
Scholars' Mine Scholars' Mine 

Doctoral Dissertations Student Theses and Dissertations 

Spring 2017 

Application of nearly linear solvers to electric power system Application of nearly linear solvers to electric power system 

computation computation 

Lisa L. Grant 

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations 

 Part of the Computer Sciences Commons, and the Power and Energy Commons 

Department: Electrical and Computer Engineering Department: Electrical and Computer Engineering 

Recommended Citation Recommended Citation 
Grant, Lisa L., "Application of nearly linear solvers to electric power system computation" (2017). Doctoral 
Dissertations. 2560. 
https://scholarsmine.mst.edu/doctoral_dissertations/2560 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229288876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2560&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2560&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2560?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2560&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


APPLICATION OF NEARLY LINEAR SOLVERS TO ELECTRIC POWER SYSTEM

COMPUTATION

by

LISA L. GRANT

A DISSERTATION

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

2017

Approved by

Dr. Mariesa Crow, Advisor
Dr. Maggie Cheng
Dr. Mehdi Ferdowsi
Dr. Jonathan Kimball
Dr. Xiaoming He





iii

PUBLICATION DISSERTATION OPTION

This dissertation has been prepared using the Publication Option. Opening and

closing chapters have been added for purposes normal to dissertation writing.

Paper I on pages 3 to 16, “Computationally Efficient Solvers for Power System

Applications,” was published in IEEE Power and Energy Conference.

Paper II on pages 17 to 39, “A Chain Method for Preconditioned Iterative Linear

Solvers for Power System Matrices,” has been accepted for future publication in IEEE

Transactions on Power Systems.

Paper III on pages 40 to 59, “Utilization of a Chain Linear Solver for Fast Decoupled

Power Flow”, will be submitted to IEEE Transactions on Power Systems.



iv

ABSTRACT

Tomeet the future needs of the electric power system, improvements need to bemade

in the areas of power system algorithms, simulation, and modeling, specifically to achieve

a time frame that is useful to industry. If power system time-domain simulations could

run in real-time, then system operators would have situational awareness to implement on-

line control and avoid cascading failures, significantly improving power system reliability.

Several power system applications rely on the solution of a very large linear system. As the

demands on power systems continue to grow, there is a greater computational complexity

involved in solving these large linear systems within reasonable time.

This project expands on the current work in fast linear solvers, developed for solving

symmetric and diagonally dominant linear systems, in order to produce power system

specific methods that can be solved in nearly-linear run times. The work explores a new

theoretical method that is based on ideas in graph theory and combinatorics. The technique

builds a chain of progressively smaller approximate systems with preconditioners based on

the system’s low stretch spanning tree. The method is compared to traditional linear solvers

and shown to reduce the time and iterations required for an accurate solution, especially as

the system size increases. A simulation validation is performed, comparing the solution

capabilities of the chain method to LU factorization, which is the standard linear solver for

power flow. The chain method was successfully demonstrated to produce accurate solutions

for power flow simulation on a number of IEEE test cases, and a discussion on how to

further improve the method’s speed and accuracy is included.
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SECTION

1. INTRODUCTION

With new technology innovations and the addition of renewables to the electric power

grid, there is a greater computational complexity in solving power system simulations within

reasonable time. Better algorithms, modeling, and simulation tools are required to ensure

a reliable electric infrastructure for the future. The blackouts that have been experienced

more frequently in the last decade demonstrate changes in the way the transmission system

is being used. Power system operators need better situational awareness to predict and

prevent catastrophic contingencies, which can be achieved by developing simulation and

monitoring techniques that approach real-time.

There have been several recent advances in computational methods in other fields

that if applied to power systems, could make real-time dynamic simulation a reality. This

project explores a new fast linear solver for application to electric power system computation.

Contributions of Paper I are:

• Demonstrated the theoretical chain algorithm in practice

• Validated the method for use as a general linear solver

• Compared the chain method to a traditional linear solver

Contributions of Paper II are:

• Analyzed the use of the chain method for power system type matrices
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• Demonstrated the scalability of the chain technique as a linear solver for power system

matrices of increasing size

• Proved the chain method can produce a nearly linear runtime when compared to the

traditional LU factorization technique

• Identified potential areas of further study to explore the chain method’s capabilities

for solving power system specific problems

Contributions of Paper III are:

• Described how to apply the chain linear solver to power flow applications

• Validated the use of the chain method as a linear solver for fast-decoupled load flow

• Analyzed the characteristics of power system load flow matrices that specifically

affect the performance of the chain method

• Demonstrated the potential benefits of using the chainmethod for contingency analysis
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PAPER

I. COMPUTATIONALLY EFFICIENT SOLVERS FOR POWER SYSTEM
APPLICATIONS

L. L. Grant, M. L. Crow, and M. X. Cheng

Department of Electrical & Computer Engineering

Missouri University of Science and Technology

Rolla, Missouri 65409–0050

Tel: 573–465–0657

Email: llsnpc@mst.edu

1. ABSTRACT

If power system time-domain simulations could run in real-time, then system oper-

ators would have situational awareness to implement on-line control and avoid cascading

failures, significantly improving power system reliability. Many power system assessment

tools, such as power flow and short circuit analysis, require very large sparse matrix com-

putations. As power systems continue to grow, there is a greater computational complexity

involved in solving these large linear systems within reasonable time. We are expanding

the current work in fast linear solvers to develop power system specific method that show

potential for accurate solutions in nearly-linear run times.

Keywords: Matrix preconditioning, graph sparsification, linear system solution, power

system simulation
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2. INTRODUCTION

Growing reliance on technology demands the development of better algorithms and

simulation methods for a reliable electric infrastructure with increased renewable penetra-

tion. Renewables add variability to the power system network, requiring more frequent

calculations and adjustments than traditional fuel sources. Power system matrices, such as

the one presented in Fig. 1, tend to be very sparse and can contain thousands to millions of

variables. For sparse matrix applications, it is desirable to have an algorithmwith a run time

that is efficient in terms of the number of non-zero variables in the matrix. A sparse matrix

that is ordered and conditioned in such a way as to improve its spectral properties, can allow

for a simple iterative method to solve even large systems efficiently in a short amount of time

[2]. There is interest in specific types of these problems, where the system is symmetric

and diagonally dominant (SDD), similar to the form of power systems [3, 4, 5, 6, 7]. A

matrix is SDD if the magnitude of the diagonal entry aii in row i is greater than or equal to

the sum of the magnitudes of all other non-diagonal entries in that row as shown in (1).

| aii |≥
∑
j,i

| ai j | for all i (1)

A recent breakthrough, presented by Koutis et al., allows these systems to be solved

in nearly-linear time and is less complicated to implement than previous methods [3, 4, 5].

The method, designed for imaging applications, contains a combinatorial component and

uses graph theoretic algorithms. The goal of this project is to explore the new advances

in nearly-linear solvers to analyze how they can be applied to and improved upon for the

field of electric power systems. The rest of this paper is organized as follows: Section 3
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Figure 1. Typical power system matrix structure.

provides background information on the research discoveries leading to the development

of this technique, Section 4 includes details on the proposed method, Section 5 presents

preliminary results, and the conclusion and future work is discussed in Section 6.

3. BACKGROUND

There are several power system analysis tools requiring the solution of a system

of linear equations in the form of Ax = b, where the vector x represents the unknown

state variables, vector b contains the known quantities, and matrix A contains the system

component equations and constraints. A typical electric power network problem can have

on the order of 25,000 nodes represented in the system matrix A. For power system specific

applications, the approach to solving these equations is to find a sparse Ã that provides a

very fast solution for Ãx̃ = b where x̃ can be presented as an initial value for an iterative

algorithm to solve the original set of equations Ax = b. If x̃ is a good approximation to the
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Figure 2. Graph of matrix A with corresponding subgraph M .

true solution x, then the overall number of iterations can be significantly reduced to improve

speed of convergence. Iterative techniques can be improved using preconditioning, where

a system is transformed into another system with more favorable spectral properties [8]. In

the preconditioned linear system, M−1 Ax = M−1b, the system matrix A is preconditioned

by a non-singular preconditioner matrix M . An effective preconditioner matrix M has a

low computation and update cost.

New advances in the field of linear solvers were inspired by an idea, proposed in a

talk by Pravin Vaidya, to view matrices as undirected graphs and to precondition matrix A

by the Laplacian of a subgraph M with substantially fewer edges than A [7]. An example of

an 8× 8 matrix with its corresponding graph is presented in Fig. 2. This graph has 8 nodes

or vertices |V | denoted by the variable n, and 12 weighted edges |E | denoted by m. There

are several publications on the benefits of using spanning tree subgraphs as preconditioners

[9, 10, 11, 12], and Vaidya’s ideas led to the development of combinatorial preconditioning,

where numerical linearly algebra is merged with spectral graph theory [11, 13].
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Spielman and Teng built upon Vaidya’s concept by adding off-tree edges back into

the spanning tree preconditioner using a random sampling scheme [4]. The graph is viewed

as an electrical network and the edges of the input graph are included in the preconditioner

using a sampling probability proportional to their effective resistance [5]. The method

develops a spectral sparsifier for the system composed of the low-stretch spanning tree of

the graph plus a small number of off-tree edges. This method achieved one of the first

nearly-linear time algorithms with a convergence rate of O(m log15 n) [14]. Koutis et al.

proposed a modification called incremental graph sparsification which shows potential for

accurate solutions in O(m log2 n) run times [3].

There are two steps to the incremental graph sparsification technique developed

in [3]. The first step generates a simplified system for use as the preconditioner for the

second step, which performs a Recursive Preconditioned Chebyshev iteration to solve the

preconditioned linear system M−1 Ax = M−1b. Our work extends on this method to develop

power system specific methods, which could improve power system reliability by providing

accurate solutions in the nearly-linear run time that is claimed by [3]. In the technique,

matrix A is represented by a graph G = (V, E, ω) with each non-zero entry of the matrix

representing a connection in the power system. To increase the speed of computation, it is

beneficial to reduce the density of A. Graph theory has a natural approach to accomplishing

this by removing trivial edges in graphs called graph sparsification [3, 15]. The proposed

approach utilizes a spectral sparsification scheme, which generates a preconditioner with a

provably small condition number between the original graph G and the approximate graph

G̃, preserving the spectral properties of the system. The approximate graph G̃, contains a

nearly-linear number of edges that α-approximates the given graph for a constant α. The

method explored in this project for fast linear solvers is based on [3] and can be viewed in

three components:
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1) Developing the low stretch spanning tree.

2) Building a chain of sparse preconditioners.

3) Implementing the actual linear solver.

4. METHOD

4.1. Low Stretch Spanning Tree. The preconditioner M for the linear system is

based on the low-stretch spanning tree of the matrix. To find the low-stretch spanning tree,

the system matrix A is represented by a graph with m representing the number of edges in

the graph or nonzero entries in the matrix. The concept of stretch was discovered to be

critical for constructing a good spanning tree preconditioner by Boman and Hendrickson

[9]. In order to have a spanning tree that serves as an effective preconditioner, the off-tree

edges must have an average stretch δ over a spanning tree in order for the spanning tree to

be an O(δm)- approximation of the graph [3]. There exists a unique ‘detour’ path in the tree

between vertices u and v, for every edge e(u, v). Stretch is defined as the distortion caused

by the detour required by taking the tree path. Eq. (2) is used to compute the stretch of

the edges in the tree. The denominator contains the distance between the vertices (u, v) in

the graph, and the numerator sums the distances of the edges along the unique path in the

tree connecting the vertices (u, v), with distance equaling the inverse of the edge weight,

w′ = 1/e.

stretchT (e) =
∑k

i=1 w
′(ei)

w′(e) (2)
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Figure 3. Star-decomposition [1].

The low stretch tree is generated using star-decomposition, described by Elkin et al.

in [1]. Star-decomposition recursively performs graph decomposition to partition the graph

vertices into clusters, which are connected in a star structure as shown in Fig. 3. A partition

of the vertices V is a set of pairwise disjoint subsets {V1,V2, . . . ,Vk} of the vertices such

that their union is V [1]. The vertices of the graph are partitioned into sets by first defining

a central ball(V0), and then cones (V1, . . . ,Vk) are grown sequentially from the remaining

graph. The ball, which is grown around the central vertex x0, is connected to each outer

cone set by a single bridge edge (xk, yk). Once all the nodes in the graph are assigned to a set

in the star-decomposition, the algorithm is repeated recursively. A new star decomposition

is performed on each individual set V0 through Vk . The recursion is complete when the size

of each set is reduced to at most 2 vertices. A spanning tree is formed containing all of the

bridge edges that connect the sets. A trade-off exists between metrics, such as the radius of

the graph and the number of edges cut in determining the size of each set, in order to ensure

a complete cover of the graph.
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4.2. Chain of Preconditioners. In the preconditioner phase, a chain of progres-

sively smaller graphs C = {A1, M1, A2, M2, . . . , Ad} is created based on the low-stretch

spanning tree of the matrix. The chain building phase alternates between a sparsification

routine to form the preconditioners Mi from thematrices Ai followed by a greedy elimination

step to create smaller sub-graphs Ai+1 from the preconditioners Mi [3, 7]. The sparsification

portion of the algorithm generates less dense sub-graphs by removing off-tree edges from

the input graph Ai. The concept of stretch was defined in the previous sub-section, and it is

important to note that if an edge has a stretch equal to 1, then there is no other route between

vertices u and v except for the edge joining them. This occurs in the graph depicted in Fig.

2 for the edge between vertices 7 and 8. If the stretch of an edge is small, then there are

a significant number of alternative connections between its vertices; therefore, stretch is a

measure of the importance of an edge in the graph network. The low-stretch spanning tree

is bound by a total stretch of O(m log n) where n is the number of nodes in the graph and m

is the number of edges.

In the incremental sparsify algorithm, the low-stretch tree T is generated using the

star-decomposition method defined in the previous sub-section. The weights of the edges

of the tree are then scaled up by a factor of κ, creating a bound on the condition number of

the augmented matrix M−1 A. The condition number, computed in (3), provides a measure

of sensitivity to numerical operations and can be used to predict the convergence rate of

iterative methods.

κ(M−1 A) = λmax(M−1 A)
λmin(M−1 A)

(3)
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A matrix is said to be well-conditioned if its condition number is close to 1 or its

eigenvalues are tightly clustered; therefore, the goal is to develop a preconditioner which

helps to sufficiently reduce the condition number of the system and is simple to compute

[16]. Edges are added to the low-stretch spanning tree to improve the condition number.

A version of the graph containing the low-stretch tree with the ‘optimal’ off-tree edges

can satisfy this goal. To achieve this, the incremental sparsification algorithm generates a

special graph Ã from A. The scaled version of the tree Tκ is added back into the graph,

generating Ã, where the edges in the tree path are now heavier by a factor of κ. If an edge in

Ã is not part of the tree, the weight of that edge remains the same. The stretch of Ã is now

decreased by a factor of κ and the total stretch of these edges becomes t = O(m log n/κ).

Over-sampling is performed on the off-tree edges with a probability proportional to their

stretch over the scaled up tree. The off-tree edges are sampled in a way that adds the

most important off-tree edges back into the low-stretch tree preconditioner, based on upper

bounds on stretch. Each off-tree edge has a probability pe of being chosen equal to its

stretch, where the total stretch t =
∑

e pe. The sampling scheme assigns each off-tree edge

an interval on the unit interval [0, 1], with length corresponding to its probability pe [3]. A

total of O(t log n) values are sampled at random from the interval [0, 1] and a binary search

is performed to find the edge interval corresponding to each random value. The chosen

sampled off-tree edges are added to the tree T to form the preconditioner M . If an edge is

sampled multiple times, it is added as a parallel edge and the weight is scaled accordingly.

In the greedy elimination step, a partial Cholesky factorization is applied to the

modified matrix Mi. For a symmetric and positive definite matrix M , a standard Cholesky

factorization can be computed usingGaussian elimination that generates the form M = LLT .

In order to reduce the size of M for this application, a partial Cholesky factorization of the
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first k variables of M is performed. The partial Cholesky factorization puts M into the form

in (4) where Ik is the k × k identity matrix, and Mk is the Schur complement of M with

respect to the elimination of the first k variables [3].

M = L
©«

Ik 0

0 Mk

ª®®¬ LT (4)

The incremental sparsifier M of A is a natural choice for preconditioner, and reducing

M using (4) produces the matrix Ai+1 = Mk for the next chain level [3]. All nodes with

degree 1 are removed from the graph M , and any remaining degree 2 nodes are replaced by

a new single combined edge of weight w′, reducing the size of the graph. This process is

repeated until the matrix size is reduced to a desired point by certain stopping criteria.

4.3. Linear Solver. In the solve phase, the chain of preconditioners is passed

into the Recursive Preconditioned Chebyshev algorithm. Recursion is the key to solving

preconditioned linear systems quickly. The preconditioner M needs to be a good approx-

imation to A and able to be computed in linear time. Realistically graph preconditioners

can’t satisfy both requirements since the preconditioner M won’t be significantly easier to

solve than A [7]. When using a recursive preconditioned method, the preconditioner M is

solved approximately. The preconditioned Chebyshev iterative method solves the system

M−1 Ax = M−1b. The condition number of the A matrix can indicate convergence speed

for iterative methods like Chebyshev. If the condition number κ(A) is large the convergence

will be slow, but improvements to the speed can be achieved by proper preconditioning,

which reduces the condition number to κ(M, A) [17]. Chebyshev iteration is guaranteed

to converge after O(
√
κ log 1/ε) iterations with an accuracy of x − A+bA ≤ εA+bA, where

κ = κ(A) = λmax/λmin [17]. For the chain of preconditioners, most of the work in the

Chebyshev iterations is performed on the chain levels with smaller matrices, levels i + 1
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Table 1. CONDITION NUMBER REDUCTION AT EACH CHAIN LEVEL

Chain level i κ(Ai) κ(M−1
i Ai)

1 14.292 2.798
2 7.245 1.349
3 2.36 1.098

through i = d. The partial solutions obtained at the smaller matrix levels are passed on to

the larger matrix chain levels. This allows for a great reduction in the number of iterations

necessary for convergence at the chain level i = 1, where the original matrix A1 is of largest

size. Each matrix Mi is a preconditioner for Ai, and rather than solving systems in Mi

directly, these are reduced to solving a linear system in Ai+1, performing O(n) additional

work. To solve systems on A2, the preconditioned Chebyshev iteration can be recursively

applied with a new preconditioner M2, stepping through the progressively smaller graphs in

the chain C. Table 1 provides an example of the condition number reduction at each chain

level for the simulation of a simple 8x8 matrix.

5. PRELIMINARY RESULTS

Three power system matrices from the University of Florida Sparse Matrix Col-

lection were used to show the benefit of this method for power system applications [18].

Statistics for the test matrices are presented in Table 2, including: the number of non-zeros

in the matrix, condition number of matrix A1, density of matrix A1, and number of edges

in the graph of A1. Density is computed by dividing the number of non-zeros in the matrix

by the total number of elements in the matrix, n × n.
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Table 2. TEST MATRIX STATISTICS

Matrix Nonzeros Condition, κ(A) Density Edges,m
494 bus 1666 2.06E + 05 0.68% 586
662 bus 2474 1.35E + 04 0.56% 906
1138 bus 4054 2.39E + 05 0.31% 1458

Table 3. SIMULATION ITERATION RESULTS

Matrix Iteration Iteration Preconditioner
level i = 1 levels i = 2 to d Chain Size

494 bus 55 11 494, 54, 24, 4, 2
662 bus 37 9 662, 161, 27, 6, 2
1138 bus 83 28 1138, 123, 43, 7, 2

Table 3 contains simulation data including a breakdown of the iterations and matrix

size for all levels in the chain. In table 3, there are two columns for iterations. The first

column contains the number of iterations performed at chain level i = 1 where the solution

is computed on the original matrix size, and the second iteration column contains the total

number of iterations performed at the chain levels i = 2 through i = d, where solutions are

computed on the smaller sub-matrices. For example, the 494-bus system only performs 55

of the total iterations on a system of size 494 × 494, the rest of the 11 internal iterations are

performed on smaller sub-matrices, which decreases the overall computation time required

by the method. The third column labeled Preconditioner Chain Size provides information

on the matrix size reduction at each level of the chain, for example, the 494 bus system is

reduced to a matrix of size 54 × 54 for chain level i = 2, and a matrix of size 24 × 24 for

chain level i = 3, etc.



15

Table 4. COMPARISON OF CHAIN CHEBYSHEV ITERATION TO TRADITIONAL
CHEBYSHEV ITERATION

Chain Chebyshev Traditional Chebyshev
Matrix Time (sec) Total Iterations Time (sec) Total Itertions
494 0.6907 66 4.3501 502
662 1.6581 46 2.4991 129
1138 8.9947 111 61.379 740

Table 4 contains preliminary simulation results, comparing the current development

of the Chain of Preconditioners method to a standard Preconditioned Chebyshev iteration

without the chain. The error is measured by the norm of the residual r = b− Ax . An error

threshold of e = 0.01 was used as stopping criteria for the iterative methods. The time and

iteration reductions achieved by the Chain method tend to improve as the system matrix

size increases.

6. CONCLUSIONS

The preliminary results presented in this paper show a significant speed improvement

and iteration reduction for the linear solutions of several test matrices and power system

networks using the SDD linear solver. This method has the potential to improve power

system reliability by significantly decreasing runtime of critical analysis tools required by

power system operators to prevent catastrophic contingencies. Preliminary results show

this method to be comparable with traditional techniques. Further study and enhancements

are planned to improve the speed and accuracy of this method for power system specific

applications. There are several benefits that can be achieved by developing nearly linear

solvers for large scale power systems including:
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• Achieve a time frame useful to industry (real-time)

• Provide on-line control to avoid cascading failures and outages

• Improve power system reliability

• Provide a shift in power system operation from ‘what-if’ scenarios to on-line moni-

toring with situational awareness

• Assist in Smart Grid development

There are additional areas to be explored to further optimize the algorithm for

power system applications. The traditional approach in power systems for dealing with

very large sparse matrices is to apply direct methods using reordering. Node reordering

helps to minimize the number of computations required by reducing the number of fills or

nonzero elements that are generated in the matrix decomposition [19, 20]. Our next step

in determining the potential for this tool to improve power system analysis techniques is to

benchmark the algorithm against traditional direct sparse methods using reordering.



17

II. A CHAIN METHOD FOR PRECONITIONED ITERATIVE LINEAR
SOLVERS FOR POWER SYSTEM MATRICES

L. L. Grant, M. L. Crow, and M. X. Cheng

Department of Electrical & Computer Engineering

Missouri University of Science and Technology

Rolla, Missouri 65409–0050

Tel: 573–465–0657

Email: llsnpc@mst.edu

1. ABSTRACT

Many power systems applications, such as power flow and short circuit analysis,

require very large sparse matrix computations. With the increase in reliance on our electric

infrastructure, power systems are continually growing in size, creating greater computational

complexity in solving these large linear systems within reasonable time. For sparse matrix

applications, it is desirable to have an algorithm with low runtime complexity in terms

of the number of non-zeros in the matrix. There have been several recent advances in

computational methods in other fields that if applied to power system, could make real-

time dynamic simulation a reality. Much work has been done for specific types of these

problems where the system is symmetric and diagonally dominant (SDD), similar to the

form of power system matrices. This paper details an expansion on the current work

in fast linear solvers to develop power system specific methods that show potential for

accurate solutions in O(m log2 n) run times, where n represents the number of nodes and
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m represents the number of nonzeros in the power system matrix. This paper presents the

simulation validation of a recently developed recursively-solved iterative chain method for

sparse matrices using a low stretch spanning tree (LSST) preconditioner.

Keywords: Matrix preconditioning, graph sparsification, linear system solution, power

system simulation.

2. INTRODUCTION

There are several power system simulations that require the solution of a large

number of differential algebraic equations in real-time. In the majority of power system

computational problems, the system of equations to be solved typically depends on a (pos-

sibly time-varying) matrix solution. The system matrix A in question is usually symmetric

and sparse, but with randomly occurring off-diagonal non-zero elements. The most com-

putationally intensive steps in solving numerical power system problems is the solution of

the system of linear equations. The majority of currently used power system linear solvers

rely on direct methods derived from LU factorization [21]. Most recent approaches pro-

pose methods for node ordering schemes to reduce fills, elimination trees, assembly trees,

and directed acyclic graphs as developments for more efficient LU factorization. It has

been conventional wisdom that direct methods will always outperform iterative methods for

sparse systems due to convergence uncertainty of iterative methods. However, as the size of

systems under consideration have increased, iterative solvers have becomemore competitive

due to the poor scalability of direct methods. Even the best sparse direct solvers require

roughly O
(
n1.4

)
floating point operations (where n is the size of the matrix) [22]. Recently,

power systems researchers have begun to investigate iterative solution methods as advances

in preconditioners have begun to produce competitive computational runtimes and accuracy
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levels [23]. Chen et. al demonstrated the use of preconditioned iterative methods on DC

and transient simulations for large scale power delivery circuits with favorable results using

conjugate gradient algorithm [24]. A study was also performed to demonstrate the use of

iterative techniques on the Nigerian 330 kv grid [25].

For sparse matrix applications, it is desirable to have an algorithm with a run-time

that is efficient in terms of the number of non-zero variables in the matrix. The density

of matrix A determines how quickly these equations can be solved. A sparse matrix that

is ordered and conditioned in a way that improves its spectral properties, can allow for a

simple iterative method to efficiently solve even large systems in a short amount of time [2].

Practical implementation of iterative methods require that the system matrix A be precon-

ditioned by a non-singular preconditioner matrix M that closely approximates the inverse

of the system matrix. The preconditioner matrix M should require little computational

cost to compute and update and provide a computationally efficient solution to My = b

where y is a near solution to x in Ax = b. Effective preconditioners arise from incomplete

LU factorization, a sparse approximate inverse to A, and stationary methods among others.

Recent advances have proposed an approach that exploits underlying structural properties to

produce a chain of graphs which is used as an input to a recursive preconditioned Chebyshev

iteration. This method has been shown to solve symmetric, diagonally dominant (SDD)

systems in nearly-linear time [26]. Power system matrices closely mimic SDD matrices

and are sparse with randomly occurring off-diagonal non-zero elements [3, 7]. Thus it is

desirable to apply these new advances in nearly-linear solvers to the field of electric power

systems. In this paper, we extend the developments in [3] and [14] to improve power system

computation to nearly-linear run time. Specifically, we propose a computationally effi-

cient preconditioner which reduces the condition number of the system thereby improving

convergence and decreasing runtime.
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3. BACKGROUND

Undirected graphs GA = (V, E, ω) are often used to represent matrices. One pro-

posed approach to developing effective preconditioners to GA is to use the Laplacian of a

subgraph GM that has substantially fewer edges than GA [7]. Graph theory has a natural

approach to reducing the density of A by removing trivial edges [3, 15]. Recent work has

focused on using spanning trees as preconditioners, where a spanning tree is a subgraph of

A and is a connected graph containing all of the vertices in A with no cycles [9, 10, 11, 12].

These approaches have led to the development of combinatorial preconditioning, where

numerical linear algebra is merged with spectral graph theory [11, 13].

One recent approach is to add selected off-tree edges back into the spanning tree

preconditioner using a random sampling scheme [4]. This is based on visualizing the graph

as an electrical network where the edges are selected for the preconditioner using a sampling

probability proportional to their effective resistance [5]. The method develops a spectral

sparsifier for the system composed of the low-stretch spanning tree (LSST) of the graph

plus a small number of off-tree edges. The LSST is a spanning tree that uses the concept

of stretch to determine which edges are kept in the subgraph. This method achieved one of

the first nearly-linear time algorithms with a convergence rate of O(m log15 n) [14].

A modification, called incremental graph sparsification, has been proposed, which

shows the potential for accurate solutions in O(m log2 n) run times [3]. The method was

designed for imaging applications and contains a combinatorial component that uses graph

theoretic algorithms. There are two steps to the incremental graph sparsification technique

developed in [3]. The first step generates a simplified system for use as the preconditioner for

the second step, which performs a recursive iterative technique to solve the preconditioned

linear system M−1 Ax = M−1b. The proposed approach generates a preconditioner with a

provably small condition number between the original graph GA and the approximate graph
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Figure 1. Graph of matrix A with corresponding subgraph M

G̃A preserving the spectral properties of the system. The approximate graph G̃A contains

a nearly-linear number of edges that α-approximates the given graph for a constant α. The

condition number, given by (1), provides a measure of sensitivity to numerical operations

and can be used to predict the convergence rate of iterative methods.

κ(M−1 A) = λmax(M−1 A)
λmin(M−1 A)

(1)

A small matrix example will be used throughout the paper to better convey the

graphical interpretations of the proposed approach. An 8× 8 matrix with its corresponding

graph is shown in Fig. 1. This graph has 8 nodes or vertices |V | denoted by the variable

n, and 12 weighted edges |E | denoted by m. For simplicity in notation, both the matrix

representing the power system and its corresponding graph will be referred to as A and the

matrix preconditioner along its corresponding graph will be referred to as M .

The method explored in this project for fast linear solvers is based on [3] and can be

viewed in three components described in detail in the following subsections:
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A) Developing the low stretch spanning tree.

B) Building a chain of sparse preconditioners.

C) Implementing the actual linear solver.

3.1. Low Stretch Spanning Tree (LSST). The preconditioner M for the linear

system is based on the low-stretch spanning tree of the matrix. To find the LSST, the system

matrix A is represented by a graph with m edges, which also correspond to the non-zero

entries in the matrix. The size of the tree stretch is critical for constructing a good spanning

tree preconditioner [9]. To have a spanning tree that serves as an effective preconditioner,

the off-tree edges must have an average stretch δ over the spanning tree for the spanning

tree to be an O(δm)-approximation of the graph [3]. There exists a unique ‘detour’ path in

the tree between vertices u and v for every edge e(u,v). Stretch is defined as the distortion

caused by the detour required by taking the tree path, where the stretch of the edges in the

tree is given by:

stretchT (e) =
∑k

i=1 w
′(ei)

w′(e) (2)

The denominator of (2) contains the distance between the vertices (u, v) in the

graph and the numerator sums the distances of the edges along the unique path in the

tree connecting vertices (u, v), with the distance equaling the inverse of the edge weight,

w′ = 1/e. If the stretch of an edge is small, then there are a significant number of alternative

connections between its vertices; therefore, stretch is a measure of the importance of an

edge in the graph network. A low-stretch spanning tree is bounded by a total stretch of

O(m log n).



23

x0V0

x1

x2

xk

y1

y2

yk

Figure 2. Star-decomposition [1].

TheLSST is generated using the star-decomposition approach [1]. Star-decomposition

recursively performs a graph decomposition to partition the vertices of the graph into clus-

ters, which are connected in a star structure as shown in Fig. 2. A partition of the vertices

V is a set of pairwise disjoint subsets {V1,V2, . . . ,Vk} of the vertices such that their union

is V [1]. The vertices of the graph are partitioned into sets by first defining a central ball

V0. Cones V1, . . . ,Vk are then grown sequentially from the nodes remaining in the graph.

The ball, which is grown around the central vertex x0, is connected to each outer cone set

by a single bridge edge (xk, yk). Once all the nodes in the graph are assigned to a set in

the star-decomposition, the algorithm is repeated recursively. A new star decomposition is

performed on each individual set V0 through Vk . The recursion is complete when the size

of each set is reduced to at most 2 vertices. A spanning tree is formed containing all of the

bridge edges that connect the sets. A trade-off exists between metrics, such as the radius of

the graph and number of edges cut, in determining the size of each set to ensure a complete

cover of the graph. The low-stretch spanning tree for the 8 × 8 example matrix is shown in
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Figure 3. Example of the low stretch spanning tree for an 8 × 8 matrix.

Fig. 3 with the tree edges highlighted by the dashed green lines. Edges in the graph that do

not belong to the tree are referred to as off-tree edges. To compute the stretch for an off-tree

edge e(4,6), the distances of edges connecting nodes 4 and 6 along the tree are summed and

then divided by the distance of the edge directly between nodes 4 and 6 as:

stretchT (e(4,6)) =
w′(e3,4) + w′(e2,3) + w′(e2,6)

w′(e4,6)

=
1/6 + 1/5 + 1/6

1/2 = 1.067

3.2. Chain of Preconditioners. In the preconditioner phase, a chain of progres-

sively smaller graphs C = {A1, M1, A2, M2, . . . , Ad} is created based on the low-stretch

spanning tree of the matrix. The chain building phase alternates between a sparsifica-

tion routine to form the preconditioners Mi from the matrices Ai, followed by a greedy

elimination step to create smaller subgraphs Ai+1 from the preconditioners Mi [3, 7].



25

The preconditioner Mi needs to be a good approximation to Ai and able to be

computed in linear time. The sparsification portion of the algorithm, depicted in Fig. 4,

generates less dense subgraphs by adding a subset of off-tree edges from Ai back to the

LSST in order to form the preconditioner Mi. In sparsification, the number of edges in the

graph A needs to be significantly reduced while preserving a good approximation to the

original graph. Adding the ‘optimal’ off-tree edges back to the LSST produces a graph with

a better condition number than Ai. To achieve this, the incremental sparsification algorithm

generates a special graph Ãi from Ai. The weights of all tree edges are scaled up by a factor

of κ, creating a bound on the condition number of the augmented preconditioned matrix

M−1
i Ai. The scaled version of the tree Tκ is added back into the graph, generating Ãi, where

the edges in the tree path are now heavier by a factor of κ. The weights of the off-tree edges

in Ãi remain unchanged. The stretch of the edges in Ãi is now decreased by a factor of κ

and the total stretch of these edges becomes t = O(m log n/κ).
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Figure 4. Example of Incremental Sparsify algorithm.

Over-sampling is performed on the off-tree edges of Ãi, where each off-tree edge

has a probability of being chosen proportional to its scaled stretch value. The off-tree edges

are sampled in a way that adds the most important off-tree edges back into the low-stretch
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tree preconditioner, based on upper bounds on stretch. The sampling scheme assigns each

off-tree edge an interval on the unit interval [0, 1], with interval length corresponding to

its probability pe [3]. A total of O(t log n) values are sampled at random from the interval

[0, 1], where t =
∑

e pe indicates the total stretch. A binary search is performed to find the

edge interval corresponding to each random value. The chosen sampled off-tree edges are

added to the tree T to form the preconditioner Mi. If an off-tree edge is sampled multiple

times, it is added in parallel and the weight is scaled accordingly. In Fig. 4, the off-tree

edges e(1,2), e(1,3), and e(5,6) are added to the tree forming preconditioner Mi with new scaled

weight values. The density of the graph is reduced not only by removing edges e(3,5) and

e(4,6), but also by the overall reduction in edge weight. This completes the first level i = 1

of the chain by producing A1 and M1. The next chain level i + 1 = 2 will be initiated by

performing greedy elimination on the preconditioner.

The incremental sparsifier Mi is a natural choice for preconditioner, and reducing

the size of Mi using greedy elimination produces the matrix Ai+1 for the next chain level

[3]. To reduce the matrix size using greedy elimination, all nodes in Mi with degree 1 are
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removed from the graph, and any remaining degree 2 nodes are replaced by a new single

edge of combined weight w′. The matrix reduction can be achieved by applying a partial

Cholesky factorization of the first k variables to the modified matrix Mi.

Mi = Li
©«

I 0

0 Ai+1

ª®®¬ LT (3)

The partial Cholesky factorization puts Mi into the form in (3) where I is the k × k

identity matrix, and Ai+1 is the Schur complement of Mi with respect to the elimination of

the first k variables [3]. The new matrix Ai+1, is a reduced approximation of the original

graph Ai. Fig. 5 contains an example of reducing the density of Ai by applying greedy

elimination to its preconditioner. In the greedy elimination example, the degree 1 nodes 4

and 8 are pruned from the preconditioner Mi along with their connecting edge. Once all

degree 1 nodes are removed, the degree 2 nodes get absorbed one-by one startingwith node 3

where edges e(1,3) and e(2,3) are combined with their shared mutual edge e(1,2). Node 7 is the

last remaining degree 2 node, which is also removed by combining its corresponding edges

e(5,7) and e(6,7) with the shared edge e(5,6). The remaining graph Ai+1 has been reduced from

size 8× 8 to size 4× 4 and will be used as a starting point for chain level i = 2. The process

of generating smaller matrices and their preconditioners using incremental sparsification

and greedy elimination is repeated until the matrix size is reduced to a desired point by

certain stopping criteria. From both Figs. 4 and 5 it can be observed that the majority of the

original low stretch spanning tree edges, depicted by the dashed green lines, are retained as

the matrix is reduced, while the off-tree edges are systematically removed by reducing their

edge weights. Fig. 7 shows a complete cycle of the chain building process used to produce

the reduced matrices Ai and their preconditioners Mi for the example 8 × 8 system. For
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this illustration, the greedy elimination step has been modified to only remove a few nodes

each cycle since this is an abnormally small matrix, instead of eliminating all degree 1 and

degree 2 nodes at once.

3.3. Linear Solver. In the solve phase, a recursive iterative method is applied

to each level i in the chain of preconditioners. Iterative methods can be terminated as

soon as they reach a reasonable solution, making them more scalable by requiring less

computation than direct methods [4]. Recursion is the key to solving preconditioned

linear systems quickly, since the preconditioner Mi can be solved approximately. The

preconditioned iterative method solves the system M−1 Ax = M−1b. The matrices Mi serve

as preconditioners for matrices Ai−1 in the recursive solver [6]. Instead of solving systems

in Mi directly, the systems are reduced in Ai and are solved recursively. A product of the

form M−1z is equivalent to solving the system My = c [3]. The function fMi(z) produces

approximate solutions to the systems in Mi, returning M−1c to the iterative method instead

of the preconditioner Mi as input [6]. Details and pseudocode for the recursive solver can

be found in [3].

The preconditioning chain C reduces the computation needed to solve the linear

system. Most of the work in the iterative methods is performed on the chain levels with

smaller matrices, levels i + 1 through i = d. The recursive method solves the system in

M by solving a linear system in A2 [3]. The Chain is evoked to solve systems on A2 by

recursively applying the preconditioned iterative method to it using the new preconditioner

M2, and so forth through the chain of progressively smaller matrices. The iterative method

applied in this paper is the Preconditioned Chebyshev iteration.

The Conjugate Gradient algorithm is suited for linear systems with symmetric

positive definite and sparse matrices. It is known as one of the Krylov subspace methods,

which generates a sequence of converging solutions, xk , that are an orthogonal projection
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of b applied to the Krylov subspace Kn〈r0, A〉, where r0 = b − Ax0 is the initial residual

[2]. A Krylov subspace is a linear combination of vectors, Kn〈b, Ab, ..., An−1b〉; the residual

is orthogonal to the subspace, along with all previously generated residuals [27, 28]. The

solution xk at each step is found using a linear combination of the previous search directions

pk and the current residual. A graphical description of how the approximate solution moves

from xk to xk+1 is provided in Fig. 6 [19].

Figure 6. PCG iterative method.

The conjugate relationship among the parameters eliminates the amount of vectors

needing to be stored in memory, since they can be derived from each other [27]. One

advantage of the PCG method is that only one matrix-vector multiplication is needed per

iteration in the computation of the current residue. The greatest advantage of PCG over

other methods is that it converges in at most n steps. The goal of iterative techniques is to

reach the exact solution in the fewest number of iterations for a fast convergence rate.

The Chebyshev iterative method is similar to the PCG and was developed to avoid

the need to compute inner products, which require considerable computation time for large

systems. The trade-off of not needing to generate an inner product is that enough must be

known about the system in order to generate an ellipse enclosing the spectrum of A [29, 30].
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A family of ellipses is defined by scalars c and d with a common center d > 0 and foci d+ c

and d − c. The rate of convergence is determined by (4) where a is the length of the x-axis

of the ellipse. For symmetric positive definite systems, the ellipse enclosing the spectrum

of A degenerates to the interval [λmin, λmax] along the positive x-axis, where λmin and λmax

are the largest and smallest eigenvalues of M−1 A [16, 30]. Chebyshev has the same upper

bound as PCG for symmetric matrices when c and d are computed from λmin and λmax [2].

r =
a +
√

a2 − c2

d
√

d2 − c2
(4)

At each chain level i, the Chained Chebyshev method provides a product in the

form M−1z, which is equivalent to solving the system My = c, whereas the traditional

Preconditioned Chebyshev iteration must explicitly calculate the solution to My = c [3].

The condition number of the Ai matrix can indicate convergence speed for iterative methods

like Chebyshev. If the condition number κ(A) is large, then the convergence will be slow.

Improvements to the speed can be achieved by proper preconditioning, which reduces the

condition number to κ(Mi, Ai) [17]. Chebyshev iteration is guaranteed to converge after

O(
√
κ log 1/ε) iterations with an accuracy of ‖x − A+b‖A ≤ ε‖A+b‖A where the 2-norm

condition number of A can be computed by κ = κ(A) = λmax/λmin [17]. Table 1 provides

an example of the condition number reduction at each chain level for a 117 x 117 matrix.

Note that the condition number of the preconditioned system (M−1
i Ai) decreases rapidly to

nearly unity, indicating very rapid convergence for the smaller levels in the chain.
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Table 1. CONDITION NUMBER REDUCTION AT EACH CHAIN LEVEL

Chain level i κ(Ai) κ(M−1
i Ai)

1 1846.7 143.92
2 225.5 65.05
3 119.19 41.398
4 57.123 1.2163

Figure 7. Chain of preconditioners for simple 8 × 8 example.
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4. THE LSST CHAINED PRECONDITIONER

Several matrices were used to demonstrate the capabilities of this method, including

power networks from the University of Florida Sparse Matrix Collection and the Matpower

library [18] [31].

Statistics for the test matrices are presented in Table 2. The table includes number

of edges in graph A1, number of nonzero values in the system matrix, the condition number

κ(A1) of the matrix, and the density of the matrix. The density value provides a measure of

the sparsity in the matrix and is computed by dividing the number of nonzeros by n2, which

is the total number of elements in the matrix. A very small density percentage indicates a

very sparse system with a greater proportion of zero values to nonzeros.

Table 2. TEST MATRIX STATISTICS

Buses (n) Edges (m) Nonzeros κ(A1) Density
8 12 32 60.87 50%
20 26 72 756.27 18%
117 175 467 1, 846.67 3.41%
131 148 427 203.40 2.49%
494 586 1, 666 1.08E + 05 0.68%
662 906 2, 474 1.02E + 04 0.56%
1138 1, 458 4, 054 1.21E + 05 0.31%
3374 4068 11510 5.48e+04 0.10%
6515 8104 22723 1.37E+05 0.05%
11838 13630 39098 6.65E+04 0.02%

Figure 8 shows that the LSST preconditioner reduces the number of iterations

required when compared to several popular preconditioning methods [2]. For this study, the

following traditional preconditioners were compared to the method described in this paper:
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• Jacobi M = diag(A)

• Tridiagonal M = tridiag(ai,i−1, ai,i, ai,i+1)

• SSOR M = (D + L)D−1(D + L)T

• Incomplete LU Factorization (ILU) M = LL′

• LSST Preconditioner M = M1

The LSST preconditioner is the level 1 preconditionermatrix M1 derived using the technique

described in Sec. II-B1, but the solution is derived using the traditional PCGmethodwithout

utilizing the chain sparsification.

These results were included to show that the Low Stretch Tree serves as an efficient

preconditioner by itself, but as with all preconditioners there is a trade-off between the time

required to find the preconditioned matrices M−1 A and M−1b and the number of iterations

for convergence. For this reason, the proposed Chain Method uses a series of smaller

preconditioners and M−1 A and M−1b are never explicitly found.

4.1. The Chain Method of Preconditioners. Fast iterative linear solutions depend

on a good choice of preconditioner that significantly reduce the condition number of the

preconditioned system. It was shown that the LSST method provides such a matrix. But

this is only one aspect of the iterative solver. One of the most often cited drawbacks

of preconditioned iterative linear solvers is that the preconditioned system may not be

significantly easier to solve than the original system. Therefore the proposed method

alleviates this issue by introducing a multilevel hierarchy of chained matrices, which are

solved recursively. One of the primary attributes of the Chain Method is the recursive

solver. This method starts with the smallest matrix in the chain and uses the solution to

predict the solution of the next larger matrix. Furthermore at every chain level, rather than
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Figure 8. Number of iterations required for different preconditioning techniques using the
PCG method.

solving systems directly, recursion is used to produce approximate solutions at each level.

Therefore, the proposed Chain Method has several advantages over other iterative linear

solvers. The advantages are summarized below:

1. The LSSTpreconditioner is an excellent preconditioner as evidenced by the significant

reduction in condition number of the preconditioned system and the sharp decrease

in number of iterations required for convergence (see Fig. 8)

2. The preconditioner M is based on the low-stretch spanning tree and therefore captures

physical properties of the underlying system.

3. The recursive solver avoids the requirement to explicitly solve the preconditioned

system M−1 A.
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4. The chained method of solving from small to increasingly larger matrices provides

an reasonably accurate initial guess to the iteration, thus decreasing the number of

iterations at each step.

5. RESULTS AND DISCUSSION

The reduction in condition number achieved at key points in the preconditioning

chain is presented in Table 3, along with the number of chain levels generated for each

test matrix. The size reduction achieved by greedy elimination of the 494 bus system

produces 7 chain levels of matrix sizes 494, 162, 68, 34, 18, 7, and 3 respectively. The

algorithm parameters are set to roughly reduce the system size by at least half for each

level. The second column of Table 3 contains the condition number of the original matrix

κ(A1), the third column displays the reduction in condition number achieved by applying the

first preconditioner to the matrix κ(M−1
1 A1), and the fourth column contains the condition

number when the system is reduced to the matrix of smallest size at chain level i = d.

The table indicates that the smallest chain level produces a condition number close to 1

for all matrices, which is optimal for obtaining an accurate solution very quickly because a

condition number close to 1 indicates a well ordered system. Solutions for all matrices at

this chain level generally converged with the first few iterations. The preconditioner is able

to provide a better condition number even at chain level i = 1 by approximately an order of

magnitude for the larger test matrices exhibiting the most sparsity.

Table 4 contains simulation results including runtime of each segment of the algo-

rithm (i.e., the set-up (time to find the LSST and build the chain of preconditioners) and

perform the PCG iteration). All time values are in seconds and the simulation was run on a

Intel i-7 2.5 GHz processor with 12 GB of memory. The error is measured by the 2-norm of

the residual r = b− Ax. An error threshold of e = 10−5 was used as stopping criteria for the
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Table 3. SIMULATION REDUCTION IN CONDITION NUMBER AND CHAIN SIZE

Nodes κ(A1) κ(M−1
1 A1) Chain levels

8 60.87 2.36 2
20 756.27 12.66 3
117 1, 846.67 95.15 6
131 203.40 2.34 5
494 1.08E + 05 272.44 9
662 1.02E + 04 740.25 8
1138 1.21E + 05 1930 9
3374 5.48E+04 83.12 8
6515 1.37E+05 147.97 11
11838 6.65E+04 * 11

*matrices too large to calculate

iterative methods. The number of iterations reported in the table is the iterations required

to solve chain level 1, where the matrix is of largest size. There is a finite limit imposed

on the number of iterations allowed for the smaller chain levels, since only an approximate

solution is required at the smaller matrix chain levels. Finding the LSST for each matrix

consumes the most time. Fortunately the LSST would only needed to be computed once

in situations where only small updates are made to the system matrix without altering the

structure of the matrix such as during a Newton-Raphson iteration or during a time-domain

simulation. A benefit of this method is the trend presented in the table where the number of

iterations required decrease in proportion to the increase in matrix size. For example, only

13 iterations are required to produce a solution for the 3374 bus power system matrix.

Figures 9 and 10 provides a comparison of the runtimes of the chained solver with

a time comparison for a sparse LU factorization for the set of matrices. The direct method

(LU) is faster than the chain method for small matrices, but appears to start to lag the chain

method as the matrix size increases.
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Table 4. SIMULATION RESULTS

Matrix size 117 685 3374 6515 13659 22902 69518 149842
Time Set-up (sec) 0.0001 0.0469 0.0469 0.1094 0.1094 0.1250 0.0938 0.1719
Time PCG (sec) 0.0017 0.0019 0.0072 0.0100 0.0171 0.0505 0.0957 0.2361
Iterations PCG 1 11 13 14 13 10 12 12
Time Reorder (sec) 0.0004 0.0005 0.0032 0.0031 0.0064 0.0449 0.1202 0.3574
Time LU (sec) 0.0004 0.0013 0.0034 0.0062 0.0400 0.0405 0.1138 0.2462
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Figure 9. Comparison of the chained solver to sparse LU factorization – Set up

The solve times are the most critical times to the overall simulation runtimes, since

these represent the calculations that any nonlinear solver (such as a powerflow or time-

domain simulation) must perform repeatedly. The nearly linear solve time of the proposed

Chain Method is clearly evident.
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Figure 10. Comparison of the chained solver to sparse LU factorization – Solve

6. CONCLUSIONS AND FUTURE WORK

This paper presented algorithmic details on a fast linear solver for large sparse

matrices. The focus of this paper is to analyze the algorithm’s capabilities for solving

systems with structures similar to typical power system matrices. Several matrices were

tested to determine any future work required to develop a fast linear solver for power system

specific applications. The simulation runtimes displayed a reduction in time and iterations

using the chain of preconditioners technique even for larger systems when using common

iterative linear solvers. Additional improvements to speed can be achieved by utilizing

better computing and coding practices.
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Further study and enhancements are planned to improve the speed and accuracy of

this method for power system specific applications. The traditional approach in power sys-

tems for dealing with very large sparse matrices is to apply direct methods using reordering.

Node reordering helps to minimize the number of computations required by reducing the

number of fills or non-zero elements that are generated in thematrix decomposition [19, 20].

The authors are currently investigating the degree to which changes in the system matrix A

that occur during Newton-Raphson updates or time-domain simulation have on the LSST

and subsequent solution times. Current results indicate that small numerical non-symmetry

does not significantly impact the proposed method; however the authors are endeavoring to

establish an upper bound on the amount of numerical non-symmetry is allowable.
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1. ABSTRACT

Power system analysis tools, such as power flow, state estimation, and security

assessment, involve the solution of very large sparse linear systems. As power systems

continue to grow and evolve, these applications require improvements to the speed of

numerical algorithms in order to allow system operators the ability to adequately monitor

and control systems in a time frame that is useful to industry. Improvements to linear solvers

will enhance the overall computational efficiency of applications like power flow, which

are needed to run time-critical analysis such as N-1 contingency studies and optimal power

flow. A new technique, developed for the field of image processing, has shown promise

as a linear solver over the traditionally used LU factorization method. This paper applies

a novel chain preconditioning technique developed for solving symmetric and diagonally

dominant linear systems to improve the speed and convergence of fast decoupled power

flow. Several test cases are analyzed and compared to traditional load flow techniques using

LU factorization along with a single line outage contingency study.
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power system simulation.

2. INTRODUCTION

The Department of Energy released a report in April of 2011 defining the critical

computational needs for the future of the electric power system [32]. Key areas of interest

in the report include advancement of algorithms, simulation, and modeling of power sys-

tems, achievable in a time frame that is useful to industry. An analysis of the 13 largest

power outages in history, reports that the majority of blackouts are caused by unexpected

disturbances, such as weather events, control errors, and coordination failures [33]. With

load growth in North America at less than 1% per year, these studies show that transmission

reliability is more an issue of the need for improved modeling, simulation, and coordination

methods, instead of the need for increased generation.

The power flow study is one of the most important power system applications for

planing future expansion and determining the best operating points of existing power sys-

tems [34]. Power flow serves as the basis for several different power system applications,

including power-system planning, operational planning, operation/control, security assess-

ment, optimization, and stability studies [35]. The power flow problem is composed of

a system of nonlinear equations that can grow to be very large when modeling full-scale

systems such as the North American power grid. Electric power systems are typically solved

iteratively by linearizion and the most common technique for solving the power-flow prob-

lem is the Newton-Raphson iterative method [36]. The Newton Raphson method can solve

linear equations in the form Ax = b (or [J]∆x = −F for power flow computation) using LU

factorization [36]. The linear solution comprises a significant amount of the overall runtime

for a power flow solution. LU based techniques on a full system matrix tend to solve on
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the order of n3. Sparse storage techniques, where only non-zero elements of the matrix

and their location are saved in computer memory, along with ordering schemes can help to

minimize the number of multiplications and divisions required for LU factorization and for-

ward/backward substitution [19]. By taking advantage of these techniques, a sparse system

can be solved by LU based methods in the order of n2. For sparse systems, α = n3 − n/3

multiplications and divisions are required for LU factorization and β = n2 multiplications

and divisions are required for forward/backward substitution [19]. To reduce the number of

multiplications and divisions, proper node ordering can be performed. Ordering methods

improve computational efficiency of linear equations by reordering the system nodes in

a way that the factorization of the Jacobian matrix produces a small amount of non-zero

elements and results in the minimum number of fills. A fill occurs during factorization

when nonzero elements are generated in the positions of the matrix that originally con-

tained zero elements. Limiting the amount of fill-in helps to reduce the computation time

and memory requirements. Different node reordering schemes can have varying effects on

memory requirements and solution accuracy. Matrix ordering schemes are not ideal for

ill-conditioned systems. The performance of Newton-Raphson power flow method under

different ordering schemes was explored in [37] and it was concluded that if the system is

ill-conditioned with instances of very high and low impedance, long EHV lines, or series

and shunt compensation, it can add numerical complexity to the power flow problem and

greatly change the effect of solution accuracy, convergence, and memory when choosing

an ordering scheme [37, 35]. Several iterative methods have been developed to improve on

the speed of the Newton-LU method [23, 38, 39, 40].

Preconditioning can reduce the number of iterations required for solution conver-

gence by improving the condition number of the preconditioned system M−1 Ax = M−1b.

Recent advances in preconditioning of iterative solution methods have begun to pro-
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duce competitive computational run-times and accuracy levels for power system studies

[23, 41, 42, 43]. The right preconditioner can improve the spectral properties of an ill-

conditioned system and reduce the computational complexity of the method [41, 42, 43]. A

new iterative technique developed for solving symmetric and diagonally dominant (SDD)

linear systems shows potential for accurate solutions in nearly-linear run-times. Thismethod

develops a chain of progressively smaller preconditioners to be applied using a recursive

iterative technique. The chain method was shown to outperform LU as a linear solver in

[44] for power system matrices up to a 11,838-bus system. This report builds on that work

by applying the chain method to the linear solver portions of a power flow algorithm.

3. BACKGROUND

Power flow is used to compute the steady-state conditions of an electric power

transmission system and involves the solution of a system of nonlinear equations to derive

the voltage magnitude and phase angle at each bus, along with the real and reactive power

flows. In power flow, the system bus voltages and line flows can be found if the system

loads, generation, and network configuration are known [19]. There are two power flow

equations at each bus, divided between the active power (1) and reactive power (2) , where

Pin j
i and Qin j

i are the powers injected at bus i.

0 = ∆Pi = Pin j
i − Vi

N∑
j=1

VjYi j cos(θi − θ j − φi j) (1)

0 = ∆Qi = Qin j
i − Vi

N∑
j=1

VjYi j sin(θi − θ j − φi j) (2)
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The voltage magnitudes at buses i and j are represented by Vi and Vj , with phase angles

represented by θi and θ j . The network admittance matrix values are represented by Yi j∠φi j .

The summations in (1) and (2) are over the number of buses in the system, N .

TheNewton-Raphsonmethodwas developed to solve a set of simultaneous nonlinear

equations in an equal number of unknowns, f (x) = 0 [35]. The goal of the Newton-Raphson

iterativemethod is to drive the powermismatch, ∆P and∆Q of (1) and (2) to zero, indicating

a convergence of the voltagemagnitudes and phase angles, which can be used to compute the

other unknown components in the system [19]. The linearized Newton-Raphson equation

(3) solves the unknownvoltagemagnitudes and angles to satisfy the power balance equations.


∆θ

∆|V |

 = −J−1


∆P

∆Q

 (3)

The power flow equations are arranged by phase angle, followed by voltage magnitude to

produce the Jacobian matrix, J (4). The four sub-matrices of the Jacobian represent the

partial derivatives of the power balance equations with respect to the unknown voltages and

angles [19].


J1 J2

J3 J4

 =

∂∆P
∂δ

∂∆P
∂V

∂∆Q
∂δ

∂∆Q
∂V

 (4)

The Jacobian matrix is formed at each iteration of the Newton-Raphson method. Initial

values are chosen for voltage magnitudes of the load buses and voltage angles of all buses

except for the slack bus. These estimates are used to update the real and reactive power

equations and determine the power mismatch at each iteration. Once the estimated Jacobian

and power mismatches are known, the unknown voltages and angles can be solved using
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LU factorization with forward and backward substitution. The guess for voltage magnitude

and angle at each iteration after the initial guess is determined from the linear solution of

(3) by (5) and (6).

θk+1 = θk + ∆θ (5)

V k+1 = V k + ∆V (6)

4. CHAIN LINEAR SOLVER

The linear solver applied in this paper is based on [3] and an analysis of the chain

method technique for power system matrices can be found in [44]. A brief explanation of

the method will be discussed here as it pertains to the power flow application specifically.

The chain method develops a chain of progressively smaller matrices with preconditioners

that approximate the original system in order to reduce computation time and resources for

solving the linear system. The method was developed to produce nearly-linear runtimes at

O(m log2 n) in [3]. Simulations in [44] show the method to produce a nearly-linear solution

when compared to the n1.4 runtime of LU factorization for power system matrices up to

a 11,838-bus system. The preconditioners are based on the low-stretch spanning tree of

the matrix when represented by a graph [9]. There are three components of the algorithm:

finding the low-stretch spanning tree (LSST) of the system A matrix, forming a chain of

preconditioners C = {A1, M1, A2, M2, ..., Ad}, and applying the linear solver to the chain of

preconditioned matrices.
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An n × n matrix A can be represented by a graph with m edges, which corresponds

to the non-zero off-diagonal entries in the matrix. A spanning tree of a graph is a subset

where all of the vertices are connected by the minimum possible number of n − 1 edges.

The low-stretch tree is a unique type of spanning tree where the connecting edges represent

the subgraph of lowest stretch. Stretch is defined as the distortion caused by the detour

required by taking the tree path, where the stretch of the edges in the tree is given by:

stretchT (e) =
∑k

i=1 w
′(ei)

w′(e) (7)

If the stretch of an edge is small, then there are a significant number of alternative connections

between its vertices; therefore, stretch is a measure of the importance of an edge in the graph

network.

To form the preconditioning chain C = {A1, M1, A2, M2, ..., Ad}, the algorithm al-

ternates between two functions. A sparsification routine called Incremental Sparsify forms

the matrix preconditioner M1 by reducing the matrix A1 based on the low-stretch tree and

a random sampling of off-tree edges. This completes the first level of the chain. Then a

Greedy Elimination function is applied to the preconditioner M1 to reduce the size of the

matrix forming A2, while preserving the system structure and important spectral properties.

An incremental sparsification is performed on the reduced matrix A2 to create a second

preconditioner M2, completing the second level of the chain. The process is repeated until

the matrix is reduced to a desired point Ad .

For this study, the recursive Chebyshev iterative method was applied to the chain

of preconditioners, C. A complete iterative solution is found at chain level i = d, and this

solution is applied at the previous level i = d − 1 and so forth until the original system

solution is found. This helps to reduce the number of iterations and overall computation
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time when the matrix is of original size, especially as the system size increases. Most of the

work is performed on much smaller matrices using spectrally well-conditioned approximate

systems. A simple example of the stages of the chain method for an 8×8 matrix is provided

in Fig. 1. There are three chain levels in the example.

Figure 1. Chain of preconditioners for simple 8 × 8 example.
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5. CHAIN METHOD APPLIED TO POWER FLOW

The Newton method’s iteration runtime rises slightly more than linearly with the

number of buses in the system, dependent upon the quality of the bus-ordering scheme

utilized [35]. Very large systems require significant computational resources to calculate,

store, and factorize the Jacobian matrix, which is updated at each iteration of the Newton-

Raphson method [19]. The fill-in produced by reordering, and the computation of the

Jacobian matrix, are important factors when looking at reducing computation time. An

approximation method called Fast Decoupled Load Flow (FDLF) was developed to improve

speed by approximating the Jacobian [35, 45]. FDLF is discussed in the following sub-

sections along with considerations that are needed when applying the chain method as a

linear solver to this technique.

5.1. Fast Decoupled Power Flow (FDLF). The Jacobian matrix can be reduced

by taking advantage of the power system properties. Due to the nature of electric-power

transmission system operating in steady state, there is a strong interdependence between the

active power and bus voltage angles, and between the reactive power and voltagemagnitudes

[35]. The coupling between the off-diagonal components, P− θ and Q−V , is weak leading

to very small numerical values in these portions of the Jacobian matrix. The Jacobian

sub-matrices J2 and J3 in (4) can be approximated to zero, which allows the Jacobian to be

replaced by J′ (8) without significantly affecting convergence properties.

J′ =


∂∆P
∂δ 0

0 ∂∆Q
∂V

 (8)
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This approximation allows the ∆P and ∆Q iterations to be carried out independently by

decoupling the power flow equations into (9) and (10) . The decoupling of the equations

can reduce the number of iterations and the overall computation can be reduced by stopping

the ∆P or ∆Q iterative cycle independently if one equation converges before the other.

δk+1 = δk −
[
∂∆P
∂δ

]−1
∆P (9)

V k+1 = V k −
[
∂∆Q
∂V

]−1
∆Q (10)

The computation speed for power flow can be improved even further with another

modification called fast decoupled power flow. In standardNewton-Raphson andDecoupled

power flow, the Jacobian matrices are updated at each iteration, whereas FDLF holds a

modified Jacobian matrix constant to minimize the number of function evaluations and LU

factorizations [19]. This greatly reduces the memory storage requirements and computation

time needed to achieve a power flow solution. The approximated power flow equations for

the FDLF method are (11) and (12).

∆P
V
= B′ · ∆θ (11)

∆Q
V
= B′′ · ∆V (12)

The B′ and B′′ matrices derived in (13) and (14) are constant and are close approximations

to the Jacobian J1 and J4 matrices at system no-load [35].
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B′i j =
1
xi j

; B′ii = −
∑
j,i

B′i j (13)

B′′i j = bi j ; B′′ii = 2bi −
∑
j,i

B′′i j (14)

The B′ matrix only contains the diagonal elements of the admittance matrix that are un-

affected by shunts and the B′′ matrix is composed of the shunt susceptance at each bus

[19]. Composed of only network or admittance matrix elements, the matrices are simple to

compute and only need to be factored once before being held constant at each iteration.

5.2. Chain Method FDLF. A few considerations are needed to apply the chain

method linear solver to FDLF. The B′ and B′′ matrices are symmetric in both value and

structure, unlike the Jacobian matrix; therefore, the FDLF technique is a good candidate for

applying the chain method since it was developed specifically for symmetric and diagonally

dominant matrices [3]. The majority of the runtime for the chain method involves finding

the low-stretch spanning tree of the B matrices and forming the chain of preconditioners.

The FDLF only computes the B matrices once before the load flow iteration process occurs;

therefore, the time required to compute the LSST and chain of preconditioners will not affect

the load flow iterative solution computation time. This property of the FDLF technique is

useful for applications where the load flow needs to be solved several times but the overall

structure of the system doesn’t change.

When themodified Jacobian, J′, is split into the phase angle and voltage components

to form the B matrices, an islanding situation can occur in the graph of the ∂∆Q
∂V portion of

the B′′ matrix. The PV bus equations are removed from this portion of the load flow to

save computation because the voltage magnitudes at the PV buses are fixed and the reactive

power is computed from the solved voltages and angles. A vertex or subset of vertices in a
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graph is islanded if it is no longer edge-connected to the main graph. To utilize the chain

linear solver, the island situation must be corrected in order to find the low-stretch tree of the

matrix. The islanded edges can be reconnected to the graph by adding a trivial connecting

edge with a small weight value. An edge weight of 0.01 was used because the stretch of

the edge has an inverse relationship to the edge’s weight value, w′ = 1/e, which causes the

trivial edge to have a high stretch. Edges of high stretch are pruned out of the low stretch

tree. This allow the graph to be complete while the influence of the non-essential previously

islanded vertex is phased out as the algorithm progresses.

Table 1 contains information on the condition number reduction achieved by using

the B-matrices in the FDLF technique compared to the Jacobian matrix for the Newton-

Raphsonmethod. The condition number of a linear system provides a measure of sensitivity

to numerical operations and can be used to predict the convergence rate of iterative methods.

A matrix is well conditioned if its condition number is close to 1, indicating that its

eigenvalues are tightly clustered, so matrices with a lower condition number will be easier

to solve computationally [16]. Splitting the Jacobian into the B matrices provides an initial

decrease of the condition number making the FDLF systems individually easier to solve.

The chain step of the proposed algorithm can improve the system by applying several

well-conditioned systems with very small condition numbers κ(Mi, Ai) � κ(J) that achieve

approximate solutions very quickly, leading to an overall solution at the chain level with

the matrix of the original system size. Chebyshev iteration is used to compute the linear

solution of the chain method. Since the Chebyshev iteration is guaranteed to converge

after O(
√
κ log 1

ε ) iterations, and the preconditioned matrices at the smaller chain levels

have condition numbers very close to 1, only a few iterations are required to solve these

approximate systems [17].
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Table 1. CONDITION NUMBER REDUCTION ACHIEVED USING FDLF

No. buses κ(J) κ(B′) κ(B′′)
14 234.8 182.4 37.02
89 11,673 10,187 1740.1
118 5696.5 4886.1 125.13
145 1.66E+5 1.58E+5 8.11E+4
1354 5.54E+5 4.79E+5 2.03E+4

6. RESULTS AND DISCUSSION

The Matpower simulation package developed for Matlab® was used to generate

simulation results. Matpower was created for solving power flow and is easy to modify

for research purposes [46]. Two tests were performed to determine the functionality of the

chain method for solving linear systems in FDLF. The convergence termination tolerance

for Matpower load flow simulations is 10−5 per unit P and Q dispatch. The results are

discussed in the following subsections.

6.1. Power Flow. The Chain FDLF is compared to Newton-Rapshon and regular

FDLF using LU factorization. The test cases were taken from the Matpower files and

include the following: the IEEE 14-, 118-, and 145-bus cases; the 89- and 1354- bus

portions of the European transmission system from the PEGASE project [46, 31, 47].

Table 2 contains the time to perform the iterative solution (not including the time

to set-up the tree and form the chain). The load flow iteration solve times are the most

critical to the overall simulation runtimes, since these represent the calculations that must

be performed repeatedly. The runtimes are intended to compare the methods and show

that the chain method is capable of producing an adequate solution and follows the same

convergence and timing trends as the FDLF. A commercial version of the chain solver would
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be significantly faster than the runtime performance presented in table 2 and would better

compare the results achieved by the commercial solutions derived using the Matpower

code for Newton-Raphson and traditional FDLF.

Table 2. COMPARISON OF LOAD FLOW SIMULATION RUNTIMES (SECONDS)

No. buses Newton-Raphson Fast-Decoupled Chain Fast-Decoupled
14 0.0865 0.0146 0.0567
89 0.1196 0.0163 0.1477
118 0.0563 0.0127 0.1453
145 0.0979 0.0148 0.4063
1354 0.2737 0.0407 0.8773

Table 3 presents the number of load-flow iterations required for convergence by the

three methods. For the 14-, 89-, and 1354-bus systems, the FDLF-Chain method solves in

the same number of iterations as the FDLF-LU method. The other two cases require a few

more iterations for the Chain method to converge.

Table 3. COMPARISON OF LOAD FLOW SIMULATION ITERATIONS

No. buses Newton-Raphson Fast-Decoupled Chain Fast-Decoupled
14 2 4 4
89 5 5 5
118 3 4 5
145 3 7 9
1354 4 6 6

The timings in table 2 show that the Chain method follows a similar trend to the

other two methods where the 118-bus system solves a little faster than the 89-bus system

even though more iterations are required for the Chain method for that case. The 118-bus

case is of interest in regards that the B′′ matrix reduces to a spanning tree in itself, which

can be seen in Fig. 3. Figs. 2 and 3 show the structure of the B matrices for the 118-bus
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system with B matrix values represented by ‘x’ symbols and the tree values represented by

‘o’ symbols. Comparing the two figures, the B′ matrix has a few off-diagonal values that

are not included in the tree, but the B′′ matrix tree contains all of the B′′ values. This does

not allow for a chain of preconditioners to be formed for the B′′ matrix. It would be best to

solve the 118-bus B′′ matrix directly since it cannot be further reduced to gain the benefit

of the Chain method.

0 20 40 60 80 100

0

20

40

60

80

100

nz = 232

Figure 2. 118-bus B′ matrix (x) with tree values (o).

Fig. 4 shows the 118-bus P and Q mismatch convergence for both the FDLF

and FDLF-Chain methods. The Chain method tracks the FDLF method’s convergence

characteristics for the first few iterations, then the Q mismatch of the Chain method begins

to diverge at the 5th iteration. The convergence characteristics of the Chain method are

more aligned with the convergence of the FDLF algorithm for the other test cases. This

leads to another consideration for choosing systems to solve using the Chain method. Table

4 presents a metric to show the level of diagonal dominance of the Jacobian and B matrices
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Figure 3. 118-bus B′′ matrix (x) with tree values (o).

of the test cases. The Chain method was developed to solve SDD systems, so matrices

with weak diagonal dominance may not perform as well using this method. A matrix is

diagonally dominant if the magnitude of the diagonal entry aii in row i is greater than or

equal to the sum of the magnitudes of all other non-diagonal entries in that row (15).

| aii |≥
∑
j,i

| ai j | for all i (15)

The metric in Table 4 divides the sum of the matrix off-diagonal weights by the sum of

the matrix diagonal to form a percentage. A value of 100% would indicate that the density

of the off-diagonal weights is equal to the density of the diagonal; therefore, the matrix

is neutrally diagonally dominant. Percentages over 100% indicate a matrix has stronger
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Figure 4. Comparison of P and Q mismatch convergence of the 118-bus system for FDLF
and Chain-FDLF methods.

Table 4. DIAGONAL DOMINANCE OF THE TEST CASE MATRICES

No. buses Jacobian B′ B′′

14 134% 92% 74%
89 98% 100% 81%
118 107% 99% 39%
145 110% 101% 98%
1354 133% 100% 80%

diagonal dominance. A low percentage like the 39% for the B′′matrix of the 118-bus system

indicates the matrix is not diagonally dominant and provides insight to the difficulties the

chain method had in solving the system. Matrices with values slightly below 100% may
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not be diagonally dominant overall, but several of the rows may still have a strong diagonal

dominance. All of the Jacobian matrices are diagonally dominant, but are not symmetric

in values.

6.2. System Topology Changes. Another study was performed to show where the

Chain method has potential to really benefit the power flow application. Power flow simu-

lation is an important component to ensure the security of the power grid. Power systems

are designed to run within allowable operating limits during normal real-time operation and

under any predicted contingencies. Contingencies can range from a single transmission line

outage to several line outages with multiple generators rendered inoperable. To perform a

typical contingency study, system operators start with a solved power flow case when the

system is under normal steady-state conditions. Then each contingency is checked one-by-

one and the power flow is re-solved to see how the outage affects system performance and

voltage limits, along with determining what preventative actions are required to keep the

system operational. A single study can require the assessment of up to N −1 contingencies,

which corresponds to running N − 1 power flow simulations, where N is the number of

buses. Contingency studies of very large systems can take several hours to complete even

when using a power flow solution method that runs in a few seconds.

Line outages affect the admittance matrix of the system, which is used to compute

the B matrices for FDLF. Since the B matrices are used to develop the LSST for the

chain method, it is prudent to determine how much the LSST will change if a line outage

contingency occurs. The value of the LSST is that it represents the system structure and

doesn’t necessarily need to be updated if the system weights change slightly as long as the

structure remains the same. Table 5 compares data for three different power flow tests on the

89-, 118-, and 1354-bus systems solved using the FDLF-Chain method. The tests include

the following:
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1. Original test case

2. Single line outage case solvedwith a tree generated from the systemunder contingency

3. Single line outage case solved with the tree generated from the original test case

Table 5. SINGLE LINE OUTAGE SIMULATION DATA

89-bus 118-bus 1354-bus
Test No. Time Iters Time Iters Time Iters

1 0.2984 5 0.2142 6 2.6329 6
2 0.3083 6 0.1797 6 3.3256 6
3 0.2775 7 0.1569 6 2.9987 9

The table shows the time required to solve each case and the number of iterations

to convergence. In all three cases, the FDLF-Chain method solves the line outage faster

using the original tree than using an updated tree, even though it may require a few more

iterations. This suggests that the tree does not need to be update to run contingency studies

for small system changes, which can save a lot of computation time for critical applications.

7. CONCLUSION

The chain method linear solver has been proposed for use in fast decoupled power

flow to improve speed of convergence and exploit the properties of symmetry found in power

system matrices. Simulation results on several Matpower test cases show that the chain

linear solver can produce solutionswithin nearly the same number of iterations andmismatch

as the FDLF method using LU factorization. Better coding practices such as implementing

parallel computing of the decoupled equations can improve the runtime performance of

the chain method to make it comparable to commercial solvers like Matpower. The

structure of power system test matrices was investigated on how the symmetry, diagonal
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dominance, and condition number reduction affect performance of the chain linear solver.

The method was shown to have an advantage for contingency studies of a single-line outage

by eliminating the need to reconfigure the LSST for small system changes, which can reduce

the computation time required for large system security evaluation.
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SECTION

2. CONCLUSION

In Paper 1, a new linear solver was proposed for use in power system computation.

The method was created to achieve nearly-linear runtimes when solving systems with

symmetric and diagonally dominant matrices. The proposed technique recursively solves a

chain of preconditioned sparse linear systems using the Chebyshev iterative method. The

chain linear solver is compared to traditional Chebyshev iteration in simulations of three

actual power system matrices. The simulation results show that the chain method reduces

the number of iterations and runtime for all three test matrices when compared to a non-

chain approach. Analysis of the chain method is provided to show how it improves the

condition number of the linear systems by using a low stretch spanning tree preconditioner.

In Paper 2, the performance of the chain linear solver was demonstrated on several

large power system matrices and compared to the runtime potential of LU factorization.

More detail is given on the specifics of the method and graphics are provided to show

how the method derives the chain of preconditioners for a small matrix example. The low

stretch spanning tree preconditioner is compared with four well-established preconditioning

techniques and shown to reduce the number of iterations required for the preconditioned

conjugate gradient method. The linear solver is simulated on several large power system

matrices and compared to sparse LU factorization. The chain method achieved a better

runtime convergence trend than the n1.4 runtime of LU factorization for up to a 150,000-bus

system.
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In Paper 3, the chain linear solver was demonstrated for use in the power flow

application. The technique was chosen for use as the linear solver in fast decoupled power

flow based on the symmetric nature of the power flow method’s approximated B matrices.

Several cases were tested using Matpower programs to compare the FDLF-chain method’s

capabilities with Newton-Raphson and FDLF using LU factorization. The FDLF-chain

method produced similar timing characteristics, though better coding practices are needed

to put the method on the same level as the timing achieved by the commercial Newton-

Raphson and FDLF solvers. A single-line outage contingency simulation demonstrated a

potential advantage of this method for reducing processing time by re-using the original

system tree for applications that require several repeated load flow solutions.
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