
Scholars' Mine Scholars' Mine 

Doctoral Dissertations Student Theses and Dissertations 

Spring 2017 

Numerical simulation of viscoelastic buckle folds: Implications Numerical simulation of viscoelastic buckle folds: Implications 

for stress, fractures, porosity and fluid flow for stress, fractures, porosity and fluid flow 

Xiaolong Liu 

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations 

 Part of the Petroleum Engineering Commons 

Department: Geosciences and Geological and Petroleum Engineering Department: Geosciences and Geological and Petroleum Engineering 

Recommended Citation Recommended Citation 
Liu, Xiaolong, "Numerical simulation of viscoelastic buckle folds: Implications for stress, fractures, 
porosity and fluid flow" (2017). Doctoral Dissertations. 2564. 
https://scholarsmine.mst.edu/doctoral_dissertations/2564 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2564&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/245?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2564&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2564?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2564&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


i 

 

 

 

 

 

NUMERICAL SIMULATION OF VISCOELASTIC BUCKLE FOLDS: 

 

IMPLICATIONS FOR STRESS, FRACTURES, POROSITY AND FLUID FLOW  

 

 

 

 

 

 

by 

 

 

XIAOLONG LIU 

 

 

A DISSERTATION 

 

Presented to the Faculty of the Graduate School of the  

 

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY 

 

In Partial Fulfillment of the Requirements for the Degree 

 

 

DOCTOR OF PHILOSOPHY 

in 

PETROLEUM ENGINEERING 

 

2017 

 

Approved by 

 

 

Andreas Eckert, Advisor 

John Hogan 

Wan Yang 

Peyman Heidari 

Dean Thornton 

 

 

 

  



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2017 

Xiaolong Liu 

All Rights Reserved 

 

 



iii 

 

PUBLICATION DISSERTATION OPTION 

This dissertation consists of the following three articles, formatted in the style 

used by the Missouri University of Science and Technology: 

Paper I: Pages 4-50 were published in TECTONOPHYSICS. 

Paper II: Pages 51-93 are intended for submission to published in the Journal of 

JOURNAL OF STRUCTURAL GEOLOGY.  

Paper III: Pages 94-138 have been submitted to the Journal of AMERICAN 

ASSOCIATION OF PETROLEUM GEOLOGISTS BULLETIN. 



iv 

 

 

ABSTRACT 

Over the past several decades, buckle folds have been exclusively studied by 

numerous methods. However, lots of assumptions and simplifications are made, which 

may not result in realistic in-situ stress conditions leading to rock failure. This study 

represents the first numerical simulation of folding under the consideration of gravity and 

pore pressure to simulate the structural development of buckle folds. 

The first topic covered in this dissertation is the fracture associated to the single 

layer fold. It is concluded that burial depth, viscosity, and permeability are critical for the 

initiation of major fracture sets at the hinge zone with varying degrees. Moreover, this 

study provides a detail research on the stress and strain distribution in the multilayer folds 

and it is concluded that the stress/strain state within the folding layer(s) are determined by 

the buckling process, fold geometry and material parameters. The second topic covered in 

this dissertation is the numerical simulation of multilayer folds. This study demonstrates 

that the shapes of the multilayer folds are influenced by the various parameters. In 

addition, the numerical simulations provide a general understanding of the stress/strain 

distribution in the multilayer system. The third topic covered in this dissertation is the 

numerical simulation of parasitic folds. This study demonstrates that the shapes of the 

parasitic folds depend on the buckling of both the large- and small-scale folds and are 

influenced by the various parameters. The numerical modeling results show a large 

variability in porosity changes due to the complex distribution of the volumetric strain. In 

addition, the numerical simulations provide a general understanding of the influence of 

the various model parameters on the resulting porosity distribution.  
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SECTION 

1. INTRODUCTION 

Folds are spectacular structures in deformed rocks, affecting single or multiple 

layers on all scales. They have played an important part, historically, in understanding 

episodes of deformation in orogenic belts.  In addition, buckle folds of sedimentary strata 

represent prime examples of structural traps for hydrocarbon accumulation sites. These 

structures commonly feature a variety of different fracture sets, which may affect the 

structural permeability of potential reservoirs. Some fracture sets including outer arc 

tensile fractures and inner arc shear fractures at the fold hinge zones are well understood 

by the extensional and compressional strain/stress pattern. However, other commonly 

observed fracture sets, including tensile fractures parallel to the fold axis, tensile fractures 

cutting through the limb, extensional faults at the fold hinge, and other shear fractures of 

various orientations in the fold limb, fail to be intuitively explained by the strain/stress 

regimes during the buckling process. In addition to the occurrence of fractures, pore 

pressure and fluid flow during the deformational history of geologic structures are 

directly influenced by tectonic deformation events.  

In addition, the viscoelastic behavior of deformed geological materials has not 

been widely considered for multilayer folds. It is known that magnitudes and orientations 

of principal stresses/strains vary significantly for different layers with respect to their 

relative location in the multilayer stack. The detailed influence of a larger number of 

layers and varying layer thickness ratios, which significantly affect the shape of 

multilayer folds and associated stress/strain distribution, remains unclear.  

Moreover, in porous, granular rocks, compaction related porosity-loss is observed 

under loading as a result of the existence of the deformable grains in the sediment. 

Reduced porosity and pore connectivity would significantly reduce the permeability of 

deformed rocks by one to four orders of magnitude relative to the host rock matrix 

(Pittman, 1981). If tectonic compaction occurs in an active aquifer or reservoir, the 

reduced porosity connectivity would cause substantial fluid-flow effects at scales relevant 

to production and management. The change of porosity and permeability due to 

compaction and lateral loading depends strongly on the tectonic evolution, the original 
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porosity, the physical properties of the surrounding matrix, and the micro-tectonics of the 

rock fabric such as the development of foliations and/or cleavage. For complex 

deformation such as multi scale multilayer folding, the distribution of porosity which is 

related to the volumetric stain is strongly depend on the folding deformation. However, 

the strain evolution and distribution during the folding of one scale/multi scale multilayer 

remain unclear. 

The dissertation is mainly composed of three parts. The first part provides results 

of the buckle folds of sedimentary strata commonly feature a variety of different fracture 

sets. Some fracture sets including outer arc tensile fractures and inner arc shear fractures 

at the fold hinge zones are well understood by the extensional and compressional 

strain/stress pattern. However, other commonly observed fracture sets, including tensile 

fractures parallel to the fold axis, tensile fractures cutting through the limb, extensional 

faults at the fold hinge, and other shear fractures of various orientations in the fold limb, 

fail to be intuitively explained by the strain/stress regimes during the buckling process. 

To obtain a better understanding of the conditions for the initiation of the various 

fractures sets associated with single-layer cylindrical buckle folds, a 3D finite element 

modeling approach using a Maxwell visco-elastic rheology is utilized. The influences of 

three model parameters with significant influence on fracture initiation are considered: 

burial depth, viscosity, and permeability. It is concluded that these parameters are critical 

for the initiation of major fracture sets at the hinge zone with varying degrees. The 

numerical simulation results further show that the buckling process fails to explain most 

of the fracture sets occurring in the limb unless the process of erosional unloading as a 

post-fold phenomenon is considered. For fracture sets that only develop under unrealistic 

boundary conditions, the results demonstrate that their development is realistic for a 

perclinal fold geometry. In summary, a more thorough understanding of fractures sets 

associated with buckle folds is obtained based on the simulation of in-situ stress 

conditions during the structural development of buckle folds. 

The second part conducted the numerical simulation of multilayers and associated 

stress/strain distribution. In this study, a 2-D plane strain finite element modeling 

approach is used to simulate multilayer, viscoelastic buckle folds under in-situ stress and 

pore pressure conditions. A variety of material and model parameters (including the 
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elastic modulus contrast, viscosity contrast, initial overburden, number of layers, and 

layer thickness ratio) are considered and their influence on the shape of folds and on the 

resulting stress/strain distribution is analyzed. This study demonstrates that the shapes of 

the multilayer folds are influenced by the various parameters. The numerical modeling 

results show that tensile stress occurs at the hinge and the region between the hinge and 

the limb for certain layers and are influenced by the material and model parameters by 

various degree. In addition, the numerical simulations provide a general understanding of 

the strain distribution in the multilayer system where the less competent layers exhibit a 

large variability in the maximum principal strain distribution. This study show that the 

thickness ratio of the competent and less competent layers has a major impact on the fold 

shapes and resulted stress/strain distribution for viscoelastic multilayer folding. 

The third part conducted numerical study of parasitic folds and associated 

porosity distribution. Parasitic folds represent a common structure of multi-scale 

multilayer folds and the resulting asymmetric S- or Z-shapes and symmetric M-shapes 

represent a complex strain distribution. How the strain distribution affects the resulting 

porosity remains unclear. In this study, a 2-D plane strain finite element modeling 

approach is used to simulate multi-scale, multilayer, viscoelastic buckle folds under in-

situ stress and pore pressure conditions. A variety of material and model parameters 

(including the elastic modulus contrast, number of layers, viscosity contrast, strain rate 

and layer thickness ratio) are considered and their influence on the shape of parasitic 

folds and on the resulting porosity distribution is analyzed. This study demonstrates that 

the shapes of the parasitic folds depend on the buckling of both the large- and small-scale 

folds and are influenced by the various parameters. The numerical modeling results show 

a large variability in porosity changes due to the complex distribution of the volumetric 

strain during the mutli-scale, multi-layer buckling process. Three regions, including the 

hinge and limb of the less competent layer in the M-shaped folds and the limb of the less 

competent layer in the Z-shaped folds, feature significant porosity changes. In addition, 

the numerical simulations provide a general understanding of the influence of the various 

model parameters on the resulting porosity distribution. Through the applied volumetric 

stain-porosity-permeability coupling, influences on the resulting fluid flow regimes in 

multi-scale, multilayer buckling systems are documented. 
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ABSTRACT 

Buckle folds of sedimentary strata commonly feature a variety of different 

fracture sets. Some fracture sets including outer arc tensile fractures and inner arc shear 

fractures at the fold hinge zones are well understood by the extensional and 

compressional strain/stress pattern. However, other commonly observed fracture sets, 

including tensile fractures parallel to the fold axis, tensile fractures cutting through the 

limb, extensional faults at the fold hinge, and other shear fractures of various orientations 

in the fold limb, fail to be intuitively explained by the strain/stress regimes during the 

buckling process. To obtain a better understanding of the conditions for the initiation of 

the various fractures sets associated with single-layer cylindrical buckle folds, a 3D finite 

element modeling approach using a Maxwell visco-elastic rheology is utilized. The 

influences of three model parameters with significant influence on fracture initiation are 

considered: burial depth, viscosity, and permeability. It is concluded that these 

parameters are critical for the initiation of major fracture sets at the hinge zone with 

varying degrees. The numerical simulation results further show that the buckling process 

fails to explain most of the fracture sets occurring in the limb unless the process of 

erosional unloading as a post-fold phenomenon is considered. For fracture sets that only 

develop under unrealistic boundary conditions, the results demonstrate that their 

development is realistic for a perclinal fold geometry. In summary, a more thorough 

understanding of fractures sets associated with buckle folds is obtained based on the 

simulation of in-situ stress conditions during the structural development of buckle folds. 

 

Key words: 3D single-layer visco-elastic buckle folding; Fracture initiation; Stress 

evolution; Erosional unloading; Pericline. 
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1. INTRODUCTION 

Observations from various types of folds in nature show an abundance of folding 

related fractures, both shear and tensile. The location, type, extent, orientation, and 

likelihood of occurrence of these fractures are of importance in geomechanical analyses 

of folded strata both for fluid flow pathway and reservoir stability prediction. Numerous 

studies have been conducted to investigate the distribution and patterns of fractures 

associated with folds based on field observations (e.g. McQuillan, 1973, McQuillan, 

1974; Groshong, 1975; Catherine et al., 1997; Hennings et al., 2000; Guiton et al., 2003; 

Bergbauer and Pollard, 2004; Florez-Niño et al., 2005; Bellahsen et al., 2006; Wennberg 

et al., 2006, Stephenson et al., 2007; Ismat, 2008; Ghosh and Mitra, 2009; Reber et al., 

2010; Barbier et al., 2012; Iñigo et al., 2012; Vitale et al., 2012; Awdal et al., 2013; 

Watkins et al., 2015). The relation between the occurrence and development of the 

fracture systems and folding are dependent on a variety of parameters, such as layer 

thickness (McQuillan, 1973; Tavani et al. 2015), lithology (e.g. Catherine et al., 1997; 

Ericsson et al., 1998; Wennberg et al., 2006; Ghosh and Mitra, 2009; Watkins et al., 

2015), curvature (e.g. Lisle, 1992; 1994; Hennings et al., 2000), the state of stress (Price, 

1966; Ramsay, 1967; Stearns, 1968; Groshong, 1975; Price and Cosgrove, 1990; 

Lemiszki et al., 1994; Guiton et al.,2003;  Reber et al., 2010; Eckert et al., 2014), 

interlayer slip (Chapple and Spang, 1974; Cooke and Underwood, 2001; Smart et al., 

2009), their position in the fold system (e.g. Cloos, 1948; Price and Cosgrove, 1990; 

Bellahsen et al., 2006; Ismat, 2008; Jäger et al.,2008; Awdal et al., 2013; Eckert et al., 

2014) and deformation history (Bergbauer and Pollard, 2004; Florez-Niño et al., 2005; 

Stephenson et al., 2007; Smart et al., 2010; Smart et al., 2012; Vitale et al., 2012). The 

often cited conceptual model by Price (1966) and Stearns (1968) suggests that there are 5 

common fracture sets forming systematically with respect to the fold axis. 

However, it is clear that the existence of fractures and the conditions for their 

initiation within fold structures can be attributed to various different, specific folding 

mechanisms (such as forced folding or buckle folding) and the stress evolution during 

either pre-folding, folding or post-folding (Price and Cosgrove, 1990; Eckert et al., 2014). 

Due to the several different types of forced folds, a generalized fold-fracture model does 
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not exist and the fracture pattern strongly depends on the specific type of forced folding 

(Cooke et al., 1999; Cosgrove and Ameen, 2000; Couples and Lewis, 1999; Laubach et 

al., 1999; Smart et al., 2010; Smart et al., 2012).  

For buckle folds, the relation of various fractures types and the fold geometry is 

discussed by Price and Cosgrove (1990) and a general comparison of fracture patterns 

associated with buckle folds and various types of forced folds has been established by 

Cosgrove and Ameen (2000). Fractures associated with buckle folding may result from 

the regional principal stresses, which are either parallel/subparallel or normal/subnormal 

to bedding during buckling of originally horizontal layers (Dieterich and Carter, 1969; 

Dieterich, 1969; Parrish et al. 1976). Figure 1 shows the orientations of the various types 

of tensile and shear fractures associated with buckle folds, their locations and the stress 

conditions for their occurrence (after Price and Cosgrove, 1990). As stated by Price and 

Cosgrove (1990), different sets of tensile fractures (Fractures 1-4 in Figure 1), and 

conjugate shear fractures (fracture Sets 5-10 in Figure 1) require different relations of the 

principal stresses, and thus these fractures develop at different times during the 

deformation history of the fold, including pre-folding and post-folding stages, as the 

stress state changes. It should be noted that these fractures represent various joint and 

fracture types including extensional faults (i.e. fracture Sets 6 and 9), compressive faults 

(i.e. fracture Set 5), conjugate shear fractures (i.e. fracture Sets 7, 8 10 and 11) and 

dilational joints (i.e. Fractures 1-4). 

Amongst the most noticeable fractures associated with buckle folds are tensile 

fractures occurring at the outer hinges of the fold crest (Fracture 1), and shear fractures at 

the bottom of fold hinge zones (Set 5). The conditions for their occurrence are well 

understood and are related to the tensional and compressional strain/stress pattern 

developing in buckled elastic materials (Ramsay, 1967;  Turcotte and Schubert, 2002) 

and also in the fold hinge zone of buckled rocks (e.g. Price and Cosgrove, 1990; 

Lemiszki et al., 1994; Reber et al., 2010; Frehner, 2011; Eckert et al., 2014). Shear 

fractures in the fold limb (Set 7) are frequently observed (e.g. Price and Cosgrove, 1990; 

Ismat, 2008) and attributed to the state of stress during the horizontal compression. 

Bedding parallel tensile failure (Fracture 4), i.e. bedding-parallel fibrous veins, also 
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termed as “Beef” (Cobbold, 2013) can be attributed to fluid overpressure in combination 

with horizontal compression during buckling (Eckert et al., 2014). 

There are fracture sets that are not intuitively linked to the stress regime occurring 

during buckling.  These include layer penetrating tensile fractures parallel to the fold axis 

in the limb with various dip angles (Fracture 2 in Figure 1; Engelder et al., 2009), layer 

penetrating tensile fractures perpendicular to the fold axis in the limb (Fracture 3 in 

Figure 1, Price and Cosgrove, 1990; Bergabuer and Pollard, 2004 Engelder, 2007; Ismat, 

2008), extensional (i.e. normal) faults at the fold hinge (fracture Set 6 in Figure 1, Price 

and Cosgrove, 1990), conjugate shear fractures with the acute bisector sub-parallel to the 

fold trend (fracture Set 8 in Figure 1; Price and Cosgrove, 1990), oblique faults (in the 

limb) or extensional faults (at the hinge) with steep dip angles (fracture Set 9 in Figure 1; 

Price and Cosgrove, 1990; Ismat, 2008), conjugate faults with the acute bisector sub-

perpendicular to the bedding surface in the limb (fracture Set 10 in Figure 1; Ismat, 2008) 

and conjugate faults with the acute bisector sub-parallel to the bedding and perpendicular 

to the fold axis in the limb (fracture Set 11 in Figure 1, Price and Cosgrove, 1990; 

Lemiszki et al., 1994). In particular, shear factures Set 10 and Set 11 may separate the 

fold hinge from the limbs. 

Of all these fracture sets identified, the association of Sets 8 and 10 to buckle 

folding is questionable since the maximum principal stress, '1, is mostly parallel to the 

shortening direction during buckling (Eckert et al., 2014). Furthermore, tensile fractures 2 

remain difficult to explain since the necessary direction of the minimum principal stress, 

'3, perpendicular to the fracture, is unlikely to be sub-parallel to the shortening direction 

at the fold limb during the buckling process. Hence this fracture is more likely to be 

influenced by either pre-folding deformation or post-folding deformation (Engelder, 

2009).  

In summary, the fractures shown in Figure 1 are all based on observations from 

field studies (e.g. Price and Cosgrove, 1990; Cosgrove and Ameen, 2000) and any given 

fracture pattern is the result of some stage during the complete stress history undergone 

by the rocks, including the deformation history during buckle folding. In this regard, a 

distinction has to be made relative to the time of fracture development, i.e. if the fractures 

developed before, during or after buckle folding, since it is very unlikely that all these 
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Figure 1. Fracture sets commonly identified within fold structures, and the inferred 

orientations of the minimum and maximum principal stresses (’3 and ’1) necessary to 

form them. a) 4 different tensile fractures commonly associated with buckle folds. b) 

Conjugate shear fracture Sets 5 to 8 associated with buckle folds. c) Conjugate shear 

fracture Sets 9 with 11 associated to buckle folds. 
 

 

fracture sets are formed coevally or during a single buckling episode (Price, 1966). This 

becomes of particular interest for Fractures 2 and 3, as different studies (Price and 

Cosgrove, 1990; Twiss and Moores, 1992; Engelder, et al., 2009) have concluded that 
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pre-existing bedding normal joint sets (i.e. Mode 1 fractures) play an important role in the 

distribution of fold related fractures. These observations support Casey and Butler 

(2004), who stated that the timing and evolution of fracture occurrence is not sufficiently 

understood. One of their main conclusions is that due to the complexity of the stress 

history in fold hinges the prediction of timing and location of fracturing requires methods 

and/or (numerical) models that include the stress evolution. 

A common technique for fracture prediction for developed fold shapes is fold 

curvature analysis (e.g., Lisle, 1994; Fischer and Wilkerson, 2000; Bergbauer and 

Pollard, 2004) for which the neutral surface concept (Ramsay, 1967; Price and Cosgrove, 

1990; Twiss and Moores, 2007; Frehner, 2011) is used to distinguish compressional 

failure and tensile failure. As Lisle (1992, 1994) pointed out, the fracture density within a 

fold may be directly related to the curvature of the fold. However, curvature analysis by 

itself is inherently limited since it does not account for the stress differences arising from 

material heterogeneities or changing pore pressure and moreover cannot consider the 

timing of fracture formation during the stress evolution (Smart et al., 2009). 

A review of numerical modeling studies (e.g. Lemiszki et al., 1994; Casey and 

Butler, 2004; Reber et al., 2010; Frehner, 2011) investigating the occurrence of buckle 

fold related fractures shows that a great amount of knowledge has been gained on the 

evolution of buckle folds and their stress and strain history. However, lots of assumptions 

and simplifications are made, which may not result in realistic in-situ stress conditions 

leading to rock failure. Only a few numerical studies consider the influence of gravity 

(Schmalholz et al., 2002; Eckert et al., 2014) and the influence of pore pressure / 

overpressure is often reduced to the analysis of the mean stress (e.g. Stephansson, 1974; 

Mancktelow, 2008; Schmid et al., 2008). For the example of tensile fracture initiation 

Lemiszki et al. (1994) conclude that folding at depths of more than 3000 m requires 

significant overpressures. However, one drawback in Lemiszki et al.’s (1994) study is the 

numeric addition of pore pressure to Dieterich and Carter’s (1969) model results; the 

influence of the material’s permeability to allow generation of compression related over-

pressures and subsequent failure conditions are not considered. In their recent study, 

using 2D finite element analysis, Eckert et al. (2014) show that conditions of low 

overburden pressures and/or high viscosities and/or low permeabilities promote the 
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initiation of tensile fractures parallel to the fold axis and normal to bedding on the fold 

hinge. Tensile fractures 2 are explained by erosional unloading of high permeability 

rocks following buckling. However, since the model of Eckert et al. (2014) is 2D, it could 

not deal with tensile fractures 3.  

While Eckert et al.’s (2014) study simulates the buckling associated state of stress 

under in-situ stress conditions, including pore pressure and permeability, to the authors’ 

knowledge, no numerical modeling study comprehensively and quantitatively has 

addressed the relation between the conditions of fracture initiation and/or occurrence for 

various possible fractures (shear and tensile) during the deformation history of buckle 

folds under stress magnitudes occurring at various depths. The present study utilizes 3D 

finite element analysis (FEA) using visco-elastic rheology to simulate single-layer buckle 

fold development of one class of sedimentary rocks under in-situ stress and pore pressure 

conditions to quantify the evolution of stress during large strain folding and provide 

further understanding of the relation between fractures and buckle folds. Cylindrical folds 

are considered since most of the studied fracture sets within buckle folds are based on 

three-dimensional cylindrical folds (Price and Cosgrove, 1990; Lemiszki et al., 1994; 

Cosgrove and Ameen, 2000; Fischer and Wilkerson, 2000; Florez-Nio, et al., 2005; 

Bellahsen et al., 2006; Ismat, 2008; Jager et al., 2008; Sanz et al., 2008). The main 

objective of this study is to determine the conditions necessary for fractures 1-11 to 

develop during single layer visco-elastic buckle folding. The influence of material 

parameters, burial depth, and various boundary conditions are studied to gain a more 

thorough understanding of the initiation of visco-elastic buckle folding related fractures. 

If conditions during folding do not support the initiation of specific fracture sets, the 

influence of post folding erosional unloading is investigated (e.g. Haxby and Turcotte, 

1976; Eckert et al., 2014). 
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2. MODELING APPROACH 

2.1. GOVERNING EQUATIONS 

Following the studies of Mancktelow (1999), Zhang et al. (2000) and Schmalholz 

et al. (2001) the visco-elastic behavior of deformed geological materials (e.g.Ramsay and 

Huber 1987; Turcotte and Schubert, 2002; Fowler 2005) is simulated utilizing a linear 

Maxwell model. This Maxwell visco-elastic rheology, which exhibits instantaneous 

elastic response to fast strain rates and time-dependent viscous behavior to slow strain 

rates, is especially suitable to simulate buckling (Schmalholz et al., 2001). Pore pressure 

is introduced by utilizing effective stress analysis assuming an incompressible fluid and 

rock grains (i.e. Biot coefficient  α=1, Biot and Willis, 1957; Nur and Byerlee, 1971). 3D 

finite element analysis (via the commercial software package ABAQUS
TM

) is employed 

to solve the equations of equilibrium, conservation of mass, constitutive equations, and 

the equations for pore fluid flow. The unknowns of the problem comprise the stress 

tensor components σxx, σyy, σzz, σxy, σxz, and σyz , the pore pressure Pp, the material 

velocities along two horizontal directions vx, vy,  and vertical direction (z-axis) vz, and the 

material density ρm.  

The equilibrium equations for this model are given by (Eckert et al., 2014): 
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The constitutive relationships for a compressible Maxwell rheology are: 
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where  is the Bulk modulus, G the Shear modulus,  the viscosity, and  the Biot 

coefficient. The superscript “iso” represents the isotropic part of the stress tensor and 

“dev” represents the deviatoric part. Since the material density, m, in the model is depth 

dependent and depth changes with time, the conservation of mass is represented as: 

 ym x z
m 0  

t x y z

  


   
    

    
 (10) 

Fluid flow is simulated using Darcy’s law (Jaeger et al., 2007) and since it assumed that 

=1, the governing diffusion equation for the pore pressure is given by: 
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where kx, ky and kz are the permeabilities along the x, y and z axes, respectively. f stands 

for the fluid (i.e. water) viscosity. Since the pore pressure response depends on the 

volumetric strain, the fluid flow is coupled to the strain resulting from pore volume 

changes. Equations 1 to 11 represent the 11 governing equations to solve for the 11 

unknowns of the problem. The detailed derivation of the equation system follows the 2D 

plane strain approach presented by Eckert et al. (2014) and is slightly modified to account 

for 3 dimensions.  
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2.2. MODEL SETUP AND MATERIAL PROPERTIES 

Since many natural folds surfaces can be approximated by the cylindrical fold 

model (Ramsay and Huber, 1987), a three-dimensional cylindrical fold subjected to 

horizontal shortening (along x-axis) is simulated here. The model geometry comprises a 

central single folding layer 30 m thick embedded in a less competent matrix with 1000 m 

initial overburden (Figure 2). The initial geometry of the folding layer is characterized by 

small periodic perturbations of the appropriate dominant wavelength along the shortening 

direction (x-axis) and 2.5 m amplitude. The model is horizontally compressed using a 

strain rate of 10
-14

 s
-1

, representative of a reasonable geologic deformation rate (Twiss 

and Moores, 2007). For selecting the appropriate dominant wavelength the same method 

presented by Eckert et al. (2014) is followed where the parameter R (after Schmalholz 

and Podladchikov, 1999; Schmalholz et al.,2001) is used to determine if the competent 

layer is folded viscously (R<1) or elastically (R>1). R is defined as the ratio between the 

viscous dominant wavelength, dv, and the elastic dominant wavelength, de:  

 
0

3

6

dv l

de m

P
R

G

 

 
                                             (12) 

where G is the shear modulus and P0 is the initial layer parallel stress. For the range of 

viscosities l (i.e. 10
21

- 2×10
21

 Pa s) in the numerical models the initial layer parallel 

stress is given by 0 4 fP    (Schmalholz and Podladchikov, 1999). With a constant 

viscosity ratio of 50 (between the folding layer and the matrix; Zhang, et al., 1996; 

Mancktelow, 1999; Zhang et al., 2000; Eckert et al., 2014) R from equation 12 is in the 

range of 0.074 to 0.104 and indicates that deformation is dominated by viscous behavior. 

Therefore, for these models the viscous dominant wavelength 32
6

l
dv

m

h


 


 of 382.2 m 

is chosen. The final model dimensions are 1720m in the x-direction and 150m in the y-

direction.  

The model also considers porosity and permeability changes with depth and this 

planar anisotropy follows the plane of bedding during buckling. The relations between 

porosity and permeability are expressed as (after Medina et al., 2011): 
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0.00039( ) 16.39 zz e 

                                       (13) 

 
17 0.283( ) 7.583 10k z e  

                                    (14) 

where ϕ is the porosity, z is the depth in m and k is the permeability in m
2
. Hydrostatic 

pore pressure is assigned to the model as an initial condition and the permeability is 

considered to be anisotropic with the horizontal permeabilities both being 5 times the 

vertical permeability. Table 1 lists the material parameters used for all models unless 

specified differently for special cases.  

 

Table 1. Material properties for general sedimentary rocks for the base model (Eckert et 

al., 2014). 

Properties Folding Layer Matrix/Overburden/Base 

Specific Gravity 2.75 2.75 

Viscosity 10
21

 (Pa s) 192 10  (Pa s) 

Young’s Modulus 0.0003933.7(1 0.1639 )ze

(GPa)  

0.000393.37(1 0.1639 )ze

(GPa) 

Poisson Ratio 0.25 0.25 

Permeability (at 

1000 m) 

151.75 10  (m
2
) 151.75 10  (m

2
) 

Strain Rate 10
-14

 (s
-1

) 10
-14

 (s
-1

) 

 

 

A natural system is in a state of continuous quasi-equilibrium. In order to mimic 

this condition, a stress initialization procedure (following Buchmann and Connolly, 2007; 

Smart et al., 2009; Eckert and Liu, 2014) is necessary, to precondition the model with 

stresses of in-situ conditions, before subjecting the model domain to loads designed to 

induce buckling. The procedure includes a gravitational pre-stressing step (Figure 2a), 

followed by a second load step applying 50% horizontal shortening along the x-direction 

with a constant strain rate (10
-14

 s
-1

) to simulate the one-directional horizontal 

compression to initiate buckling (Figure 2b). No deformation boundary conditions are 

applied along the y-direction unless certain fracture sets require such an addition. If 

conditions for fracture initiation cannot be explained by the buckling process alone, a 



16 

 

 

third load step simulating erosional unloading (Eckert et al., 2014) is added. In this load 

step, the magnitude of the gravitational acceleration of the overburden layer is gradually 

reduced using an erosion/exhumation rate of 1 mm/yr (Burbank, 2002) while conserving 

the deformation obtained during buckling (Figure 2c).   

 

 

Figure 2. Model setup and boundary conditions for 3D numerical models. a) Pre-stressing 

boundary conditions allow for in plane displacements during gravitational compaction. 

The resulting state of stress is used as initial condition for the following load steps. b) A 

constant tectonic strain rate is applied along the x-axis to initiate buckling. c) Model 

geometry after the erosional load step. Note model dimensions in Figure 2 are not to 

scale. 
 

2.3. FRACTURE INITIATION CONDITIONS 

In order to evaluate the conditions needed for the initiation of the various fracture 

sets in Figure 1 the stress evolution during the buckling (and erosion, if necessary) 

process is analyzed. The likelihood of fracture initiation is evaluated when the stress 

conditions meet a combined Griffith-Coulomb failure envelope (Hafner, 1951;Chinnery, 

1966a and b; Segall and Pollard, 1980; Schultz and Zuber, 1994; Sibson, 2003; Jaeger et 

al., 2007). It needs to be noted that in order to reduce the number of assumptions about 

the rocks’ tensile and cohesive strengths, the failure criterion is not applied as a plasticity 

criterion in the finite element analysis but as a post processing indicator of possible 
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fracture initiation during the various stages of the buckling process. Considering that the 

study of discrete fractures and their evolution is not part of the objective of this 

simulation, the post-processing approach of identifying where and when fractures are 

most likely to initiate is chosen.  While this represents a limitation for considering the 

post failure behavior and stress evolution, this approach enables the study of fracture 

initiation conditions for various rock strengths, while also limiting the amount of 

simulations to be run. 

The initiation of tensile fractures using the combined Griffith-Coulomb criterion 

is evaluated when the effective minimum principal stress, '3, equals the tensile strength 

(T0) of the rock, i.e. '3= -T0, and when the differential stress is smaller than 4 times the 

tensile strength, i.e. d<4T0 (Connolly and Cosgrove, 1999). The spatial and temporal 

evolutions of both the maximum and the minimum effective principal stresses (i.e. '1 

and '3) are used to define the stress conditions for shear fracture initiation. For the 

combined Griffith-Coulomb criterion it has long been recognized that two sets of 

fractures dominate, shear and extensional.  It has also been argued that a third type, 

extensional shear fractures, are initiated when 4T0< σd <5.66T0 (Secor, 1965; Hancock, 

1985; Sibson, 2003), with compressional shear fractures initiated when σd>5.66T0 and 

when: 

   1 3 0 1 32 cos sinC                                                 (16) 

where C0 represents the cohesion with C0 = 2T0 (Sibson, 2003, Jaeger et al. 2007) and  

the angle of internal friction. The angle between the fracture plane and σ'1 is less for the 

extensional shear fractures than that of the compressional shear fractures (Sibson, 2003). 

Note that using a different failure criterion would change the specifics of this distinction. 

However, since the combined Griffith-Coulomb criterion is the most commonly used 

one, situations where extensional shear fractures may potentially occur are clearly 

identified. The orientation of the potential shear fracture is determined by the orientation 

of the principle stresses. The other failure types can also be analyzed and predicted by the 

state of stress, however, which is beyond the scope of this study. The reader is then free 

to use either the two fractures or three fracture systems as appropriate. 
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It needs to be noted that the models do not consider the existence of pre-existing 

fractures. The study of pre-existing fractures and their evolution during structural 

deformation is beyond the scope of this study, Further, it would require a different 

numerical modeling approach, such as the hybrid discrete finite element method. 
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3. RESULTS 

In order to evaluate the conditions for each fracture set to occur, the stress 

conditions illustrated in Figure 1 are analyzed for different boundary conditions and 

material properties. For the following analyses, the angle of internal friction is assumed 

to be 30° (Jaeger et al., 2007) and two different magnitudes for tensile strength and rock 

cohesion are chosen to evaluate failure, for strong rock (T0=6 MPa, C0=12 MPa) and 

weak rock (T0 =3 MPa, C0=6 MPa) based on experimental data (Bieniawski, 1984; 

Goodman, 1989; Dubey, 2006). It should be noted that for the following results sections 

only parameter variations that contribute to conditions resulting in fracture initiation are 

presented. 

The results for the various fracture sets and the conditions for their initiation are 

summarized and listed in Table 2. The timing of the fracture initiation is given in terms of 

the dimensionless amplitude An, which represents the ratio of fold amplitude over layer 

thickness, i.e. An=A/H, where A is the fold amplitude and H is the layer thickness 

(Schmalholz and Podladchikov, 2001). Detailed descriptions are presented for Sets 2, 5, 

6, and 11 (highlighted in grey in Table 2). Sets 1 and 4 are described in detail in Eckert et 

al. (2014) and documented for the 3D models in the Appendix. Sets 3, 7, 8, 9, and 10 are 

described in the Appendix as their initiation during buckling requires “unrealistic” 

boundary conditions. 

 

Table 2. List of boundary conditions, load steps and model/rock properties needed for 

each fracture set to be initiated. 

Set Necessary boundary 

conditions and load steps 

Model/rock 

properties 

Comments 

1 Buckling due to horizontal 

compression (along x-axis) 

Low permeability or 

low overburden 

conditions 

Fracture 1 initiated at An=0.61 

(25 % shortening) for strong 

rocks (T0=6 MPa); earlier for 

weaker rocks; detailed 

analysis of Fracture 1 can be 

found in Eckert et al. (2014). 
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Table 2. List of boundary conditions, load steps and model/rock properties needed for 

each fracture set to be initiated (cont.). 

2 Buckling due to horizontal 

compression (30-50% 

shortening along x-axis) 

plus erosional unloading 

step 

High permeability Fracture 2 initiated only for 

strong rocks in folds with 

An=0.77 (30 % shortening) 

shortening. 

Folds with larger shortening 

and weak rocks result in shear 

fractures of Set 10. 

3 Buckling due to horizontal 

compression (50% 

shortening along x-axis) 

plus 30-50 % extension 

along y-axis  

High and low 

permeability 

Unrealistic conditions; more 

likely to represent pre-

buckling feature or post-

buckling deformation under a 

different stress field. 

4 Buckling due to horizontal 

compression (along x-axis) 

Low permeability Fracture 4 initiated at An=0.02 

(1-2 % shortening) for weak 

and strong rocks. 

5 Buckling due to horizontal 

compression (along x-axis) 

High and low 

permeability, low 

overburden 

Set 5 initiated at An=0.43 

(~20% shortening) for weak 

rocks (C0=6 MPa); for strong 

rocks (C0=6 MPa) low 

overburden and/or low 

permeability promote the 

initiation of Set 5. 

 

6 Buckling due to horizontal 

compression (along x-axis) 

Increased folding 

layer viscosity 

(2×10
21

 Pa·s) 

Set 6 is initiated at An=0.43 

(20% shortening) for weak 

rocks (T0=3 MPa) and at 

An=0.47 (21 % shortening) for 

stronger rocks (T0=6 MPa). 
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Table 2. List of boundary conditions, load steps and model/rock properties needed for 

each fracture set to be initiated (cont.). 

    

7 Buckling due to horizontal 

compression (50% 

shortening along x-axis) 

plus 50 % extension along 

y-axis 

High and low 

permeability 

During the very early stages of 

horizontal compression 

(An=0.02, ~1.5% shortening) 

the differential stress is large 

enough and σ′3 small enough 

such that for weak rocks Set 7 

can be initiated 

8 Buckling due to horizontal 

compression (50% 

shortening along x-axis) 

plus 40 % compression 

along y-axis 

High and low 

permeability 

Set 8 is possible to be initiated 

when An=0.66 (~ 20% 

shortening) at the hinge zone 

of folds for relative weak 

rocks (6 MPa >T0>3 MPa). 

9 Buckling due to horizontal 

compression (50% 

shortening along x-axis) 

plus 50 % extension along 

y-axis  

High and low 

permeability 

Set 9 can be initiated at 

An=0.40 (~36% shortening) 

for rocks in the range of 5.5 

MPa>T0>3 MPa. For stronger 

rocks tensile fractures 

(Fracture 3) are initiated. 

10 Buckling due to horizontal 

compression (30-50% 

shortening along x-axis) 

plus erosional unloading 

step 

High permeability Set 10 is likely to occur during 

erosional unloading for folds 

with 35%-50% shortening for 

strong rocks (0.77<An<1.23). 

11 Buckling due to horizontal 

compression (along x-axis) 

Low permeability 

and low overburden 

Set 11 is possible to be 

initiated during buckling in 

the fold limb for a weak rock 

(T0=3 MPa) 
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3.1. TENSILE FRACTURE 2 

Similar to the 2D results of Eckert et al. (2014), tensile stress does not develop in 

the fold limb during buckling and the addition of erosional unloading is necessary to 

explain widespread tensile stress magnitudes in the fold limb for high permeability rocks 

(for folds with up to 40% shortening). The 3D stress evolution during the erosional 

unloading step (Figure 3a) confirms the initiation of Fracture 2 when erosion is applied 

after 30% shortening (An=0.77) for strong rocks (T0=6 MPa), as the differential stress 

remains < 4T0 (solid line in Figure 3d). Tensile stress magnitudes are widespread across 

the fold limb and '3 orientations (Figure 3g) indicate tensile fractures which are 

approximately perpendicular to the bedding near the hinge, and at a lower angle to 

bedding in the fold limb (red solid line in Figure 3g). In contrast to Eckert et al.’s (2014) 

results, which predict Fracture 2 in general without considering the differential stress, this 

study can only explain the initiation of Fracture 2 for strong rocks at An=0.77, i.e. 30% 

shortening (solid black line in Figure 3d). For weaker rocks, compressional shear 

fractures of Set 10 are initiated prior to tensile fractures 2 as d>5.66T0 (dashed line in 

Figure 3d).  

 If erosion occurs after 30% of shortening, the resulting differential stress 

becomes larger and extensional shear fractures similar to Set 10 are/could be initiated 

prior to tensile fractures 2 as 4T0<σd<5.66T0 (solid line Figure 3e and 3f; red dashed line 

in Figure 3h and 3i) for strong rocks (T0=6 MPa). For weaker rocks (T0=3 MPa), 

compressional shear fractures of Set 10 are initiated prior to tensile fractures 2 as 

σd>5.66T0 (dashed line Figure 3e and 3f; black dotted line in Figure 3h and 3i).  

3.2. SHEAR FRACTURE SET 5 

In order to investigate the initiation of compressive faults (fracture Set 5; Figure 

1) the effective principal stresses at the bottom of the fold hinge for various overburden 

thicknesses and permeabilities are shown in Figure 4. Figure 4a shows the temporal 

evolution of '1 and '3 for a model featuring 1000 m overburden depth and high 

permeability rock, i.e. k=10
-13

 m
2
 (base model, solid lines in Figure 4a), for a model 

featuring 500 m overburden depth and high permeability rock, i.e. k=10
-13

 m
2 

(dash line 
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Figure 3. a-c) Evolution of the effective principal stresses at the fold limb during 

buckling (30-50%shortening) and erosional unloading. The red dotted line represents 

zero principal stress. d-f) Mohr diagram based on the state of stress at various times after 

erosion for different rock strengths of T0=6 MPa (solid line, 4T0<d <5.66T0) and T0=3 

MPa (dashed line, d >5.66T0). g-i) σ’3 magnitudes after 2.19 ma (g), 2.5 ma (h), and 

2.97 ma (i) of exhumation. The black line separates compressive from tensile stresses. 

The red lines indicate the location and orientation of possible tensile fractures. The dotted 

black lines indicate possible conjugate shear fractures, and the dashed red lines indicate 

possible extensional faults. 
 

 

in Figure 4a), for a model featuring 1000 m overburden depth and low permeability rock, 

i.e. k=10
-21

 m
2
 (dotted lines in Figure 4a) and for a model featuring 1000 m overburden 

depth and a high viscosity contrast, i.e. Rμ=100 (dash-dotted lines in Figure 4a). The 
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Mohr circle plots in Figure 4b are plotted for the value of An which features the largest 

differential stress. The Mohr circles show that Set 5 is likely to be initiated under all 

conditions considered for weak rocks (C0=6 MPa). For stronger rocks (C0= 12 MPa), 

conditions of lower overburden pressure and/or low permeability promote the initiation 

of Set 5. It is observed that the high viscosity ratio, which results in a much larger An, has 

little influence on the magnitude of differential stress at the bottom of the hinge. The 

principal stress orientations confirm that '1 is horizontal and '3 is vertical at the bottom 

of the hinge zone (Figure 4c). These findings are in agreement with compressional 

strain/stress patterns in the fold hinge zone and multiple field studies (e.g. Price and 

Cosgrove, 1990; Lemiszki et al., 1994; Reber et al., 2010; Frehner, 2011). 

 

 
Figure 4. Results of effective principal stress at the bottom of the fold hinge. a) Effective 

principal stresses for the base model (high permeability with initial 1000 m overburden 

depth; solid line) and the low permeability model (k=10
-21

 m
2
; dotted line) and the low 

overburden model (initial 500 m; dashed line). b)Mohr diagram based on the state of 

stress which features the largest differential stress for base model (solid line) and low 

permeability model (dotted line) and low overburden model (dashed line) and Griffith-

Coulomb failure criterion for T0=3 MPa (dotted line) and T0=6 MPa (solid line). c) 

Orientation of the maximum principal stress of the folding layer and the bottom of the 

fold hinge is highlighted by red color. 
 

3.3. SHEAR FRACTURE SET 6 

Extensional faults (Set 6) are most likely to be initiated at the top the hinge where 

'3 is parallel to the shortening direction and '1 is vertical (Figure 4c). It is observed that 

the stress conditions for the models based on the material parameters given in Table 1 

promote the initiation of tensile fractures (Fracture 1), as the differential stress is 

insufficient for shear failure (auxiliary material and Figure F01). However, a slightly 
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higher folding layer viscosity (2×10
21

 Pa·s), with a folding layer : matrix viscosity ratio 

of 50, enables the initiation of this fracture set. The increase in viscosity results in a steep 

decrease of '3 (Figure 5a) after An=0.32 (around 16% shortening) resulting in d>4T0. 

For weak rocks (i.e. T0=3 MPa), d is larger than 5.66T0 after An=0.43 (around 20% 

shortening) and fracture Set 6 is initiated as compressional shear fractures. For strong 

rocks (i.e. T0=6 MPa), after An=0.47 (around 21% shortening), fracture Set 6 is/could be 

initiated as extensional shear fractures since 4T0<d <5.66T0. It is important to note that 

the relatively high differential stress (for the model featuring the increased viscosity), 

especially after An=0.43 (i.e. 20% shortening), is the reason that extensional fault Set 6 

occurs at the top hinge instead of tensile fractures 1. The larger differential stress can be 

explained by the increase of the factor R when the viscosity is increased, resulting in a 

more elastic response and thus larger stress magnitudes.  

 

 

Figure 5. a) Results of the effective principal stress at the top of the fold hinge for the 

high viscosity model (2×10
21

 Pa·s in the folding layer). The red dotted line represents 

zero principal stress.  b)Mohr diagram based on the state of stress at An=0.43 (20% 

shortening) and Griffith-Coulomb failure criterion for T0=3 MPa and d >5.66T0. c) 

Mohr diagram based on the state of stress at An=0.47 (21% shortening) and Griffith-

Coulomb failure criterion for T0=6 MPa and 4T0<d <5.66T0.  



26 

 

 

3.4. SHEAR FRACTURE SET 11 

Shear fracture Set 11 in the fold limb requires similar orientations of principal 

stresses as Set 5 for the fold hinge, which indicates that the maximum effective principal 

stress is sub-parallel to the bedding plane. The stress evolution for the base model 

featuring high permeability and 1000 m overburden thickness (dashed lines in Figure 6) 

show that '3 is too large to initiate shear failure during buckling. In order to reduce the 

compressional stresses, a model with low overburden (500 m) and low permeability (10
-

21
 m

2
) is analyzed. For these conditions (solid lines in Figure 6), shear fracture Set 11 is 

possible to be initiated during buckling in the fold limb for a weak rock (T0=3 MPa). 

These findings are in agreement with compressional strain/stress pattern in the fold limb 

and multiple field studies (e.g. Price and Cosgrove, 1990; Lemiszki et al., 1994; Reber et 

al., 2010). 

 

 

Figure 6. a) Results of the effective principal stress at the fold limb for Model 3.11 (low 

permeability and low overburden depth; solid line) and for the base model (initial 1000 m 

overburden and high permeability; dashed line). b) Mohr diagram based on the state of 

stress at An=0.16 (~12% shortening) for Model 3.11 (solid line) and base model (dashed 

line) and Griffith-Coulomb failure criterion for T0=3 MPa.  
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4. SUMMARY 

The 3D modeling approach presented in this study shows that the stress history 

during the development of visco-elastic cylindrical single layer buckle folds can be 

successfully simulated for in-situ stress and pore pressure conditions and help provide a 

better understanding of the initiation of various types of fractures as recorded for folded 

outcrops (e.g. Price and Cosgrove, 1990; Bergbauer and Pollard, 2004; Reber et al., 

2010). As pointed out by Eckert et al. (2014), permeability and post folding deformation 

processes such as erosional unloading play a key role in understanding fracture initiation 

for single layer buckle folds. Since Eckert et al.’s (2014) study was 2D, it considered only 

the initiation of tensile fractures. The initiation of shear fractures was not investigated.  

Based on the analysis of the simulation results presented here, the fracture systems of 

Sets 1 – 11 (Figure 1) can be classified into three groups. The conditions for fracture 

initiation of each group are summarized in Table 3). 

 Group I includes fractures that are characterized by the strong dependence on the 

distribution of model and material parameters (i.e. burial depth, viscosity and 

permeability) during the process of buckling, including: tensile fractures 1 and 

extensional fault Set 6 at the top of the hinge zone, tensile fractures 4 throughout the 

folding layer, thrust fault Set 5 at the bottom of the hinge zone, and shear fracture Set 

11 in the fold limb. 

 Group II includes fractures that require extensional or compressional boundary 

conditions along the fold axis, such as tensile fractures 3, extensional fault Set 9, and 

strike-slip fault Set 8 at the top of the hinge zone, and oblique strike-slip fault Set 7 in 

the limb of the folding layer. This suggests that fractures of Group II, especially 

Fracture 3 and Set 9 are likely to represent pre-folding/post-folding features.  

 Group III is unlikely to be initiated during buckling and the process of erosional 

unloading is confirmed as a very likely cause. Tensile fractures 2 and oblique 

extensional fault Set 10 in the limb belong to this group. 
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Table 3. Summary of fracture sets in Groups I-III.  

Group Loading/Deformation 

conditions during buckling 

Sets Comments 

I Buckling due to horizontal 

compression (along x-axis) 

1, 4, 

5, 6, 

11 

Buckling fractures: Fracture 

initiation of different sets is 

dependent on material properties 

(permeability and viscosity), initial 

overburden pressure, and rock 

strength during buckling. 

 

II Buckling due to horizontal 

compression (along x-axis) 

and  

a) 30-50 % extension 

along y-axis 

b) 40 % compression 

along y-axis 

 

 

3, 7, 

9 

 

8 

Fracture initiation of different sets 

during buckling requires unrealistic 

deformation. Possible explanations: 

a) Periclinal geometry may 

explain Set 7 (see 5.2). 

b) Periclinal geometry may 

explain Set 8 (see 5.2). 

c) Fractures likely represent 

pre-folding or post folding 

deformation. 

 

III  Buckling due to horizontal 

compression (30-50% 

shortening along x-axis) plus 

erosional unloading step 

2, 10 Erosional fractures: Fracture 2 

initiated only for strong rocks in 

folds with An~0.77, i.e.  30 % 

shortening. Folds with larger 

shortening and weak rocks result in 

shear fractures of Set 10. 
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5. DISCUSSION 

5.1. GROUP I FRACTURES 

Comparison of Sets 1 and 6, which can both be initiated during the buckling 

process at the top of the hinge zone, shows that the material properties determine what 

type of fracturing occur at the top of the fold hinge. Fracture 1 is only likely to occur for 

low overburden pressure (initial 500m) and/or low permeability (10
-21

 m
2
) rock, which 

results in tensile stress in a strong rock (T0=6 MPa, Figure 3) by overcoming the 

compressional state of stress generated by the overburden pressure. These findings are 

equivalent to the 2D plane strain model results presented by Eckert et al. (2014) and 

consistent with their conclusions. In addition to being initiated during buckling, fractures 

of Fracture 1 can also occur during erosional unloading as presented by Eckert et al. 

(2014), which explains the frequent observation of this fracture set in field outcrops. Set 6 

is initiated for fold layers with a high viscosity (2×10
21

 Pa·s), resulting in a more elastic 

response and greater differential stress during buckling (Figure 8). In addition to the 

dependence on the viscosity, Set 6 is also sensitive to the rock strength and the amount of 

shortening. For weak rocks (3 MPa <T0<6 MPa), Set 6 is initiated as an extensional fault 

at An=0.43 (~20% shortening). For stronger rocks, Set 6 is initiated as an extensional 

fracture of mixed modes 1 and 2 at An=0.47 (~ 21% shortening).  

Fracture 4 is initiated during the initial stages of horizontal compression for 

impermeable rocks (10
-23

 m
2
) with low overburden pressure (500 m) and low rock 

strength (T0=3 MPa). These results are consistent with those of Eckert et al. (2014). 

Set 5 (thrust fault at the bottom of the hinge) is likely to be initiated for weak 

rocks (C0=6 MPa) independent of permeability. For stronger rocks (C0=2T0=12 MPa), 

conditions of lower overburden pressure and/or low permeability promote the initiation 

of Set 5. It should be noted that the largest differential stress for the initiation of Set 5 

occurs at only An=0.43 (20% shortening, see Figure 7), which makes Set 5 a feature 

possible in low amplitude folds. 

Set 11(shear fracture in the limb) is only likely to be initiated for conditions of 

low overburden thickness (500 m) and low permeability (10
-21

 m
2
) during the early stages 

of buckling (i.e. An=0.16, ~12% shortening, Figure 6) for weak rocks (T0=3 MPa). These 
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limiting conditions confirm the rare observations of this fracture set in natural examples 

(Price and Cosgrove, 1990). 

5.2. GROUP II FRACTURES 

The initiation of fracture sets 3, 7, and 9 requires '3 to be parallel to the fold axis, 

a stress condition which is difficult to develop during cylindrical single-layer buckle 

folding, where '3 is mostly layer parallel or layer perpendicular on the plane 

perpendicular to the fold axis (Price and Cosgrove, 1990; Eckert et al., 2014). The models 

presented show that additional boundary conditions up to 50% extension along the fold 

axis are necessary to establish such stress conditions. This represents an extremely 

unrealistic deformation scenario. Therefore, these fracture sets are likely to represent a 

pre-folding or post-folding feature for cylindrical buckle folds.  

In particular Fracture 3, which is frequently observed in natural buckle fold 

examples (Price and Cosgrove, 1990; Fischer and Wilkerson, 2000; Engelder et al., 

2009), can be characterized as a pre-folding joint set common in sedimentary rocks 

(Price, 1966; Price and Cosgrove, 1990; Engelder, et al., 2009).  

Fracture Set 7 is frequently observed in natural fold examples (Price and 

Cosgrove, 1990) and may represent a pre-folding strike-slip fracture during horizontal 

compression prior to buckling. 

For Set 8,'1 is parallel to the fold axis, which in the numerical models is 

achieved after 40% shortening along the fold axis. This stress condition can be 

considered uncommon during buckling as layer parallel shortening is the main driving 

force for deformation. These boundary conditions also represent an extremely unrealistic 

deformation scenario, which confirms the infrequent observations of this fracture set 

(Price and Cosgrove, 1990). This also suggests that Set 8 is likely to represent a pre-

folding or post-folding feature. 

5.3. GROUP III FRACTURES 

Group III (Fracture 2 and Set 10) cannot be explained by buckling. In their recent 

study, Eckert et al. (2014) propose that the addition of an erosional unloading step after 

buckling can explain the initiation of tensile fractures 2 penetrating the fold limb for folds 

which have undergone 40% of shortening. While Eckert et al. (2014) show that during 
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erosional unloading sufficient tensile effective stresses are generated in the fold limb, 

their study does not consider the differential stress evolution. The results of this 3D 

modeling study show that Fracture 2 may only be initiated when erosion is applied for 

low amplitude folds (i.e. An=0.77, 30% shortening) for strong rocks (T0=6 MPa), as the 

differential stress remains < 4T0. However, based on the stress orientation during erosion, 

the resulting tensile fracture is not layer perpendicular but at a high angle (Figure 3g). For 

weaker rocks, shear fractures of Set 10 are initiated instead of tensile fractures 2 as 

d>5.66T0 (dashed lines in Figure 3d to 3f). Hence, Eckert et al.’s (2014) results 

presented for folds with 40% shortening may only be valid for very strong rocks (T0> 6.5 

MPa).  

Figure 7a, b shows the Mohr circle, stress orientations and associated fracture 

orientations for such a scenario. If erosion occurs for high amplitude folds (i.e. An=1.02, 

40% shortening and more), the resulting differential stress in the fold limb becomes 

larger (i.e. 4T0<d) and shear fractures similar to Set 10 are initiated prior to tensile 

fracture 2. For the shear fractures, one set of the conjugate failure planes is perpendicular 

to bedding. Hence, if such fractures are mapped in the field, slip indicators need to be 

recorded or these shear fractures might be mistaken as tensile fracture 2.  

These observations promote the conclusion that Fracture 2 may only be initiated 

for specific conditions (i.e. high rock strength or low amplitude folds) during erosional 

unloading of buckle folds (e.g. conditions presented in Eckert et al., 2014) and is more 

likely a pre-folding feature (Engelder et al., 2007; Berbauer and Pollard, 2004). 

 

 

Figure 7. a) Mohr diagram based on the state of stress at 2.19 ma with Griffith-Coulomb 

failure criterion for T0=6.5 MPa. c) σ’3 magnitudes after 2.19 ma of exhumation with 

orientation of tensile failure (dashed lines). The black line separates compressive from 

tensile stresses.  
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5.4. NUMERICAL SIMULATION OF SINGLE LAYER PERICLINE 

Since the conditions for initiation of fracture Set 7 in the numerical models 

presented are unrealistic, alternate model scenarios need to be considered to provide an 

explanation for the occurrence of this frequently observed fracture set in field outcrops 

(Price and Cosgrove, 1990). A possible solution can be obtained by considering the 

geometry of single layer pericline structures (Campbell, 1958). The periclinal geometry is 

described by the ratio of the fold half wavelength to the hinge length along the fold axis 

(Cosgrove and Ameen, 2000), which was found to vary between 0.1 and 0.2 for the 

majority of buckle folds (Dubey and Cobbold, 1977; Blay et al. 1977). 

In order to simulate a 3D pericline geometry using the numerical modeling 

approach described in Section 2, a small periodic perturbation is assigned to the initial 

geometry along the fold axis direction (y-axis) with a wavelength of 2.5 times the viscous 

dominant wavelength. 50% shortening is applied along the x-direction (i.e. buckling 

direction), while the y-direction is constrained to in-plane displacements (Figure 8). 

These boundary conditions result in a 3D periclinal geometry with an aspect ratio of 0.2 

after 50% of shortening, confirming these previous studies (e.g. Ramsay and Huber, 

1987; Abbassi and Mancktelow, 1992; Ghosh et al., 1995; Schmalholz, 2008) which 

show that non-cylindrical three-dimensional fold shapes can form during a single, 

unidirectional shortening event. The model setup is shown in Figure 8 with material 

properties as listed in Table 1. Furthermore, an erosional unloading step using a constant 

rate of 1 mm/yr is applied over a period of 1.37 Ma (Figure 8b). The final 3D geometry 

of the pericline is shown in Figure 18c. Figure 8c also depicts 2 cross sections, A & B, 

along the hinge line and along the shortening direction with the maximum fold amplitude, 

respectively. 

In order to identify locations for the initiation of fracture Set 7, the orientations of 

the principal stresses at various locations in the pericline structure are analyzed. Figure 9 

a-d shows the orientations of '1 and '3 and their magnitude evolution after buckling and 

erosional unloading respectively along cross section A. In the fold limb (Element 1 in 

Figure 8c), '1 is always oriented along the shortening direction (Figure 9a-c). '3 

orientations are dependent on the amount of shortening during buckling. '3 is vertical to 

sub-vertical before 25% shortening (i.e. An=0.94, Figure 9d), and switches to parallel to 
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Figure 8. a) Model setup for the pericline geometry. The folding layer is embedded in a 

250m thick high permeable matrix. The remaining overburden and base also have a high 

permeability. b) Model geometry and dimensions after the erosional load step with 50% 

shortening applied during buckling along the x-axis. (c) Resulting pericline geometry 

after buckling showing two cross sections, A along the fold axis and B parallel to 

shortening along the maximum fold amplitude. Element 1 is at the top of the limb of 

cross section A and Element 2 is at the center of the limb of cross section B. 
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the hinge line (Figure 9e) after 28.6% shortening and maintains this direction during 

erosion (Figure 9f). Hence, after 28.6% (i.e. An=1.06) shortening and during erosion, 

favorable orientations for fracture Set 7 are present. Yet, for the model parameters 

considered (1000 m overburden thickness, high permeability), fracture Set 7 is unlikely to 

be initiated during buckling as the '3 magnitude is too high (Figure 9e) and the 

associated Mohr circle (solid line Mohr circle in Figure 9h) is far from failure, even for 

weak rocks (i.e. T0=3 MPa). During erosional unloading, '3 decreases and the 

differential stress increases (Figure 9g), thus enhancing the likelihood for Set 7 to be 

initiated for both strong and weak rocks as compressional shear fractures (d >5.66T0, see 

dashed and dash-dotted Mohr circles in Figure 9h). In conclusion, Set 7 most likely 

represents formation during erosion. The changing orientations of '3 in the limb during 

erosion indicate that Set 7 is only initiated at the top of the limb. Pericline structures 

forming in scenarios with lower rock permeability and lower overburden loads may result 

in lower '3 magnitudes during buckling (Eckert et al., 2014) and thus Set 7 may be 

initiated for high amplitude folds, i.e. >28.6% shortening, during buckling. Moreover, 

different aspect ratios of the pericline structure may also result in different degrees of 

compression and extension in the various sections of the structure. In order to verify these 

influences, extensive sensitivity analyses on the formation of 3D periclines are necessary 

and these are beyond the scope of this contribution.  

It is interesting to note that the conditions for Set 7 to be initiated only occur 

along cross section A and do not occur along cross section B (featuring the largest fold 

amplitude), where '1 is parallel to the hinge line. This is in agreement with fracture 

patterns presented by Cooper et al. (2004) which show an increased frequency of fracture 

Set 7 away the location represented by cross section B. 

In addition to providing an explanation for Set 7, the pericline model can also be 

used to explain conditions possible for the initiation of Set 8. The analysis of the principal 

stress orientations and magnitudes in the limb of cross section B (Element 2 in Figure 8c) 

show that after 29.7% shortening (An=1.09), the '1 direction switches from parallel to 

the shortening direction (Figure 10a) to parallel to the fold axis during buckling 

(Figure10b) and during erosion (Figure 10c), hence providing favorable orientations for  
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Figure 9. a-f) Stress orientations along cross section A. a) '1 orientation at 25% 

shortening/An=0.94. b) '1 orientation after buckling. c) '1 orientation after erosion. d) 

'3 orientation at 25% shortening. e) '3 orientation after buckling. f) '3 orientation after 

erosion. g) Evolution of effective principal stress at Element 1 during buckling and 

erosional unloading. h) Mohr diagram based on the state of stress at the end of buckling 

(dotted line) and at 1.97 ma with Griffith-Coulomb failure criterion for T0=3 MPa 

(dashed line) and at 2.61 ma for T0=6 MPa (solid line). It should be noted that all featured 

stress orientations on the cross section are either perpendicular to or in the plane of the 

cross section. The oblique view is used for better visualization. 
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Set 8. As for Set 7, Set 8 is unlikely to be initiated during buckling because the '3 

magnitude is too high (Figure 10e) and the associated Mohr circle (solid line dash dotted 

Mohr circle in Figure 10f) is far from weak rock failure (i.e. T0=3 MPa). During erosional 

unloading, '3 decreases and the differential stress increases (Figure 10g), thus enhancing 

the likelihood that Set 8 is initiated as either compressional shear fracture in weak rocks 

(d >5.66T0, dashed Mohr circles in Figure 9h) or extensional shear fracture in strong 

rocks (4T0<d <5.66T0, solid Mohr circles in Figure 9h) in association with erosion of 

high amplitude folds. 

It should be noted that the principal stresses shown in Figure 9 and 10 only 

represent 2 cross-sections through the pericline structure. However, the stress orientations 

throughout the 3D geometry of the pericline are far more complex than that of a 

cylindrical fold. This indicates that the geometry of periclines may provide additional or 

different conditions for the various fracture sets observed in the field. Documenting such 

relations requires detailed analyses of different pericline geometries. This is beyond the 

scope of this paper, but very tractable using the numerical simulation method presented 

here. 

5.5.LIMITATIONS  

One limitation of the majority of the 3D finite element modeling results presented 

here is the single-layer cylindrical fold geometry simulated. This geometry is adopted to 

enable simple comparison with previously documented fracture sets associated with 

cylindrical buckle folds. While the 3D geometry presented enables more sophisticated 

and detailed analysis of the spatio-temporal evolution of stress state in the folding layer 

when compared to 2D models (e.g. Eckert et al., 2014), a detailed analysis of the 

conditions for all fractures associated with buckle folds is restricted since one of the 

principal stresses is always sub-parallel to the fold axis. As shown in principle in Section 

4.2, periclinal geometries may offer a better explanation for certain fracture sets (e.g. Set 

7). Besides the shape of the fold, the influence of a multilayer geometry also has 

implications for the stress distribution and the resulting conditions for fracture initiation. 

However, multilayer fold geometries may either feature less competent layers embedded  
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Figure 10. a-f) Stress orientations along cross section B. a) '1 orientation at 25% 

shortening/An=0.94. b) '1 orientation after buckling. c) '1 orientation after erosion. d) 

'3 orientation at 25% shortening. e) '3 orientation after buckling. f) '3 orientation after 

erosion. g) Evolution of effective principal stress at Element 2 during buckling and 

erosional unloading. h) Mohr diagram based on the state of stress at the end of buckling 

(dotted line) and at 2.44 ma with Griffith-Coulomb failure criterion for T0=3 MPa 

(dashed line, d >5.66T0) and at 2.74 ma for T0=6 MPa (solid line, 4T0<d <5.66T0). It 

should be noted that all featured stress orientations on the cross section are either 

perpendicular to or in the plane of the cross section. The oblique view is used for better 

visualization. 
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within competent layers (true multilayer; Schmid and Podladchikov, 2006) or may 

feature several mechanical units within a stiff single layer (effective single layer; Schmid 

and Podladchikov, 2006), and thus require an extensive comparison which is beyond the 

scope of this contribution. In addition, in a recent study based on 2D finite element 

analysis, Liu et al. [2015] compared the stress evolution of single-layer and true 

multilayer buckle folds. They showed that the multilayer geometry has some influence on 

the stress distribution but the general picture of how fractures are initiated during buckle 

folding remains the same as for a single layer. 

Another important limitation of the numerical method employed is the omission 

of plastic deformation. When rocks fail, strain softening (Goodman, 1989) or hardening 

(Fjaer et al., 2008) may occur and the post-yield evolution of the stress state will affect 

fracture propagation and distribution. Moreover, the induced fractures represent regions 

of increased permeability which in turn significantly affect the resulting effective stress 

evolution. However, the main purpose of this study is to focus on and pinpoint the 

relationship between the structural development of single layer buckle folds and the 

associated spatial and temporal initiation of various fractures. Therefore, the post 

processing indicators based on the combined Griffith Coulomb failure criteria are 

considered reasonable for studying the initiation of buckle fold related fractures. An 

advantage of this approach is the possibility to consider rocks of various strengths 

without making assumptions about the subsequent yield behavior (hardening or 

softening) of the rock. 

In the models involving the erosional load step, isothermal processes are assumed 

and thus thermal stresses due to cooling during exhumation are not included. Clearly, the 

addition of a changing temperature field (particularly for high geothermal gradient 

regions) is required in order to investigate specific geological scenarios. These specific 

features are beyond the scope of this contribution, but are very tractable using the 

methodology presented. Lastly, a detailed understanding of the strain history of structures 

in the field is necessary such that a robust comparison of the numerical results and field 

observations can be made. 
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6. CONCLUSIONS 

The 3D numerical models presented here illustrate that a thorough understanding 

of the interplay between material properties, model boundary conditions and model strain 

history is necessary in order to better understand and make reasonable predictions about 

the initiation of fracture associated with large-scale buckle fold systems. Based on the 

presented stress evolution during single-layer viscoelastic buckling this study confirms 

the conclusion that not all observed fractures are likely to form during one folding event 

(Price and Cosgrove, 1990; Cosgrove and Ameen, 2000). Moreover, the results of the 

numerical simulations provide a quantitative analysis of the relationship between fracture 

initiation and buckle folding and a general understanding of the timing of their formation. 

The conditions necessary for initiation of fracture Sets 1-11 during single layer buckle 

folding are analyzed and related to the stress evolution during buckle folding and 

erosional unloading, and are summarized in Figure 11. The 3D numerical modeling 

results show that fractures can be categorized in 3 groups: 

 Group I specifies fractures that are directly related to the stress conditions during 

the process of buckling and are likely to be initiated during folding. Group I fracture 

sets are characterized by the strong dependence on the distribution of material 

parameters and include tensile fractures 1 and fracture Sets 4, 5, 6, and 11.  

 Group II represents fractures (i.e. sets 3, 7, 8, and 9) that are thought to represent 

pre-folding features. Their initiation during buckling requires extensional or 

compressional boundary conditions along the (cylindrical) fold axis, indicating that 

these fractures, especially Fracture 3 and Set 9 are unlikely to be initiated during 

folding. For Set 7 and 8, 3D pericline geometries may help to understand the stress 

conditions for their initiation. The state of stress in the 3D pericline models 

considered is more complex and fracture sets with various orientations (beyond the 

orientations listed in Figure 1) are likely to be initiated during buckling. 

 Group III fractures are unlikely to be initiated during buckling and the process of 

erosional unloading is confirmed as a very likely cause. Tensile fracture 2 and oblique 

extensional fault Set 10 in the limb belong to this group. It can be concluded that this 
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group of fractures can be attributed to the stress evolution during pre-folding or post-

folding.  

In summary, this study has shown that the conditions for the initiation of fractures 

commonly associated with buckle folds can be explained by a combination of 

dependence on material properties, post buckling processes such as erosional unloading 

and non-cylindrical pericline geometries. Fractures that cannot be explained by the stress 

conditions during buckling likely represent pre-folding or post-folding features.   

 

 

Figure 11. Conditions for the initiation of the various fracture sets associated to 

cylindrical buckle folds. 
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ABSTRACT 

 

Multilayer folds represent common structures and the various fold shapes feature 

a complex stress/strain distribution. How the stress/strain distribution develops during the 

buckling of multilayer folds remains unclear. In this study, a 2-D plane strain finite 

element modeling approach is used to simulate multilayer, viscoelastic buckle folds under 

in-situ stress and pore pressure conditions. A variety of material and model parameters 

(including the elastic modulus contrast, viscosity contrast, initial overburden, number of 

layers, and layer thickness ratio) are considered and their influence on the shape of folds 

and on the resulting stress/strain distribution is analyzed. This study demonstrates that the 

shapes of the multilayer folds are influenced by the various parameters. The numerical 

modeling results show that tensile stress occurs at the hinge and the region between the 

hinge and the limb for certain layers and are influenced by the material and model 

parameters by various degree. In addition, the numerical simulations provide a general 

understanding of the strain distribution in the multilayer system where the less competent 

layers exhibit a large variability in the maximum principal strain distribution. This study 

shows that the thickness ratio of the competent and less competent layers has a major 

impact on the fold shapes and resulting stress/strain distribution for viscoelastic 

multilayer folding. 
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1. INTRODUCTION 

Multilayer buckle folds represent common structures of layered rocks undergoing 

compression and show a large variability in fold shapes on different scales (e.g. Price and 

Cosgrove, 1990). Understanding the mechanics of multilayer buckle folding and the 

associated stress and strain distribution is essential for an improved comprehension of 

tectonic deformation processes (Schmalholz and Schmid, 2012) and of associated fluid 

flow such as hydrocarbon migration (Sibson, 1996). Numerous studies have been 

performed on multilayer buckle folding (e.g. theoretical: Biot, 1961 and 1965, Johnson, 

1969; Ghosh, 1970; Johnson and Fletcher, 1994; analogue: Ghosh, 1968; Ramberg, 1970; 

Cobbold et al., 1971; Ramberg and Strömgard, 1971; numerical: Debremaecker and 

Becker, 1978; Casey and Huggenberger, 1985; Schmalholz et al., 2001; Schmid and 

Podlachikov, 2006; Hunt et al. 2006; Treagus and Fletcher, 2009), with respect to the 

dominant wavelength selection, fold amplification rate, and fold shape. The structural 

development of multilayer folds during buckling has been extensively studied by either 

considering the competent and incompetent layers as separate objects (e.g. Biot, 1961; 

1965), or treating the multilayer system as a homogeneous, but anisotropic body by 

applying average properties (e.g.  Biot and Romain, 1965; Cobbold et al. 1971; Johnson 

and Ellen, 1974; Casey, 1976; Hobbs et al., 2001; Mühlhaus et al., 2002).  

Although fold amplification in multilayer folds is understood to be mainly 

dependent on the viscosity contrast (e.g. Johnson and Fletcher, 1994), and the number of 

layers and the ratio of competent layer thickness to incompetent layer thickness (e.g. 

Ramsay and Huber, 1987; Schmid and Podladchikov, 2006), it cannot directly be used to 

explain the resulting fold shapes. Compared to single-layer folds, Hudleston and Treagus 

(2010) conclude that multiple factors result in the large variation of multilayer folds 

shapes, including sinusoidal, chevron, kinks and conjugate/box folds. In particular, 

observed fold shapes in multilayers are found to be dependent on the amount of bulk 

shortening (Schmalholz et al., 2001), layer thickness (Ramsay and Huber, 1987; Schmid 

and Podlachikov, 2006), the rheology applied (Schmalholz and Schmid, 2012), the 

viscosity ratio (Ramberg, 1962; Sherwin and Chapple, 1968; Ramsay and Huber, 1987), 

and the type of active folding (Price and Cosgrove, 1990). As stated and summarized by 
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Hudleston and Treagus (2010), “the large variation in shape of multilayer folds suggests 

that shape may potentially provide much more information on mechanical properties than 

has so far been achieved.” 

With respect to the description of the resulting state of strain/stress, various 

studies have been conducted for viscous multilayer folding. Mazzoli and Caremolla 

(1992) numerically study the principal strains in both the competent and less competent 

layer in a three-layer multilayer system. They conclude that fold limbs and hinges show 

complex deformation paths, with the principal axes of the total deformation ellipsoid 

interchanging their position several times during fold development. A later numerical 

study by Frehner and Schmalholz (2006) conducts a detailed analysis of the strain 

distribution (using finite strain ellipses) of a three-layer fold system (i.e. two competent 

layers and one less competent layer), and the two competent layers are found to form 

parallel folds. While the strain distribution in the competent layers is similar to strain 

observed for single layer folds (i.e. neutral surfaces separating compression from 

extension; e.g. Twiss and Moores, 2007; Frehner, 2010), the less competent layer shows 

layer-parallel shearing and layer-perpendicular compaction in the limb and pure shear at 

the hinge.  

Although the development of multilayer buckle folds has been extensively studied 

for elastic and viscous materials, the viscoelastic behavior of deformed geological 

materials (e.g. Ramsay and Huber, 1987; Turcotte and Schubert, 2002; Fowler, 2005; 

Mühlhaus et al. 2002) has not been widely considered for multilayer folds. Schmalholz 

and Podladchikov (1999, 2001) have shown the importance of viscoelastic rheology with 

respect to the dominant wavelength selection in single-layer buckling, and this rheology 

has been adopted in recent single-layer buckling studies by Eckert et al. (2014, 2015) and 

Liu et al. (2016). These numerical simulations have shown the importance of both 

viscous and elastic contributions to the evolution of stress and strain during the 

deformation of viscoelastic materials. To the authors’ knowledge, Schmalholz et al. 

(2001) represents the first study to investigate the pressure field within viscoelastic 

multilayers in the absence of gravity. Their results show increased pressure magnitudes in 

the hinge regions of the competent layers and increased amount of shear stresses in the 

incompetent units. A more recent study by Liu et al. (2015) investigates the stress and 
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strain distribution within a five-layer fold system (i.e. three competent layers) under in-

situ effective stress conditions, and it represents the first study of the strain distribution in 

both competent and less competent layers with viscoelastic rheology. Their results show 

that the magnitudes and orientations of principal stresses/strains vary significantly for 

different layers with respect to their relative location in the multilayer stack. As shown 

for single-layer buckle folds by Eckert et al. (2014) and Liu et al. (2016), a detailed 

understanding of the principal stresses has important implications for processes such as 

folding associated fracture initiation. A major conclusion of Liu et al.’s (2015) study is 

that the stress and strain distributions within multilayer buckle folds seem to be directly 

dependent on the number of competent layers. One drawback of their study is that only a 

limited number of layers is tested. The detailed influence of a larger number of layers and 

varying layer thickness ratios, which significantly affect the shape of multilayer folds 

(Ramsay and Huber, 1987), remains unclear. In addition to these two parameters, Eckert 

et al. (2014, 2015) and Liu et al. (2016) have shown that the stress evolution of buckle 

folds is also dependent on the distribution of other material parameters when in-situ stress 

conditions are simulated.  

The main objective of this study is to provide a comprehensive study investigating 

and providing a detailed distribution of stress and strain for both competent and less 

competent layers. 2D plane-strain finite element analysis (FEA) is used to simulate the 

development of viscoelastic multilayer buckle folds under in-situ stress and pore pressure 

conditions. Of particular interest is to document the influence of material and model 

parameters, i.e. Young’s modulus contrast, viscosity contrast, number of layers, initial 

overburden thickness and layer thickness ratio, as their detailed influence on the 

stress/strain distribution in a multilayer system featuring a large number of layers remains 

unclear. 
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2. MODELING APPROACH 

2.1. GOVERNING EQUATIONS 

In this study, the multilayer folds are simulated using visco-elastic rheology 

(e.g.Ramsay and Huber 1987; Turcotte and Schubert, 2002; Fowler 2005), and a linear 

Maxwell model is utilized following the studies of Mancktelow (1999), Zhang et al. 

(2000), Schmalholz et al. (2001), Eckert et al. (2014, 2015) and Liu et al. (2016). For the 

multilayer system, it is assumed that folds extend infinitely along the fold axis since 

many natural folds surfaces can be approximated by the cylindrical fold model (Ramsay 

and Huber, 1987). A 2-dimensional plane strain finite element analysis approach (via the 

commercial software package ABAQUS
TM

) is utilized (Eckert et al., 2014, 2015; Liu et 

al., 2015) to solve the equations of equilibrium, conservation of mass and constitutive 

equations. The detailed derivation of the governing equation system is presented by 

Eckert et al. (2014; i.e. supporting information) and not repeated here. 

 

2.2. MODEL SETUP AND MATERIAL PROPERTIES 

Considering that the number of layers in multilayer systems exhibit a strong 

influence on the amplification rates of the folding layers (e.g. Ramberg, 1961; Mühlhaus 

et al., 2002; Schmid and Podladchikov, 2006), the number of competent layers (termed as 

N) is initially set to 10 for a base case model. The model geometry comprises a sequence 

of 19 layers (i.e. 10 competent layers and 9 less competent layers) of 5m thickness 

embedded in a less competent matrix with 0.5km initial overburden (Figure 1). The 

viscosity of the competent layers (μl) is 100 times the viscosity of the less competent 

layers/matrix (μm) (Zhang, et al., 1996; Mancktelow, 1999; Zhang et al., 2000; Frehner 

and Schmalholz, 2006). The multilayer fold system model is setup such that only one 

wavelength is amplified for each fold. The initial geometry of the folding layers is 

characterized by small periodic perturbations of the appropriate dominant wavelength 

(Biot, 1961; Schmid and Podladchikov, 2006) along the shortening direction (x-axis). 

The initial ratio of amplitude to layer thickness is 0.01 (following Frehner and 

Schmalholz, 2006). The appropriate dominant wavelengths are selected by the same 

method presented by Eckert et al. (2014) where the parameter R (after Schmalholz and 
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Podladchikov, 1999; Schmalholz et al., 2001) is applied to determine if the competent 

layer is folded viscously (R<1) or elastically (R>1). R is the ratio between the multilayer 

viscous dominant wavelength, λdv, and the multilayer elastic dominant wavelength, λde: 
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   (1) 

where G is the shear modulus and P0 is the initial layer parallel stress. For the applied 

viscosity μl (i.e. 10
21

Pa·s) in the numerical models, the initial layer parallel stress is given 

by 0 4 lP      (Schmalholz and Podladchikov, 1999). For the applied viscosity ratios, R 

from equation 1 is in the range of 0.252 to 0.400 (for various viscosity contrasts and 

number of layers investigated) which indicates that viscous folding is the main 

deformation during buckling. Therefore, the viscous dominant wavelengths of 

32
6

l
dv

m

N
h


 


   is applied in this study. Moreover, the same thickness of the competent 

and less competent layer results in a true multilayer-folding mode (Schmid and 

Podlanchikov, 2006). The model is horizontally compressed under a constant strain rate 

of 10
-14

 s
-1

 representative of a reasonable geologic deformation rate (Twiss and Moores, 

2007) and free slip boundary conditions are applied at the bottom boundary.  

Moreover, depth depended porosity and permeability are also applied in the 

multilayer simulation following Medina et al. (2011): 

 
0.00039( ) 16.39 zz e   (2) 

 
17 0.283( ) 7.583 10k z e    (3) 

where ϕ is the porosity (%), z is the depth in m and k is the permeability in m
2
. 

Anisotropic permeability (i.e. the permeability along the X-axis being 5 times of the 

vertical permeability) is assigned to the model and hydrostatic pore pressure is applied as 

an initial condition. All material parameters are given in Table 1, unless specified 

differently for special cases. As described in Eckert and Liu (2014) and Liu et al. (2016) a 

static pre-stressing step (Figure 1a) is applied to account for gravitational equilibrium 

before horizontal compression (applying 50% horizontal shortening along the x-direction; 

Figure 1b) is imposed on the model.  
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Table 1. Material properties for the base model. 

Properties Folding Layer Less Competent layer and 

Matrix 

Specific 

Gravity 

2.75 2.75 

Viscosity 10
21

 (Pa s) 192 10  (Pa s) 

Young’s 

Modulus 

0.0003933.7(1 0.1639 )ze (GPa) 
0.000393.37(1 0.1639 )ze (GPa) 

Permeability 

(at 1000 m) 

151.75 10  (m
2
) 151.75 10  (m

2
) 

 

 

 

Figure 1. Sketch (not to scale) of the 2D numerical model setup and boundary conditions. 

A 19-layer multilayer stack is embedded in a matrix with lower viscosity and elastic 

strength. The thicknesses of the competent and less competent layers (featuring lower 

viscosity and elastic strength) are 5 m. a) In order to simulate in situ stress magnitudes in 

a numerical model gravitational pre-stressing is applied. This step utilizes a boundary 

condition setting where only gravity is acting and the model sides are constrained such 

that only in-plane displacements are allowed (rollers). b) After reaching gravitational 

equilibrium a constant tectonic strain εhor can be added to the model, which results in the 

initiation of buckling. 
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2.3. LIMITATIONS  

In this study, the same small periodic perturbation of the dominant wavelength is 

used as the initial geometry for the small-scale folds. In nature, layers composed of 

different rock types are unlikely to feature perfect periodic perturbations and the shape of 

the perturbation is influenced by various factors (Frehner and Schmalholz, 2006), for 

example, sedimentary structures (e.g. wave ripples) or metamorphic processes (e.g. 

crenulation). Random perturbations of the initial geometry, which are used by 

Schmalholz and Podladchikov (2001) and Schmalholz and Schmid (2012) may produce 

comparable results. However, it can be expected that the fundamental deformation of 

multilayer folds remains the same. Moreover, the focus in this study is on the stress and 

strain distribution during the deformation of multilayer folds and the influence from 

various parameters such as number of layers and thickness ratios; therefore, the same 

periodic perturbation is used to generate comparable symmetric fold shapes (i.e. 

excluding the impact of random initial perturbation on the stress and strain distribution). 
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3. RESULTS 

In the analysis of the modeling results, the spatial evolution of the minimum 

effective in-plane principal stress, termed σ′3, is studied, since it also enables to evaluate 

the potential of tensile fracture initiation in a 2D analysis (Eckert et al., 2014). To study 

the strain distribution of the multilayer system, the distribution of the maximum principal 

strain (ε1), which represents the long axis of the strain ellipse is investigated here. The 

following analyses investigate the distribution of σ′3 and ε1 of the developed multilayer 

folds at end of the applied shortening (i.e. 50% shortening). In order to validate that the 

σ′3 distribution at 50% shortening represents the possibly lowest overall magnitudes (i.e. 

tensile stress), the stress evolution of three elements located in the regions featuring 

tensile stress is plotted in Figure A1 in the Appendix. For all contour plots of effective 

minimum principal stress (σ′3) in the results analysis the color scale is adjusted such that 

white colored contours always represent tensile stress. It needs to be stated here that the 

following strain analysis does not feature the spatial distribution of the finite strain 

ellipses (as shown in previous studies: Frehner and Schmalholz, 2006). Due to the large 

number of layers (and the high resolution finite element mesh) a detailed and clear 

visualization of strain ellipses is not advisable. 

Fold systems form in a variety of geologic environments and a series of 

parametric studies is performed with the aim of providing a better understanding of 

which parameters have the greatest influence on the strain and stress distribution within 

the multilayer system. The parameters considered are elastic modulus contrast, viscosity 

contrast, overburden thickness, and layer thickness ratio. In each series of analyses, only 

one parameter is varied. The remaining model parameters of specific gravity, Poison’s 

ratio, Permeability, and strain rate (Table 1) remain constant. Considering the similar 

distribution of ε1 for multilayers featuring the same fold shape, the analysis of ε1 is only 

performed when significant change of fold shape is observed.. 

3.1. BASE MODEL 

As shown for the base case model (Table 1) with RE=10 (RE represents the elastic 

modulus contract between the competent layers and less competent layers), the highest 

amplitude folds are in the core of the multilayer, and the amplitudes die out towards the 
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less competent matrix (Figure 2), which is consistent with Kenneth and Johnson (1993). 

However, different fold shapes are observed here: a) Chevron folds occur in the core of 

the multilayer system, featuring long straight limbs and narrow hinges and noticeable 

hinge collapse; b) Concentric folds are observed at the margin of the multilayer stack 

where one hinge becomes broader and flatter and the adjacent hinge becomes narrower 

and pinched. Similar fold shapes are also observed by Schmalholz et al. (2001).  

The minimum effective principal stress, σ’3, in the multilayer system shows 

tensile stress develops at the top of the hinge zones of the antiforms and the bottom of the 

hinge zones of the synforms for the 3rd and 4th competent layers at the top half and the 

7th and 8th competent layers at the bottom half of the 10-competent-layer system (region 

1 in Figure 2a). Moreover, tensile stress is also observed at the regions between the limb 

and the hinge in these layers (region 2 in Figure 2a). The overall magnitude of σ’3 in the 

less competent layer is larger than the magnitude in the competent layer and the highest 

magnitude is found at at the limbs of the less competent layers at the bottom margin of 

the fold stack (region 2 in Figure 2a). For the ε1 distribution, low magnitude (<0.003) 

compressive strain is observed for all competent layers and no extensional strain is 

observed. The ε1 distribution within the less competent layer shows large magnitudes of 

compressive strain in the limbs of the less competent layers at the margin (region 1 in 

Figure 2b). Moreover, high compressive strain is also observed below/above the convex-

upward and convex-downward hinge of the outermost competent layers (region 2 in 

Figure 2a). 

To further investigate the distribution of strain, the orientations of ε1 at the end of 

buckling for competent (white) and less competent layers (green) are shown in Figure 3 

for the layers in the core and at the bottom of the multilayer stack. For the layers in the 

core of the multilayer stack (Figure 3a), ε1 in the less competent layer is sub-parallel to 

the shortening direction in the limb and hinge, except for the limb region which 

experiences the largest amount of limb thinning (red box in Figure 3a). This can be 

explained by the deformation of the less competent material in this region, which “flows” 

(due to the large amount of simple shear) from the limb into the hinge zone, which 

experiences significant thickening, as also observed by Ramsay and Huber (1987). ε1 in 
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the competent layer is perpendicular and parallel to the shortening direction at the top and 

bottom of the convex-upward hinge, respectively, which is also observed by Frehner and 

Schmalholz (2006). It is also observed that ε1 in the limb of the competent layer is 

parallel to the layering at the central layers (region 1 in Figure 3a) and perpendicular to 

the layering for the other layers. For the layers at the bottom of the multilayer stack 

(Figure 3b), a similar distribution of ε1 is observed, except for the lowest competent 

layer, which features layer-parallel ε1 throughout the broad and flat hinge zone (region 1 

in Figure 3b). 

 

 

Figure 2. a) Effective minimum principal stress distribution of the multilayer folds for the 

base case model. The letters C and L in the insets indicate the competent and less 

competent thin layers, respectively. b) Maximum principal strain distribution of the 

multilayer folds. 
 

3.2. INFLUENCE OF ELASTIC MODULUS CONTRAST 

In order to evaluate the influence of the elastic modulus contrast (i.e. the ratio of 

Young’s Modulus), RE, between the competent layer and the less competent layers, 

magnitudes of RE=1, 50 and 100 are applied to the multilayer system. It should be noted 

that the less competent layers have the same material properties as the less competent 

matrix. Figure 4 shows the deformed multilayer folds after 50% bulk shortening for RE=  
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Figure 3. Orientation of the maximum principal strain in the competent and less 

competent layers in the core (a) and margin (b) of the multilayer stack after 50% 

shortening. 
 

 

1, RE= 50 and RE= 100. For all models, chevron folds are observed in the core with hinge 

collapse and concentric folds are observed at the margin of the multilayer stack. For the 

models with RE= 1 and RE= 50 (Figure 3a and 3c), the distribution of the σ’3 is similar to 

the base model (in which RE=10) and tensile stress is observed at the convex-upward 

hinges and the regions above the limbs for the layers between the core and margin of the 

multilayer system. For high elastic modulus contrast (i.e. RE= 100, Figure 3e), tensile 

stress is developed in more competent layers (i.e. for 6 layers, compared to 4 layers for 

the base case). With respect to the ε1 distributions, it is observed that for low RE (i.e. RE= 

1, Figure 3b), the overall magnitude is much lower than for the base model, and the 

maximum magnitude of ε1 is observed at the concave-upward hinge in the competent 

layer. For higher RE models (i.e. RE= 50 and 100, Figure 3d and 3f), the distribution of ε1 

is similar to the base model and a larger magnitude of ε1 is observed in the limb of the 

less competent layer and below the convex-upward hinge of the lowest competent layer. 
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Figure 4. Effective minimum principal stress distribution of the multilayer folds for 

RE=1(a), RE=50(c) and RE=100(e). The right column shows the maximum principal 

strain distribution of the multilayer folds for RE=1(b), RE=50(d) and RE=100(f). 
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3.3. INFLUENCE OF VISCOSITY CONTRAST 

In order to evaluate the influence of the viscosity contrast, Rμ, magnitudes of 

Rμ=10, 50 and 200 are applied to the multilayer system. It needs to be noted that models 

with a higher Rμ feature a longer dominant wavelength. It is observed that a low viscosity 

contrast results in sinusoidal fold shapes of all layers with a low amplitude and 

compressive stress is observed both in the competent and less competent layers, with 

higher magnitudes of  σ′3 at the hinge of the competent layers and low magnitudes in the 

limb of the competent layers (Figure 5a). For all models with a larger Rμ, chevron folds 

are observed in the core and concentric folds are observed at the margin of the multilayer 

stack (Figure 5c and 5e). The distributions of σ′3 for these high Rμ models are similar to 

the base model (in which Rμ = 100). With respect to the resulting ε1 distributions, it is 

observed that for low Rμ (i.e. Rμ = 10, Figure 5b), the maximum magnitude of ε1is 

observed in the less competent layers and influenced by the depth. For higher Rμ models 

(i.e. Rμ = 50 and 200, Figure 5d and 5f), the distribution of ε1 is similar to the base model. 

Considering that the model with low Rμ (i.e. Rμ = 10) exhibits a different 

multilayer fold shape, the orientations of ε1 are investigated here. The ε1 in the less 

competent layer is overall parallel to the shortening direction at the hinge and sub-

perpendicular to the layering in the limb region. For the competent layer, ε1 is parallel to 

the shortening direction in the limb region and at the bottom of the convex-upward hinge. 

At the top of the convex-upward hinge, ε1 becomes sub-vertical. The distribution of ε1 for 

the multilayer system is very similar to the 3 layer model by Frehner and Schmalholz 

(2006). It is important to notice that no rotation of the maximum principles train is 

observed at the limb of the competent layers. The possible explanation is that due to the 

low amplitude or low number of competent layer, all the competent layers exhibit same 

fold shape. The detailed distribution of the maximum principle strain is not included here 

but can be obtained by reaching the author.  
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Figure 5. Effective minimum principal stress distribution of the multilayer folds for 

Rμ=10(a), Rμ=50(c) and Rμ =200(e). The right column shows the maximum principal 

strain distribution of the multilayer folds for Rμ=10(b), Rμ=50(d) and Rμ =200(f). 
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3.4. INFLUENCE OF INITIAL OVERBURDEN THICKNESS 

In order to evaluate the influence of the thickness of the overburden, three more 

magnitudes of the initial overburden (200m, 1000m and 2000m) are applied to the 

multilayer system. Both the overburden depth and the rock density do not remain 

constant during the development of the fold. As a result of the horizontal compression 

significant growth of the model domain occurs along the vertical direction and the 

overburden stress increases. It should be noted that the overburden thickness of the 

multilayer after 50% shortening is less than two times of the initial overburden due to the 

compressibility of the model material utilized here. As expected, larger overburden 

thicknesses results in larger vertical stresses and thus a higher degree of compression 

both at the crest and the limb of the fold as described by Eckert et al. (2014). 

Figure 6 shows the deformed multilayer folds after 50% bulk shortening for initial 

overburden thicknesses of 200m, 1000m and 2000m. For all models, chevron folds are 

observed in the core with hinge collapse, and concentric folds are observed at the margin 

of the multilayer stack. Regarding to the distribution of σ′3, all models exhibit a pattern 

similar to the base model. For low overburden, it is observed that a much larger area 

featuring tensile stress is observed at the convex-upward hinges and the region between 

the hinge and the limb of the competent layers (Figure 6a). For models with a larger 

initial overburden, σ′3 remains compressive and the overall magnitude increases with 

burial depth (Figure 6c and 6e). Moreover, the distributions of ε1 of these three models 

are similar to the base model and the overall magnitude of ε1 in the less competent layers 

increases with initial overburden. It is observed that the maximum magnitude of ε1 is 

observed at the concave-upward hinge in the competent layer. For models with large 

overburden (i.e. initial overburden is 2000 m, Figure 6f), the distribution of ε1 is similar 

to the base model and a larger magnitude of ε1 is observed in the less competent layer. 

Even there is no significant difference observed between the model with low and high 

overburden, the model with large overburden features a much larger magnitude of 

principle strain than the one with low overburden (maximum magnitude is 0.0131 

comparing to 0.00275).  
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Figure 6. Effective minimum principal stress distribution of the multilayer folds for initial 

overburden of 200m (a), 1000 m (c) and 2000 m (e). The right column shows the 

maximum principal strain distribution of the multilayer folds for of 200m (b),1000 m (d) 

and 2000 m (f). 
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3.5. INFLUENCE OF THE NUMBER OF LAYERS  

In order to evaluate the influence of the number of the competent layers, N, 

magnitudes of N=5 and 20 are applied to the multilayer system. Considering that smaller 

magnitudes of N (i.e. N=2 and 3) have been investigated by Liu et al. (2015) for 

viscoelastic multilayer buckle folds, N=5 is chosen as the minimum magnitude in this 

study.  

Figure 8 shows that for all models, chevron folds are observed in the core, and 

concentric folds are observed at the margin of the multilayer stack. However, hinge 

collapse is not observed for the multilayer with N=5. The distribution of the σ′3 for N=5 

is similar to the base model (in which N= 10) and tensile stress is observed at the top of 

the the convex upward hinge and the regions between the limbs and the hinge for the 

central layer in the multilayer system (Figure 8a). High magnitudes of σ′3 are observed in 

the limb of the less competent layers. For the model with N=20, tensile stress is observed 

in more competent layers close to the margin of the multilayer stack, and high 

magnitudes of σ′3 are observed below the convex-upward hinge of the bottom competent 

layer and in the limb of the less competent layers at the bottom margin of the multilayer 

stack. With respect to the resulting ε1 magnitudes, it is observed that for low N (i.e. N= 5, 

Figure 8b), the maximum magnitude of ε1is observed in the limbs of the central less 

competent layers. For higher N (i.e. N= 20, Figure 8d), the distribution of ε1 is similar to 

the base model and less variations of ε1 are observed for the layers at the core of the 

multilayer stack (region 1in Figure 8d). 

While the overall distribution of strain magnitude for N=20 is similar to the base 

case model, a detailed analysis of the strain orientations is presented in the discussion as 

significant differences comparing to various other model setups are observed.  

3.6.INFLUENCE OF THICKNESS RATIO H/S  

In order to evaluate the influence of the thickness ratio, H/S (where S represents 

the thickness of the less competent layer), between the competent layer and less 

competent layer, five more magnitudes (4, 2, 0.5, 0.33, 0.2) are applied to the multilayer 

system. It should be pointed out that these magnitudes along with the base model (i.e. 

H/S=1) represent true multilayer buckle folding after Schmid and Podladchikov (2006).  
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Figure 7. Effective minimum principal stress distribution of the multilayer folds with 5 

competent layers (a) and 20 competent layers (c). The right column shows the maximum 

principal strain distribution of the multilayer folds with 5 competent layers (b) and 20 

competent layers (d). 
 

 

Figure 9 shows the distribution of σ′3 and ε1 after 50% bulk shortening for models 

featuring thin less competent layers (i.e. H/S=4 and 2). While concentric fold is observed 

at the margin of the multilayer stack, no obvious chevron shape is observed in the core 

(Figure 9). For the model with thinner less competent layer (i.e. H/S=4, Figure 9a), a 

larger region of tensile ε1 is observed at the hinge of both the competent and less 

competent layers. The distributions of the σ′3 for H/S=2 is similar to the base model 
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(Figure 9c). With respect to the resulting ε1 distributions, it is observed that for H/S=4 

(Figure 9b), extensional ε1 is observed at the hinge of the less competent layer where the 

space between competent layers increases due to the development of chevron fold fold. 

For the model with H/S=2 (Figure 9d), the distribution of ε1 is similar to the base model 

and a larger magnitude of ε1 is observed below the hinge of the bottom competent layer 

and at the limb of the less competent layer locating at the bottom margin of the multilayer 

stack. 

Figure 10 shows the distribution of σ′3 and ε1 after 50% bulk shortening for 

models featuring thin thick competent layers (i.e. H/S=0.5, 0.33 and 0.2). For the model 

featuring H/S=0.5, chevron fold is observed in the core and concentric fold is observed at 

the margin of the multilayer stack (Figure 10a and 10d). Low magnitude of compressive 

σ′3 is observed at the hinge and the region between hinge and limb on some competent 

layers and no tensile stress is observed (Figure 10a). The resulting ε1 distribution shows 

high compressive strain at the limb of the bottom less competent layers and the regions 

below the convex-upward hinge of the bottom layer (Figure 10d). The distributions of σ′3 

and ε1 are similar to previous model and no tensile stress is observed for the model with 

H/S=0.33 (Figure 10b and 10e). The competent layers exhibits same sinusoid fold shape 

for the model with H/S=0.2 and the σ′3 distribution in the competent layers showing low 

and high magnitude of compressive stress at top and bottom of the convex-upward hinge, 

respectively (Figure 10c) . Regarding to the stress in the less competent layer, the σ′3 

distribution exhibits a strong relation with depth and the magnitude of σ′3 increases with 

depth. The ε1 for this model shows low compressive strain in the competent layer and 

depth related distribution in the less competent layers where ε1 increases with depth 

(Figure 10f). 

Since the model with low H/S (i.e. H/S=0.2) exhibits a different multilayer fold 

shape, the orientations of ε1 at the end of buckle shortening for competent (white) and 

less competent layers (green) are shown in Figure 11. The ε1 in the less competent layer 

is overall horizontal and parallel to the shortening direction. For the competent layer, ε1 is 

parallel to the shortening direction in the limb region and at the bottom of the convex-

upward hinge. At the top of the convex-upward hinge, ε1 becomes sub-vertical. The 
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distribution of ε1 for the multilayer system with H/S=0.2 is very similar to the single layer 

buckle folds (Eckert et al.,2014). 

 

 

Figure 8. Effective minimum principal stress distribution of the multilayer folds with 

H/S=4 (a) and H/S=2 (c). The right column shows the maximum principal strain 

distribution of the multilayer folds with H/S=4 (b) and H/S=2 (d). 
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Figure 9. Effective minimum principal stress distribution of the multilayer folds with 

H/S=0.5 (a), H/S=0.33 (b) and H/S=0.2 (c). The bottom row shows the maximum 

principal strain distribution of the multilayer folds with H/S=0.5 (d), H/S=0.33 (e) and 

H/S=0.2 (f). 
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Figure 10. Orientation of the maximum principal strain in the competent and the less 

competent layers in the multilayer stack after 50% shortening with H/S=0.2. 
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4. DISCUSSION 

4.1. SUMMARY 

The 2-D plane strain modeling approach presented in this study shows that the 

deformation of visco-elastic multilayer folds can be successfully simulated and helps to 

provide a better understanding of multilayer fold development and the associated stress 

and strain distribution in both the competent and less competent material. A large variety 

of studies investigate the deformation of multilayer folding for various rheologies, such 

as elastic materials (e.g. Johnson, 1977) and viscous materials (e.g. Ramsay and Huber, 

1987; Mazzoli and Caremolla, 1992; Frehner and Schmalholz, 2006; Schmid and 

Podladchikov, 2006; Lechmann et al., 2010) and visco-elastic materials (Schmalholz et 

al., 2001). An important drawback of these studies, as stated by Smart et al. (2009), is the 

neglect of gravity and pore pressure which prevents the analysis of in-situ stress/strain 

magnitudes and their distribution. As stated by Eckert et al. (2014), the in-situ state of 

stress is compressive and tensile buckling stresses need to be very large to overcome the 

compressional state of stress due to the weight of the overburden. Moreover, unlike the 

growth rate of multilayer fold systems, which has been thoroughly studied along with the 

influence of number of layers and the thickness ratio between the competent and less 

competent layers (Schmid and Podladchikov, 2006), the distribution of stress and strain 

in the multilayer system and their relation to various system parameters remains unclear. 

This study utilizes a modeling approach, which simulates the buckling process under 

realistic in-situ stress and strain conditions and the sensitivity analysis of the tested model 

parameters (elastic modulus contrast, viscosity contrast, overburden, number of layers 

and thickness ratio) shows that the both the fold shape and the distributions of stress and 

strain in both the competent and less competent material are depended on the model 

parameters.  

It is commonly observed that folds in tightly stacked multilayers exhibit a large 

variety of shapes including chevrons, angular folds with straight limbs and sharp hinges 

(Schmid and Podladchikov, 2006). The results presented confirm the basic observations 

regarding the development of multilayer folds with individual layers featuring a more 

concentric fold shape at the margin of the sequence and a more chevron fold shape in the 
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center of the sequence, as predicted by Schmalholz et al. (2001). However, this study 

represents for a more complex model setup (i.e. simulating in-situ effective stress 

conditions) which results in some significant differences. Schmalholz et al. (2001) 

observe that only the marginal layers show a concentric shape, whereas all other layers 

show a strong chevron shape for large amplitudes. However, the base model of this study 

(featuring the same number of competent layers, i.e. N=10) shows an obvious concentric 

fold shape at the margin of the sequence and a transition to the chevron fold shape in the 

center of the sequence, which is more similar to the multilayer system featuring a larger 

initial wavelength in Schmalholz et al.’s (2001) study. The different fold geometries for 

visco-elastic multilayers, when the dominant wavelength is applied, can be explained by 

the different type of folding. In Schmalholz et al.’s (2001) study elastic folding is the 

dominant deformation mechanism, as R=2. Here, the magnitude of R is smaller than 1 

and the dominant deformation mechanism is viscous folding. Moreover, gravity and pore 

pressure are not included in Schmalholz et al. (2001) study. Furthermore, the results 

presented show that low viscosity contrasts or thick less competent layer result in fold 

shapes where all competent layers exhibit the same fold shape with large inter-limb 

angles and chevron shapes are not observed. The influence of thickness ratio observed 

here is in agreement with Ramsay and Huber (1987), who show that the decrease of the 

thickness of the less competent layer results in chevron folds. Additionally, this study 

also shows that low viscosity and the resulting low amplification of the competent layers 

inhibit the development of chevron folds. 

The results of the effective minimum principal stress presented show that tensile 

stress develops at certain regions, including the top of the convex-upward hinge and the 

region between the convex-upward hinge and the limb (Figure 3). The tensile stress at the 

top of the convex-upward hinge which results from the buckling of the competent layer is 

also observed for single-layer folding (Eckert et al., 2014). The orientation of the tensile 

stress observed at the region between the convex-upward hinge and the limb is observed 

to be layer-parallel (Figure 3), indicating that the tensile stress results from the increased 

thickness of the hinge of the less competent layer below. Similar observations can be 

found for a multilayer system with fewer layers (i.e. 3-competent-layer system, Liu et 

al.,2015) and a multilayer system in elastic mode (i.e. R=2, Schmalholz et al., 2001). 
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Compared to the single layer folding in which the development of tensile stress requires 

either low overburden pressures or high viscosities (Eckert et al., 2014), tensile stress in 

the multilayer system can be developed for more conditions, except for low viscosity 

ratio or high overburden or thick less competent layers. For the latter condition, the 

folding deformation of the multilayer system is more close to single-layer folding even 

though the multilayer remains in “true multilayer” mode (Schmid and Podladchikov, 

2006). The findings presented here indicate that the ratio of the thickness of the 

competent layers to the less competent layer, H/S, has a significant influence on the 

distribution of stress and strain even when the multilayer system remains in a true 

multilayer system. It is observed that when H/S decreases from 1 to 0.25, there is a 

transition from “true multilayer” behavior to “real single layer” behavior, where the 

layers fold independently and the strain distribution in the less competent layer shows a 

significant dependence on depth (Fig. 10). The influence of H/S on the stress and strain 

distribution investigated here confirm Ramberg’s (1960,1961) findings , who states that 

the key to determining whether the system behaves as a true multilayer or as independent 

single layers is the spacing between competent layers. Moreover, the results presented 

also show that low viscosity and the resulting low amplification of the competent layers 

will contribute to the “real single layer” behavior of a multilayer system (Figure 5). 

Frehner and Schmalholz (2006) show the detailed distribution of principal strains 

in a multilayer system featuring 2 competent layers and one less competent layer and the 

maximum principal strain is observed to be vertical at the hinge region and parallel to the 

layering in the limb of the less competent layer. However, the modelling results presented 

show that for multilayer systems with a large number (i.e. N=10) of layers the strain 

distribution is more complex and the strain distribution varies not only for different 

locations within one layer but also for the relative location of the layers within the 

multilayer system. Thus, the strain distribution for a simple multilayer setup with two 

competent layers (e.g. Frehner and Schmalholz, 2006) cannot be applied to a multilayer 

system with a large number of layers.  

With respect to the orientation of the maximum principal strain, the overall ε1 

orientation in the less competent layer is parallel to the shortening direction except for the 

region featuring hinge collapse, where ε1 rotates to parallel to the layering direction.  For 
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the competent layers, the distribution of ε1 at the hinge region is close to single-layer 

folds except for the margin layers. For the limb of the competent layers, the distribution 

of ε1 shows a large variation for models with various numbers of layers. Figure 11 shows 

the orientation of ε1 for (some of) the competent layers. It is observed that when the 

number of layer is low (i.e. N<10), ε1 is sub-parallel to the shortening direction for all the 

three competent layers in the core of the multilayer system. For multilayers with N=10, 

layer-parallel ε1 is observed at the 5
th

 and 6
th

 competent layer and for multilayers with 

N=20, layer-parallel ε1 is observed at the 7
th

, 8
th

, 13
th

, 14
th

 (13
th

 and 14
th 

are not shown in 

Figure 11) competent layer. It is also observed that ε1 rotates back to the layer-

perpendicular direction for the core layers in the multilayer with N=20. For the broader 

and flatter hinge of the margin competent layer, ε1 is parallel to layering throughout the 

entire hinge (Figure 3). Moreover, when the shape of the multilayer system deforms more 

closely compared to single-layer folding (e.g. low viscosity contrast or thick less 

competent layers), the strain distributions in the competent layers is similar to single-

layer folding (i.e. Figure 6 and 11).   

 

 

Figure 11. Orientation of the maximum principal strain in the competent layers for N=5, 

10 and 20. 
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Clearly, there are other parameters of the multilayer folds that may influence the 

buckling of multilayer such as initial geometry (Schmalholz and Schmid, 2012) and 

heterogeneous materials (Schmalholz et al., 2001). A detailed investigation on the 

influence of these parameters on the multilayer folding is beyond the scope of the paper 

but is vary tractable using the numerical simulation presented. 

4.2. SHAPE OF FOLDS  

In the simulations presented, the multilayer folds exhibit a large variability in fold 

shapes, including chevron shape, concentric shape and regular sinusoidal shape. For the 

chevron shape observed in the models presented, it is interesting to notice that neither 

anisotropic material properties (Bayly, 1970; Cobbold et al., 1971; Price and Cosgrove, 

1990) nor flexural slip (e.g. Ramsay, 1974, Dubey and Cobbold, 1977, Behzadi and 

Dubey, 1980; Hudleston et al., 1996) or intersection of kink bands (Paterson and Weiss, 

1966; Cobbold et al., 1971) has contributed to the development of these chevron folds. 

Hinge collapse is also observed along with the chevron folds (e.g. Figure 2). In order to 

compare the shape of the central layer in the multilayer folds at different stages of 

shortening with various magnitudes of system parameters, the evolution of the angle of 

the limb dip with shortening is plotted in Figure 12. The relationship between the 

shortening and limb dip for three ideal fold shapes, circular, sinusoidal and chevron, are 

also plotted here (Treagus, 1997). Five models are included in Figure 12. For the base 

model (red), the shape of the central competent layer is between the sinusoidal and 

chevron shape at early stages (i.e. ≤30% shortening) and deforms into chevron folds after 

40% shortening. When high viscosity contrast is applied (i.e., Rμ=200, green), the fold 

shape for the central layer remains sinusoidal until 35% shortening and deforms into 

chevron folds at 50% shortening. For the model with a large number of competent layers 

(i.e. N=20, purple), chevron shape is observed at early stages of shortening (15%) and the 

sinusoidal shape is not observed. For thin less competent layers (i.e. H/S=4, brown), the 

fold shape remains sinusoidal and chevron shape is not observed. When the less 

competent layers become thick (i.e. H/S=0.25, blue), the shape of the fold deforms into 

sinusoidal shape. It can be concluded that the different parameters have influence on the 

shape of the multilayer folds with a various degree. As Hudleston and Treagus (2010) 
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point out, the various shapes in multilayer fold systems suggest that shape may 

potentially represent much more information on mechanical properties than has so far 

been achieved. However, the facts that folds of a given shape can be deformed by 

different processes and multiple multilayer systems may develop due to varying thickness 

and rheological properties make the relation between fold shape and system properties 

more complicated. A more detailed investigation on the influence of various parameters 

on fold shape is therefore considered beyond the scope of this paper. 

 

 

Figure 12. The evolution of limb dip with shortening for various models tested. The 

dashed lines represent the evolutions for circular arc, sinusoid and chevron shape, 

respectively (after Treagus, 1997). 
 

4.3. DISTRIBUTION OF POTENTIAL TENSILE FRACTURES 

As shown by Eckert et al (2014) and Liu et al. (2016) the distribution of tensile 

stresses in a fold system has important implications with respect to the initiation of tensile 

fractures. We compare the location of tensile stress magnitudes with their respective 

orientations to pinpoint the distribution of tensile fracture for the base model and the 

model with H/S=4 featuring the largest region of tensile stress. Figure 13 shows the 

spatial extent and orientation of tensile stress at the end of shortening, in addition with the 
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orientation of likely tensile fractures. For the base model (Figure 13a), tensile fractures 

(normal to bedding and parallel to fold axis) are likely to be initiated at the top of the 

hinge zones of the competent layer 3 and 4, which is similar to the findings of Eckert et 

al. (2014). It needs to be pointed out that even though low permeability is critical for 

tensile fractures to be initiated at the top of the hinge for single-layer folds (Eckert et al. 

2014), the permeability in the base model is much higher and hydrostatic pore pressure 

develops during shortening. Moreover, tensile fractures normal to the layering are also 

likely to be initiated at the region between the hinge and the limb (Figure 13a). Compared 

to a multilayer system with less competent layers where overpressure (due to low 

permeability) is required to initiate tensile fracture in the same region (Liu et al.,2015), 

the results presented here indicate that tensile fractures can develop without overpressure 

and low permeability.  

The distribution of tensile σ′3 magnitudes and tensile fractures for the model with 

thin less competent layers (i.e. H/S=4, Figure 13b) shows that more tensile fractures are 

initiated at the hinge regions, both in the competent and less competent layers with 

various orientations. It is important to notice that tensile stress is developed throughout 

both the competent and less competent layer at the hinge region, including the bottom of 

the hinge featuring compressive strain. Horizontal tensile fractures are observed at the 

hinge of both the competent and the less competent layers. Near the hinge zone tensile 

fractures become sub-horizontal in the competent layer. Tensile fractures which are 

normal to bedding and parallel to fold axis are only observed at the top of the hinge in 

competent layer 6. The tensile σ′3 orientations, which show an overall parallel trend with 

respect to the fold axis in the hinge zone indicate that the hinges in the core of the 

multilayer with thin less competent layers are under significant horizontal compression. 

This observation may explain commonly observed tensile fractures perpendicular to the 

fold axis (e.g. Price and Cosgrove, 1990; Jager et al., 2008). It should be pointed out that 

these bedding parallel tensile fractures, i.e. bedding-parallel fibrous veins, also termed as 

“Beef” (Cobbold, 2013) can also be attributed to fluid overpressure in combination with 

horizontal compression during single-layer buckling (Eckert et al., 2014; Liu et al., 

2016). Moreover, tensile fractures perpendicular to bedding are also observed at the 

region between the limb and the hinge in this model (Figure 13b). 
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Figure 13. a) Orientation of tensile failure (red lines) perpendicular to bedding for the 

base model after 50% shortening. The black lines represent the orientations of σ′3. The 

light gray contours show the spatial extent of tensile stress magnitudes. b) Orientation of 

tensile failure (red lines) perpendicular to bedding for the model with H/S=4 after 50% 

shortening. The black lines represent the orientations of σ′3. The light gray contours show 

the spatial extent of tensile stress magnitudes. 
 

4.4. MULTILAYER MODEL WITH VARIOUS LAYER THICKNESS 

Considering that natural multilayer fold stacks are more complex having various 

thicknesses of competent and less competent layers, a multilayer system characterized by 

a heterogeneous thickness of both competent layers and less competent layer is 

investigated here. The number of competent layers, N, is 30 (i.e. resulting in a 59 layer 

stack, see Figure 14) with random H/S distributions within the range of 0.1-10. The 

thickness of the competent layer ranges from1<H<5m, and from 1<S<20m for the less 

competent layer. It needs to be noted that the initial wavelength is depended on the 

thickness of the competent layer as single-layer and thus only one wavelength is 

amplified. The initial amplitude of these perturbations for all layers is set to be 0.01 of the 

layer thickness. The rest of the model setup and material properties are the same as for 

the base model (Figure 14). 
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Figure 14. Sketch (not to scale) of the 2D numerical model setup and boundary condition. 

A 59-layer multilayer is embedded in a matrix with lower viscosity and elastic strength. 

The thicknesses of the competent and less competent layers vary. a) In order to simulate 

realistic stress magnitudes in a numerical model gravitational pre-stressing is applied. 

This step utilizes a boundary condition setting where only gravity is acting and the model 

sides are constrained such that only in-plane displacements are allowed (rollers). b) After 

reaching gravitational equilibrium a constant tectonic strain εhor can be added to the 

model, which results in the initiation of buckling. 
 

 

After 20% shortening, the amplitude and limb dips of the thinner layers are larger 

than those of the thicker layers because the initial ratio of amplitude to thickness is larger 

in the in the thicker layers. This indicates that thin folding layers develop and grow more 

quickly than thick folding layers (Frehner and Schmalholz, 2006). In particular, the thin 

layers fold having more angular hinges. Moreover, the folding of the thin competent 

layers which are close to a thick competent layer shows a significant dependence on the 

adjacent thick layer and polyharmonic folds are generated. After 50% shortening, the 

overall fold shapes are considerably irregular (Figure 15b). The thin layers develop larger 

wavelength folds as a consequence of the influence of folding of the thicker layers. It is 

observed that the orientation of fold axial planes varies significantly and shapes of some 

folding layers are strongly asymmetric. These finds are in agreement with previous 
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studies on different scales of fold (e.g. Ramsay and Huber, 1987; Treagus and Fletcher, 

2009; Schmalholz and Schmid 2012). Moreover, unfolding is observed on the thin 

competent layer embedded with two competent thick layers compared to earlier stages 

(e.g. layer A in Figure 15) which is results from the compression of the adjacent thick 

competent layers. Similar findings are also observed in Frehner and Schmalholz’s (2006) 

study on the deformation of parasitic folding. 

 

 

Figure 15. Fold shape of the multilayer model with various thicknesses after 20% 

shortening (a) and 50% shortening (b).  
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Figure 16 shows the σ′3 distribution of the multilayer folds after 50% shortening. 

It is observed that the complex deformation of this multilayer system result in not only 

irregular fold shapes but also unsymmetrical stress distribution. Tensile stress (white 

color) is observed both in the thin and thick competent layers. As shown in the upper 

inset in Figure 16, tensile stress is observed at top of the convex-upward hinge and the 

region between the hinge and the limb of the thick competent layer. For the thin layer 

tensile stress is observed at multiple locations. Large magnitudes of compressive σ′3 is 

mainly observed in the bottom layers, both in the competent and less competent material. 

It needs to be pointed out that no general description can be provided due to the complex 

distribution. Figure 16 illustrates that the complex process of multilayer folding and the 

progressive change from initially symmetric to asymmetric, irregular shapes and 

associated stress distribution. This represents an interesting observation and further 

investigations on multilayer folds with heterogeneous distribution of competent and less 

competent layers are necessary, which are beyond the scope of this contribution. 
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Figure 16. Distribution of the effective minimum principal stress in the multilayer model 

with various thicknesses. 
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5. CONCLUSIONS 

This study represents the first numerical simulation of visco-elastic multilayer 

folding with large number of layers (i.e. 10 competent layer) investigating the effects of 

various model system parameters on the resulting stress and strain distribution under in-

situ state of stress with gravity and pore pressure. The 2D numerical models presented 

illustrate that considering the interplay between initial geometry, material properties and 

model parameters is necessary in order to better understand the resulting fold shapes and 

associated parameters such as stress and strain. 

The model results show that chevron folds are observed in the core of the 

multilayer system with noticeable hinge collapse, and concentric folds are observed at the 

margin of the multilayer stack, which is in agreement with Schmalholz et al.’s (2001) 

observation. Moreover, the deformation of the multilayer folds show a similar sinusoidal 

shape of all layers for certain conditions, such as for low viscosity contrast or thick less 

competent layers. This study demonstrates that the shapes of the multilayer folds with 

visco-elastic rheology and large number of layers depend on the buckling of the folding 

layers, which is influenced by various parameters such as initial geometry and material 

properties and model parameters. It is interesting to note that neither anisotropic material 

properties nor flexural slip has contributed to the development of these chevron folds at 

the core of the multilayer stack and associated hinge collapse. The models results indicate 

that layer number and layer thickness ration are the most critical factors for the 

development of chevron folds. 

The results presented show a large variability in stress and strain distribution due 

to the complex deformation of both competent and less competent layers during the 

multilayer buckling process. The numerical modeling results show that tensile stress 

develops at the top hinge of the antiform and bottom hinge of the synforms for the layers 

between the core and margin of the multilayer system (i.e. the 3
rd

 and 4
th

 layers at the top 

half and the 7
th

 and 8
th

 layers at the bottom half of the 10-competent-layer system, Figure 

2a). Moreover, tensile stress is also observed at the regions between the limb and the 

hinge in these layers. The strain distribution shows that little variety of strain is 

developed in the competent layer and large magnitude of compressive strain is observed 
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at the limb of the less competent layer close to the margin of the multilayer stack. The 

numerical simulations also provide a general understanding of the influence of various 

parameters such as initial geometry, material properties and model parameters on the 

resulting stress and strain distribution. The results presented here show: 

(1) The elastic modulus contrast, RE, between the competent layer and less competent 

layer determines the magnitude of tensile stress and compressional strain. A 

higher RE results in a larger area of tensile stress in the competent layers and the 

high compressive strain in the less competent layers. 

(2) For high viscosity contrast Rμ (between the competent layer and less competent 

layer), large amplitude of folds and lower maximum principal strain (in 

compression) is developed in the less competent layers. For low viscosity 

contrast, the competent layers develop similar sinusoidal shapes. 

(3) The initial overburden thickness determines the amount of compression in the 

model. Lower overburden pressure promotes the onset of tensile stress. Higher 

overburden pressures decreases the likelihood of tensile stresses at depth and 

results in larger magnitude of compressive strain.  

(4) For large number of layers (N>5), more layers at the core of the multilayer stack 

deform into chevron folds, and larger area of tensile stress in the competent layers 

and the high compressive strain in the less competent layers.  

(5) While the layer thickness ratio, H/S, is a crucial factor with respect to the 

generation of various fold shapes, for the porosity distribution, when H/S> 1, the 

competent layers develop sinusoidal shape and a larger ratio of H/S results in a 

larger area of tensile stress in the competent layers and less compressive strain in 

the less competent layers. For H/S <1, smaller ratio of H/S results in a sinusoidal 

shape of competent layers and low variety of fold shapes and no tensile stress is 

developed. The distribution of maximum principal strain in the less competent 

layer is mainly depends on the depth. 

In addition, through the applied heterogeneous layer thickness in the multilayer 

system, this study shows that the fold shape and associated stress distribution become 

more complicated in the multi-scale multilayer model. 
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ABSTRACT 

Parasitic folds represent a common structure of multi-scale multilayer folds and 

the resulting asymmetric S- or Z-shapes and symmetric M-shapes represent a complex 

strain distribution. How the strain distribution affects the resulting porosity remains 

unclear. In this study, a 2-D plane strain finite element modeling approach is used to 

simulate multi-scale, multilayer, viscoelastic buckle folds under in-situ stress and pore 

pressure conditions. A variety of material and model parameters (including the elastic 

modulus contrast, number of layers, viscosity contrast, strain rate and layer thickness 

ratio) are considered and their influence on the shape of parasitic folds and on the 

resulting porosity distribution is analyzed. This study demonstrates that the shapes of the 

parasitic folds depend on the buckling of both the large- and small-scale folds and are 

influenced by the various parameters. The numerical modeling results show a large 

variability in porosity changes due to the complex distribution of the volumetric strain 

during the mutli-scale, multi-layer buckling process. Three regions, including the hinge 

and limb of the less competent layer in the M-shaped folds and the limb of the less 

competent layer in the Z-shaped folds, feature significant porosity changes. In addition, 

the numerical simulations provide a general understanding of the influence of the various 

model parameters on the resulting porosity distribution. Through the applied volumetric 

stain-porosity-permeability coupling, influences on the resulting fluid flow regimes in 

multi-scale, multilayer buckling systems are documented. 

 

Key words: Parasitic folds; porosity distribution; fold shapes 
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1. INTRODUCTION 

One type of commonly observed multilayer buckle folding is polyharmonic 

folding, which is defined as small-scale folds with small wavelengths and amplitudes 

embedded in large-scale folds featuring large amplitude and wavelength (Ramsay and 

Huber, 1987; Price and Cosgrove, 1990; Twiss and Moores, 2007;  Fossen, 2016). The 

small-scale folds, termed parasitic folds or second-order folds, develop simultaneously 

with the larger-scale fold and normally show asymmetric S- or Z-shapes in the limbs of 

the larger-scale fold and symmetric M-shapes in the hinge zones of the large-scale fold 

(Ramsay and Huber, 1987).  

Numerous studies have been performed on multilayer buckle folding (e.g. 

theoretical: Biot, 1965, Johnson, 1969; Johnson and Fletcher, 1994; analogue: Ghosh, 

1968; Cobbold et al., 1971; Ramberg and Strömgard, 1971; numerical: Debremaecker 

and Becker, 1978; Casey and Huggenberger, 1985; Schmalholz et al., 2001) and on the 

development of parasitic folds (e.g. theoretical: Ramberg, 1963, 1964; Hunt et al., 2001; 

Treagus and Fletcher, 2009; analogue: Ramberg, 1963, 1964; Pfaff and Johnson, 1989; 

and numerical: Frehner and Schmalholz, 2006; Frehner and Schmid, 2016). Ramberg 

(1963, 1964) showed that parasitic folds may develop in multilayer sequences when the 

individual layers have different thicknesses and mechanical strengths based on the 

concept of the dominant wavelength (Biot, 1961). Treagus and Fletcher (2009) suggest 

that small folds in one layer are likely to develop parasitic folds when the small folds are 

the most competent layers.  

The growth of parasitic folds can be divided into two stages (Ramberg, 1963; 

Frehner and Schmalholz, 2006). In the first stage of buckling, during horizontal 

shortening, the small-scale layers develop into symmetric folds with a short wavelength 

and a low finite amplitudes resulting in a faster amplification rate than the large-scale 

layers. The second stage represents the shearing of the small-scale folds and the 

associated development of asymmetric geometries (i.e. S- and Z-shaped) in the limb of 

the large-scale fold, which is caused by the buckling of the large-scale folds. In the hinge 

area of the large-scale folds, shearing is less significant and the parasitic folds remain 

symmetric (M-shaped folds; Ramsay and Huber, 1987; Frehner and Schmalholz, 2006). 
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A review of numerical modeling studies (e.g. Frehner and Schmalholz, 2006; Frehner and 

Schmid, 2016) investigating the development of parasitic folds shows that a great amount 

of knowledge has been gained on the evolution of parasitic folds and their strain history. 

Frehner and Schmalholz (2006) conclude that the number of small-scale folds are 

important to the development of asymmetric parasitic folds and a large number of small-

scale folds requires less shortening to develop parasitic folds.  

Although Ramberg’s theory on the development of parasitic folds has been 

verified for elastic materials (e.g. Ramberg, 1963) and viscous materials (e.g. Frehner and 

Schmalholz, 2006), the viscoelastic behavior of deformed geological materials (e.g. 

Ramsay and Huber, 1987; Turcotte and Schubert, 2002;  Fowler, 2005) has not been 

considered for parasitic folds. Schmalholz and Podladchikov (1999, 2001) have shown 

the importance of viscoelastic single-layer buckling with respect to the dominant 

wavelength selection, and viscoelastic rheology has been adopted in recent single-layer 

buckling studies by Eckert et al. (2014, 2015) and Liu et al. (2016). These studies have 

shown that viscoelastic rheology enables the investigation of both viscous and elastic 

contributions to the evolution of stress and strain. Considering that the volumetric strain 

represents porosity changes when the volume change in the solid matrix is neglected 

(Jaeger et al., 2009), viscoelastic rheology is an appropriate material definition for the 

study of porosity evolution in high strain zones such as buckle folds. The understanding 

of the porosity and permeability evolution associated to deformation is of significant 

importance, since the accumulation and redistribution of fluids and minerals in folds is 

controlled by the spatial distribution of permeability and porosity (e.g. Du Rouchet 1981; 

Walder and Nur 1984; Ord and Oliver 1997; Ju et al. 2009; Evans and Fischer 2012; 

Eckert et al., 2016).  

In porous, granular rocks, compaction related porosity-loss is observed which in 

turn significantly reduces the permeability of deformed rocks by one to four orders of 

magnitude relative to the host rock matrix (Pittman, 1981). The change of porosity due to 

vertical compaction and lateral loading depends strongly on the lithology (Dewhurst et 

al., 1998), grain-scale deformation such as grain-contact dissolution (Rutter and 

Elliott,1976; Tada, et al. 1987; Hickman and Evans, 1995; Dewers and Hajash, 1995) and 

associated deformational structures (e.g. deformation bands: Fossen, et al 2007; folds: 
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Souque et al. 2010; faults: Faulkner and Rutter, 2000, 2003) A great amount of 

knowledge has been gained on the evolution of porosity and permeability during elastic 

deformation processes such as brittle faulting and dilatant cataclastic flow (e.g. Zhu and 

Wong, 1997; Heiland and Raab, 2001; Holcomb and Olsson, 2003; Main et al., 2000; 

Ngwenya et al., 2003; Ojala et al., 2004; Vajdova et al., 2004), and fault gouges 

(Faulkner and Rutter, 2000, 2003; Uehara and Shimamoto, 2004). Even though viscous 

deformation has been identified in contributing to porosity changes during compaction in 

sedimentary rocks (Bathurst, 1971; Tada and Siever, 1989; Yang 2010), to the authors’ 

knowledge, no study has addressed the influence of viscous and/or viscoelastic 

deformation on the resulting porosity evolution during multilayer folding (including 

parasitic folds).  

The main objective of this study is to simulate parasitic folds within a multilayer 

folding system for a viscoelastic rheology. Of particular interest is to quantify the 

influence of material and model parameters, and fold geometry on the small-scale spatial 

evolution of porosity and associated permeability during deformation. 2D plane-strain 

finite element analysis (FEA) is used to simulate the development of parasitic folds under 

in-situ stress and pore pressure conditions. While this approach has been successfully 

applied to large-scale single-layer buckle folds to study the deformation related fluid flow 

patterns (Eckert et al., 2016), this study additionally accounts for porosity related 

permeability changes in a multi-scale multi-layer fold system. 
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2. MODELING APPROACH 

2.1. GOVERNING EQUATIONS 

In this study, the parasitic folds are simulated in a multilayer system with visco-

elastic rheology (e.g.Ramsay and Huber 1987; Turcotte and Schubert, 2002; Fowler 

2005) and a linear Maxwell model is utilized following the studies of Mancktelow 

(1999), Zhang et al. (2000), Schmalholz et al. (2001), Eckert et al. (2014, 2015) and Liu 

et al. (2016). The Maxwell model, which is utilized in numerical simulation of buckling,  

features instantaneous elastic deformation under fast strain rates and time-dependent 

viscous behavior under slower strain rates which is especially suitable to simulate 

buckling (Schmalholz et al., 2001). For the multilayer system where parasitic folds 

develop, it is assumed that folds extend infinitely along the fold axis since many natural 

folds surfaces can be approximated by the cylindrical fold model (Ramsay and Huber, 

1987). Therefore, a 2-dimensional plane strain approach is followed (Eckert et al., 2014, 

2015; Liu et al.,2015). The finite element analysis (via the commercial software package 

ABAQUS
TM

) is utilized in this study to solve the equations of equilibrium, conservation 

of mass and constitutive equations. The detailed derivation of the governing equation 

system is presented by Eckert et al. (2014; i.e. supporting information) and not repeated 

here. 

When utilizing an isotropic viscoelastic rheology, the porosity is related to the 

volumetric strain which is the sum of the elastic and viscous components of strain and the 

porosity is given by  Chin et al. (2000) and Cappa and Rutqvist (2011): 

 
01 (1 ) v e

     (1) 

where ϕ is the porosity, ϕ0 is the initial porosity, εv is volumetric strain and α is the Biot 

coefficient which equals to 1 under the assumption of incompressible fluid and rock 

grains.   

2.2. MODEL SETUP AND MATERIAL PROPERTIES 

Simulation of parasitic folds requires a multi-scale multilayer fold system. The 

model geometry comprises a sequence of three larger scale,  layers of 0.1m thickness (2 

competent, 1 less competent) embedded in a less competent matrix of 0.5m thickness 

(Figure 2). A sequence of 19 smaller scale, thin layers (each has a thickness of 2mm) of 
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alternating competence (10 competent, 9 less competent) are embedded in the thick less 

competent layer. The variation of thickness results in the wavelength of the parasitic folds 

being much smaller than the wavelength of the large-scale folds (Frehner and 

Schmalholz, 2006). The viscosity of the large-scale layers (μl) and small-scale competent 

layers (μs) is the same, which is 100 times the viscosity of the less competent 

layers/matrix (μm). The multi-scale fold system models is setup such that only one 

wavelength is amplified for each fold. The initial geometry of both the large-scale and 

small-scale folding layer is characterized by small periodic perturbations of the 

appropriate dominant wavelength (Biot, 1961; Schmid and Podladchikov, 2006) along 

the shortening direction (x-axis).  The limb dip of the initial perturbation is 2° for the thin 

layers (following Zhang et al., 1996) and 1° for the thick layers which are both much 

smaller than the 5° limb dip limit for infinitesimal perturbations (Chapple,1968). The 

different initial perturbations of the multi-scale fold system result in different timing of 

fold amplification, i.e. the folding of thin layers develops before that of the thick layers, 

which corresponds to the two stages of the growth of parasitic folds (Ramberg, 1963). 

The appropriate dominant wavelengths are selected by the same method presented by 

Eckert et al. (2014) where the parameter R (after Schmalholz and Podladchikov, 1999; 

Schmalholz et al.,2001) is applied to determine if the competent layer is folded viscously 

(R<1) or elastically (R>1). R is the ratio between the multilayer viscous dominant 

wavelength, dv, and the multilayer elastic dominant wavelength, de:  

 
0 0

3 3

6 6

dv l l s s

de m m

N P N P
R or

G G

  

  
   (2) 

where Nl is the number of large-scale folding layers, Ns is the number of small-scale 

folding layers, G is the shear modulus and P0 is the initial layer parallel stress. For the 

applied viscosity l (i.e. 10
21

Pa s) in the numerical models, the initial layer parallel stress 

is given by 0 4 lP    (Schmalholz and Podladchikov, 1999). With a constant viscosity 

ratio of 100 (between the large/small-scale folding layer and the matrix; Zhang, et al., 

1996; Mancktelow, 1999; Zhang et al., 2000; Frehner and Schmalholz, 2006) R from 

equation 2 is in the range of 0.009 to 0.033 and indicates that viscous folding is the main 

deformation during buckling. Therefore, the viscous dominant wavelengths of 
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 (where h and H are the thickness of the large and 

small-scale competent layers respectively) are applied for the large-scale and small-scale 

folds. The model is horizontally compressed under a constant strain rate of 10
-14

 s
-1 

representative of a reasonable geologic deformation rate (Twiss and Moores, 2007) and 

free slip boundary conditions are applied at the bottom boundary.  

A power-law relationship relating the permeability evolution to the porosity 

evolution is given by: 

 0 0/ ( / )nk k    (3) 

Where k0 is the initial permeability and k is the updated permeability in m
2
, and n=6 

(Petro et al., 2007; Chin et al., 2000; Cappa and Rutqvist, 2011). The permeability is 

considered to be anisotropic with the horizontal permeability being 5 times the vertical 

permeability. The initial porosity ϕ0 is 0.1 and the initial horizontal permeability is 1 ×10
-

16
 m

2 
. It should be noted that there are various permeability-porosity relationship for 

porous rocks and the magnitude of n depends on the type of rock and the type of 

deformation (Bernabe et al., 2003). The focus of this study is on the porosity evolution 

during the deformation of parasitic folds and the associated spatial distribution of 

permeability. Therefore, a pre-defined permeability-porosity relationship is applied. 

Moreover, hydrostatic pore pressure is assigned to the model as an initial condition. 

Considering the scale of the simulation, constant pore pressure is maintained during the 

deformation of shortening. All material parameters are given in Table 1, unless specified 

differently for special cases. 

In order to simulate stresses resembling in-situ conditions, a stress initialization 

procedure (following Buchmann and Connolly, 2007; Smart et al., 2009; Eckert and Liu, 

2014) is applied, before subjecting the model domain to horizontal shortening, which 

induces buckling. The procedure includes a vertical load acting at the top of the model to 

simulate an overburden load of 1000 m, followed by 50% horizontal shortening along the 

x-direction with a constant strain rate (10
-14

 s
-1

). 
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Table 1. Material properties for general sedimentary rocks for the base model (Eckert et 

al., 2014). 

Properties Folding Layer Matrix/Overburden/Base 

Specific Gravity 2.75 2.75 

Viscosity 10
21

 (Pa s) 192 10  (Pa s) 

Young’s Modulus 30 (GPa)  30 / ER (GPa) 

Poisson Ratio 0.25 0.25 

Permeability 

(horizontally) 

161 10  (m
2
) 161 10  (m

2
) 

 

 

 

Figure 1. Sketch (not to scale) of the 2D numerical model setup and boundary condition. 

A large-scale 3-layer multilayer is embedded in a matrix with lower viscosity and elastic 

strength. The thickness of the three layers are 100 mm and the layer between the two 

competent layers features lower viscosity and elastic strength. A small-scale multilayer 

sequence consisting of 10 thin competent layers and 9 thin less competent layers is placed 

in the large-scale less competent layer. All the thin layers in the multilayer sequence are 

assigned with the same thickness of 2mm.  
 

2.3. LIMITATIONS  

It is clear that utilizing a 2-D plane strain approach for simulating multilayer 

viscoelastic buckle folds implies cylindrical fold geometry and thus limitations arise. The 
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2D geometry is adopted to enable simple comparison with the study of Frehner and 

Schmalholz (2006). While 3D modeling enables more sophisticated and detailed analysis 

of the spatio-temporal evolution of  stress/strain in the folding layer when compared to 

2D models (e.g. Eckert et al.,2014; Liu et al., 2016), the 3D geometry of parasitic folds 

remains unclear, since it is difficult to determine the 3D geometry of parasitic folds from 

field observations. 

In this study, the same small periodic perturbation is used as the initial geometry 

for the small-scale folds. In nature, layers composed of different rock types are 

impossible to feature perfect periodic perturbations and the shape of the perturbation is 

influenced by various factors (Frehner and Schmalholz, 2006), for example, sedimentary 

structures (e.g. wave ripples) or metamorphic processes (e.g. crenulation). Random 

perturbations of the initial geometry, which are used by Frehner and Schmalholz (2006) 

and Frehner and Schmid (2016) may produce comparable results. However, it can be 

expected that the fundamental deformation of parasitic folds remains the same, which is 

that small-scale folds are first generated symmetrically and then deformed into parasitic 

folds by the development of the large-scale fold. Moreover, the focus in this study is on 

the porosity distribution during the deformation of parasitic folds and the influence from 

various parameters such as layer number and thickness ratios; the same periodic 

perturbation is used to generate the same small-scale folds in the early stage before 

buckling of the large-scale fold in order to exclude the impact of random initial 

perturbation on the porosity distribution.  
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3. RESULTS 

In the following result analysis the influence of elastic modulus contrast, number 

of thin layers, viscosity contrast, strain rate, and of the thickness ratio (of the thin 

competent to the thin less competent layers) is investigated. For all porosity contour plots 

in the results analysis the color scale is adjusted such that red colored contours always 

represent porosity increase (i.e. above the initial porosity of 0.1).  

3.1. REFERENCE MODEL  

To better compare the spatial distribution of porosity of parasitic folds within a 

multilayer system, a reference model (with the same initial geometry) is presented here, 

in which all the thin layers feature the same material as the large-scale less competent 

layer and matrix, i.e. no competence contrast is assigned to the thin layers. Figure 2 

shows the distribution of porosity and volumetric strain after 50% shortening. Positive 

values of volumetric strain indicates compressive strain. It is observed that the porosity of 

the large-scale competent layer is close to the initial magnitude (i.e. 10%) and only a 

small amount of volumetric strain (~0.1%) is developed during buckling. For the thin 

layers, no amplification of small-scale folding is observed, with no influence on the 

porosity distribution. The porosity distribution within the less competent layer shows 

reduced magnitudes in the limb and the lowest magnitudes at the top of the hinge zone. 

This can be explained by the volumetric strain distribution after 50% shortening (Figure 

2b), where significant compressive strain is generated at the top of the hinge and in the 

limb close to the large-scale competent layer (i.e. orange and red areas in Figure 2b). This 

observation of volumetric strain matches Frehner and Schmalholz’s (2006) findings about 

the strain distribution in multilayer folds with a Newtonian viscous material. 

3.2. INFLUENCE OF ELASTIC MODULUS CONTRAST  

In order to evaluate the influence of the elastic modulus contrast (i.e. the ratio of 

Young’s Modulus), RE, between the thin competent layer and the interlayers, two 

magnitudes of RE of 1 and 30 are applied to the thin layers. It should be noted that the 

less competent layers have the same material properties as the large-scale less competent 
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layer and the elastic modulus contrast between the large-scale competent and less 

competent layers is constant (i.e. RE′=30).  

 

 

Figure 2. Reference model after 50% bulk shortening of a 3 layer multilayer system, in 

which the small-scale layers do not have a competence contrast. The porosity distribution 

(a) spatially corresponds to the distribution of volumetric strain (b), i.e. low porosity in 

areas of high compressive volumetric strain. 
 

 

Figure 3 shows the deformed small-scale multilayer folds after 50% bulk 

shortening for RE= 1 and RE= 30. For both models, parasitic folds are observed 

throughout the large-scale less competent layer with asymmetric Z-shaped folds in the 

limb region and symmetric M-shaped folds in the hinge region. The shape of the parasitic 

folds in the limb region is strongly influenced by RE while the large-scale fold shape 

remains similar. Since the thicknesses of the parasitic fold layers vary significantly with 

respect to their location, the ratio A/H (where A represents fold amplitude, and H is the 

layer thickness) which is commonly used to describe fold shape (e.g. Schmalholz and 

Podladchikov, 2001, Frehner and Schmalholz, 2006) is replaced by the normalized 

amplitude A′=A/H0 (where H0 is the initial thickness of the thin layer). For RE=1, the M-

shaped small-scale folds exhibit a lower amplitude (A′=3.51) and inter-limb angel (α 

=75°) compared to RE=30 (A′=4.19, α =77°). More significant differences of the 

geometry are observed for the Z-shaped folds, i.e. A′=0.80 and α=106° for RE=1 (Figure 

3a), compared to A′=2.83 and α =116° when RE=30 (Figure 3b). The observation that the 
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amplitudes of the parasitic folds decrease from the hinge to the limb of the larger-scale 

fold are in agreement with results by Frehner and Schmalholz (2006).  

With respect to the resulting porosity distributions, it is observed that for low RE, 

a significant porosity reduction (f=~0.05) occurs in the limb of the M-shaped less 

competent layers (Figure 3a). Moreover, limb thinning of the less competent layers is 

observed in the long limb of the asymmetric Z-shaped parasitic folds with porosity 

decreasing to ~0.07. Limb thickening is observed in the short limb of the asymmetric Z-

shaped folds with porosity increasing to ~0.113. For RE=30, higher amplitude parasitic 

folds are observed both at the hinge and limb region of the large-scale fold. The porosity 

of the less competent thin layers in the M-shaped parasitic folds decreases in the limb 

(~<0.2) and increases at their hinge zone (>0.11, Figure 3b). In the Z-shaped folds, ϕ 

~0.147 in the short limb indicating that significant extensional volumetric strain is 

occurring. In the long limb, the porosity of the less competent thin layers is 0.05, 

featuring compressive volumetric strain. When the 2 models are further compared to each 

other, a significant porosity reduction to ~0 can be observed outside the parasitic fold 

stack in the limb of the large-scale incompetent layer. This can be explained by the 

combined layer-perpendicular compression induced in this region by the large-scale 

competent layer and the parasitic folds. The larger amplification of parasitic folds, which 

results from the high elastic modulus contrast (i.e. RE=30), generates a more significant 

compressive strain and a lower porosity compared to the low elastic modulus model (i.e. 

RE=1). 

In order to validate that the porosity distribution at 50% shortening represents the 

possibly lowest overall magnitudes, the porosity evolution of two elements located in the 

center of the two limbs is plotted in Figure A1 in the Appendix. As shown in Figure A1, 

the magnitudes of the porosity decrease with shortening and drop to the lowest magnitude 

at end of the shortening. 

3.3. INFLUENCE OF THE NUMBER OF THIN COMPETENT LAYERS 

To investigate the effect of the number of thin layers on the deformation and 

porosity distribution of parasitic folds, the original number of thin, competent layers 

(N=10) is varied to N=5,15 and 20. The rest of the model setup, including large-scale  
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Figure 3. a) Porosity distribution of the large-scale less competent layer and embedded 

parasitic folds for RE=1. The upper inset shows the detailed porosity distribution at the 

M-shaped folds at the hinge of the large-scale layer. The lower inset shows the detailed 

porosity distribution at the Z-shaped folds in the limb of the large-scale fold. The letters 

C and L in the insets indicate the competent and less competent thin layers, respectively. 

b) Porosity distribution of the large-scale less competent layer and embedded parasitic 

folds for RE=30.  
 

 

folds and the thickness of the thin layers, remains the same. Figure 4 shows the 

normalized amplitude A′ for both the M- and Z-shaped parasitic folds for the tested 

models. The overall magnitude of the M-shaped parasitic folds at the hinge of the large-

scale fold is higher than for the Z-shaped folds. The same observation as seen in Figure 3, 

that a high RE increases the amplification of the parasitic folds, is found for all the models 

(Figure 4). It is also observed that the amplitudes increase when N increases from 5 to 15 

for both M-shaped and Z-shaped folds. This can be explained by the amplitude growth 
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rate, which increases with increasing number of layers for a multilayer system (e.g. 

Ramberg, 1961; Schmid and Podladchikov, 2006). However, for N=20, a sharp decline in 

A’ for both M-shaped and Z-shaped folds can be observed, and A′ is lower than for 

N=15. Especially for the model with RE=1 and N=20, the amplitude of the Z-shaped folds 

is as low is 2mm, which is close to its initial thickness (2mm).  

 

 

Figure 4. Normalized amplitude, A′, of M-shaped and Z-shaped parasitic folds for 

varying number of thin, competent layers, N=5,10,15 and 20. 
 

 

Figure 5 shows the porosity distribution for the deformed small-scale multilayer 

folds after 50% bulk shortening for N=5,15 and 20 (for both RE=1 and RE=30). The 

observations for the porosity distribution for the various models can be summarized with 

respect to locations in the hinge zone and limbs of the M- and Z-shaped parasitic folds, 

and outside the parasitic fold stack in the limb of the large-scale fold: 

 For the hinge zone of the M-shaped folds (Figure 5a-f, upper insets) a 

slight porosity decrease (with a maximum porosity decrease of Δ=0.045 

for N=5, RE=30, Figure 5b upper inset)  is observed in the less competent 

layers for all model variations except for N=15, RE=30, which features a 

slight porosity increase (Δ =~0.03, Figure 5d upper inset). 

 For the limbs of the M-shaped folds (Figure 5a-f, upper insets) a 

significant porosity decrease in the less competent layers is observed for 

all models, with ultra-low porosity (<0.01 ) for the model with N=5, 

RE=30 (Figure 5b, upper inset).  
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 For the long limb of the Z-shaped folds (Figure 5a-f, lower insets) limb 

thinning of the less competent layers occurs for all models. This is 

accompanied by a significant decrease in porosity, with ultralow porosity 

(<0.01 ) for the model with N=20, RE=30 (Figure 5f, lower inset). 

 For the short limb of the Z-shaped folds (Figure 5a-f, lower insets) limb 

thickening of the less competent layers occurs for models with N=5 and 

15. This is accompanied by a slight increase in porosity, with a maximum 

porosity of 0.164 for the model with N=15, RE=30. For models with 

N=20, porosity decrease is observed at the short limb of the Z-shaped 

folds (with a maximum porosity decrease of Δ=0.06 for N=20, RE=1, 

Figure 5e lower inset)   

 Outside the parasitic fold stack in the limb of the large-scale fold (Figure 

5a-f) a significant porosity decrease with increasing layer numbers can be 

observed (with porosity approaching zero for N=15 and N=20). 

For all models it can be observed that the elastic modulus contrast, RE, influences 

the degree of porosity changes, i.e. large RE results in a larger range of porosities. 

3.4. INFLUENCE OF VISCOSITY CONTRAST 

In order to evaluate the influence of the viscosity contrast, Rμ, between the thin 

competent and less competent layers, a lower magnitude of Rμ=25 is applied. It should be 

noted that the viscosity contrast between the large-scale competent layers and less 

competent layer/matrix is kept at 100 in order to ensure the same fold shape of the large-

scale less competent layer after shortening.  

For the lower viscosity contrast, significant amplification of the parasitic folds is 

not observed when RE=1, and the thin layers exert a limited influence on the porosity 

distribution, i.e. the overall porosity distribution is similar to the reference model shown 

in Section 3.1 (Figure 2a). The main difference is that the lowest porosity (~0.075) is 

observed both at the hinge of the large and small-scale less competent layers (Figure 6b). 
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Figure 5. Porosity distribution of the large-scale less competent layer and embedded 

parasitic folds with RE=1 and N=5 (a), RE=30 and N=5 (b), RE=1 and N=15 (c), RE=30 

and N=15 (d), RE=1 and N=20 (e), and RE=30 and N=20 (f). The letters C and L in the 

insets indicate the competent and less competent thin layers, respectively. 
 

 

For RE=30, the M-shaped folds show a larger amplification of amplitude (A′=3.73) than 

the Z-shaped folds (A′=0.55), and both of their magnitudes are much smaller than for the 

model with a high viscosity contrast (i.e. μs/μm=100). This is an expected result, as the 

viscosity contrast influence on parasitic fold amplification is the same as for regular 

multilayer folds (Schmid and Podladchikov, 2006). High porosity (~0.134) is observed in 

the limb of the less competent thin layers and at the bottom of the hinge zone of the large-

scale fold. Low porosity (~0.04) is mainly occurring in the limb of the large-scale fold.  
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Figure 6. Porosity distribution of the large-scale less competent layer and embedded 

parasitic folds for Rμ=25 and RE=1 (a) and for Rμ=25 and RE=30 (b). The letters C and L 

in the insets indicate the competent and less competent thin layers, respectively. 
 

 

3.5. INFLUENCE OF STRAIN RATE 

To investigate the effect of different strain rates on the deformation and porosity 

evolution of parasitic folds, two more strain rates are assigned. Considering that small 

folds in quartz or calcite veins in slates or schists or quartz-feldspar veins in granitic 

rocks are commonly deformed at typical rates of 10
−14

 s
−1 

(Hudleston and Treagus, 2010), 

the magnitudes of the strain rate investigated here are chosen as 5×10
−15

 s
−1

 and 5×10
−14

 

s
−1

, with viscous folding representing the main deformation during shortening (i.e. R<1). 

Figure 7a and b show the finial geometry of the parasitic folds after 50% shortening. 

With the same initial geometry and elastic modulus contrast (RE=30), the M-shaped folds 

exhibit similar geometry for the two strain rate models (A´=7.25 for 5×10
−15

 s
−1

 model 

and A´=9.35 for 5×10
−15

 s
−1 

model, Figure 7a and b, upper inset). A more significant 

difference in fold shape is observed for the Z-shaped folds with A´=9.66 for the low 

strain rate model and A´=6.62 for the high strain rate model (Figure 7a and b, lower 
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inset). For a better understanding of the differences between the shapes of the Z-shaped 

folds, the A´ evolution of the large-scale fold and the Z-shaped folds are plotted in Figure 

8a and b. The amplitudes of the large-scale fold in the two models increase with 

shortening (blue curve in Figure 8a and b), with the high strain rate model exhibiting 

larger amplification during buckling. This is in agreement with Zhang et al.’s (2000) 

findings on the influence of strain rate on single-layer folding. Figure 8b shows that for 

the high strain rate model, A´ for the Z-shaped fold increases and reaches the maximum 

magnitude (A´=10.61) at 32% shortening and then decreases towards A´=6.62 at 50% 

shortening representing de-amplification of the fold magnitudes.  The de-amplification 

indicates that the growth of the large-scale fold along with the simultaneous limb 

thinning has a significant influence on the small-scale geometry. 

Figure 9 shows the porosity distribution of the parasitic folds for the two strain 

rate models with RE=30 after 50% shortening.  For the low strain rate model (i.e. 5×10
−15

 

s
−1

), ultralow porosity (<0.01) is observed in the limb of the less competent layers in the 

M-shaped folds (Figure 9a, upper inset). High porosity (>0.10) is observed in the less 

competent layers at the hinge zone of the M-shaped folds and in the short limb of the Z-

shaped folds (Figure 9a, lower inset). For the model with high strain rate (i.e. 5×10
−14

 

s
−1

), the porosity of the less competent layers in the M-shaped folds decreases in the limb 

(~<0.01) and increases at their hinge zone (>0.10, Figure 9b, upper inset). In the Z-

shaped folds, high porosity (>0.10) in the short limb and ultralow porosity (<0.01) in the 

long limb are observed in the less competent layers (Figure 9b, lower inset). Compared to 

the previous model (i.e. low strain rate model), a more significant porosity reduction to 

<0.01 can be observed outside the parasitic fold stack in the limb of the large-scale 

incompetent layer. The porosity distribution for the two strain rates models for a low 

elastic modulus contrast (i.e. RE=1) show a similar distribution and hence the 

observations are not repeated here and the detailed descriptions can found in Appendix B. 
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Figure 7.  Fold shape of the large-scale less competent layer and embedded parasitic folds 

for models with strain rates of 5×10
−15

 s
−1 

(a) and 5×10
−14

 s
−1 

(b) at 50% shortening. Blue 

layers represent thin competent layers. The upper inset shows the detailed M-shaped 

folds. The lower inset shows the detailed Z-shaped folds. 
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Figure 8. The evolution of the normalized amplitude A´ over shortening of the large-scale  

and Z-shaped folds for strain rate of 5×10
−15

 s
−1 

(a) and 5×10
−14

 s
−1 

(b).  
 

 

 

Figure 9.  Porosity distribution of the large-scale less competent layer and embedded 

parasitic folds for low strain rate 5×10
−15

 s
−1

 (a) and high strain rate 5×10
−14

 s
−1

 (b). The 

letters C and L in the insets indicate the competent and less competent thin layers, 

respectively. 
 

3.6. INFLUENCE OF THICKNESS RATIO 

To investigate the effect of thickness ratio, H/S (with S being the thickness of the 

small-scale less competent layer), of the small-scale folds, three magnitudes of H/S (2, 

0.5 and 1/3) are applied to the models with RE= 1 and RE= 30. It should be pointed out 

that these magnitudes along with the previous model (i.e. H/S=1) represent true 
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multilayer buckle folding after Schmid and Podladchikov (2006). Figure 10 shows the 

deformed small-scale multilayer folds after 50% bulk shortening for RE= 1 and RE= 30.  

For H/S=2 and RE=1 (Figure 10a), M-shaped and Z-shaped parasitic folds are 

observed in the large-scale less competent layer, with high amplitude (A′=19) for M-

shaped folds and low amplitude (A′=5.8) for Z-shaped folds. The observed porosity 

changes are marginal in the parasitic folds. A porosity reduction (f=~0.065) is observed 

in the limb of the large-scale fold. For H/S=2 and RE=30 (Figure 10b), parasitic folds 

only develop in the hinge region; in the limb of the large-scale fold the thin layers are 

close to straight. It  can also be observed that the small-scale folds in the hinge region 

form as box folds with rounded hinges and converging paired axial surfaces (Ramsay and 

Huber, 1987). Low porosity (~0.5) is mainly observed in the limb of the large-scale less 

competent layer.  

Since the models for H/S=0.5 and H/S=0.33 have some similarities, the 

observations for the porosity distribution for the various models can be summarized with 

respect to locations in the hinge zone and limbs of the M- and Z-shaped parasitic folds, 

and outside the parasitic fold stack in the limb of the large-scale fold: 

 For the M-shaped folds (Figure 10c-f, upper insets) a significant porosity 

decrease is observed in the bottom of the hinge of the competent layers for 

all model variations with RE=1 (i.e. =~0.04-0.01). In contrast, for RE=30, 

the competent layers show a slight porosity increase, and a slight porosity 

decrease (i.e. =~0.07-0.06) is observed in the hinge zone of the less 

competent layers. 

 For the limbs of the M-shaped folds, for RE=1 (Figure 10c and e, upper 

insets) a slight porosity decrease in both the competent and less competent 

layers is observed. For RE=30 (Figure 10d and f, upper insets), a porosity 

decrease is observed in the less competent layers (with the lowest porosity 

of =0.055 for H/S=0.33, RE=30, Figure 10f,  upper inset).  

 For the long limb of the Z-shaped folds (Figure 10c-f, lower insets) limb 

thinning of the less competent layers occurs for all models except for 

H=0.33S, RE=1. The limb thinning is accompanied by a decrease in 
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porosity (with the lowest porosity of =0.025 for H/S=0.33, RE=30, Figure 

10f,  lower inset). 

 In contrast to the models of H/S=1 (Figure 3) which show a porosity 

increase in the short limb of the less competent layers, a porosity decrease 

occurs. 

 Outside the parasitic fold stack in the limb of the large-scale fold (Figure 

10c-f) a significant porosity decrease with increasing elastic contrast can 

be observed (with porosity approaching zero for models with RE=30). 

 

 

Figure 10. Porosity distribution of the large-scale less competent layer and embedded 

parasitic folds with RE=1 and H=2s (a), RE=30 and H=2s (b), RE=1 and H=0.5S (c), 

RE=30 and H=0.5S (d), RE=1 and H=0.33S (e),and RE=30 and H=0.33S (f). The letters C 

and L in the insets indicate the competent and less competent thin layers, respectively. 

To better demonstrate the influence of thickness ratio on the fold shape, Figure 11 

shows the normalized amplitudes A’ of the M- and Z-shaped parasitic folds for the 
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variations in H/S. The model with H/S=2 is not included here due to the variability of the 

occurring fold shapes (i.e. box folds are replacing the M-fold shapes for RE=30). It can 

be observed that the amplification of fold amplitude increases with H/S and is maximum 

for H=S. This finding is in agreement with Schmid and Podladchikov (2006), who show 

that multilayer folds exhibit maximum growth rate when H=S. Moreover, the influence of 

the elastic ratio, which is increasing the amplification of both M-shaped and Z-shaped 

parasitic folds, can be observed on all models tested.  

 

 

Figure 11. Normalized amplitude of M-shaped and Z-shaped parasitic folds with 

H=0.33S, H=0.5S and H=S. 
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4. DISCUSSION 

The 2-D plane strain modeling approach presented in this study shows that the 

deformation of viscoelastic parasitic folds can be successfully simulated and helps to 

provide a better understanding of parasitic fold development and  the associated porosity 

distribution. A large variety of studies explain the occurrence of parasitic folds in a 

multilayer fold system (e.g. Ramberg, 1963, 1964; Pfaff and Johnson, 1989; Hunt et al., 

2001; Frehner and Schmalholz, 2006; Treagus and Fletcher, 2009; Frehner and Schmid, 

2016). From these previous studies, it can be concluded that different rheologies and 

deformation types can result in the development of parasitic folds, such as linear viscous 

(Newtonian) rheology (Frehner and Schmalholz, 2006; Treagus and Fletcher, 2009; 

Frehner and Schmid, 2016), power-law rheology (Fletcher, 1974), and slip between 

layers (Pfaff and Johnson, 1989). The results in this study verify Ramberg’s (1963) 

theory of the development of parasitic folds using viscoelastic rheology. While these 

studies have been mainly focusing on the evolution of parasitic fold shapes and their 

relation to the large-scale fold, this study is the first to quantify the effect of various fold 

system parameters (such as layer thicknesses, elastic modulus contrast, strain rate, 

number of layers, and viscosity contrast) on the deformation of the resulting viscoelastic 

parasitic folds and the associated porosity distribution. 

The results presented confirm the basic observations regarding the development 

of asymmetric parasitic folds as predicted by Frehner and Schmalholz (2006) for a more 

complex model setup (i.e. simulating in-situ effective stress conditions, as considered 

here). However, the different model setup also results in some significant differences.  

Frehner and Schmalholz (2006) observe that for low amplitude parasitic folds 

deamplification occurs and Z-shaped asymmetric folds do not develop. This “unfolding” 

of the Z-shaped folds is the result of the compression in the limb (i.e. resulting in limb 

thinning) of the less competent large-scale fold. This is also observed in this study for 

models featuring a high strain rate resulting in a high degree of limb thinning (Figure 7 

and 8). Moreover, deamplification of Z-shaped folds can also result from other modeling 

parameters, such as for a low thickness ratio H/S in combination with a high elastic 

modulus contrast (Figure 10a,b). Frehner and Schmalholz (2006) also conclude that a 
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large number of thin layers will enhance the development of parasitic folds, which is 

confirmed in this study, when the number of thin layers increases from 5 to 15. However, 

the model with 20 competent layers (i.e. a total of 39 small-scale multilayers) shows less 

amplification of the small-scale folds, which is in contradiction to Frehner and 

Schmalholz’s study (2006). This conflict is due to the different geometry setup of the 

large-scale less competent layer, which in their study varies its thickness when the 

number of thin layers is changed. Here, the thickness of the large-scale less competent 

layer remains constant, and thus the amplification of the parasitic fold stack is inhibited 

by the limited space of the surrounding less competent material (when N=20).  

Moreover, Frehner and Schmalholz (2006) show that the presence of the thin 

layers has little influence on the dynamics of the two large-scale competent layers. 

However, the numerical simulations here show that the deformation of the parasitic folds 

may influence the large-scale folding for certain conditions, such as H/S>1. The 

normalized amplitude (A′=A/H0) of the large-scale fold ranges from 0.54 when 

H/S=0.33, to 0.55 when H/S=0.33, and to 0.60 when H/S=0.5, and increases significantly 

to 1.21 when H/S=2 (the corresponding fold amplitudes can be observed in Figure 10). 

Despite the different utilized rheologies (i.e. viscous rheology is applied in their study), 

the conclusion drawn by Frehner and Schmalholz (2006) is based on the fact that the 

thickness ratio remains constant (H/S=0.33) in their models. It can be concluded that the 

thickness ratio between the competent and less competent thin layers, especially when it 

is larger than 1,  influences the amplification of the large-scale multilayer system. 

Clearly, there are other parameters of the small-scale folds that may influence the 

buckling of multilayer such as an initial asymmetric geometry of the thin layers (Frehner 

and Schmid, 2016). A detailed investigation on the influence of parasitic folds on the 

large-scale folding is beyond the scope of the paper but is vary tractable using the 

numerical simulation presented. 

4.1. SHAPE OF PARASITIC FOLDS 

In the simulations presented, the Z-shaped folds exhibit a larger variability in fold 

shapes than the M-shaped folds. This results from the deformation of the Z-shaped folds, 

which is more complex than either pure or simple shear. The deformation of the large-
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scale less competent layer comprises contributions of the layer-perpendicular 

compression and the layer-parallel extension induced by the buckling of the large-scale 

competent layers (Frehner and Schmalholz, 2006), and the amplification of the competent 

layers results in flexural flow between them (Ramsay and Huber, 1987). As a result, the 

deformation field in the less competent layer is a combination of pure and simple shear 

(Frehner and Schmalholz, 2006). The pure shear component results in a layer-

perpendicular compression, and the simple shear results in a clockwise rotation of the 

thin layers. Both effects decrease from the large-scale fold limb to the hinge (Ramsay and 

Huber, 1987; Frehner and Schmalholz, 2006 and Frehner and Schmid, 2016). However, 

as shown by the variations in the Z-shaped folds in this study (i.e. in the same large-scale 

fold environment), the effect of the buckling of the thin layers by itself has an influence 

on the overall deformation of the parasitic folds. This contribution has not been discussed 

previously, and the models presented in this study provide a better understanding of this 

effect.  

For a discussion of the influence of the small-scale buckling on the Z-shaped 

folds the models presented in 3.2 featuring different elastic modus contrasts are analyzed 

in more detail. It is observed that the Z-shaped folds in the limb of the large-scale fold 

exhibit different fold shapes even though the large-scale fold deforms similarly (Figure 

3). Figure 12 shows the respective fold shapes and the distribution and orientations of the 

principle strains. It can be observed that for the model with RE=1, the Z-shaped folds 

exhibit a very pronounced thin long limb and a thick short limb (Figure 12a). The 

minimum (εmin) and maximum principal strains (εmax) of the less competent layers are 

vertical and horizontal (Figure 12c and e), respectively, indicating the less competent 

layer undergoes simple shear deformation. The principle strains throughout the less 

competent layers are compressional (i.e. positive blue contours). For the competent thin 

layers, εmin is perpendicular to the layer in the short limb, and strain is extensional (i.e. 

negative red contours). In the long limb, εmin is sub-parallel to the layer, and strain is 

compressional. No extensional εmax is observed (Figure 12e). For the model with RE=30, 

the Z-shaped parasitic folds feature a larger inter-limb angle (116° compared to 106° for 

RE=1) with less tightness. εmin and εmax in the less competent layers are sub-vertical and 

sub-horizontal, respectively, which are similar to the previous model, indicating that  
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Figure 12. (a) Z-shaped folds of the model with RE=1. The magnitude and orientation 

(represented by black arrow) of the minimum and maximum principle strain are shown in 

(c) and (e); (b) Z-shaped fold of the model with RE=30. The magnitude and orientation 

(represented by black arrow) of the minimum and maximum principle strain are shown in 

(d) and (f). It needs to be noted that the strain orientations are manually plotted (based on 

the numerical modeling results) on top of the contours due to limited graphical options 

provided by the analysis software. Original vector and contour plots provided directly by 

the analysis software can be obtained by contacting the corresponding author.   
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simple shear is dominating. In contrast to RE=1, only the principal strains in the long 

limb are compressional, while strains in the short limb are both extensional. For the 

competent thin layers, εmin is sub-perpendicular to the layer at both the short limb (being 

extensional) and the long limb (being compressional) and no extensional εmax is 

observed. The observed change from compressive maximum principle strain in the thin 

less competent layer when RE=1 to extensional strain in the short limb in when RE=30 

indicates a more significant buckling response of the parasitic fold stack. The possible 

explanation of the two different strain distributions and different shapes is that the high 

elastic modulus contrast enhances the buckling of the small-scale folds. It needs to be 

pointed out that the deformation of the parasitic folds, especially for a large elastic 

modulus contrast, is more complex than a combination of just pure and simple shear, and 

the small scale buckling has a significant effect on the strain distribution of the parasitic 

fold stack. This represents an interesting observation and further investigations are 

necessary, which are beyond the scope of this contribution. 

Another important observation is the variation of the shapes of the M-shaped 

parasitic folds at the hinge zone of the large-scale layer. 

 Symmetric M-shaped fold are commonly observed in most models, and 

the deformation can be explained by the pure shear deformation in the 

large-scale layer (Frehner and Schmalholz, 2006).  

 Chevron folds (which featuring sharp hinges and straight limbs) at the 

hinge of the large scale layer are observed for the model with H=2S and 

RE=1 (Figure 10a) and to some degree for N=15 and RE=1 (Figure 5c). 

From these rare manifestations of chevron folds it is clear that the fold 

shape of the M-shaped folds is the result of a complex interaction of 

different material properties and fold geometric parameters. It is 

interesting to note that neither anisotropic material properties (Bayly, 

1970; Cobbold et al., 1971; Price and Cosgrove, 1990) nor flexural slip 

(e.g. Ramsay, 1974, Dubey and Cobbold, 1977, Behzadi and Dubey, 1980; 

Hudleston et al., 1996)  has contributed to the development of these 

chevron folds. Similar field observations of chevron shaped parasitic folds 
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can be found in several studies (e.g. Hobson, 1976; Bergh and Andresen, 

1990; Bergh, et al., 1997; Homza and Wallace, 1997; Civile et al., 2000). 

 Box folds are observed when RE=30, and the less competent layers 

become thinner than the competent thin layers. The existence of box folds 

as parasitic folds is observed by Watkinson (1976) and Andersen (1981). 

As for the Chevron folds, it is interesting to note that neither flexural slip 

(e.g. Cobbold et al., 1971;  Home and Clushaw, 2001) or buckling of 

anisotropic rocks (e.g. Ramsay and Huber, 1987; Price and Cosgrove, 

1990) have contributed to the development of the box fold shape.  

In order to compare the shape evolution of the M-shaped folds featuring chevron 

(H/S=2 with RE=1) and box folds (H/S=2 with RE=1), Figure 13 shows the shape of the 

parasitic folds throughout the large-scale fold at different stages of shortening. At 20% 

shortening, the small-scale folds amplify faster than the large-scale fold and the shapes 

are the same (as shown in Figure13a and d). At a later stage (i.e. 30% shortening), the 

parasitic folds with RE=1 deform into sinusoidal shapes (Figure 13b). This sinusoidal 

shape continues amplifying in the hinge region resulting in chevron folds and rotates in 

the limb region, resulting in Z-shaped folds at 45% shortening (Figure 13c). In contrast, 

for RE=30, at 30% shortening the parasitic folds deform into a box shape in the hinge 

zone and low amplitude, highly asymmetric Z-shaped folds in the limb (Figure 13e). At 

45% shortening, the parasitic folds in the hinge region retain the box fold shape and the 

Z-shaped folds in the limb deamplify and become straight (Figure 13f). Similar 

geometries of the parasitic folds are also observed for the models with H/S=3/2 (shown in 

Appendix Figure A1). It needs to be pointed out again that the deformation of these 

parasitic folds results from the combination of the buckling of the large-scale fold and the 

buckling of the small-scale layers, which is more complex than simple or pure shearing, 

thus a straightforward explanation of these various shapes cannot be provided at this 

stage.  
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Figure 13. Fold shapes of the large-scale less competent layer and embedded parasitic 

folds for models with H=2S and RE=1
 
(a)-(c) and

 
H=2S and RE=30(d)-(f) at 20%, 30% 

and 45% shortening. Blue layers represent the thin, competent layers.   
 

 

4.2. POROSITY DISTRIBUTION  

Numerical modeling results show that the mechanical material properties and 

their competence contrast are mainly responsible for the strain distribution in large-scale 

buckle fold structures (e.g. Frehner 2011; Eckert et al., 2014). However, the effect of 

strain changes on porosity during visco-elastic buckling has not been considered before. 

However as stated by Yang (2010), mechanical compaction is the most important 

geological factor contributing to the porosity evolution. This study shows that for a multi-

scale, multilayer fold system, various parameters are responsible for the various shapes of 

the parasitic folds and the associated strain and porosity distribution. Furthermore, the 

high resolution and detailed distribution of porosity enables to derive associated 

permeability changes and effects on fluid flow regimes. A comprehensive analysis of the 

resulting porosity distribution shows that significant changes in porosity can be observed 

both for the large-scale fold system and for the parasitic folds.  
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For the cases when both the viscosity contrast and the elastic contrast are low (i.e. 

Rμ=25 and RE=1, see Figure 6a), or when the layer thickness ratio (H/S) is higher than 1 

(Figure 10a and b), or when H/S is small along with a low elastic modulus contrast (i.e. 

H/S=0.33 and RE=1, see Figure 10e), the porosity in the large scale less competent layers 

is reduced at the top of the hinge zone and in the limb of the large-scale less competent 

layer. This can be explained by the large compressional volumetric strain induced by the 

large-scale buckling (as shown in Figure 2); the influence of the parasitic folds on the 

overall porosity is negligible. This is also observed in the simulations of multilayer 

folding (without parasitic folds) by Frehner and Schmalholz (2006). In contrast, for 

models featuring an increasing number of layers (i.e. Figure 5f), or increasing strain rate 

(i.e. Figure 9b), or decreasing H/S (i.e. Figure 10 f), the porosity in the limb of the large 

scale less competent layer becomes ultralow. This indicates that the parasitic folds have 

significant influence on the overall porosity distribution. 

The modeling results presented also show that the porosity also varies 

significantly within the parasitic fold stack. The observations for the porosity distribution 

can be summarized with respect to increased (i.e. ϕ>0.1) porosity and ultralow porosity 

(i.e. ϕ<0.01): 

 Increased porosity is mainly observed in the small-scale competent layers 

both in the M- and Z-shaped folds for RE=30 (e.g. Figure 5). This can be 

explained by the enhanced buckling resulting in extensional volumetric 

strain. Moreover, increased porosity is also observed in the short limb of 

the less competent layer in the Z-shaped folds, when H/S=1 and N<20. 

This finding is in agreement with Schmid and Podladchikov (2006), who 

show that multilayer folds exhibit maximum growth rate when H=S. For 

models with H/S<1 and/or N=20, the amplification of the parasitic folds is 

restricted, either due to the increased space between the competent layers 

(H/S<1), or due to the lack of space outside the parasitic fold stack in the 

large-scale less competent layer (for N=20).  

 The occurrence of ultralow porosity is restricted to the less competent 

layers, which is under compression induced by the nearby competent 
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layers. Particular locations include the limb of the M-shaped folds, and the 

long limb of the Z-shaped folds for models with RE=30 (e.g. Figure 5). 

4.3. PERMEABILITY AND ITS INFLUENCE OF FLUID FLOW 

In addition to simulating the porosity evolution the numerical modeling approach 

accounts for porosity related permeability changes (see equation x). Therefore, through 

the applied volumetric stain-porosity-permeability coupling, the fluid flow in the multi-

scale multilayer system is not just a function of pore pressure. As stated by Ord & Oliver 

(1997), fluid flow based on mean stress or pore pressure alone may be misleading. Eckert 

et al. (2015) show that that fluid flow induced by buckling can result in different, even 

reversed, flow directions depending on the amount of strain and the permeability 

distribution. However, since the model of Eckert et al. (2015) is based on constant 

permeability, this study provides an improved understanding of how permeability 

variations during small-scale multilayer folding affect the resulting fluid flow regimes. 

Assuming fluid migration follows Darcy’s law (e.g. Jaeger et al., 2007), the pore 

pressure gradient and the permeability determine the fluid velocities. In order to study the 

resulting fluid flow pattern in the parasitic folds, a constant pore pressure gradient (10 

Pa/mm) is applied to the deformed parasitic fold (of the models shown in section 3.2) 

horizontally (from the right side of the models to the left) or vertically (from top of the 

model to the bottom). The resulting permeability distribution and fluid flow magnitudes 

and vectors are shown in Figure 14. Through equation x it is clear that the distribution of 

(horizontal) permeability is identical to the porosity distribution (Figure 3), where low 

permeability is observed in the limb of the large-scale layer and the limb of the less 

competent small layers. Extremely low permeability (<1×10
-18

 m
2
, compared to the initial 

permeability of 1×10
-16

 m
2 

)
 
develops when the porosity decreases to ultralow magnitudes 

(<0.01), as shown in the limb of the large-scale less competent layer when RE=30 (Figure 

14b). 

The resulting fluid flow velocities (vf) of these models range from 10
-10

 to 10
-18

 

m/s (Figure 14c-f), with the lowest magnitudes occurring in the limb of the large-scale 

less competent layers. For a horizontal pore pressure gradient (Figure 14c and d), a 

pervasive fluid flow regime exists between the hinge zones of the large-scale less 
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competent and competent layers. Within the limb of the large-scale less competent layer, 

fluid flow in the parasitic fold stack becomes focused (i.e. acting as a channel) along the 

competent small–scale layers. For a vertical pore pressure gradient (Figure 14e and f), a 

complex fluid flow regime across the large-scale less competent layer develops. Fluid 

flow is restricted across the limb (Figure 14e and f), and focused flow occurs through the 

hinge zones of the parasitic folds in the M-shaped folds (Figure 14e and f, insets). 

The resulting deformation dependent fluid flow regimes in the multilayer fold 

systems presented have important implications for commercial fluid flow 

extraction/injection/storage applications (such as CO2 sequestration, hydrocarbon 

production, radioactive waste disposal; Nagel, 2001; Emberley et al., 2005; Delage et al., 

2010; Megawati et al., 2012) in reservoirs of folded sedimentary rocks and for 

hydrothermal ore deposits in metamorphic rocks (Etheridge et al.,1983; Oliver, 1996). 
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Figure 14. Horizontal permeability distribution of model for RE=1 (a) and RE=30 (b).   
 

 

The observed fluid flow regimes in Figure 14 become even more pronounced 

when N=20 and RE=30 (Figure 15). 



129 

 

 

 

Figure 15. (a) Horizontal permeability distribution of model for N=20 and RE=30; Fluid 

flow vector and magnitude contours in the large-scale less competent layer and parasitic 

folds under horizontal pore pressure gradient (b) and under vertical pore pressure gradient 

(c). 
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5. CONCLUSIONS 

This study represents the first numerical simulation of multi-layer parasitic 

folding investigating the effects of various model system parameters on the resulting 

volumetric strain changes and on the associated porosity distribution. The 2D numerical 

models presented illustrate that consideringing the interplay between initial geometry, 

material properties and model boundary conditions is necessary in order to better 

understand the resulting fold shapes and associated parameters such as porosity. 

The model shows that parasitic folds of symmetric M-shapes and asymmetric Z-

shapes develop which verifying Ramberg’s (1963) theory. Large variability in individual 

fold shapes including Chevron and box folds in the hinge and unfolded Z-shaped folds as 

straight layers in the limb of the large-scale fold can develop in the parasitic folds. 

Moreover, the deformation of the parasitic folds may influence the large-scale folding 

(i.e. resulting in enhanced fold amplification) for certain conditions, such as H/S>1. This 

study demonstrates that the shapes of the parasitic folds depend on the buckling of both 

the large- and small-scale folds, which is influenced by various parameters such as initial 

geometry, material properties and model boundary conditions. 

The results presented show a large variability in porosity changes due to the 

complex distribution of the volumetric strain during the mutli-scale, multi-layer buckling 

process. The numerical modeling results show that three regions with significant porosity 

changes are observed and summarized in Figure 16. The numerical simulations also 

provide a general understanding of the influence of various parameters such as initial 

geometry, material properties and model boundary conditions on the resulting porosity 

distribution. The results presented here show: 

1. The elastic modulus contrast, RE, between the thin competent layer and less 

competent layer determines the magnitude of compressional volumetric strain. 

A higher RE results in a larger range of porosity magnitudes, i.e. higher 

porosity for extensional strain regions and lower porosity for compressional 

strain regions. 

2. For varying layer numbers (N), the fold amplification of the parasitic folds 

increases with increasing N, and thus results in a larger range of porosity 
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magnitudes, until a critical thickness is reached when fold amplification 

reduces significantly. 

3. For high viscosity contrast Rμ (between the thin competent layer and less 

competent layer) and/or high strain rate, significant volumetric strain (in 

compression and extension) is developed in the less competent layers, 

resulting in a larger range of porosity magnitudes.  

4. While the layer thickness ratio, H/S, is a crucial factor with respect to the 

generation of various fold shapes, for the porosity distribution, when H/S ≤ 1, 

larger rations of H/S result in a more significant influence on the regional 

porosity distribution. For H/S > 1, different fold shapes are observed for the 

parasitic folds and porosity decrease mainly occurs in the limb of the large-

scale fold. 

In addition, through the applied volumetric stain-porosity-permeability coupling, 

this study shows that the resulting fluid flow regimes within small scale structures such as 

parasitic folds, are significantly affected. 

 

 

Figure 16. The figure summarizes regions of porosity increase/decrease in parasitic folds. 
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SECTION 

2. CONCLUSIONS 

The study conducts research on the stress and strain evolution and distribution 

during the deformation of multi-scale single/multilayer folding. In order to understand the 

fracture associated with single-layer cylindrical buckle folds, a 3D finite element 

modeling approach using a Maxwell visco-elastic rheology is utilized. The influences of 

three model parameters with significant influence on fracture initiation are considered: 

burial depth, viscosity, and permeability. It is concluded that these parameters are critical 

for the initiation of major fracture sets at the hinge zone with varying degrees. The 

numerical simulation results further show that the buckling process fails to explain most 

of the fracture sets occurring in the limb unless the process of erosional unloading as a 

post-fold phenomenon is considered. For fracture sets that only develop under unrealistic 

boundary conditions, the results demonstrate that their development is realistic for a 

perclinal fold geometry. In summary, a more thorough understanding of fractures sets 

associated with buckle folds is obtained based on the simulation of in-situ stress 

conditions during the structural development of buckle folds. 

Moreover, this study represents the first numerical simulation of multilayer folding 

with large number of layers investigating the effects of various model system parameters 

on the resulting stress and strain distribution under in-situ state of stress with gravity and 

pore pressure. The model shows that chevron fold is observed in the core of the 

multilayer system with noticeable hinge collapse, and concentric fold is observed at the 

margin of the multilayer stack. Moreover, the deformation of the multilayer folds show 

that similar sinusoidal shape of all layers for certain conditions, such as low viscosity 

contrast or thick less competent layer. This study demonstrates that the shapes of the 

multilayer folds with visco-elastic rheology and large number of layers depend on the 

buckling of the folding layers, which is influenced by various parameters such as initial 

geometry and material properties and model parameters. The results presented show a 

large variability in stress and strain distribution due to the complex deformation of both 

competent and less competent layers during the multilayer buckling process. The strain 

distribution shows that little variety of strain is developed in the competent layer and 
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large magnitude of compressive strain is observed at the limb of the less competent layer 

closing to the margin of the multilayer stack. The numerical simulations also provide a 

general understanding of the influence of various parameters such as initial geometry, 

material properties and model parameters on the resulting stress and strain distribution.  

In addition, porosity distribution resulted from the deformation of parasitic folds are 

studied here. Parasitic folds represent a common structure of multi-scale multilayer folds 

and the resulting asymmetric S- or Z-shapes and symmetric M-shapes represent a 

complex strain distribution. How the strain distribution affects the resulting porosity 

remains unclear. In this study, a 2-D plane strain finite element modeling approach is 

used to simulate multi-scale, multilayer, viscoelastic buckle folds under in-situ stress and 

pore pressure conditions. A variety of material and model parameters (including the 

elastic modulus contrast, number of layers, viscosity contrast, strain rate and layer 

thickness ratio) are considered and their influence on the shape of parasitic folds and on 

the resulting porosity distribution is analyzed. This study demonstrates that the shapes of 

the parasitic folds depend on the buckling of both the large- and small-scale folds and are 

influenced by the various parameters. The numerical modeling results show a large 

variability in porosity changes due to the complex distribution of the volumetric strain 

during the mutli-scale, multi-layer buckling process. Three regions, including the hinge 

and limb of the less competent layer in the M-shaped folds and the limb of the less 

competent layer in the Z-shaped folds, feature significant porosity changes. In addition, 

the numerical simulations provide a general understanding of the influence of the various 

model parameters on the resulting porosity distribution. Through the applied volumetric 

stain-porosity-permeability coupling, influences on the resulting fluid flow regimes in 

multi-scale, multilayer buckling systems are documented. 
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