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PREDICTION SCENARIOS

Abstract We present one of the meteorological and hydrological experiments performed in

the FP7 project ADMIRE. It serves as an experimental platform for hydrologists,

and we have used it also as a testing platform for a suite of advanced data

integration and data mining (DMI) tools, developed within ADMIRE. The idea

of ADMIRE is to develop an advanced DMI platform accessible even to users

who are not familiar with data mining techniques. To this end, we have designed

a novel DMI architecture, supported by a set of software tools, managed by DMI

process descriptions written in a specialized high-level DMI language called

DISPEL, and controlled via several different user interfaces, each performing

a different set of tasks and targeting different user group.
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1. Introduction

Modern society with ever-evolving methods of fast transportation, expanding urban

centers and increasing population density in previously unpopulated rural areas re-

quires always accurate meteorological predictions not only of general weather condi-

tions, but also of various significant meteorological phenomena [1]. For some of these,

there are no accurate physical models, or if they are available, their customization

to a particular target area is unfeasible because of its complexity and often missing

prerequisites, like past observations or a detailed topological map. To overcome these

difficulties, we have performed several experiments by applying data mining tech-

niques to a set of carefully chosen meteorological and hydrological scenarios. While

data mining has been used in meteorology for a long time, the scenarios we have

chosen have not been previously covered, especially not in the target area we have

chosen. They have been designed and evaluated by domain experts, and their design

was driven by the current needs of these experts and their employers. In their design

we have also used our previous experience in applying information technologies to

environmental predictions [6]. These experiments are part of the FP7 project AD-
MIRE1, and additionally to serve as an experimental platform for meteorologists and

hydrologists, we have used them as a testing platform for a suite of advanced data

integration and data mining (DMI) tools, developed within this project. The idea

of the project ADMIRE is to develop an advanced DMI platform accessible even to

users who are not familiar with data mining techniques. To this end, we have de-

signed a novel DMI architecture [5], supported by a set of software tools, managed by

DMI process descriptions written in a specialized high-level DMI language called DIS-
PEL [2], and controlled via several different user interfaces, each performing a different

set of tasks and targeting different user group. In this paper we present the results

of the project ADMIRE from the point of view of our environmental pilot application.

We describe the methods ADMIRE uses to integrate geographically distributed data

sets, stream them through a series of filters and processing elements using the OGSA-

DAI platform [9], and deliver the results to the end users who have requested them.

The project has successfully finished with a final review in July 2011, and the final

platform allows for the easy development of complex DMI scenarios using an existing

library of processing elements.

2. Data Intensive Processes in the Environmental Domain

Environmental risk management research is an established part of the Earth sciences

domain, already known for using powerful computational resources to model physical

phenomena in the atmosphere, oceans and rivers [15]. In this paper we show how

state-of-the-art tools for data-intensive processes can be applied to the benefit of

1ADMIRE – Architectures for Data Intensive Research. http://www.admire-project.eu/
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meteorological and hydrological experts. We illustrate the possibilities on a simple

scenario from the hydro-meteorological domain.

The environmental domain makes extensive demands of data management as well

as data processing. A significant portion of data input to weather prediction mod-

els (both physical and statistical) comes from observations. Only a fraction of these

observations can be made remotely (satellite and radar observations are examples

of remote weather sensing), and the bulk of the input data comes from local obser-

vations of air temperature, humidity, pressure, precipitation, and other parameters.

Local observations tend to produce local data sources, and a large number of local

observations leads to a large number of local data sources, and a significant level of

distribution of the data. Even in a context where there is a national weather man-

agement authority, several geographically dispersed data sources are needed for any

integrated analysis. For example, in Slovakia we might consider these data sources:

• meteorological observation database owned by the Slovak Hydrometeorological

Institute (SHMI)2;

• weather radar observations conducted by the Slovak Hydrometeorological Insti-

tute, and stored in a separate data store;

• hydrological observations conducted by branches of Slovak Water Enterprise

(SWE)3, and stored locally at the respective branches;

• waterworks manipulation schedules, local to the management centre of the re-

spective waterworks (there are four such centres);

• local observations by specialized personnel at airports and other installations,

where weather is a major operational concern.

This list is not complete and the number of sources may be much larger. A tra-

ditional approach to data management in this environment is to establish a list of

necessary data sources, perform negotiations with their owners, acquire the data

(usually in a form of a static database image), assess its quality, prepare it, and then

feed it to the model. This process is cumbersome, can take months and is not suited

for day-to-day weather management operations.

A different approach is to use modern methods of distributed data management:

establish a Quality of Service agreement, an on-line data integration process including

all necessary data preparation and filtering, and make the process as automated as

possible. The main difference is in treating the input data not as a suite of static

data sets but rather as a group of converging data streams. Weather does not cease

to exist at the moment a snapshot ends. While this approach is still a novelty for do-

main experts trained in a different context and accustomed to data transfer channels

with much smaller bandwidths, it has been recognized as the future of environmental

data distribution, as can be seen in the pan-European INSPIRE Directive [4], man-

2Slovenský hydrometeorologický ústav, Jeséniova 17, 833 15 Bratislava, Slovakia, http://www.
shmu.sk

3Slovenský vodohospodársky podnik, štátny podnik, Radničné námestie 8, 969 55 Banská
Štiavnica, Slovakia, http://www.svp.sk
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Table 1

Nature, current size and the approximate rates of increase of the various data sources used in

the environmental risk management scenarios. While training the various predictive models

makes use of historical snapshots, the live system is designed to work with incoming streams

of data from the various sources, some of which change slowly but significantly over the

course of a year

Data set Source Nature Size (MB) MB/year

NWP data SHMI Simulation arbitrary† c. 20,000

Synoptic stations SHMI Sensor 50 1

Rainfall measurement SHMI Manual 100 < 1

Radar imagery SHMI Sensor 10,000 300

Waterworks SWE Manual 300 20

Hydrology stations SHMI Sensor 300 30
† can be regenerated as required

dating the use of service-oriented architectures and a whole suite of standards for

environmental data publication and access.

The experiments we’ve performed are dependent on several input datasets, which

we summarize briefly in Table 1. We measure these datasets not only in terms of ab-

solute size but also in terms of how quickly they are increasing. While many of the

datasets comprise a large part a historical corpus of measurements, new observa-

tions and new simulations are being performed and added all the time. Training of

any given predictive model [8] will, of course, make use of historical data, but the

actual use of such a model will require the most up-to-date data available. This

is a good illustration of the concept of “thinking in streams” – data are dynamic,

not just static blocks.

3. The ORAVA Scenario — Mining for Water Level

and Temperature

This scenario was defined by the Hydrological Service division of SHMI. Its goal is

to predict the water discharge wave and temperature propagation below the Orava

reservoir, one of the largest reservoirs in Slovakia [3, 7].

This scenario covers a relatively small area of northern Slovakia (see Fig-

ure 2). The selected data which influence the scenario’s target variables – the

discharge wave propagation and temperature propagation in the outflow from the

Orava reservoir to the Orava river – are shown in Table 2. The data are gath-

ered from the hydro-meteorological sensor networks of several data providers. Fig-

ure 1 shows the layout of the sensors below the Orava reservoir. Orange dots

represent the sensor network of SWE, which provide reservoir water temperature

and discharge data. Red dots show a part of the network of hydrological sen-

sors operated by SHMI. These sensors are stationed in the Orava river and its

2012/03/16; 09:43 str. 4/12
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Figure 1. A visualization of an actual network of hydro-meteorological sensors in the northern

part of Slovakia, around the Orava reservoir

tributaries, and measure current river temperature and water level. The densest

sensor network, depicted by green dots, is the network of precipitation measure-

ment stations, providing hourly precipitation data. Additional to these, there are

more complex synoptic sensor stations, depicted in yellow, which provide precip-

itation and other climatological measurements. What is not shown in the pic-

ture is the mesh of values provided by meteorological radar and meteorological

simulations.

As predictor variables in this scenario (shown in Table 2), we have selected rainfall

and air temperature, the discharge volume of the Orava reservoir and the temperature

of water in the Orava reservoir. Our target variables are water height and water

temperature measured at a hydrological station below the reservoir. As can be seen

in Figure 2, the station directly below the reservoir is number 5830, followed by

numbers 5848 and 5880 – these stations are the target sites for which predictions are

made. If we run the data mining process at time t, we expect to know all sensor data

up to this time (first three data lines in Table 2). The future rainfall and temperature

values are obtained by running a standard meteorological model. Future discharge

rate of the reservoir is given in the management schedule of the reservoir. The actual

data mining targets are the X and Y variables for times after time t.
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Table 2

Schematic depiction of the predictor variables and targets in the water level and temperature

prediction scenario. TA denotes air temperature, TR reservoir temperature and TSt the

temperature at the water station in question. HSt is the station height above sea level

Time Rainfall TA Discharge TR HSt TSt

t− 2 RT−2 FT−2 DT−2 ET−2 XT−2 YT−2

t− 1 RT−1 FT−1 DT−1 ET−1 XT−1 YT−1

t RT FT DT ET XT YT

t + 1 RT+1 FT+1 DT+1 ET+1 XT+1 YT+1

t + 2 RT+2 FT+2 DT+2 ET+2 XT+2 YT+2

Figure 2. The geographical area of the ORAVA pilot scenario

3.1. Management of Distributed Data Mining and Integration

The described scenario can be divided into three processes: data integration, training,

and prediction.

The first process, shown in Figure 3, integrates required data from the distributed

data sources and saves the result to a file repository in the form of a stream of tuples.
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Figure 3. A graphical representation of the data integration process in the ORAVA hydro-

logical scenario predicting water level and water temperature
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The process begins by extracting data about the relevant hydrological measurement

station from a relational database (station water level, station discharge, station water

temperature). These values are merged into the initial tuple, which is then expanded

further as the process progresses by means of a simple Tuple merge operation (em-

ployed numerous times throughout the process). In parallel we read data from the

reservoir database (operated by a separate entity), and also access various param-

eters present in the computed weather data stored in the form of GRIB (GRIdded

Binary) [13] files.

The data from the reservoir need to be filtered by the operation Orava reservoir

linear trend, which replaces missing values in the data by a linear interpolation.

Also, any reading of a particular GRIB file is preceded by access to the GRIB meta-

data database, which holds information about the contents of the GRIB files. After

integrating all of these data into a wide tuple, the tuple is filtered to remove du-

plicate occurrences of some parameters (for example the date and time, which are

used by Tuple merge to synchronize the data stream), and the result is stored in a file

repository for later use.

The second process, not shown here in graphical form, reads the integrated data

from the stored file, deserializes it and builds a linear regression classifier using param-

eters set and verified by a data mining expert. The trained model is then serialized

and stored back in the repository.

The final part of this scenario is the actual prediction process. This process

expects to find already-integrated data in the file repository, as created by the inte-

gration process (Figure 3). It also downloads the trained data mining model, feeds the

integrated data into the model, and then merges the original data with the predicted

ones. This process may be used for both verification of the model (if we use past data

for prediction) and for the actual prediction (if we use data containing future weather

prediction).

This scenario illustrates very well the complexity of the data preparation and

integration stages of the analysis process. The design of the model algorithm is

actually a rather small part of the overall knowledge discovery process.

4. New technologies for environmental data mining

The DISPEL language allows us to describe the processes in each of the three envi-

ronmental risk scenarios at a high level of abstraction, independently of any low-level

concerns regarding the underlying enactment engines, databases or any consideration

of the distributed environment. Our experiments have made use of several intercon-

nected gateways, which together provide all the necessary data, processing elements

and visualization tools which our scenarios require. A sample of the source code for

the data integration portion of our scenario is in Figure 4. Here we can see the main

building blocks of a DISPEL program. After initial declarations of the processing ele-

ments grib, gribFileSelector and gribCoordsSelector, and the string literals gribID,

gribFileSelectQuery and gribCoordSelectQuery (the latter two being obviously SQL
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queries used to access a GRIB metadata repository), we can see the construction of

a simple stream in a line reading:

|- gribFileSelectQuery -| => gribFileSelector.expression;

The operators |- -| denote the beginning and end of a stream of literals – in this case

just one literal, the SQL query used to select the proper GRIB file. The operator =>

then creates a connection of this stream in an input connector (called expression) of

the processing element gribFileSelector. This way we feed a stream into a processing

element (PE), and we can also connect an output connector of one PE to the input

of another PE. So these two operators allow us to create a graph in which the data

is streamed and processed by various PEs. For a more thorough explanation of the

language please consult the User Manual [11]4.

Figure 4. A sample of DISPEL code of the ORAVA scenario

This novel approach allows us easily to extend the hydro-meteorological infras-

tructure to new data providers, by deploying a gateway at the site of the new provider,

4http://www.admire-project.eu/docs/DISPEL-manual.pdf
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and registering it with the other gateways. Then, when a data analysis expert cre-

ates a DISPEL document that makes use of one of the capabilities provided by this

gateway, it can be accessed and integrated automatically into the overall knowledge

discovery workflow.

This model provides a clear separation of responsibilities between data-intensive

engineers, data analysis experts, and the domain experts of the application. The

underlying infrastructure and gateway network is managed by the data-intensive en-

gineers. The data-analysis experts use DISPEL to create full knowledge discovery

workflows which utilize the infrastructure without needing to understand it. In turn

these workflows are used by the domain experts via specialized domain-specific por-

tals.

This approach also provides for a reasonable amount of fault tolerance. If one

data centre becomes unavailable, it may conceivably be replaced transparently by

a different one, without the final users of our product ever knowing it happened.

Some centres and gateways are, of course, irreplaceable in a given network (primary

data storage centres for instance), but data filters may be deployed at several loca-

tions to enhance redundancy. There may also be several HPC facilities available to

a given user, so the temporary inaccessibility of one of them is no issue – the DISPEL
description of the required data-oriented solution is entirely agnostic of such things.

5. Conclusion

We have presented an approach to hydro-meteorological predictions, which utilizes

state-of-the-art data integration and data mining technology developed in the EU

FP7 project ADMIRE. The technology allows us to make the whole DMI process

much more flexible, and especially the DISPEL language developed in the project

makes the experience much more pleasant even for novices to data mining. Once

the DMI process is described in a DISPEL program, it can be reused even when the

underlying middleware and hardware configuration changes significantly. It is based

on the popular framework OGSA-DAI, which enjoys good support by its authors and

an extensive user base.

We continue to use the results of ADMIRE even after the project has finished.

The concept has proven its usefulness and we are already working on porting other

application scenarios to the ADMIRE framework, as can be seen for example in [1].

Also there are other works which already utilize ADMIRE technology for different

application domains [14, 12, 10].
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