration by s and the 

concentration gradient by δs. 

Figure 6.1. Three sensor configuration system. 

Once the author obtain the sensory information, the author start with an 

approximation of the particle path. The author configure paths that go through the sensor 

locations, such that the paths satisfy the locations as well as the differentials. This 
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approach leads to a parametric cubic-polynomial representation of the path in terms of 

the variable t. the author use the cubic Hermite splines with the end point differentials 

weighted three times, such that 

3

2

3

2

( ) (2( (0) (1)) ( (0) (1))) 3( (1)

(0)) ( (1) 2 (0))) (0) (0),

( ) (2( (0) (1)) ( (0) (1))) 3( (1)

(0)) ( (1) 2 (0))) (0) (0),

x t x x x x t x

x x x t x t x

y t y y y y t y

y y y t y t y

 

  

 

  

    

    

    

    

where the parametric curve starts at one sensor location at (x(0), y(0)) and ends at 

the other sensor location at (x(1), y(1)) as t goes from 0 to 1. Figure 6.2 shows the two 

paths generated by matching the expected and the sensed concentration values. 

We compute the expected concentration values along the computed path and 

compare them with the actual sensed concentration values Based on the errors and the 

measured gradient concentrations; the author determine new locations perpendicular to 

the initial paths, where the expected and the sensed concentration values match. We, 

then, compute the corrected paths going through one of the sensors and the new location. 

When the author repeat this process forwards from one sensor and backwards from 

another, the author end up getting two consistent paths with correct concentration values. 

The author will refer to these paths as primary paths.  

In the next step of the extrapolation, the author complete the particle propagation 

paths by generating secondary paths for the whole area. The secondary paths are between 

two adjacent primary paths. To generate these secondary paths, the author determine the 

perpendicular lines to the tangents of the paths, and use the intersection points of these 

perpendicular lines. The author assign the average values of the particle concentrations 

and the concentration gradients on the secondary paths. For the paths that are on the 

external regions of the primary paths, the author use perpendicular normal extensions, but 

the author extrapolate the particle concentrations and the concentration gradients. Figure 

6.3 shows the path extensions as well as the whole room coverage with primary and the 

secondary paths. 
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Figure 6.2. Three sensor configuration system using interpolation method. 

B. Chemical particle distribution by the continuous releasing.

Particle-laden flow refers to a class of two phase fluid flow, in which one of the 

phase is continuously connected (referred to as the continuous or carrier phase) and the 

other phase is made of small, immiscible and typically dilute particles (referred to as the 

dispersed or particle phase). The problem of detecting odor source is typically about the 

particle-laden flow. The chemical particle is the dispersed phase, and the air is the carrier 

phase.   
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Figure 6.3. Three sensor configuration system using interpolation and extrapolation 

method. 

If the mass fraction of the dispersed phase is small, the one-way coupling between 

the two phases is a reasonable assumption; that is, the dynamics of particle phases are 

affected by the carrier phase, but the reverse is not the case. In our case, the particles are 

very small and occur in low concentrations; hence the dynamics are governed by the 

carrier phase. The particle phase is typically treated in a Gaussian distribution along the 

flow direction, such that  
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C is the concentration, q is the emitted rate, u is the wind speed, K is turbulent 

diffusion coefficient,   is the angle from the x-axis to the upwind direction, and the 

subscript “s” denotes the odor source. 

6.3. REASONING SYSTEM AND ALGORITHM 

We use a reasoning system that uses the airflow model effectively to reason about 

the odor dispersal. It’s able to navigate the sensor around the environment to gather 

relevant information and then successfully predict the region from which the odor 

originated, without moving the sensor. 

The detection of odor source is finding the highest concentration in the considered 

area, although the author have limited number of sensors in this area. Each sensor can 

provide some information that contributes the decision about the location of the source.  

Definition 1: When the sensor’s location is ( , )n nx y , n 1, , N and the odor

source location is ( , )s sx y , the author use
2

( , ) ( , )n n s sx y x y to indicate the distance. 

Then the closest two sensors from the minimization (
2

arg min ( , ) - ( , )n n s s
n

x y x y ) to the 

odor source, are called the critical sensors. 

Definition 2: If a critical sensor is on the upstream of the chemical source, the 

author call it the upstream critical sensor. Otherwise, it’s called the downstream critical 

sensor. 

Through these definitions, the problem of odor source detection is transformed to 

the problem of detecting upstream critical and downstream critical sensors. The odor 

source is located in the region between the two critical sensors. 

The detection process is based on the sensitivity of the interpolation with respect 

to individual sensors. In a system with N sensors, the author first generate a set of particle 

paths based on all of the sensors. Then, the author successively reduce an individual 

sensor data one at a time and generate another set of particle paths. The differences 
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between these two sets of particle paths provide us the necessary information to identify 

and locate the source.  

To demonstrate the reasoning process, the author assume there are 4 sensors in the 

room, as shown in Figure 6.4. Based on the method described in Section 2, the author 

conclude that the airflow is in from left to right direction. In other words, the particle 

paths go through Sensor 1 first, then Sensor 2 and 3, and lastly Sensor 4.  

Figure 6.4. The particle path map using 4 sensors. 
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As part of the method, the author can approximate the particle paths, the position, 

the velocity, and the concentration of every point on the particle paths. Figure 6.5 shows 

the concentration distribution along the particle path for this case. The horizontal axis 

denotes the motion distance of the particles along the path, and the vertical axis shows the 

value of the chemical concentrations. 

Figure 6.5. The chemical concentration on the particle path. 
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The odor source is located between Sensor 1 and Sensor 2. In downstream flow, 

the chemical concentration is decayed smoothly with a small rate, but in the upstream, the 

chemical concentration is decayed drastically, because the air flow blows most of 

particles downstream. In the example case, when the author remove Sensor 1, the updated 

chemical concentration at the location of Sensor 1 is higher than the original value.  The 

author observe this result in Figure 6.6.   

Figure 6.6. Concentration curves without critical sensors. 
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As a result, the author conclude that Sensor 1 is an upstream critical sensor. 

Applying same reasoning on Sensor 2, the author observe that the chemical concentration 

at the location of Sensor 2 is lower than the original value, as seen in Figure 6.7.  

Figure 6.7. Concentration curves with critical sensors. 
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As a result, the author conclude that Sensor 2 is a downstream critical sensor. 

Similarly applying same method on Sensor 3 and Sensor 4, the author observe that the 

chemical concentrations at the locations of Sensor 3 and Sensor 4 are almost equal to the 

original values. Consequentially, the author conclude that Sensor 3 and Sensor 4 are not 

close to the source and they are not critical sensors. From the above analysis, the author 

conclude that the odor source should be located between Sensor 1 and Sensor 2. 

The accuracy in the odor source detection is directly related to the amount of 

sensors and the placement of the sensors. Since the concentration on an upstream of the 

odor source cannot decrease more than a known rate, the author get a large error, when 

the concentration on the upstream critical sensor is higher than the concentration on the 

downstream critical sensor. If the value of the upstream critical sensor is larger than the 

value of the downstream critical sensor, then the author conclude that the source is 

located further upstream of the upstream critical sensor. As a result, the author can 

choose a wrong region as the odor source in such circumstances. 

Case 1: ( 0nS S  or 0nS S case). After removing one sensor, the author get a new 

particle and a new chemical dispersal map. If the new chemical concentration nS on at the 

location of the removed sensor is higher (or lower) than the actual valve 0S , then the 

author conclude that the removed sensor is upstream (or downstream) of the odor source. 

In this case, the removed sensor is called critical sensor. 

Case 2: ( 0nS S  case). After removing one sensor, the author get a new particle 

and a new chemical dispersal map. If the new chemical concentration ( nS ) at the location 

of the removed sensor point is close to the actual valve ( 0S ), then the author conclude 

that the removed sensor is far from the odor source, and this sensor is not a critical 

sensor.  

In the above analysis, the author concluded that the source is in the region 

between Sensor 1 and Sensor 2 as shown in Figure 6.8. In most cases, the author need to 

improve the detection by reducing the region. To achieve this reduction, the author utilize 

the secondary paths as described in the previous section.  

Similar to the primary path approach, the author generate consistent chemical 

concentration at the points on the perpendicular lines to the paths going through the 
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critical sensors. We, then, compare these concentrations and identities the two paths with 

the highest concentrations as the critical paths. Figure 6.9 shows how the region that the 

odor source is located is narrowed using the secondary path analysis.  

Figure 6.8. The region selected by critical sensors. 
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Figure 6.9. The most-likely region selected by critical sensors. 

6.4. EXPERIMENTAL EVALUATIONS 

In this section, the author apply the method presented on the previous section to a 

real world problem.   

First, the author obtained a real map of Missouri University of Science and 

Technology campus. Second, the author use an edge detection technology to process the 

map to eliminate all the features except the main buildings. Figure 6.10 shows the real 

map after the edge detection process. Third, the author place 8 sensors on the surveyed 

region and generated the primary paths as shown in Figure 6.11. 
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Figure 6.10. The real map processed by edge detection method. 

As the author explained in the previous sections, the author removed the data of 

every sensor one at a time and determined the critical sensors. Based on the critical 

sensor data and the secondary path analysis, the author obtained the region for the source 

of the odor particles as shown in Figure 6.12. The black region is the most likely hood of 

chemical source existed. 

For comparison purposes, the author also used fluid dynamics simulation to study 

the airflow characteristics in the same environment. The author used the COMSOL 

software that is used to analyze complex flow of fluid dynamics. The author set the wind 

to flow from southwest to northeast and the configuration is set to be the same with the 
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case that is solved using this dissertation’s approach. The COMSOL software utilizes the 

finite element method that incorporates the fluid dynamics of the air flow, and plots the 

airflow and chemical concentration distribution.  

Figure 6.11. A particle paths map of Missouri University of Science and Technology. 



 112 

Figure 6.13 shows the steam lines of airflow as produced by the COMSOL 

software. Comparing the results, the author verify that the most-probable region that 

contains the odor source determined by the proposed method is consistent with the 

COMSOL software results. 

Figure 6.12. The most-likely region contains odor source in the real map. 
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Figure 6.13. The steam lines of airflow as produced by the COMSOL software. 

When the author compare the particle flow paths in Figure 12 and the air flow 

paths in Figure 13, the author verify the close consistency of the presented interpolation 

method, even though the interpolation method requires and uses at least a couple of 

magnitude less  computational and storage resources than COMSOL software.  

6.5. THE FRAMEWORK AND ALGORITHM OF THE UNMANNED AIRCRAFT 

CONTROL ARCHITECTURE 

The important parts of a mobile robot for detecting and tracking chemical source 

are odor sensors and anemometer sensors. The odor distribution changes rapidly in 

dynamic advection-diffusion airflow environments. Therefore, odor cannot be intercepted 

in most workspaces, and even when the robot intercepts the odor, the interception time is 

brief because of the rapidly changing plume. In such a case, the robot needs to respond 



 114 

immediately to the presence of the odor arrival. The odor sensor detects the presence of 

an airborne substance through a change in the electrical resistance of a chemically 

sensitive carbon-doped polymer film.  It is well known that both the response time and 

the recovery time of the commonly used metal-oxide-semiconductor gas sensors are 

lengthy (of the order of several seconds to tens of seconds). Therefore, with a fixed 

concentration threshold in natural outdoor airflow environments, both odor detection and 

no detection events can lag significantly. The larger the fixed threshold, the further the 

odor-detection event lags behind the real odor interception, and the bigger the risk of not 

detecting the odor contact. For example, if the real odor concentration is 20 ppm, with the 

fixed threshold of 25 ppm, the robot fails to find the odor plume. The smaller the fixed 

threshold, the greater the chance of invalid detection events (i.e., even though the gas 

sensor is not in the odor plume, odor detection events still occur). To make the robot 

quickly and reliably respond to odor interception, a binary concentration with an adaptive 

threshold, rather than a fixed threshold, is used in the present study. The adaptive 

threshold used in this research was proposed and can be represented as: 

1 (1 )S 1

S 0

K K

K

K

S K
S

K

 
   

 


Where, SK is the measured odor concentration at time step k. 0S is the initial 

concentration detected at the start and λ ∈ [0, 1]. The binary concentration with adaptive 

threshold is defined as: 

11 0

0

K K

k

S S
z

else


  

 


,where kz indicates an odor detection event at time step k. 

An anemometer mounted on the robot can provide the relative velocity between 

the airflow and the anemometer. The air-flow velocity described in this paper was a 

modified value, with the velocity of the robot’s motion being subtracted from the 

anemometer measurement. The anemometer is a Shibaura F6201-1 air flow sensor, which 

can sense wind flow with an accuracy of 0.05 m/s. It is enclosed in a tube to provide 

unidirectional sensitivity which, combined with a scanning behavior, allows the robot to 

measure wind direction. When wind direction information is required, the robot first 
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rotates 90, and then rotates slowly 360 while reading the wind sensor output and finally 

rotates back to the heading corresponding to the highest sensor value. 

In the localization of an odor source, the author implement a multi-stage process. 

In the first stage, the author scatter a number of sensors at nonspecific locations, perhaps 

by an aircraft at an area of interest, after processing the information from the sensors, the 

author decide to place more sensors at narrower specific locations to for the explore and 

focus the localization process.  

First, the author decide that the area of interest or distribution and the number of 

sensors to be scattered. Obviously, these decision are based on the needs and availability. 

With the initial decision made, the author scatter the sensors within the area of 

distribution in a nonspecific way. This nonspecific or arbitrary locations of the initial set 

of sensors can be changed if the author have a priori knowledge about the odor location 

based some other data. Second, the author obtain data from these sensors and process the 

data to generate a narrower region of the source location.in the results presented here, the 

author have 2 sensors as the initial number of sensors. When the author obtain a narrower 

region than the original, the author need to decide whether or not there is really an odor 

source. This decision is usually easy based on the detected sensor values and the sensor 

sensitivity values. Third, the author scatter more sensors within the narrower region to get 

a refined odor particle data and to obtain an even narrow region for the location of the 

odor source. Finally, when the author repeat this process of scattering more sensors in a 

narrower and narrower area and processing more and more sensor data or when the 

author run out of sensors, the author moved to a small enough region where the author 

identify as the location of the odor source. 

During the process of scattering more and more sensor into a narrower and 

narrower areas, either the author can choose an arbitrary and nonspecific location very 

similar to the initial choice or the author can direct a vehicle such as an aircraft or a robot 

to place the sensors at specific locations. The processing of the sensor data to narrow the 

area of interest for the location of the odor source can be done analytically as well as 

adaptively. The author explored the analytical analysis approach to narrow the area of 

interest. In this document, the author use this adaptive approach based on the above 
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method. The adaptive approach guide the system to be close to the region where it has the 

maximum probability. 

In this paper, the author proposed a novel control algorithm of mobile robot for 

detecting and tracking chemical source. The block diagram in Figure 6.14 illustrates the 

framework of unmanned aircraft control. At each time step, the location of the odor 

source is estimated and the termination condition is checked. If the terminated condition 

is satisfied, the mission of detecting the chemical source is ended; otherwise, the 

unmanned aircraft moves to more locations to obtain more measurements and update the 

gas distribution map and odor source localization. 

This tracing strategy is described as follows. At first, the unmanned aircraft 

moves arbitral and scatters sensors in two locations, because the chemical particle flow is 

derived by at least two sensor nodes. From the first step the author know roughly the 

source location from the gas distribution map. Then, the unmanned aircraft moves to a 

new location where it is along the direction of the chemical particle propagation. When 

the author obtain a new location and update the gas distribution map, the author have two 

methods. The author can use all of the sensors to map the chemical particle propagation, 

or the author can use a new sensor to update the map derived by the former sensors. The 

unmanned aircraft motion step can be adaptive through the real-time gas distribution 

map. 

There are many useful and humanitarian reasons to locate the source of a 

chemical odor source. Generally, the majority of work in this area uses reactive control 

schemes that track an odor plume along its entire length. This type of an approach is slow 

and difficult in cluttered environments. In this paper, the author presented an 

interpolation and extrapolation method to model odor generating particle flow in an 

environment with distributed sensors. The author used particle paths of the model to 

narrow down the location of the odor source. The presented method has the advantage of 

utilizing at least couple of magnitude less resource than a finite element based 

commercial software analysis.  
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Figure 6.14. Unmanned aircraft control architecture. 
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6.6. RBF NEURAL NETWORK AND SOURCE DETECTION 

The detection of odor source is finding the highest concentration in the considered 

area, although the author cannot measure everywhere in the considered area. Using 

limited information collected from sensors to estimate the entire area’s propagation 

information becomes the reasoning system’s core. Each sensor can provide some 

information that can make a decision where is the source. And considering all of the 

sensor’s information together can get an accurate decision. It’s likewise sensor mergence. 

Definition 1: When the sensor’s location is ( , )n nx y , n 1 N and the source’s

location is ( , )s sx y , the author use 
2

( , ) ( , )n n s sx y x y to indicate the distance. Then the 

closest ones (
2

arg min ( , ) - ( , )n n s sx y x y ) to the odor source, they are named the critical 

sensors. 

Definition 2: If the critical sensor is on the upstream of the chemical source, it is 

the upstream critical sensor. Otherwise, it’s the downstream critical sensor. 

Through these definitions, the problem of odor source detection is transformed to 

the problem of detecting upstream critical and downstream critical sensors. The odor 

source is located in the region between the two critical sensors. 

In this paper, the author use neural network to detect the chemical source. In the 

other word, this problem is about classification. Using neural network one can classify 

the critical sensors and common sensors. 

In the field of mathematical modeling, a radial basis function network is an 

artificial neural network that uses radial basis functions as activation functions. The 

output of the network is a linear combination of radial basis functions of the inputs and 

neuron parameters. Radial basis function networks have many uses, including function 

approximation, time series prediction, classification, and system control. They were first 

formulated in a 1988 paper by Broom head and Lowe, both researchers at the Royal 

Signals and Radar Establishment. RBF networks are typically trained by a two-step 

algorithm. In the first step, the center vectors of the RBF functions in the hidden layer are 

chosen. This step can be performed in several ways: centers can be randomly sampled 

from some set of examples, or they can be determined using k-means clustering. Note 

that this step is unsupervised. A third backpropagation step can be performed to fine-tune 
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all of the RBF net's parameters. The second step simply fits a linear model with weights 

coefficients to the hidden layer's outputs with respect to some objective function. A 

common objective function, at least for regression/function estimation, is the least 

squares function. 

In the Figure 6.15, the author use the RBF network architecture which has 3 

layers. Architecture of a radial basis function network. 

Figure 6.15.  The structure of 3-layer RBF neural network. 

An input vector x is used as input to all radial basis functions, each with different 

parameters. The output of the network is a linear combination of the outputs from radial 

basis functions. The number of neurons in the hidden layer is optional, but it should be 
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more than the inputs. The number of input is the number of sensor, which indicates every 

input is related with the sensors’ measurement. The output is the classification result. Use 

Training data can teach the neural network ability to detect critical sensors. The activity 

function for the output is 

1

( ) ( )
N

i i

i

x a x c 


  , where  is a radial basis function. 

Here x is a vector of the measurements by sensors, and
1 2x (x , , ) n

nx x R  .  

The output of the neural network is 

2
1

1
y exp( )

2

h

i i

i

w x c


   . 

In this neural network, the author use 0 indicates the sensors are far-way sensors, 

1 indicates the sensors are critical sensors. 

RBF network are typically trained by a two-step algorithm. In the first step, the 

center vectors ic of the RBF functions in the hidden layer are chosen. The second step 

simply fits a linear model with coefficients iw to the hidden layer’s outputs with respect to 

some objective function. A common objective function, at least for regression/function 

estimation, is the least square function:

2

1

.(w) [y(t) (x(t),w)]
t

K 




 

The input vector is the n-dimensional vector that you are trying to classify. The 

entire input vector is shown to each of the RBF neurons. 

A Radial Basis Function Network (RBFN) is a particular type of neural network. 

In this article, I’ll be describing its use as a non-linear classifier. 

Generally, when people talk about neural networks or “Artificial Neural 

Networks” they are referring to the Multilayer Perceptron (MLP). Each neuron in an 

MLP takes the weighted sum of its input values. That is, each input value is multiplied by 

a coefficient, and the results are all summed together. A single MLP neuron is a simple 

linear classifier, but complex non-linear classifiers can be built by combining these 

neurons into a network. 

The RBFN approach is more intuitive than the MLP. An RBFN performs 

classification by measuring the input’s similarity to examples from the training set. Each 
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RBFN neuron stores a “prototype”, which is just one of the examples from the training 

set. When the author want to classify a new input, each neuron computes the Euclidean 

distance between the input and its prototype. Roughly speaking, if the input more closely 

resembles the class A prototypes than the class B prototypes, it is classified as class A. 

Each RBF neuron stores a “prototype” vector which is just one of the vectors 

from the training set. Each RBF neuron compares the input vector to its prototype, and 

outputs a value between 0 and 1 which is a measure of similarity. If the input is equal to 

the prototype, then the output of that RBF neuron will be 1. As the distance between the 

input and prototype grows, the response falls off exponentially towards 0.  The shape of 

the RBF neuron’s response is a bell curve, as illustrated in the network architecture 

diagram. The neuron’s response value is also called its “activation” value. The prototype 

vector is also often called the neuron’s “center”, since it’s the value at the center of the 

bell curve. The output of the network consists of a set of nodes, one per category that the 

author are trying to classify. Each output node computes a sort of score for the associated 

category. Typically, a classification decision is made by assigning the input to the 

category with the highest score. 

The score is computed by taking a weighted sum of the activation values from 

every RBF neuron. By weighted sum the author mean that an output node associates a 

weight value with each of the RBF neurons, and multiplies the neuron’s activation by this 

weight before adding it to the total response. 

Because each output node is computing the score for a different category, every 

output node has its own set of weights. The output node will typically give a positive 

weight to the RBF neurons that belong to its category, and a negative weight to the 

others. 

The inputs are the locations, velocities, concentrations, and concentration 

derivatives. And the output shows the two sensors are critical or not. Figure 6.16 shows 

the training results. It can be seen that the network is well trained for all of sample data. 

After network training, the network is then verified. The author prepared three groups of 

the smell data: the first group for the critical sensors, the other two groups for far-way 

sensors. The author input the three untrained data into the neural network. 



 122 

Experiments presented here were obtained using seven sensors in a room where a 

point sensor is set up. There are other methods that detect the critical sensors by the rules. 

The neural network is trained by the sample data to study the rules in the weights of 

neural network.  

In our experiment, 10 groups of sample data are from COMSOL and 3 groups of 

data to check the result of classification, and in the Table 6.1 the sample data are listed. In 

the Table 6.1, there are seven sensors that mean 6 links are existed.  

Table 6.1.  Sample data from the sensors to train the RBF neural network. 

0x 0y 0s 0s 1x 1y 1s 1s output 

1.0 2.2 1.45 -0.2 2.3 2.3 1.55 -0.2 0 

2.3 2.3 1.55 -0.2 2.5 2.9 1.69 -0.4 0 

2.5 2.9 1.69 -0.4 3.0 3.3 2.40 -0.8 0 

3.0 3.3 2.40 -0.8 3.3 3.9 2.99 -1.2 0 

3.3 3.9 2.99 -1.2 3.6 4.2 10.1 -6.2 1 

3.6 4.2 10.1 -6.2 3.9 4.5 4.6 4.2 0 

3.9 4.5 4.6 4.2 4.5 5.1 3.9 3.6 0 

4.5 5.1 3.9 3.6 5.1 5.8 3.2 3.5 0 

5.1 5.8 3.2 3.5 6.0 6.0 2.2 2.9 0 

6.0 6.0 2.2 2.9 6.4 6.8 2.0 2.8 0 

The inputs are the locations, velocities, concentrations, and concentration 

derivatives. And the output shows the two sensors are critical or not. Figure 6.16 shows 

the training results. It can be seen that the network is well trained for all of sample data. 
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After network training, the network is then verified. The author prepared three groups of 

the smell data: the first group for the critical sensors, the other two groups for far-way 

sensors. The author input the three untrained data into the neural network. 

The Table 6.1 shows the neural network’s inputs and outputs. This neural network 

has eight inputs and 1 outputs. The inputs are the values that are collected by the sensors, 

while the output is the sensor label. The label indicates the sensor is a critical sensor or a 

far-away sensor. Using data from historical sensors, the neural network is trained to learn 

the ability to distinguish the critical sensors.   

Figure 6.16. The performance of RBF neural network. 
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Table 6.2 shows the detection results for the three groups of testing data using 

RBF neural network. Therefore, the neural network is proved to have the possibility of 

quick detection of the nearest (critical) sensors to the chemical source. From the result, 

the author can see the odor source should be located between the sensors (3.4, 3.8) and 

(3.7, 4.1). 

   Table 6.2. Untrained sample data for the neural network. 

0x 0y 0s 0s 1x 1y 1s 1s output 

2.5 2.7 1.68 -0.4 3.1 3.1 2.35 -0.7 0 

3.4 3.8 3.00 -1.3 3.7 4.1 10.2 -6.3 1 

5.2 4.2 3.9 3.7 6.1 6.0 2.2 2.9 0 

6.7. CONCLUSION 

There are many useful and humanitarian applications that can locate the source of 

a chemical source. Currently, the majority of work in this area uses reactive control 

schemes that track an odor plume along its entire length, which is slow and difficult in 

cluttered environments. This paper employs a high-level control scheme. The 

interpolation and extrapolation method is used to model the particle path in the sensors’ 

environment. Then a reasoning system use the path model to get the velocity, chemical 

concentration at any point on the map and predict the most probable locations of the odor 

source. This approach has been shown to be effective for odor localization in a known 

environment, without the need for the robot to travel to the source. 

This paper presented an odor detection of chemical source by using the functions 

of neural network in training and data recognition based on smell data. In order to make a 

quick detection, neural network was employed. The author trained the network with the 
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positions of sensors of the smell data of the odor. The trained network was then tested 

with the untrained data. The experiment results show that the neural network is well 

trained and could acquire distinguishing ability for the critical sensors or far-way sensors. 
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7. CONCLUSION 

Chemical source localization and detection is very worthy research in various 

research. In the military, this research can help human being to work in dangerous 

environments, track the explosive substances, like bombs. In the environment 

engineering, it can be used to find the air pollutant in the open-air fields by deploying the 

drones and wireless sensor networks.  In the public security, this research can detect 

smoke in the forests, and search for survivors in the relics. These are just a few 

applications of this research. There are more other areas where this research is very 

useful.  

In the dissertation, the author make a lot of contributions about chemical 

propagation mapping, chemical concentration distributions, sensor fusion, and chemical 

source localization, unmanned vehicle’s application.  

The interpolation and extrapolation are proposed to model the air flow between 

two different positions.  Using chemical concentration value,   the model from the 

interpolation and extrapolation method can match at the two end points. After the link 

between two points, the author can use this model to implement the links among all of the 

nodes. The nodes and the links compose the chemical particle paths. In addition, this 

dissertation give some rules to model the chemical particle paths by going through the 

opening in the area of obstacles and blocking in the region of obstacles. These rules also 

can be the prerequisites for the collision-free algorithms. At last, along the particle paths, 

the chemical particle distributed by Gussian distribution. By then, the author can get the 

chemical concentration and the airflow paths, so that the chemical particle propagation 

mapping has been finished. 

The above method has very import usage, because it save computational time and 

memories. Traditional methods have much more complex calculation to get the chemical 

propagation mapping.  Even the sampling based method doesn’t have to use chemical 

propagation mapping, it still need to process tons of real-time data to detect chemical 

source by updating the uncertainty at every iteration. However, the results between the 

traditional methods and our novel method are very close. Validation by computational 

fluid dynamics indicates our model has the same level of accuracy and efficiency. Simple 
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cases that there are simple airflow and environment models are calculated by hands. 

Complex cases are simulated by the business software COMSOL that is embedded with 

finite element method. In addition. In our simulations and experiments, the author 

consider in many factors, the obstacles, the openings, the numbers of sensors, the 

dispatchment of sensors and the outdoor environment.  

This dissertation has good contributions to sensor fusion technology. When more 

sensors are scattered on the area of interest, the more data are gotten.  Using multi-senor 

networks to get better accuracy of the chemical propagation mapping is a challenge in the 

recent research. The author give two kinds of method to smooth the chemical particle 

paths. The new sensors only affect the paths around the sensors. It’s obvious that the new 

sensors are local data that cannot change the whole area of the interest. So, the updated 

parameters of cubic spline functions is the main idea of smooth the chemical particle 

paths. 

Detecting chemical source is completed by our reasoning system and control 

scheme. The author propose direct method and indirect method. The direct method can be 

used in the new environment. By the reasoning system and control scheme, the author 

can induce the maximum likely hood of chemical source. Around the area near the 

chemical source, the chemical concentration cannot increase and decrease continuously.  

The chemical source always make the chemical concentration dramatically changed. So, 

if the sensors that are closest to the chemical source can by classified, the chemical 

source will be detected. The indirect method is applied to the environment where the 

previous date has been collected.  A lot of previous data can be used to train the RBF 

neural network weights. Then, the network can classify the sensors are close to the 

chemical source or the sensors are far with the source. When the author get the critical 

sensors, the chemical source are navigated in a narrower area where the vertex are the 

critical sensors. 

Recently, more and more people and more and more new technology join in the 

research about chemical source detection. Optical sensors, Radar sensor and ultrasonic 

sensors can be used in this research. Because most of the above sensors are non-contact 

technologies, they have more applications for chemical source detection, especially for 

some dangerous or explosive substances. Integration with the different type of sensors is 
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a challenge to get better analysis of the data. Using extend Kalman filter and Particle 

filter can integrate the data from different sensors to update the chemical concentration, 

chemical particle path and vehicle navigation. The other challenge is the cooperation of 

multi-robot. Multi-robot is a more complex problem. It need to think about the share 

information among different robots and collision-free algorithms among different robots. 

The author think the author can achieve the artificial intelligence in the soon future, as 

long as the author make progress step by step.  
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