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ABSTRACT 

A number of new materials have been discovered through exploratory synthesis 

with the aim to be studied as the positive electrode (cathode) in Li-ion and Na-ion 

batteries. The focus has been set on the ease of synthesis, cost and availability of active 

ingredients in the battery, and decent cycle-life performance through a combination of 

iron and several polyanionic ligands. An emphasis has been placed also on phosphite 

(HPO3
2-) as a polyanionic ligand. The concept of mixed polyanions, for example, boro-

phosphate and phosphate-nitrates were also explored. In each case the material was first 

made and purified via different synthetic strategies, and the crystal structure, which 

dominantly controls the performance of the materials, has been extensively studied 

through Single-Crystal X-ray Diffraction (SCXRD) or synchrotron-based Powder X-ray 

Diffraction (PXRD). This investigation yielded four new compositions, namely 

Li3Fe2(HPO3)3Cl, LiFe(HPO3)2, Li0.8Fe(H2O)2B[P2O8]•H2O and AFePO4NO3 (A = 

NH4/Li, K). Furthermore, for each material the electrochemical performance for insertion 

of Li+ ion has been studied by means of various electrochemical techniques to reveal the 

nature of alkali ion insertion. In addition Na-ion intercalation has been studied for boro-

phosphate and AFePO4NO3. Additionally a novel synthesis procedure has been reported 

for tavorite LiFePO4F1-x(OH)x, where 0≤ x ≤1, an important class of cathode materials. 

The results obtained clearly demonstrate the importance of crystal structure on the 

cathode performance through structural and compositional effects. Moreover these 

findings may contribute to the energy storage community by providing insight into the 

solid-state science of electrode material synthesis and proposing new alternative 

compositions based on sustainable materials. 
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1. INTRODUCTION 

1.1. PERSPECTIVE AND BROADER IMPACT 

Our technology has been built based on the fossil fuel, which can lead to a 

number of problems: 1) Dependence of countries on the imported fossil fuels 

which are not distributed evenly on a global scale and gives rise to geopolitical 

tensions; 2) Limited supplies of fossil fuels cannot sustain the ever increasing 

energy demands of the world in the next few decades; 3) Enormous CO2 emission 

which affects the environment through global warming and climate change which 

certainly will affect the quality of our lives. 

Nuclear energy may be envisaged as an alternative energy resource to the 

fossil fuels; however, the extensive use of Uranium and other actinide elements 

forces these elements to extinction in the next century. Added to this is the 

difficulty in locating, mining, extracting and processing of nuclear fuel as well as 

occurrence of catastrophic accidents in Chernobyl and Fukushima nuclear reactors, 

which places these energy resources marginal and non-dependable. 

The only viable solution for replacing the fossil fuels is sustainable and 

regenerative energy resources, from which solar, wind, tidal, geothermal, biomass, 

etc. can be mentioned. For example, the amount of the solar energy received by 

earth during one hour can supply current world energy needs during a year. 

However, the intermittent nature of sustainable energy resources impeded their 

wide spread use as an alternative to fossil fuels. There is no doubt that mechanism 

for energy storage must be available to make sustainable energy as a reliable 

alternative to fossil fuels. 

Currently only about 1% of the generated world energy is stored and 98% 

of that is through pumped-storage hydroelectricity; while wide-spread in use, this 

method can store only 3 Wh for every 1 metric ton water lifted by 1 m.[1] 

The primary interest of a modern society running on sustainable energy can 

be divided in two parts: (1) design of mobile batteries for electric vehicles with 

high specific energy and power densities which can compete with internal 

combustion engines for transportation application; (2) design of durable batteries 
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based on low cost, abundant chemistries suitable for stationary electrochemical 

energy storage which can compete with the chemical energy stored in the fossil 

fuel. 

Batteries are electrochemical energy storage devices which are by far more 

efficient than pumped-storage hydroelectricity in terms of energy storage (Fig. 1-1). The 

batteries are classified on a general basis as primary and secondary. Primary batteries are 

normally cheap energy storage devices which have been designed for a single use 

followed by disposal. On contrary secondary batteries can be recharged many times, as 

an example lead storage batteries can be mentioned.  

 

 

Figure 1-1. Comparison of the mass-based and volume-based energy density for 

several battery technologies. [2] 

 

The basic unit in every battery is an electrochemical cell which composed 

of three components: an anode (negative electrode-reductant), a cathode (positive 

electrode- oxidant) and an electrolyte which establishes ionic contact between the 

two electrodes by allowing ion transport, but not the electrons. The amount of the 
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total energy which can be acquired from a battery with a voltage V(q) at the state 

of charge (SOC) q and current I flowing through it can be expressed as: 

𝐸 = ∫ 𝑉(𝑞). 𝐼. 𝑑𝑡 = ∫ 𝑉(𝑞). 𝑑𝑞
𝑄

0

𝑡

0
       (1-1) 

Where Q is the total amount of electrical charge stored in the battery. In the 

energy storage literature the electrical charge is usually expressed in milliampere 

hour (mAh) where 1 mAh is equivalent to 0.277 Coulombs.  

From a historical point of view the birth of the Lithium Ion Battery (LIB) 

follows the invention and use of Ni-Cd batteries [3]. The Ni-Cd battery operation 

is based on the oxidation of metallic Cd and simultaneous H+ insertion and 

reduction of the nickel center in the layered NiOOH in aqueous electrolytes at ca. 

1.5 V, according to equations 1-2 and 1-3: 

In cathode: 2𝑁𝑖𝑂𝑂𝐻 + 2𝑒 + 2𝐻+ → 2𝑁𝑖(𝑂𝐻)2     (1-2) 

In anode: 𝐶𝑑 + 2𝐻2𝑂 → 𝐶𝑑(𝑂𝐻)2 + 2𝐻
+ + 2𝑒     (1-3) 

The successful implementation of Ni-Cd secondary batteries fuelled up 

extensive research for designing other insertion chemistries for energy storage 

application. In this regard TiS2 was among one of the most studied systems which 

has a similar layered structure as NiOOH. In this system, Li+ can be reversibly 

inserted between the TiS2 layers at a potential of 2.2 V vs. Li+/Li0.[4] 

As the discharge potential of the TiS2-Li system lies above the 

decomposition potential of water (1.23 V), non-aqueous solvents are required for 

the battery function. The ideal solvent should have a lowest unoccupied molecular 

orbital (LUMO) energy state above the Fermi level of electrons in the lithium 

metal anode and the highest occupied molecular orbital (HOMO) energy state 

below the conduction band of the cathode active material to avoid side reactions of 

the electrolyte with the electrodes. Among the organic solvents, carbonates were 

known to be able to dissociate lithium containing salts (e.g. LiPF6, LiClO4) and 

provide sufficient Li+ mobility (10-2 S.cm-1). The LUMO of dimethyl carbonate 

(DMC) lies 1.2 eV lower than the Fermi level of lithium metal (Fig. 1-2); therefore 

to avoid reduction of DMC in contact with lithium metal ethylene carbonate (EC) 

is added as a modifier which forms a passivation layer (also called solid-electrolyte 

interface, SEI) on the surface of the anode. On the other hand the HOMO-LUMO 
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gap for DMC is 3.0 eV and therefore from a thermodynamic point of view the 

highest achievable potential limit for DMC-EC solvent is 4.2 V. Additional 

kinetically impeding factors (over-potentials) make DMC-EC mixture as a suitable 

electrolyte solvent for safe operations of cells up to 4.5 V. 

 

 

Figure 1-2. Energy level diagram for DMC solvent in a Li-ion cell. 

 

Despite the successful operation of the rechargeable TiS2-Li battery, the 

research was discontinued due to a major safety issue: the non-uniform deposition 

of Li+ on Li metal creates Li dendrites which can grow toward the cathode and 

eventually form a short-circuit inside the cell which leads to catastrophic 

consequences. The problem of Li dendrite formation has been resolved by 

replacing lithium metal with graphite which can be lithiated at a potential of 0.2 V 

vs. Li+/Li0. However, researchers were looking for chemistries with higher specific 

energies, as compared to the TiS2-Li cell. 

As a transition to higher specific energy batteries one may consider 

increasing the cell potential. The conduction band energy of the cathode active 

material determines the discharge potential of a cell; hence the conduction band of 

MO2 (with a mixture of oxygen 2p and metal 3d bands) lies at a lower energy level 

(and thus higher voltage) compared to the MS2 (metal 3d and sulfur 3p bands) as 

oxygen 2p orbitals are harder bases compared to the sulfur 3p orbitals. This opened 

up the investigation window toward LiCoO2 which is a layered compound similar 

to LiTiS2, but differs in their stacking of anion layers, cubic stacking in the former 

and hexagonal stacking in the latter. 
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Since their introduction to the market by Sony Corporation back in 90’s, 

lithium ion batteries (LIB) revolutionized the electrochemical energy storage 

concept. With their light weight, acceptable capacity and relatively high voltage 

LIBs formed a platform for powering up portable electronic devices such as 

laptops and mobiles, which has revolutionized our lives. The schematic of a typical 

LIB is shown in Fig. 1-3. 

 

 

Figure 1-3. Schematic representation of a LIB. 

 

In a fresh LIB system based on LiCoO2 chemistry and with the cell initially 

in the discharged state, the redox active cobalt center is in the lower oxidation state 

of +3. LiCoO2 composed of layered network of CoO2 sheets formed from edge 

sharing CoO6 octahedral units with the octahedrally coordinated lithium ions 

located in the interlayer space (Fig. 1-4).  On the anode side the graphitic carbon 

(C) is in the higher oxidation state of 0. As the battery is connected to a charger 

electrons are pumped through the external circuit from the cathode to the anode, 

thus oxidizing the cobalt in the cathode active material from the oxidation state of 

+3 to +4 and reducing the carbon on the graphite anode from the oxidation state of 

0 to -1/6. 
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Figure 1-4. The layered crystal structure of LiCoO2. 

 

Meanwhile to balance the charge, lithium ions deintercalate from the 

LiCoO2 cathode into the electrolyte and an equivalent number of Li+ intercalate 

from the electrolyte into the anode to form LiC6. The whole electrochemical 

reaction can be expressed according to equations 1-4 and 1-5: 

In cathode: 𝐿𝑖𝐶𝑜𝑂2 → 𝐶𝑜𝑂2 + 𝑒 + 𝐿𝑖
+      (1-4) 

In anode: 𝐶6 + 𝑒 + 𝐿𝑖
+ → 𝐿𝑖𝐶6       (1-5) 

Theoretically the battery is fully charged when all the cobalt centers in the 

cathode have been oxidized to the higher oxidation sate of +4 and there is no Li+ 

left in the cathode. Under this situation the LIB has a state-of-charge of 100% 

(SOC 1.0) and is ready to be discharged (theoretical capacity: 273.8 mAh.g-1). 

Upon discharge the reverse of the above electrochemical reaction occurs during 

which the CoO2 will be reduced and intercalated with Li+ at an average voltage of 

3.7 V vs graphite, LiC6 is deintercalated oxidatively and Li+ ions will have a net 

flow from the anode toward the cathode through the electrolyte, according to 

equations 1-6 and 1-7. 

In cathode: 𝐶𝑜𝑂2 + 𝑒 + 𝐿𝑖
+ → 𝐿𝑖𝐶𝑜𝑂2      (1-6) 

In anode: 𝐿𝑖𝐶6 → 𝐶6 + 𝑒 + 𝐿𝑖
+       (1-7) 

Even though Lithium cobalt oxide showed outstanding success for energizing 

small electronic devices, it suffers from a number of issues for large scale 
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applications. First, only half of the theoretical specific capacity can be utilized 

practically. This is due to the fact that the CoO2 layers in LiCoO2 crystal structure 

are separated by the Li+ ions; extraction of more than 50% (practical capacity: 137 

mAh.g-1) of those ions causes collapse of the structure and irreversible 

transformation into other phases which are not electrochemically active. This also 

imposes overcharge protection devices to be implemented into the battery system 

to avoid capacity loss. Secondly, from a chemical point of view the nature of the 

transition metal cation–oxide anion bond in a transition metal oxide compound is 

highly ionic due to the large difference in the electronegativity of the participating 

atoms in the bonding. This can lead to electrolytic bond cleavage of the oxygen–

metal bond and release of the oxygen gas from the cathode. This has been 

demonstrated schematically in Fig. 1-5;  when the cell voltage increases to oxidize 

Co3+ to Co4+, partial overlap of the metal 3d band and oxygen 2p band causes 

electrons to be stripped from O 2p band, resulting in oxygen gas release. 

 

 

Figure 1-5. Energy level diagram indicating the relative ordering of metal and 

oxygen energy bands in LixCoO2. [5] 

 

As the battery is a closed system and accumulation of the oxygen gas in 

contact with the organic-based electrolyte, and heat generated during the battery 
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operation can cause onset of spontaneous exothermic reaction which leads to 

further release of oxygen gas and thermal runaways. Introduction of secondary and 

tertiary transition metals in Co site (e.g. Li1-x[Ni0.5-yCo2yMn0.5-y]O2 ) has been 

found to be effective in bringing down the oxygen 2p band energy lower than that 

of the transition metal 3d band so that almost complete oxidation of the metal 

center can occur before O2 gas release.[6] 

Apart from LiCoO2 there are currently other transition metal oxides in 

which the LIB operation is based on the reversible Li+ insertion followed by a 

change in the oxidation state of the central transition metal atom, similar to the 

former case. Some of these provide considerable improvement over LiCoO2 in 

terms of capacity and operating voltage. Among these LiMn2O4 and its nickel 

substituted version, Li[Ni0.5Mn1.5]O4 can be mentioned which can provide a 

discharge voltage of 4.7 V vs. Li+/Li0 with the extraction of one Li+ from the 

formula unit.[7] 

 

1.2. POLYANION BASED CATHODE MATERIALS 

By definition, transition metal polyanion compounds are a class of materials 

which are composed of polyhedral XOn moieties connected with MO6 octahedral 

units (mostly) and less frequently MO5 bi-pyramidal or MO4 tetrahedral units, 

through the bridging oxygen atoms. The X atoms in the polyanion, XOn, 

encompasses a wide range of non-metals (X: P, S, B, C, and N) and occasionally 

semi-metallic or metallic (X: Si, Ge, Se, As, Sb, Nb, Mo, W, etc.) elements. 

Within the polyanion, the X— O bond has a high degree of covalency due to either 

non-metal-oxygen electronegativity difference or high order bond formation 

between metals in high oxidation states and oxygen. This ensures that the oxygen 

atoms are tightly bound to the material framework imparting higher thermal and 

mechanical stability to the material compared to the pure transition metal oxides. 

On the other hand the M — O bond becomes more ionic in nature due to the ample 

electronegativity differences in the X – O bond, a phenomena known as inductive 

effect, which helps to improve the redox potential of the active material upon 

change of oxidation state on the metal center. 
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Following the introduction of transition metal oxides in LIB, Goodenough 

et al pioneered the idea of electrochemical Li+ insertion into a solid-state host of a 

polyanionic compound of iron, olivine LiFePO4 [8]. This marked a big step in LIB 

research and development and brought several promises with it:  

 The polyanion chemistry creates a basis for iron based compounds to be used as 

cathode in LIB. The inductive effect of the polyanion increases the redox 

potential so much that low insertion voltage of pure iron-oxides increases 

manifold in iron polyanion compounds and they become good candidates for 

cathode. Unlike cobalt, iron is a low cost earth abundant element with no toxicity 

on living organisms and has less environmental issues; 

 The existence of covalent bonds within the polyanion moiety eliminates the 

chance of electrolytic O2 gas release and makes these compounds inherently safe; 

 Due to strong covalent bonds, the polyanion compounds offer solid-state 

materials with higher structural stability in which structural rearrangement due to 

Li+ extraction/insertion are minimized and often the full capacity given by 

theoretical calculations can be achieved; 

 Unlike the oxide chemistry where the structures are formed by the limited 

number of close packed anion array, various 2D, 3D and open-framework 

structures can be formed by mixing different polyanions and transition metal 

centers; 

The possibility to tune the band structure of the solid-state compound 

through using different polyanionic moieties, as well as addition of secondary 

(poly)anion, through adjusting the iono-covalency nature of the metal-ligand bond 

serves as a tool for tuning the cell voltage in the polyanionic cathode materials. 

A typical cathode based on olivine LiFePO4 can provide a flat discharge 

potential at 3.4 V vs. Li+/Li0 and a practical specific capacity close to 170 mAh.g-1. 

The crystal structure of the olivine LiFePO4 is shown in Fig. 1-6(a). The structure 

composed of FeO6 octahedral units alternatively edge and corner-shared with PO4 

tetrahedral units which leads to formation of a rigid structure with effectively 1D 

diffusion channels along the b-axis of the crystal, hosting the Li+ ions [9]. Loaded 

in a cell as cathode, LiFePO4 is initially in the discharged state; charging the cell 
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against Li anode causes oxidative delithiation of the cathode electrode to FePO4 

which is structurally similar to LiFePO4, although they constitute two different 

thermodynamic phases. For any electrochemical process one may use the Nernst 

equation to follow the cell potential as the electrochemical reaction occurs. 

Therefore, treating the olivine cathode charging reaction as an example the 

respective cell potential in terms of the activities of the redox reaction components 

are given in equations 1-8 through 1-10: 

𝐿𝑖𝐹𝑒𝑃𝑂4 → 𝐹𝑒𝑃𝑂4 + 𝑒 + 𝐿𝑖
+       (1-8) 

𝐿𝑖+ + 𝑒 → 𝐿𝑖          (1-9) 

𝐸𝑐𝑒𝑙𝑙 = 𝐸𝑐𝑒𝑙𝑙
0 −

𝑅𝑇

𝐹
𝑙𝑛
𝑎𝐹𝑒𝑃𝑂4 .𝑎𝐿𝑖

𝑎𝐿𝑖𝐹𝑒𝑃𝑂4
       (1-10) 

Where 𝐸𝑐𝑒𝑙𝑙
0  is the cell potential at standard thermodynamic conditions, F is 

the Faraday’s constant, T the absolute temperature and ai is the activity of 

chemical species i. Since by definition the activity of a pure solid is equal to unity, 

for an electrochemical reaction which contains a redox couple in two different 

phases the above fraction simplifies to unity, and the cell potential remains at the 

𝐸𝑐𝑒𝑙𝑙
0  throughout the electrochemical process irrespective of the change in the 

composition of electrode (Fig. 1-6(b)). As will be shown later in the results section 

this is not always the case, as the oxidized and reduced forms of a cathode 

normally are such similar in crystal structure that they become thermodynamically 

indistinguishable, with no phase boundary separating the two components and 

forming a solid solution of mixed oxidation states. Under this condition the 

activities of the redox forms of the cathode are not unity anymore and hence the 

overall cell potential follows a sloppy sigmoid-shaped curve with a center roughly 

at 𝐸𝑐𝑒𝑙𝑙
0 . 

A very intuitive demonstration of the capability of the polyanion chemistry 

can be visualized by substituting the active metal center with other metals of the 

first row of the d-block of the periodic table in the olivine LiMPO4. As the redox 

potential of the M(II)/M(III) couple increases in the first row of transition metals, 

so does the cell potential (Figure 1-7). 
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Figure 1-6. (a) Crystal structure of the olivine LiFePO4; (b) Voltage-composition 

profiles of LiFePO4 as cathode in a typical LIB at various temperatures [10]. 

 

 

 

Figure 1-7. Energy diagram of M(II)/M(III) redox energy in phospho-olivines 

(LiMPO4). 

 

Following the discovery of electrochemical activity in LiFePO4 there was a 

burst of scientific reports studying the electrochemical activity in already known or 

newly discovered metal polyanion compounds. Apart from the already discussed 

phosphates, other compounds based on SO4, SiO4, BO3 were reported. The effect 

of the electronegativity of the central atom of polyanion on the iono-covalency 

nature of the metal-ligand bond and their effect on the cell voltage has been 

demonstrated (Fig. 1-8).  

Fig. 1-8 clearly demonstrate the effect of electron withdrawing power of the 

central atom in the polyanion on the redox potential of different transition metal 

centers, indicating the numerous compositional combinations which may be used 
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for tuning the cell potential. Moreover, addition of a secondary anion to the 

primary polyanion adds new structural and chemical dimensions to the polyanion-

based compounds of transition metals. In this regard mixed oxide-phosphate, 

fluoride-phosphate and carbonate-phosphate in LiVOPO4, LiVPO4F, LiFeSO4F 

and Li3FePO4CO3 demonstrate the immense possibilities to discover new 

opportunities in this field. Table 1-1 provides an overview of the major 

polyanionic cathode materials discovered along with their figures of merit.  

 

 

Figure 1-8. Calculated (solid symbols) and experimental (+ symbol) cell voltage 

for a fixed composition LixMXO4 as a function of the Mulliken electronegativity 

of the X atom in the polyanion. [11] 

 

 

Table 1-1. Summary of the most important polyanion-based cathodes, with their nominal 

cell voltage and specific capacity 

Composition Structure type 

Potenti

al vs. 

Li+/Li0 

Theoretical 

capacity 

(mA.h.g-1) 

Practical 

capacity 

(mA·h.g-1) 

Ref. 

LiFePO4 Olivine 3.5  170 155 – 165 [8] 

Li3Fe2(PO4)3 NASICON 2.8 128 116 [12] 

LiVOPO4 New 3.98 158 90 [13] 

-Li3V2(PO4)3 NASICON-

related 

4.5 N/A 200 
[14] 

LiFeP2O7 LiInP2O7 2.9  113 113 [15] 

LiVPO4F Tavorite 4.1 156 155 [16] 
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Table 1-1. Summary of the most important polyanion-based cathodes, with their 

nominal cell voltage and specific capacity (cont.) 

LiFeBO3 LiCoBO3 2.9 200 156 [17] 

Fe1.8(PO4)(OH)0.52(

H2O)0.43 

Lipscombite 2.5 N/A 85 - 110 
[18] 

Li2FeSiO4 -Li3PO4 2.8 166 140 [19] 

Li5V(PO4)2F2 New 4.15 170 88 [20] 

Fe(OH)SO4 New 3.2 159 110 [21] 

LiFeSO4F Tavorite  3.6 151 140 [22], 

[23] 

LiFeSO4F Triplite 3.9 151 121 [24], 

[25] 

LiFeSO4OH New 3.6  80% [26] 

FePO4.H2O MnPO4H2O 2.8 159 125 [27] 

LiFePO4(OH) Tavorite 2.6 153 100 [28] 

LiFePO4F Tavorite 3 152 145 [29], 

[30] 

Li2FeP2O7 Li2MnP2O7 3.5 110 110 [31] 

Li2MnPO4F Na2ZrOSiO4 3.9 147 140 [32] 

Li2CoPO4F Li2NiPO4F 4.85 143 60 [33] 

Li9V3(P2O7)3(PO4)2 Li9Al3(P2O7)3(PO

4)2 

4.46, 

3.74 

116 110 
[34] 

Li3FeCO3PO4 Na3MnPO4CO3 2.8 115 110 [35] 

Li2Fe(SO4)2 Marinite 3.83 102 88 [36] 

 

The list of cathode materials in Table 1-1 is not meant to be comprehensive 

by any intention. However, they have been presented to demonstrate the huge 

potential and diversity one may expect from various transition metal polyanionic 

materials.  

 

1.3. SYNTHESIS PROTOCOLS FOR TRANSITION METAL POLYANIONIC 

COMPOUNDS 

As one may expect, synthetic chemistry contributed a huge role to the ever 

growing area of transition metal-polyanion compounds. This is mainly due to the 

numerous available polyanionic moieties and transition metals, which gives rise to 

several possible combinations. Moreover, solid-state chemists may use different 

synthetic strategies to form polymorphs of the same composition, which are not 

necessarily identical from an electrochemical point of view; LiFeSO4F is probably 

one of the best examples in this regard. Pure LiFeSO4F crystallizes in two different 
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phases, tavorite (triclinic, space group, 𝑃1̅) and triplite (monoclinic, space group 

C2/c) through different synthesis methods. The difference in the crystal structure 

(though same composition) leads to surprising results in lithiation voltages, 3.9 V 

and 3.6 V for triplite and tavorite, respectively (Table 1-1). The lithiation voltage 

of triplite currently holds the record as the highest observed redox potential of 

Fe2+/Fe3+ couple among all solid-state materials. The change in crystal structure 

created by different ordering and connectivity of polyhedral units not only affects 

the cell voltage through thermodynamic stability factors, but also greatly affects 

the power rating of the active material via altering the diffusion path geometry and 

kinetics of Li+ ion mass transfer during the cell performance. 

With the above argument forming a platform to emphasize the importance of 

synthetic methods to make solid-state inorganic materials, the following discussion 

briefly list the mostly used synthetic methods for the synthesis of battery active materials. 

Different methods have been sorted according to the normally used temperature regime. 

[37] 

 Solid-state and ceramic reactions: 

The direct solid-state methods has been used traditionally for making oxides 

and other materials with high thermal stability. The method works based on simple 

enhanced ionic diffusion at high temperatures through intimate contact between 

the starting materials particles. Typically the reagents first milled extensively for 

an extended period of time to achieve uniformity and small particle size, followed 

by pressing into a pellet and subsequent heating at 600-900 °C for a few hours to 

several days. The reaction environment are generally controlled by passing 

reactive or inert gases to stabilize the desired oxidation state of the transition metal 

center. For a given set of conditions, normally the most thermodynamically stable 

phase forms as a result of high activation energy given as thermal energy. This 

limits the solid-state and ceramic methods to effectively study the polymorphism 

and also exclude the synthesis of more thermally labile compounds. Moreover, the 

appearance of impurity phases due to intrinsic inhomogeneity of reagents and 

formation of large agglomerates with long Li+ diffusion path lengths are very 

common in these synthetic methods. 
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 Sol-gel processes: 

The sol-gel process is a multi-step synthetic method which offers better 

homogeneity and smaller particle sizes compared to the solid-state synthesis route. 

In this method the reagents are first dissolved and mixed into a solvent to form a 

homogenized mixture; the solvent is then evaporated, leaving the solid residue 

which is pulverized and pyrolyzed at high temperatures, similar to the ceramic 

methods. Since the mixing is performed on an atomic scale, the products present 

higher degrees of pureness. Moreover conductive carbon layers can be formed on 

the product particles if carbon-based precursors are used during the synthesis. 

 Precipitation processes: 

 The precipitation methods can be used for making those materials which 

form as a precipitate as a result of low solubility constants. The method involves 

mixing the reagents in a solvent and forming the precipitate by adjusting the pH. 

The precipitate is normally heated at high temperatures (400—700 °C, providing 

thermal stability) to remove the solvent and possible crystalline disorders. 

 Polyol processes:  

High boiling point polyols play the role of solvent and reaction medium in 

polyol based synthesis. The reaction is conducted at the boiling point of the solvent 

and under isobaric conditions over a hot oil bath, hence eliminating the need to 

sophisticated reactors. The commonly used polyols are tetraethylene glycol 

(Tb=314 °C), triethylene glycol (Tb=285 °C) and diethylene glycol (Tb=245 °C).  

 Hydrothermal and solvothermal processes: 

These two processes encompass the widest range of syntheses due to the 

low cost of solvents used, relatively low temperatures required and the high degree 

of control on the reaction conditions. In a typical reaction the reactants are 

dissolved/dispersed in the solvent (water in the case of hydrothermal reactions) 

taken into a teflon cup, which is then sealed into an autoclave steel jacket and 

placed in an oven at a temperature higher than the boiling point of solvent 

(normally <250 °C). The combination of high temperature and high autogenous 

pressure leads to the formation of high purity product with good yield. 
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 Ionothermal processes:  

These methods are based on the dissolution of reagents in the ionic solvents 

with very low vapor pressure. These reactions are based on the organic ionic 

liquids which are generally expensive, especially for large-scale applications 

though eliminates the need of elaborate reactors, it imposes recycling of the ionic 

liquid. 

 Inorganic fluxes and eutectic salt mixtures: 

These are based on eutectic mixtures or pure compounds with relatively low 

melting points and are generally much cheaper compared to the ionic liquids. This 

category can have a wide range of melting points and stability windows, covering 

the temperature range required for making transition metal polyanion compounds.  

Among the above methods, the hydrothermal and flux-based methods have been 

used extensively in this work. This is mainly due to the low-cost and scalability 

requirements of battery manufacturing process. Moreover, due to the low to moderate 

temperatures involved in hydrothermal and flux based reactions, they unlock access to a 

vast area of metastable compounds with interesting structural and performance features, 

which cannot be formed by other methods. This is more promising in the case of 

inorganic fluxes, where the flux acts not only as a medium to dissolve the precursors, but 

also takes part as a reagent, affecting the final composition of the material. Some 

examples of the latter is presented in the results sections. 

Given the vast studies done so far on the role of the polyanion chemistry for 

designing cathode materials for LIB application, the innovation has finally reached a 

plateau. The aim of this work was to focus more on the unexplored areas of the polyanion 

chemistry and to inspect the possibility of discovering new combination which may be 

technologically important for energy storage applications. This has been done partly by 

focusing on flux-based reactions using phosphorous acid, H3PO3, which has a low 

melting point of 94 °C. Moreover, a major volume of the work has been done to study the 

role and effect of phosphite (HPO3
2-) as a polyanion which was not investigated 

previously. On the transition metal side, the focus has been narrowed down to iron, to 

keep the cost, toxicity and abundance of the cathode active material at an optimum level, 

especially for very large scale applications (e.g. grid scale energy storage). This led to the 
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formation of two new compounds, Li3Fe(HPO3)3Cl and LiFe(HPO3)2 as discussed in the 

relevant chapters. Moreover the idea of combining two polyanions and studying the 

structural and electrochemical effects of these mixings led to the formation of 

LiFe(H2O)2B[P2O8] •H2O and AFePO4NO3 via hydrothermal and flux-based syntheses, 

respectively. The latter is closely related to the carbonophosphates discovered recently. 

[35] Finally new hydrothermal and flux-based syntheses have been employed to 

demonstrate alternative synthetic methods for the formation of tavorite LiFePO4(OH)xF1-x 

( 0 ≤ 𝑥 ≤ 1) and to emphasize the role of synthesis, and its effect on controlling 

composition and eventually cell performance. 

Despite the high success rate of current Li-ion batteries, unfortunately they cannot 

be still be treated as an energy storage technology for the future. This is mainly due to the 

global shortage of lithium resources and ever increasing use of Li-ion batteries may pose 

a serious risk of extinction at the end of current or the early decades of the next century. 

This problem should be addressed by substituting the electrodes with materials which can 

intercalate sodium, a widely available alkali ion. The principles of lithiation and sodiation 

follow similar routes, and hence some of the cathode materials can intercalate Na+ as well 

as Li+ ions, provided there is enough crystal stability of the corresponding sodiated phase. 

For such systems, the observed cell voltage and power rating is, however, inferior to the 

Li-ion counter parts, as a result of lower Fermi level in sodium and larger ionic radii of 

Na+ compared to the Li+ ion, which makes the diffusion of Na+ sluggish. Due to the 

importance of studying Na-ion batteries, we have also evaluated the performance of 

Fe(H2O)2B[P2O8]•H2O and AFePO4NO3 as cathode materials in Na-ion cells and the 

results for each case are reported accordingly. 

 

1.4. EXPERIMENTAL 

The target of this research was to discover new polyanionic compounds 

based on iron which can be used as cathode materials in LIBs. The idea here was 

to incorporate desirable features of iron i.e. high abundance and low cost, with 

economical synthesis approaches to design cost effective solutions for energy 

storage at a stationary level. Unlike the mobile applications where a high power 

density battery system is crucial for successful realization of the technology, 
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stationary state applications demand lower battery costs and durability as the 

primary criteria of interest.  

The details of the experimental synthesis will be outlined in the respective 

chapters. Briefly various exploratory synthetic techniques mainly based on solvent 

free or low melting point fluxes have been used along with low cost starting 

substances. After heating the reaction mixture at various temperatures and times, 

the reaction products were retrieved from the mixture and subjected to the post-

synthesis analysis and comprehensive characterization techniques. 

As these solid-state products are all crystalline, crystallography played the 

primary and central role in materials characterization. For products formed as large 

and high quality crystals, single-crystal X-ray diffraction (SC-XRD) was used to 

collect the diffraction data and solve the crystal structure while powder X-ray 

diffraction (PXRD) was used for sample purity assessment. On the contrary where 

the new product obtained only as powder (i.e. micro crystallites) high resolution 

synchrotron X-ray diffraction was used for solving the crystal structure. 

The solved crystal structure is often the starting point for many 

complementary chemical analysis techniques to expand our understanding of the 

material properties under study. These include the Mössbauer spectroscopy for 

assessing the oxidation state of the iron and its coordination sphere. Mössbauer 

spectroscopy was also used as a quantitative tool for quantification of the 

proportions of Fe(II) and Fe(III) in cases where a mixing of oxidation states 

occurred, either through synthesis or as a result of electrochemical treatment. DC 

magnetization measurements were used for characterization of magnetic 

interactions and magnetic phase transitions in samples and also to confirm the 

oxidation state assignments. Thermogravimetric analysis (TGA) was used for 

thermal stability determination and also to follow thermally induced structural 

changes leading to a change in the formula unit. Fourier-transformed infrared 

spectroscopy (FTIR) was used as a general tool for functional group 

characterization, while SEM/EDS analyses utilized for morphological and 

elemental analysis studies. Occasionally, elemental analysis using atomic 
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absorption spectroscopy (AAS) was employed for the exact determination of alkali 

ions concentration. 

Followed by comprehensive characterization of materials, the materials 

were processed for loading as composite cathodes in the test cells. The processing 

normally comprises milling with conductive carbon to reduce the active material’s 

particle size and increase the inter-particle electrical conductivity. Furthermore 

polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone (NMP) is 

added to the active material/carbon mixture and the resulting slurry was dispersed 

on the surface of carbonized aluminum current collector. Upon evaporation of 

NMP, PVDF acts as a binder for sticking the cathode mix to the current collector. 

Followed by the preparation of the composite cathode, a disk was cut and 

assembled in a coin cell versus metallic lithium anode, as depicted in Fig. 1-10. 

 

 

Figure 1-9. Coin cell structures. 

 

Finally for Li-ion cells few droplets of electrolyte ( a 1M solution of LiPF6 in 1:1 

mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC)) is added to the cell 

and the cell is crimped to seal.  The procedure for fabricating Na-ion cells is similar to the 

Li-ion ones, with the exception that fresh cuts of Na layer is placed as anode and a 1M 

solution of NaClO4 in DMC/EC has been used as the electrolyte.  Later, the cells were 

aged for few hours for stabilization and the anode SEI formation, as discussed previously. 

The cells were then subjected to various electrochemical tests to study the details of the 

battery performance. Cyclic voltammetry (CV) was employed as a preliminary screening 
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technique to evaluate the electrochemical activity of the as-prepared cathode material, 

determination of its redox potentials and the reversibility of the charge-discharge process.  

Galvanostatic charge-discharge tests were used as a quantitative technique 

for obtaining the voltage-composition profiles during the cell operation, as well as 

measurement of the practical specific capacity. The galvanostatic tests were 

initially started at slow charge-discharge current rates (C-rate), denoted as C/n 

where n is the time required for complete oxidation/reduction of the active material 

in hours. Following the slow charge-discharge tests the C-rate was increased 

stepwise to evaluate the cell performance and capacity retention at higher charge 

and discharge rates. 

As battery is a complicated multicomponent system, obtaining specific 

information on individual components is very difficult. Electro-impedance 

spectroscopy (EIS) was used as a technique of choice for studying the responses of 

various components of a cell separately. This is done by applying a variable 

frequency alternating current (AC) voltage input and recording the AC current 

output; provided that different components of the cell have different time-constant, 

their current response can be separated in frequency domain. 

EIS was also used on candidate samples selected based on crystal structures 

for measurement of Li+ ionic conduction in the as-synthesized materials. This has 

been done by coating the sides of a pelletized sample by conductive silver paint 

(blocking electrodes) and obtaining the impedance spectra at various temperatures. 

Details of the synthesis and experimental procedures are provided in the respective paper 

sections.
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Abstract 

New synthesis routes were employed for the synthesis of three derivatives of iron 

hydroxo-, fluoro-, and mixed hydroxo-fluoro phosphates LiFePO4(OH)xF1-x where 

0≤ x ≤1 with tavorite structure type, and their detail electrochemical activities have 

been presented. The hydrothermal synthesis of pure hydroxo- derivative, 

LiFePO4OH, using phosphorous acid as a source of phosphate yielded good 
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quality crystals from which the crystal structure was solved for the first time using 

SC-XRD (single crystal X-ray diffraction). The fluoro derivative, LiFePO4F, was 

prepared as very fine powder at low temperature in a solvent-less flux-based 

method employing phosphorous acid and mixed alkali metal nitrates. A mixed 

anionic hydroxo-fluoro iron tavorite phase, LiFePO4(OH)0.32F0.68, was also 

synthesized by a hydrothermal route. The electrochemical performance of the three 

phases was studied with galvanostatic charge/discharge tests, cyclic voltammetry, 

and electrochemical impedance spectroscopy. All three phases showed facile Li-

insertion through the reduction of Fe3+ to Fe2+ at an average voltage in the range of 

2.4 – 2.75 volt, through the variation of anion from pure OH to pure F. An increase 

of 0.35 volt was observed as a result of F substitution in OH position. Also, good 

cyclability and capacity retention was observed for all three phases and a 

reversible capacity of more than 90% was achieved for LiFePO4F. The results of 

EIS indicated that lithium ion mobility is highest in the mixed anion. 

 

Introduction 

Polyanion-based compounds of transition metals are being actively investigated as 

cathode materials for Li-ion battery since the discovery of electrochemical activity 

in LiFePO4 by Goodenough’s group.1 The polyanions especially phosphates, 

sulfates, silicates and borates are capable of forming a wide variety of 2-

dimensional (2D) and 3-dimensional (3D) structures with transition metals, which 

are stable and amenable for facile electrochemical Li-ion insertion.2 There are 

several other advantages of polyanion based materials over simple oxides. The 

electronegativity of the central atom of the polyanion due to its inductive effect 

increases the potential of the transition metal redox couple Mn+/M(n-1)+ with respect 

to Li+/Li compared to pure oxides.3 Secondly, the polyanion-based cathodes are 

inherently safer due to the strong covalent bond between the central atom (P, Si, S, 

and B) and the oxygen, which prevents them from dissociation when the cell is 

fully charged or fully de-lithiated. All these characteristics have made these 

materials excellent candidates for motor vehicle application where safety is of 

utmost importance. In this regard olivine LiFePO4 has been touted as an excellent 
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candidate for hybrid electric vehicle application due to its reasonably high energy 

density with an average voltage of 3.5 volt vs Li+/Li and a theoretical capacity of 

170 mAh/g.4 However, olivine LiFePO4 also suffers from limitations due to poor 

electronic conduction and 1-dimensional Li-ion diffusion channel.5 To overcome 

this drawback, carbon coating and nano-structuring are essential to achieve near 

theoretical capacity at fast discharge rate, which eventually reduces the cost 

effectiveness of the material.6,7 Recently, attention has been paid to another 

structure type namely, tavorite, with 3-D intersecting channels conducive for facile 

Li-ion transport.8 The sulfate version of iron tavorite, LiFeSO4F, showed excellent 

performance which can potentially outperform olivine LiFePO4.
9 The iron tavorite 

phosphate phases show an average voltage of 2.6 – 2.8 volts for the hydroxo and 

fluoro derivatives, which is lower than LiFePO4 and is caused by the structural 

differences with LiFePO4.
10-15 However, iron tavorite phases can be competitive 

for stationary application such as in smart grid, where safety, long cycle and 

calendar life, environmentally friendliness and low cost of the cathode materials 

supersede the need of high specific energy and energy density constraints of 

mobile applications.16 Although tavorite iron phosphate, especially the fluoro 

derivative, fulfils all the above criteria, they still require an inexpensive and 

scalable synthesis route for large scale industrial production. High temperature 

ceramic methods,12 ionothermal,11 and solvothermal13 routes reported so far for the 

synthesis of iron phosphate fluoro tavorite are cost prohibitive. In this article we 

report an innovative synthesis of fluoro (LiFePO4F) and hydroxo (LiFePO4(OH)) 

iron tavorite phases employing phosphorous acid as a source of phosphate in a low 

temperature flux and hydrothermal reactions, respectively. In addition we also 

report the synthesis of mixed fluoro/hydroxo phase, LiFePO4(OH)0.32F0.68,  by a 

hydrothermal reaction. The products were characterized by powder and single-

crystal X-ray crystallography, IR and Mössbauer spectroscopic techniques and 

thermogravimetric analysis. Although structure of full hydroxo tavorite has been 

reported from powder X-ray- and neutron diffraction data,10 the single-crystal X-

ray structure determination is reported here for the first time. Finally we present a 

comparison of the electrochemical Li-ion activities of the three phases with respect 
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to charge-discharge, cyclic voltammetry, and electrochemical impedance 

measurements. 

 

Experimental 

Materials  

LiNO3, KNO3, LiOH and H3PO3 were purchased from Acros Organics, 

Fe(NO3)3.9H2O from Alfa Aesar and Li foil from Sigma-aldrich. All the 

chemicals used without further purification. 

Synthesis 

LiFePO4F has been synthesized employing a low melting flux consisting of KNO3-

LiNO3 eutectic mixture and phosphorous acid (H3PO3). In a typical synthesis 8.08 

g of Fe(NO3)3∙9H2O (20 mmol), 0.52 g (20 mmol) of LiF, and 1.64 g (20 mmol) 

H3PO3 were added in 14 g of KNO3-LiNO3 mixture (0.56:0.44) in a 23 mL Teflon-

lined stainless steel Parr acid digestion bomb. The Parr reactor containing the 

reaction mixture was placed in a 200 °C oven and heated at that temperature for 72 

h, after that the bomb was removed from the oven and allowed to cool naturally. 

The product which consisted of white fine powder was washed with chilled water 

several times to remove LiF completely and then dried in air. 

LiFePO4(OH) was prepared hydrothermally employing H3PO3 as source of 

phosphate. In a typical synthesis 16.16 g (40 mmol) of Fe(NO3)3∙9H2O,  2.87 g 

(120 mmol) of LiOH, and 9.84 g (120 mmol) of H3PO3 were added in a beaker 

containing 40 mL of deionized water. The reaction mixture was stirred for several 

minutes to form a homogeneous solution. The reaction mixture was then 

transferred to a 120 mL capacity Teflon-lined stainless steel Parr reaction vessel. 

The reaction vessel was then placed in a 200 °C oven and heated at that 

temperature for 96 h, after that it was removed from the oven and allowed to cool 

naturally. This process yielded bright green color product containing good quality 

crystals suitable for single-crystal X-ray structure determination. 

 LiFePO4(OH)0.32F0.68 was prepared by hydrothermal method from a well 

homogenized reaction mixture of 1.35 g (5.0 mmol) of FeCl3∙6H2O, 1.04 g (25 

mmol) of LiOH∙H2O, 0.34 mL (5.0 mmol) H3PO4 (85%), 0.35 mL (10 mmol) HF 
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(49-51%) and 9 mL of deionized water in a 23 mL Teflon-lined stainless steel Parr 

reaction vessel. The Parr reaction vessel was heated at 175 °C for 72 h. The 

product, pale green powder was filtered, washed with hot water and acetone and 

subsequently dried in air. 

Material Characterization 

Single-crystal X-ray diffraction. Single-crystal X-ray diffraction studies 

of LiFePO4(OH): Crystal structure of LiFePO4(OH) was solved from single-crystal 

intensity data sets collected on a Bruker Smart Apex diffractometer with 

monochromated Mo Kα radiation ( = 0.7107 Å). Suitable crystal was selected and 

mounted on a glass fiber using epoxy-based glue. The data were collected at room 

temperature employing a scan of 0.3° in ω with an exposure time of 20 s/frame. 

The data sets were collected using SMART17 software, the cell refinement and data 

reduction were carried out with SAINT,18 while the program SADABS18 was used 

for the absorption correction. The structure was solved by direct methods using 

SHELX-9719 and difference Fourier syntheses. Full-matrix least-squares 

refinement against |F2| was carried out using the SHELXTL-PLUS19 suit of 

programs. The structure of LiFePO4(OH) was solved in 𝑃1̅ space group. The 

positions of two Fe atoms, Fe1 and Fe2 were located in 1c and 1a Wyckoff 

positions, respectively; one P and 5 O atoms were located in 2i positions from the 

difference Fourier maps. These positions were then refined isotropically and 

immediately the position of Li (2i) clearly appeared around 2 Å away from the 

oxygen atoms. At this point anisotropic refinement was carried out and a q peak 

appeared around 1 Å away from the oxygen (O3), which was bridging the two Fe-

atoms. This peak was assigned as hydrogen and refined isotropically without any 

constraints. After the refinement O – H bond distances changed to 0.778 Å. Details 

of the final refinements and the cell parameters for LiFePO4(OH) are given in 

Table 1. The final atomic coordinates and the isotropic displacement parameters 

are given in Table 2. Selected inter-atomic distances are listed in Table 3. 

Powder X-ray diffraction (PXRD). Phase purity for all samples was 

evaluated by X-ray powder diffraction patterns obtained from a PANalytical X'Pert 

Pro diffractometer over a 2θ range of 5 to 90 ° with scanning rate of 0.0236°s-1. 
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Mössbauer spectroscopy. 57Fe Mössbauer experiments were performed in 

transmission geometry at room temperature using a conventional constant 

acceleration spectrometer. The data were collected using a 57Co (50 mCi) gamma-

ray source embedded in a Rh matrix. Velocity calibration and isomer shifts are 

given with respect to alpha-Fe foil at room temperature. The Mössbauer data was 

analyzed by Lorentzian line fitting using RECOIL software.20 

 

Table 1. Crystal Data and structure refinement for LiFePO4OH 

Empirical formula LiFePO4OH V 174.81(6) Å3 

Formula weight 174.77 g.mol-1 Z 2 

Crystal system Triclinic ρcalc 3.320 g.cm-3 

Space group P1̅ F(000) 170 

a 5.3506(10) Å Temperature 293 K 

b 7.2877(14) Å GOF on F2 1.265 

c 5.1174(10) Å R factors 

[I>2σ(I)] 

R1 = 0.0393  

wR2 = 0.1126 α 109.237(2)˚ 

β 97.878(2)˚ R factors [all 

data] 

R1 = 0.0437 

wR2 = 0.1145 γ 106.397(2)˚ 

 

Thermo-gravimetric analysis. Thermo-gravimetric analysis of the samples 

was done using a TA instrument Q50 TGA from room temperature up to 800 °C 

with a heating rate of 10 °C.min-1 in N2 atmosphere. 

IR spectroscopy. IR spectra were obtained using a Thermo Nicholet Nexus 

470 FT-IR spectrometer on KBr pellets in the wavenumber range of 400 to 4000 

cm-1. 

SEM. The morphology of the powders was studied by scanning electron 

microscopy (Hitachi S570) at 10 KV with a LaB6 thermionic electron gun. 

Fluorine analysis. For determination of fluorine content in the mixed 

hydroxo-fluoro iron tavorite, LiFePO4(OH)1-xFx, a dried and accurately weighed 

sample was digested in acid and the fluoride ion concentration was subsequently 

measured with fluoride ion selective electrode calibrated against different 

concentrations of a standard (NaF) solutions; Accordingly x found to be 0.68. 

Electrochemical testing. For electrochemical studies cathode mixture was 

prepared by mixing the active cathode material (tavorite) with Super P conductive 
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carbon and poly vinylidene fluoride (PVDF) as binder in 75:15:10 weight ratio. 

First, the mixture of active material and carbon was ball milled in a SPEX 8000D 

ball mill for 1 to 2 h. PVDF was then added to this fine mixture followed by an 

appropriate amount of N-Methyl-2-pyrrolidone (NMP) to dissolve the PVDF. 

 

Table 2. Atomic coordinates and equivalent isotropic displacement parameters for 

LiFePO4OH 

Atoms x Y z U(eq) [Å2] SOF 

Fe(1) 0 0.5 0 0.0064(3) 0.5 

Fe(2) 0 0 0 0.0062(3) 0.5 

P(1) 0.6373(3) 0.7688(2) 0.3245(3) 0.0055(3) 1 

O(1) 0.6588(7) 0.8802(6) 0.1146(8) 0.0082(10) 1 

O(2) 0.3397(7) 0.6626(6) 0.3103(8) 0.0086(10) 1 

O(3) 0.9529(8) 0.2774(6) 0.1579(8) 0.0086(10) 1 

O(4) 0.7869(8) 0.6160(6) 0.2682(8) 0.0088(10) 1 

O(5) 0.2456(7) 0.0689(6) 0.3670(7) 0.0075(10) 1 

Li(1) 0.613(2) 0.1826(19) 0.254 (2) 0.024(3) 1 

H(1) 1.027(14) 0.326(10) 0.319(16) 0.007(16) 1 

  

This slurry was then further ball milled for about 15 minutes to form a 

uniform mixture. The resulting paste was spread into a uniform film on aluminum 

current collector foil manually with the help of a glass rod. The prepared 

composite cathode sheet was kept in vacuum oven at 90 °C for 12 h. Circular disks 

of 3/8 inch diameter were then cut from the composite cathode film and moved to 

argon filled glove box (oxygen level below 3 ppm) for cell assembly. The loading 

of the active cathode materials in the disk was about 4 – 4.5 mg. CR2032 type coin 

cells were assembled with the prepared composite cathode disks as positive 

electrode and lithium foil (thickness 0.75 mm) as the anode. A Celgard® 2325 

sheet was placed between cathode and anode to act as a separator and 1 M LiPF6 

dissolved in ethylene carbonate (EC) and dimethyl carbonate (DMC) solution in 

1:1 ratio was used as an electrolyte. The whole assembly was pressed using a coin 

cell crimper to fabricate the cell and aged for 12 h before electrochemical charge-

discharge experiments. 

A PAR EG&G potentiostat/galvanostat model 283 was used for recording 

the CV over the range of 1.5 to 4.0 V vs Li/Li+ with a scan rate of 0.02 mV.s-1. 
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Table 3. Selected bond lengths for LiFePO4OH 

Bonds 

Distances 

(Å) Bonds 

Distances 

(Å) 

Fe1 – O2 1.996(4) Fe2 - O5e 1.959(3) 

Fe1 – O3b 2.009(4) Fe2 – O3g 2.018(4) 

Fe1 – O4b 2.027(4) Fe2 – O1h 2.042(4) 

Fe1 – O2f 1.996(4) P1 – O1 1.543(4) 

Fe1 – O3h 2.009(4) P1 – O2 1.541(4) 

Fe1 – O4h 2.027(4) P1 – O4 1.523(5) 

Fe2 – O5 1.959(3) P1 – O5i 1.538(4) 

Fe2 – O1a 2.042(4) O3 – H1 0.78(8) 

Fe2 – O3b 2.018(4)   

a  -1 + x, -1 + y, z; b -1 + x, y, z; e –x, -y, -z; f –x, 1 - 

y, -z; g 1 - x, -y, -z; h 1 - x, 1 - y, -z; i 1 - x, 1 - y, 1 - 

z 

 

Galvanostatic charge/discharge experiments were carried out on an Arbin 

Instruments battery tester model BT2043. Electrochemical impedance spectra were 

collected with an Ivum Stat Impedance Analyzer at 30 °C in a frequency range of 

10 mHz to 100 KHz with AC signal amplitude of 5 mV and the resulting Nyquist 

plots were analyzed with ZView software. 

 

Results and discussion 

Synthesis, Structure and Morphology 

The method of synthesis is very important for the application of the material as 

cathode in Li-ion battery. Different synthesis methods produce different 

morphologies, particle sizes, and crystallinities. The hydrothermal synthesis of 

LiFePO4(OH) reported by Marx et al.10 and Ellis and Nazar14 are very similar and 

yielded product with platelet morphology. On the other hand our hydrothermal 

synthesis reported here starting with completely different starting precursors 

yielded good quality single crystals. Similarly, synthesis of LiFePO4F, which was 

so far achieved by three different methods namely ionothermal, high temperature 

solid-state, and solvothermal synthesis. The ionothermal synthesis of LiFePO4F 

reported by Tarascon group, involves expensive ionic liquids, has produced 
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nanometer sized particles. A high temperature (575 – 750 ° C) ceramic method, 

which is not energy efficient, has produced highly crystalline phase of LiFePO4F 

with micron sized particles often requiring extensive ball-milling to produce fine 

particles for electrochemical application. The solvothermal route reported by 

Nazar group also requires careful drying of the ethanol to produce OH free 

LiFePO4F phase of elongated particles. In this manuscript we are reporting for the 

first time a flux based solvent free method for the synthesis of LiFePO4F starting 

with H3PO3, iron nitrate, and mixed alkali metal nitrates at relatively low 

temperature (200 °C). It is to be noted here that in these reactions the phosphorous 

acid is acting as a precursor for phosphate moiety; aided by the strong oxidizing 

nature of the reaction mixture due to the presence of nitrate anions in solution (in 

the case of LiFePO4OH) or in the molten salt mixture (in the case of LiFePO4F). 

The following redox reaction (1) appears to occur as evident by the evolution of 

yellow-orange NO2 gas on opening the reaction vessel after completion of the 

reaction: 

2𝑁𝑂3
− + 𝐻3𝑃𝑂3  → 2𝑁𝑂2 +𝐻2𝑂 + 𝐻𝑃𝑂4

2−    (1) 

To compare the electrochemical activities of the two end members, pure 

hydroxo and pure fluoro, we have also synthesized a mixed anionic solid solution, 

LiFePO4(OH)0.32F0.68. The hydrothermal synthesis reported is different from Ellis 

and Nazar14 and produces micrometer long bar-shaped crystallites. Genkina et al 

first reported the single-crystal structure of a synthetic tavorite of the composition 

LiFePO4(OH,F).21 Yakubovich on the other hand reported a single-crystal study of 

a tavorite related phase with an additional Fe-sites and a mixed valency of Fe with 

the composition LiFe3+Fe2+
x[PO4][(OH)1-2xO2x].

22 In the former Li-site has been 

described as 6-coordinate, while the latter has two partially occupied 5 coordinate 

Li-sites. To our knowledge there is no report of single-crystal structure solution of 

pure LiFePO4(OH) from X-ray data. Recently, high quality X-ray and neutron 

powder data has been used to solve the structure of pure LiFePO4(OH) phase by 

Marx et al.10 and our single-crystal structure determination fully corroborates with 

that report. Both Fe1 and Fe2 adopt octahedral geometry, where Fe – O distances 

are in the range 1.995(3) – 2.0274(4) Å and 1.958(2) – 2.042(3) Å, respectively, 
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for Fe1 and Fe2. The Li ion is surrounded by 5 oxygen atoms in an irregular 

polyhedron, with Li – O distances in the range 1.944(4) – 2.177(5) Å. Both Fe – O 

and Li – O distances are in very good agreement with Marx et al’s neutron 

solution. Fe1 and Fe2 are located on the center of inversion at (0, 0.5, 0) and (0, 0, 

0), respectively, and Fe1O6 and Fe2O6 octahedra are connected through the corner 

(O3) to form a one-dimensional corner-shared chain along the a-lattice vector. 

These chains of octahedra are then cross-linked by the phosphate tetrahedra to 

form the three-dimensional structure. Such connectivity also leads to channels in 

all the three crystallographic directions (Fig. 1). The Li-ions are located in 

channels along the c-axis; on the other hand hydrogen attached to the bridging 

oxygen (O3) protrudes in the channels along the a-axis. It is also interesting to note 

that anisotropic thermal parameters for Li (U11 = 21, U22 = 31, and U33 = 17 Å x 

103) indicate more vibrations of Li along ab-plane compared to c-axis, an 

observation similar but less pronounced compared to the data from neutron 

refinement.10  

 

 
Fig. 1. Polyhedral representation of LiFePO4(OH) structure with Fe1 and Fe2 at 

the center of blue octahedra; a) view along the c- axis; b) view along the a- axis. 

a) 

b) 
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The powder XRD patterns of two as prepared tavorite phases are shown in 

Fig. 2. The experimental powder patterns for LiFePO4(OH) and 

LiFePO4(OH)0.32F0.68 were compared with the simulated powder X-ray pattern 

from the single-crystal coordinates of LiFePO4(OH). 

The excellent agreement between the simulated and the experimental 

patterns indicate phase purity of LiFePO4(OH), however, a small amount of LiF 

impurity phase can be seen in the as synthesized mixed anion phase, which goes 

away on repeated washing with chilled water. 

For the full fluoro derivative, LiFePO4F, a Rietveld refinement has been 

performed using GSAS-II software on a high resolution PXRD data.23  

 

 
Fig. 2. Observed and calculated XRD patterns for the two prepared tavorite phases. 

LiF impurity phase is marked with star. 

 

Unit cell parameters, space group (𝑃1̅), and atomic coordinates for the 

starting model were taken from Nazar group publication.13 Unit cell parameters, 

fractional atomic coordinates, isotropic thermal displacement parameters, and site 

occupancy for lithium ion were subsequently refined. Accordingly, the occupancy 

of two disordered lithium sites was refined to a value of each having 50% 

occupancy, which is slightly different from that reported by Nazar group. The 

refinement was converged with Rw = 2.11% (Fig. 3) and the resulting cell 

parameters [a = 5.296(2) Å, b = 7.256(5) Å, c = 5.140(3) Å, α = 108.43(7)°, β = 
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98.05(6)°, γ = 107.16(1)°, V = 173.05(2) Å3] are in good agreement with that 

reported by Nazar group.13  

 

 
Fig. 3. Calculated (red line) and experimental (open circles) curves after Rietveld 

refinement on XRD pattern of LiFePO4F. 

 

Fig. 4 demonstrates the typical SEM micrographs of the samples. The SEM 

images reveal great differences in the morphology between the three samples. As 

synthesized LiFePO4(OH) particles are composed of polyhedral crystals of various 

sizes fused together to form secondary particles, several tens of micrometers in 

diameter. LiFePO4(OH)0.32F0.68 on the other hand includes strip like crystals with 

submicron width and thickness and the synthesis procedure for LiFePO4F yields 

small plate-like crystals which are several hundred nanometers in thickness. 

Spectroscopic and thermo-gravimetric analysis 

Fig. 5 shows the FTIR spectra of the three samples with vibrational modes 

for phosphate in the range of 940-1160 cm-1. The -OH bending and stretching 

modes are clearly observed at 795 and 3270 cm-1, respectively, for the LiFePO4OH 

phase. As expected the intensity of the -OH vibrational modes decreased in 

LiFePO4(OH)0.32F0.68 compared to LiFePO4(OH) and disappear completely in 

LiFePO4F.  
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Fig. 4. SEM images of LiFePO4OH (a); LiFePO4(OH)0.32F0.68 (b) and LiFePO4F 

(c). 

 

 

 
Fig. 5. FTIR spectra of the three phases of LiFePO4(OH)xF1-x where 0≤ x ≤1. 

 

Fig. 6 exhibits the Mössbauer spectra for the three different samples, along 

with the fit parameters in Table 4.  

The Mössbauer spectra provide valuable information about the chemical 

nature of Fe in the compound. Two important parameters in Mössbauer spectrum, 

isomer shift (IS) and quadruple splitting (QS), are directly related to the total 

electron density at the Fe center which in turn gives sensitive information about 

valence and spin state of Fe. 

For each compound, the Mössbauer spectrum has been fitted with two 

doublets corresponding to Fe1 and Fe2. The ratio of the two doublets (1:1) 
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determined from the fitting is in agreement with ratio derived from crystal 

structure of LiFePO4(OH). The values of the isomer shift and quadruple splitting 

are signature of Fe in +3 oxidation state and octahedral coordination. The fitted 

values of IS and QS corroborates well with that reported by Delmas and Nazar 

groups.13, 10  

 

 
Fig. 6. Mössbauer spectra of three prepared iron tavorite phases; experimental 

data: dots; doublets 1 and 2: dashed and dotted line; solid line: fitted curve. 

 

More importantly it can be seen that the isomer shift as well as quadrupole 

splitting between the doublets increases as the F-/OH- ratio increase. This can be 

explained based on the reduction of the covalency of the Fe – X (X = O, F) bond 

with increase of fluoride anion24,25 and that is reflected in the higher cathode 

potential in the case of LiFePO4F (vide infra). 

Mössbauer spectra was also indicative of the fact that there was no other 

iron-containing impurities in any of the compounds as evident in the spectra 

collected over the entire velocity range spanning from -10 to +10 mm.s-1 (data not 

shown). 
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Mössbauer spectrum for LiFePO4(OH)0.32F0.68 also supports the 

substitutional solid solution of F and OH in the same crystallographic site and is 

statistically distributed throughout the structure. 

 

Table 4. Values of fit parameters for Isomer Shift (δ), Quadrupole Splitting (ΔE) 

and site percentage for LiFePO4OH, LiFePO4(OH)0.32F0.68 and LiFePO4F 

  Doublet 1 Doublet 2 

LiFePO4OH 

δ (mm.s-1) 0.398(9) 0.392(6) 

ΔE (mm.s-1) 0.469(2) 0.641(1) 

%Fe 50.016(4) 49.983(6) 

    

LiFePO4(OH)0.32F0.68 

δ (mm.s-1) 0.404(4) 0.406(4) 

ΔE (mm.s-1) 0.483(3) 0.769(4) 

%Fe 50.000(4) 49.999(6) 

    

LiFePO4F 

δ (mm.s-1) 0.425(8) 0.434(6) 

ΔE (mm.s-1) 0.772(4) 1.173(1) 

%Fe 49.947(8) 50.052(2) 

 

If LiFePO4(OH)0.32F0.68 was a heterogeneous mixture of 32% pure hydroxo 

and 68% of pure fluoro derivative or if there were fluoro or hydroxo rich regions in 

the structure then signature of both end member would have been found in the  

Mössbauer spectra. 

TGA was conducted to assess the thermal stability of each compound and 

the results are presented in Fig. 7.  

LiFePO4OH decomposes at 450 °C to Li3Fe2(PO4)3, Fe2O3, and H2O in 

agreement with previous results,13  LiFePO4F is stable up to 550 °C, about 50 °C 

lower than that reported by Nazar et al.14 This lower thermal stability can be 

assigned to smaller particle sizes of our sample. It is expected that LiFePO4F 

(2FeF3 + 3H2O = Fe2O3 + 6HF). LiFePO4(OH)0.32F0.68 shows a trend in between 

that of the other two end members of the group with two major mass loss steps. 

The first mass loss occurs at 450 °C, which we speculate, is due to the loss of HF 

according to the following equation, 3LiFe(OH)0.32F0.68PO4 = Li3Fe2(PO4)3 + 

1/3FeF3 + 1/3Fe2O3 + HF. Above 530 °C the sluggish weight loss may be due to 
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the decomposition of FeF3 due to the presence of impurity moisture similar to 

LiFePO4F.  

Electrochemistry  

Cyclic voltammetry. Fig. 8 shows the first cycle of cyclic voltammograms 

of composite electrodes made from these tavorite phases. The open circuit voltage 

(OCV) values for LiFePO4(OH), LiFePO4(OH)0.32F0.68, and LiFePO4F are 3.05, 

3.15, and 3.06 V, respectively. The cathodic (Li-insertion) and anodic (Li-

extraction) peaks are observed at 2.29 and 2.59 V for LiFePO4(OH), 2.43 and 2.94 

V for LiFePO4(OH)0.32F0.68, and 2.65 and 3.19 V for LiFePO4F. 

 

 

Fig. 7. TGA plots of three iron tavorite phases. 

 

 

 
Fig. 8. First cylce of cyclic Voltammograms for the three tavorite phases at 0.02 

mV.s-1. Cathodic current is negative. 
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Besides the main anodic and cathodic peaks, LiFePO4(OH) shows an 

additional broad anodic peak centered at 2.78 V, which may indicate phase 

transformation during oxidation. On the other hand LiFePO4(OH)0.32F0.68 shows 

low intensity shoulders in both anodic and cathodic peaks at higher and lower 

voltages than the main peaks, respectively. Upon successive cycling the shoulder 

peaks as well as the main anodic and the cathodic peaks shift to higher and lower 

potentials, respectively, indicating increased electrode polarization due to cycling 

(supplementary information). The increasing trend of discharge potential with 

increasing fluoride content in conjunction with the results from Mössbauer spectra 

suggests that incorporation of fluoride anion leads to the increased cell potential in 

the full fluoro tavorite version. Also notably, the area under cathodic curve is 

considerably larger for LiFePO4F compared to LiFePO4(OH), suggesting higher 

overall discharge kinetic capabilities of the former. 

Galvanostatic charge/discharge. Based on the results from CVs, cutoff 

potentials were set at 4.0 and 1.5 V for running galvanostatic charge/discharge 

experiments. The voltage profile for LiFePO4OH, LiFePO4(OH)0.32F0.68, and 

LiFePO4F are given in Fig. 9. 

As can be observed, LiFePO4OH delivers a specific capacity 102 mAh.g-1 

during the first discharge at C/50, which is 67% of the theoretical capacity (153 

mAh.g-1) followed by an irreversible capacity loss of about 6 mAh.g-1 (6 %) on the 

second cycle but stabilizes to almost constant capacity on subsequent cycles. 

It is to be noted here that during the 1st discharge the voltage drop was 

gradual from 3 volt (OCV) to 2.37 volt and then discharge curve shows a plateau 

at 2.32 volt till 0.45 Li insertion (69 mAh.g-1). However, on the subsequent cycles 

the discharge plateau is observed at 2.5 V.  

This gain of 0.13 V in the discharge voltage has also been observed by 

Nazar group13 and has been attributed to the fact that reductive Li-insertion into 

LiFePO4OH leads to an amorphous phase of Li2FePO4OH, which remains 

amorphous upon oxidation. Therefore, subsequent discharge/charge cycles take 

place from an amorphous phase and results in an increase of discharge voltage. For 
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assessing the cell capacity retention, it has been subjected to multiple 

charge/discharge cycles at higher C-rates. 

The results given in inset of Fig. 9(a) demonstrate that essentially there is a 

loss of capacity at higher C-rate due to electrode polarization. However, upon 

slowing down the C-rate, the initial capacity can be fully recovered at 96 mAh.g-1 

at C/50. 

 

 
Fig. 9. Voltage-composition profiles for the first 3 discharge curves of: 

LiFePO4OH a); LiFePO4(OH)0.32F0.68 (b) and LiFePO4F (c) at C/50. First 

discharge and charge: ─; second discharge and charge: ─; Third discharge: ─. 

Inset in each Figure shows the achievable specific discharge capacity at different 

C-rates on consecutive cycles. 

(a) 

(b) 

(c) 
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This suggests that the capacity loss due to fast C-rate was limited by the 

kinetics of Li-diffusion and electron transfer through the poorly conducting 

tavorite material and not due to any cathode degradation. On the other hand, for 

LiFePO4(OH)0.32F0.68 and LiFePO4F the discharge/charge behavior is different. 

These two phases demonstrate good specific capacity achievement for the first 

cycle at 131 (74% of theoretical capacity) and 146 mAh.g-1 (97% of theoretical 

capacity), respectively, at C/50 followed by an irreversible capacity fading of 10 

mAh.g-1 for LiFePO4(OH)0.32F0.68 and 4 mAh.g-1 for LiFePO4F in the second cycle. 

The difference in achievable specific capacity for the three phases may be due to 

the different particle sizes as can be seen from SEM images. During the first 

discharge for LiFePO4F the voltage gradually drops from 3.2 (OCV) to 2.90 volts 

which accounts for 0.1 Li insertion and then the discharge curve shows a flat 

plateau at 2.65 volt up to 0.7 Li insertion. After this point the voltage gradually 

drops to the lower cutoff point (1.5 volt). However, earlier report from Nazar 

group on LiFePO4F prepared by ceramic method has shown solid solution type 

sloping discharge curve up to 0.4 Li insertion.12 Although a good initial specific 

capacity was observed for LiFePO4F, it undergoes some irreversible capacity 

losses as a result of cycling at different fast C-rates (inset of Fig. 9(c)). At 20th 

cycle the capacity reduces to a value of 118 mAh.g-1 when discharge is repeated 

again at the initial rate of C/50. On the contrary, LiFePO4(OH)0.32F0.68 exhibit a 

gradual sloping profile in the entire discharge/charge curve, which may indicate 

solid-solution type behavior during the discharge and charging. Again this 

discharge slope is not as steep as it was reported for LiFePO4(OH)0.4F0.6,
14 which 

may be due to higher fluoride content in the current one. Capacity fading has been 

observed when cycled at different fast C-rates, however, the overall irreversible 

capacity loss after 20 cycles of charge/discharges at various C-rates is less than 8 

mAh.g-1 when the discharge is repeated again at the initial rate of C/50 (inset Fig. 

9(b)). More importantly the capacity appears to decrease upon cycling only 

slightly in the case of LiFePO4(OH)0.32F0.68. 

The derivative voltage-composition curves for the three phases are shown in 

Fig. 10. LiFePO4OH shows two distinct phenomena close to 2.4 V during the 
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discharge and sharp peak at 2.5 V due to the plateau arising from two phase 

behavior and broad peak centered around 2.6 V due to sloping charging curve. On 

the other hand LiFePO4F demonstrate rather sharp peaks in the derivative plot, 

indicative of two-phase lithium insertion reactions. 

 

 
Fig. 10. Derivatives of voltage-composition curves for the three tavorite phases. 

 

For LiFePO4(OH)0.32F0.68, the case is made complicated by the fact that 

insertion and extraction curves are broadened considerably and there is potential 

overlap of reduction and oxidation peaks indicating a solid-solution type behavior 

during Li-insertion and extraction.  

The effect of polarization (η) for the three phases as a function of C-rate is 

presented in Fig. 11.  

 

 
Fig. 11. Polarization as a function of C-rate for the three phases. 
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Polarization was measured from voltage-composition curves as the 

separation between charge and discharge plateaus at their flattest point. LiFePO4F 

shows the least polarization in C/50 rate, however, as the C-rate increases 

polarization increases abruptly suggesting the slow kinetics of lithium ion transfer 

in this phase. However, LiFePO4(OH)0.32F0.68 exhibit least polarization followed by 

LiFePO4OH and both exhibit similar sluggish increase in polarization with 

increasing C-rates. The relationship between polarization (defined as E-EOCV) and 

current density (J) treated according to porous electrode theory can be 

approximated as:26 

𝐽 ∝ 𝐹𝑘 [𝑥 exp (
𝛼𝐴𝐹

𝑅𝑇
(𝐸 − 𝐸𝑂𝐶𝑉)) − (1 − 𝑥)𝑒𝑥𝑝 (−

𝛼𝐶𝐹

𝑅𝑇
(𝐸 − 𝐸𝑂𝐶𝑉))]  (2) 

Where F is the Faraday constant, k is the adjusted electrochemical reaction 

rate constant, αA and αC are the respective transfer coefficients for cathodic and 

anodic reactions on the working electrode, and x is the fraction of lithiation. 

Furthermore, according to the Fick’s first law of diffusion:  

𝐽 = −𝑧𝐹𝐷(∇𝑐)         (3) 

Where z is the number of charges per charge carrier (z =1 for lithium ion) 

and ∇𝑐 is the concentration gradient across the cathode solid particle. Inspection of 

(2) and (3) suggests that η should have an inverse logarithmic relationship with 

diffusivity and concentration gradient of the lithium ion in the cathode, and should 

not depend on particle size, as can be seen in the work of Kang et al.27 Therefore, 

the higher polarization of LiFePO4F compared to LiFePO4(OH) or 

LiFePO4(OH)0.32F0.68 at higher C-rate can be attributed to the difference in lithium 

ion diffusion coefficients although the particle sizes are larger for LiFePO4OH and 

smaller for LiFePO4F.  

Electroimpedance spectroscopy: Electroimpedance spectroscopy (EIS) 

was used for further studying the lithium ion mobility in the three cathode 

materials and the results of experimental data and fitted curves using a general 

lithium-ion battery equivalent circuit model are shown in Fig. 12.28  

In the case of LiFePO4OH and LiFePO4(OH)0.32F0.68 two parallel R|CPE elements 

are required to describe the medium to high frequency region which are usually 
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assigned to solid-electrolyte interface (SEI) film and charge-transfer resistances 

while for LiFePO4F the above two processes have very close time constant so that 

they are merged together and only one parallel R|CPE is sufficient for modelling. 

 

 
Fig. 12. Nyquist plot for LiFePO4OH, LiFePO4(OH)0.32F0.68 and LiFePO4F cells 

with solid lines representing the fitted curve; inset: equivalent circuit model used 

for fitting. 

 

Note that the low frequency tail of the impedance spectra in all cases is 

characteristic of the ionic nature of conductivity. Interestingly, of the three 

derivatives LiFePO4(OH)0.32F0.68 phase exhibits the highest lithium ion mobility 

and smallest combined charge transfer and film resistance, consistent with 

polarization studies mentioned above. However, low frequency part of the spectra 

for LiFePO4F and LiFePO4OH has comparable absolute impedance magnitudes. 

The reason for comparable absolute impedances for LiFePO4OH and LiFePO4F at 

lowest frequencies is that although LiFePO4OH exhibits a higher lithium ion 
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diffusion coefficient, it has a higher average particle size as well and the 

corresponding relaxation time (τ) defined as:  

𝜏 =
𝐿2

𝐷
          (4) 

(where L is the diffusion length and D is the diffusion coefficient), becomes 

comparable to that of LiFePO4F. 

The values of fit parameters for the two systems are given in Table 5. The 

combined value for Rct+Rf and their related capacitance obtained for LiFePO4F 

are consistent with those reported by Prabu et. al.15 

 

Conclusions 

Novel synthesis routes presented in this work could be used to expand the 

inventory of available methods for production of the iron tavorite family of 

materials. The crystal structure found from single crystal X-ray diffraction 

confirmed the accepted models which were previously based mainly on powder 

diffraction techniques. Moreover, the low temperature, solvent free phosphorous 

acid based synthesis route proposes an economical and scalable way for mass 

production of LiFePO4F as a cheap cathode material for lithium ion batteries. 

 

Table 5. Impedance Equivalent circuit Fit parameters for LiFePO4OH, 

LiFePO4(OH)0.32F0.68 and LiFePO4F cells 

       Warburg Short*   

 
L1 

(μH) 

Rohm 

(Ω) 

Rf 

(Ω) 

Rct 

(Ω) 

Cf 

(μF) 

Cct 

(μF) 

Rw 

(Ω) 
τ (s) P 

Diff. 

Cap. 

(mF) 

Cell 

Cap. 

(nF) 

LiFePO4OH 4.5 9.7 83.9 98.2 12.5 89.5 7719 215 0.72 0.20 27.2 

LiFePO4(OH)0.32F0.6

8 
3.6 9.1 53.2 99.9 2.93 20.9 2565 134 0.54 3.11 19.9 

LiFePO4F 2.6 5.8 199.6 56.8 4404 211 0.46 2.93 31.6 

∗  𝑍𝑤𝑠 =
𝑅𝑊×𝑡𝑎𝑛ℎ(𝑗𝜔𝜏)

𝑃

(𝑗𝜔𝜏)𝑃
 where 𝜏 = 𝐿

2

𝐷⁄  and L and D are effective diffusion length 

and diffusion coefficients, respectively. 

 

The results of electrochemical tests indicate the importance of the anion on 

cell performance; coordination of F- anion increases the cell potential relative to 
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OH- anion by inductive effects. Both full fluoro and full hydroxo tavorite show a 

two phase behavior while the mixed anionic LiFePO4(OH)0.32F0.68 shows a solid 

solution like behavior during the Li-insertion and extraction. On the other hand, in 

terms of charge and discharge dynamics the mixed anion phase exhibited the 

highest lithium ion mobility.  
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Abstract 

A novel lithium containing iron-chlorophosphite, Li3Fe2(HPO3)3Cl has been 

synthesized by employing low melting phosphorous acid flux. The single-crystal 

X-ray structure determination established that the compound has a 3-dimensional 

structure built up by edge-shared octahedral dimer and phosphite moiety that 

create narrow channels along a- and b-axis. Two crystallographically independent 

Li-ions are located in those channels. The compound was further characterized by 

TGA, IR, magnetic measurements, and Mössbauer spectroscopy. Magnetic 
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measurements indicate that the compound has a field-induced metamagnetic 

transition. In this article we report for the first time an iron chlorophosphite, 

Li3Fe2(HPO3)3Cl, as the new polyanion-based cathode with a promising 

electrochemical activity that shows an average voltage of 3.1 V vs Li+/Li for the 

Fe2+/Fe3+ redox couple and a reversible capacity of 70 mAhg–1. Details of 

electrochemical studies including cyclic voltammetry, galvanostatic charge-

discharge, and electro-impedance spectroscopy are reported here. 

 

Introduction 

In recent years the Li-ion battery technology has seen a dramatic increase in its 

demand as the idea of implementation of Li-ion battery in hybrid electric vehicles 

(HEVs), electric vehicles (EVs) and smart grid is getting more and more 

attention.1, 2 Sustainable energy needs demand more efficient battery technology in 

terms of manufacturing costs, materials safety, environmental friendliness, cycle 

life, good rate capability, and capacity.3, 4 Cathode or positive electrode material 

plays a prominent role for achieving these goals. As a result there has been an 

ongoing effort to synthesize and identify new cathode materials.5 In this context 

polyanion-based materials, for examples, phosphates, sulfates, silicates, and 

borates of iron have taken a center stage in recent years challenging the purely 

oxide based materials.6 This burst of research activity in polyanion-based cathodes 

is due to one pioneering discovery by the Goodenough group that olivine LiFePO4 

is electrochemically active with a reasonably high operating voltage (3.5 V vs 

Li+/Li0) and with a reasonably good theoretical specific capacity of 170 mAh.g–1.7 

It was soon realized that there is a huge potential of the polyanionic cathode 

specially for the solid state chemist who can use innovative synthesis techniques 

and take advantage of the ability of polyanions to form different 3-dimensional (3-

D) and two-dimensional (2-D) networks amenable for lithium ion insertion.8 More 

importantly, the ability to tune the redox potential of the host cathode based on the 

iono-covalency of the metal-ligand bond through the influence of inductive effect 

of the central atom of the polyanion moiety has become an essential tool for design 

strategy of cathode materials.9 Thus a variety of polyanion-based compounds 
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including those previously known as well as newly discovered structures and 

compositions have been tested for Li-ion battery. These include borate 

(LiFeBO3),
10 silicate (Li2FeSiO4),

11 carbono-phosphates, (AMPO4CO3, A = Li, 

Na; M = Fe, Mn),12, 13 iron sulfates14 besides a large number of phosphates. Further 

tuning of the cell voltage has been achieved by introduction of fluoride into the 

structure, especially in iron- fluoride sulfate (Tavorite and Triplite phases)15, 16 and 

iron fluoride phosphate (Tavorite).17, 18 Some of the recently discovered iron 

sulfate cathodes are becoming strong contender to become an alternate to the most 

noteworthy polyanion cathode, olivine LiFePO4.
16 

Among the various polyanions, phosphite with three P – O bonds, one P – 

H bond and P in +3 oxidation state is known to form 2-D, 3-D or open framework 

structures with transition metals.19 These structures are quite stable and their redox 

chemistry as an insertion host for Li-ion battery has not been exploited thus far. 

Only recently Rojo’s group has shown small amount electrochemical activity in an 

open framework iron phosphite, Li1.43[FeII
4.43 FeIII

0.57(HPO3)6]·1.5H2O, in the 

potential range of 2.0 – 4.0 V vs Li+/Li with a specific capacity of 12 mAh.g–1.20 

In this article we describe the synthesis, structure determination, and 

magnetic properties of a new polyanion compound, Li3Fe2(HPO3)3Cl, based on 

phosphite moiety and demonstrate its application as a cathode material for Li-ion 

batteries. The electrochemical activity has been investigated by a variety of 

techniques and the results reported here exhibit an effective reversible capacity 

equivalent to 70 mAh.g–1  (about 53% of the theoretical capacity) between 2.2 – 

4.5 V vs Li+/Li and good high-current performance of this phase. 

 

Experimental 

Materials  

FeCl2·4H2O (reagent grade, purity 98%) was purchased from Fisher Scientific, 

LiOH·H2O (reagent grade, purity 98%) and H3PO3 (Extra pure, 98%) from Across 

Organics and Li foil (purity 99.9%) from Sigma-Aldrich. All the chemicals were 

used as-purchased and without further purification. 

 



50 

 

Synthesis  

Li3Fe2(HPO3)3Cl has been synthesized by mixing 2.9823 g of FeCl2·4H2O (15 

mmol), 1.2591 g LiOH·H2O (30 mmol) and 1.2300 g H3PO3 (15 mmol) in a 23 mL 

Teflon-lined stainless steel Paar acid digestion bomb. The reactants were first 

mixed in a Teflon beaker, which form a highly viscous flux upon mixing due to the 

water released in the course of acid-base reaction. The Teflon beaker with a lid 

was then placed in the steel autoclave, sealed tightly, and placed in an oven in the 

temperature range of 175 to 200 °C for 6 days, followed by cooling down naturally 

to room temperature. The product of the reaction composed of millimeter size 

crystals of green-jade color mixed with some impurity powder and/or minor needle 

like crystals, depending on the synthesis temperature. Variation of synthesis 

temperature and mole ratios did not yield a pure phase of the product in our hands. 

However, due to the ample crystal size difference between the main product and 

those of impurity phase(s) we were able to easily separate the product by first 

washing the reaction product with hot water to remove the unreacted reagents and 

subsequently sonication/decantation in deionized water. After purification the 

crystals were filtered, washed several times with water and ethanol and dried in air.  

Material Characterization 

Single-crystal X-ray diffraction. Crystal structure of Li3Fe2(HPO3)3Cl was 

solved from single-crystal intensity data sets collected on a Bruker Smart Apex 

diffractometer with monochromated Mo Kα radiation ( = 0.7107 Å). Suitable 

crystal was selected and mounted on a glass fiber using epoxy-based glue. The 

data were collected using SMART21 software at 200 K employing a scan of 0.3° in 

ω with an exposure time of 10 s/frame. The cell refinement and data reduction 

were carried out with SAINT,22 while the program SADABS22 was used for the 

absorption correction. The structure was solved by direct methods using SHELX-

9723 and difference Fourier syntheses. Full-matrix least-squares refinement against 

|F2| was carried out using the SHELXTL-PLUS23 suit of programs. The structure 

of Li3Fe2(HPO3)3Cl was solved in Pnma space group. The positions of one Fe, one 

Cl, two P, and 5 O atoms were located from the difference Fourier maps. These 

positions were then refined isotropically and immediately two more Li positions 
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clearly appeared approximately 2 Å away from the oxygen atoms. At this point 

anisotropic refinement was carried out and finally peaks of the intensity of 1 e/A3 

close to 1.3 Å away from the two P atoms appeared in the difference Fourier maps. 

These peaks were assigned as phosphite hydrogen and refined isotropically 

without any constraints. Details of the final refinements and the cell parameters for 

Li3Fe2(HPO3)3Cl are given in Table 1. The final atomic coordinates and the 

isotropic displacement parameters are given in Table 2. Selected inter-atomic 

distances are listed in Table 3. 

 

Table 1. Crystal Data and structure refinement for Li3Fe2(HPO3)3Cl 

Empirical formula Li3Fe2(HPO3)3Cl Z 4 

Formula weight 407.90 g.mol-1 ρcalc 2.737 g.cm-3 

Crystal system Orthorhombic F(000) 792 

Space group Pnma Temperature 200(2) K 

a 9.139(2) Å GOF on F2 1.125 

b 15.266(4) Å 
R [I>2σ(I)] 

R1 = 0.0230  

wR2 = 0.0654 c 7.094(1) Å 

α = β = γ 90 ° 
R [all data] 

R1 = 0.0240  

wR2 = 0.0661 V 989.8(4) Å3 

 

Powder X-ray diffraction (PXRD). Phase purity of Li3Fe2(HPO3)3Cl was 

evaluated by comparison of  PXRD pattern with the simulated pattern generated 

from the atomic coordinates of single-crystal XRD solution. The powder pattern 

was obtained from a PANalytical X’Pert Pro diffractometer equipped with a Cu 

𝐊𝛂𝟏,𝟐anode and a linear array PIXcel detector over a 2θ range of 5 to 90° with an 

average scanning rate of 0.0118° sec–1. 

Mössbauer spectroscopy. About 70 mg of sample was secured in a lead 

sample holder and studied by 57Fe Mössbauer experiment at room temperature 

using a constant acceleration spectrometer in transmission geometry, operated 

using a 57Co (50 mCi) gamma-ray source embedded in Rh matrix. The Mössbauer 

spectrum was calibrated for isomer shift with respect to a standard α-Fe foil at 

room temperature. The collected experimental data was then analyzed for line 

fitting by Lorentzian function using the RECOIL software.24 To confirm the 

electrochemical oxidation of Fe center inside the cell, few cells were subjected to 
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charge up to 4.5 V vs. Li+/Li, followed by recovering of about 15 mg of oxidized 

sample by breaking the charged cells. The oxidized cathode was then washed with 

NMP and acetonitrile and analyzed with Mössbauer spectroscopy in a manner 

similar to the as prepared crystals. 

Magnetic susceptibility measurements. The DC Magnetic susceptibility 

of the compound was measured at magnetic field of 0.5 Tesla (1 Tesla = 10,000 

Oe) after zero-field cooling over the temperature range 1.8 - 300 K and isothermal 

magnetization at 2 K was measured in an applied field range of +5 to -5 Tesla with 

a Quantum Design SQUID magnetometer. Several zero field cooled (ZFC) and 

field cooled (FC) magnetization data were collected at different applied magnetic 

field. Variable field magnetization was also measured under ZFC condition at 

different temperatures. 

Thermo-gravimetric analysis (TGA).  TGA has been done on the sample 

with a TA instrument Q50 TGA in a temperature range of 25 to 800 °C with a scan 

rate of 10 °C.min–1 under nitrogen flow. 

IR spectroscopy. The IR spectrum was collected using Thermo Nicolet 

Nexus 470 FT-IR spectrometer over 500 – 4000 cm–1 on a sample embedded in 

KBr pellet. 

Electrochemical testing.  To assess the electrochemical performance of 

Li3Fe2(HPO3)3Cl a standard cathode film was made first. In a typical composite 

cathode film preparation, the active material, Li3Fe2(HPO3)3Cl was first milled 

with super P conductive carbon thoroughly in a SPEX 8000D miller for 3 h to 

reduce the particle size. Poly-vinylidene fluoride (PVDF) was then added to the 

active material as the binder and an optimum amount of N-Methyl-2-pyrrolidone 

(NMP) was added to dissolve the PVDF. The resulting slurry was further ball 

milled for another 20 min until a homogeneous viscous mixture was obtained. The 

ratio of the active material, conducting carbon, and the binder in cathode mix was 

60:30:10. The cathode mix was then spread as a film of uniform thickness onto a 

flat sheet of aluminium current collector with a glass rod and transferred into a 

vacuum oven and dried for 12 h at 85 °C. 
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For electrochemical tests CR2032 type coin cells were fabricated. The 

composite cathode film was cut into circular disks (3/8 inch diameter) with 3.5 – 

4.0 mg of active material loading and transferred into an argon filled glove box 

with an oxygen concentration below 2.0 ppm. 

 

Table 2. Final Atomic Coordinates and Equivalent Isotropic Displacement 

Parameters of the non-Hydrogen and hydrogen atoms. Ueq = 1/3rd of the trace of 

the orthogonalized U Tensor 

Ato

m 
Wyckoff Site 

Occu-

pancy 
x/a y/b z/c Ueq [Å

2] 

Fe1 8d 1 1 0.62631(4) 0.63532(2) 0.48115(5) 0.0081(1) 

P1 8d 1 1 0.60170(6) 0.45227(4) 0.22508(8) 0.0081(2) 

P2 4c .m. 1 0.39091(9) ¾ 0.19558(12) 0.0084(2) 

O1 8d 1 1 0.75611(18) 0.45578(10) 0.1447(2) 0.0119(5) 

O2 8d 1 1 0.55165(18) 0.54337(10) 0.2834(2) 0.0106(4) 

O3 8d 1 1 0.58452(17) 0.38610(11) 0.3872(2) 0.0106(4) 

O4 8d 1 1 0.29833(18) 0.66721(10) 0.1918(2) 0.0130(5) 

O5 4c .m. 1 0.4923(2) ¾ 0.3676(3) 0.0098(6) 

Cl1 4c .m. 1 0.66554(9) ¾ 0.72893(11) 0.0131(2) 

Li1 8d 1 1 0.3491(4) 0.5690(3) 0.3526(6) 0.0144(11) 

Li2 4c .m. 1 0.3929(7) ¾ 0.6221(10) 0.0193(17) 

H1 8d 1 1 0.510(3) 0.420(2) 0.101(5) 0.0290 

H2 4c .m. 1 0.475(5) ¾ 0.036(6) 0.0290 

 

The cathode disk and Li anode (0.75 mm thickness Li ribbon cut into 

circular disk) were assembled in the coin cell casing with a Celgard® 2325 circular 

sheet placed between the two electrodes as the separator. The electrolyte, 1 M 

solution of LiPF6 in DMC-EC (1:1) was then added and the cell was sealed with a 

coin cell crimper. The prepared cells were aged for equilibration for about 12 

hours before electrochemical testing. 

Cyclic voltammograms were obtained using a PAR EG&G 

potentiostat/galvanostat model 283 in the potential range of 2.2 – 4.5 V (vs. Li+\Li) 

with a scan rate of 0.05 mV.sec–1. Voltage-composition profiles were obtained 

using galvanostatic charge/discharge experiments on an Arbin Instruments battery 

tester, model BT2043, on the same potential limits as CV with a constant current 

constant voltage (CCCV) charge and constant current discharge modes and at 

various C-rates. An Ivium Stat potentiostat/galvanostat with built-in impedance 
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analyzer was used for running electrochemical impedance spectroscopy (EIS) 

analyses on the assembled cells in a frequency range of 10 mHz – 100 kHz over 

the temperature range of 23 - 50 °C with an AC amplitude of 10 mV and the 

acquired experimental data were fitted to an equivalent circuit with ZView 

software. 

 

Table 3. Selected bond lengths for Li3Fe2(HPO3)3Cl 

Bonds Distances (Å) Bonds Distances (Å) 

Fe(1) – O(4)#1 2.052(9) P(2) – O(4)#4 1.521(1) 

Fe(1) – O(2) 2.098(5) P(2) – H(2) 1.37(4) 

Fe(1) – O(1)#2 2.105(9) Li(1) – O(1)#5 1.926(4) 

Fe(1) – O(3)#3 2.166(1) Li(1) – O(2)                     1.955(4) 

Fe(1) – O(5) 2.283(3) Li(1) – O(3)#3 2.061(5) 

Fe(1) – Cl(1) 2.506(6) Li(1) – O(4)                     1.940(4) 

P(1) – O(2) 1.521(3) Li(2) – O(3)#7 2.089(1) 

P(1) – O(1) 1.523(1) Li(2) – O(3)#3 2.089(1) 

P(1) – O(3) 1.538(6) Li(2) – O(5) 2.021(7) 

P(1) – H(1) 1.31(3) Li(2) – Cl(1))#6 2.331(6) 

P(2) – O(4) 1.521(1) Li(2) – Cl(1)                    2.605(7) 

P(2) – O(5) 1.532(2)   

#1 x +1/2, y, - z + 1/2; #2 – x + 3/2, - y + 1, z + 1/2; #3 – x + 1,- y + 1,- z + 1; #4 x, - y + 3/2, 

z; #5 x - 1/2, y, - z + 1/2; #6 x + 1/2, y, -z + 3/2; #7 –x + 1, y + 1/2, -z + 1. 

 

Results and discussion 

Synthesis  

While Li3Fe2(HPO3)3Cl can be synthesized in the temperature range 175 to 205 

°C, the nature of impurity phases varies with the temperature. The major impurity 

phase was Li1.43[FeII
4.43 FeIII

0.57(HPO3)6]·1.5H2O,20 when the reaction was carried 

out below 200 C and above 200 C an unknown impurity phase was observed as 

evident from  the PXRD and Mössbauer spectroscopy. This difference in impurity 

phases based on reaction temperature can be explained from the chemistry of 

phosphite group, which undergo decomposition (disproportionation) at 200 °C to 

phosphate and phosphine gas according to equation (1): 

4H3PO3
   ∆    
→  3H3PO4 + PH3      (1) 
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In both cases the reaction yields large crystals of Li3Fe2(HPO3)3Cl which 

can be readily separated and analyzed with single-crystal XRD. The powder XRD 

pattern of Li3Fe2(HPO3)3Cl obtained from purified phase along with the calculated 

pattern from the atomic coordinates of single-crystal data are represented in Fig. 1. 

A good match between the acquired and theoretical patterns suggests that the 

separated crystals are mostly pure and only minor amount of unknown impurity 

phase remains in the sample whose peak is indicated with an asterisk. From the 

Mössbauer spectroscopic analysis the percentage of impurity has been determined 

to be 3.6 % and isomer shift and quadrupole moment value point to some Fe(II) 

containing phase (discussed later). 

Structural description  

The asymmetric unit (Fig. 2a) contains 11 non-hydrogen atoms (1 Fe, 2 P, 2 Li, 1 

Cl, and 5 O) and two hydrogen atoms. Each phosphorous atom is coordinated to 3 

oxygen atoms and one hydrogen atom, exhibiting a distorted tetrahedral unit (or 

pseudo-trigonal) with P1 – O and P2 – O bond distances in the range 1.521(3) – 

1.538(6) and 1.521(1) – 1.532(2) Å, respectively. 

The two P — H distances for P1 and P2 are 1.31(3) and 1.37(4) Å, 

respectively, which are in good agreement with the reported values.25 There is only 

one crystallographically distinct Fe atom which adopts an octahedral coordination 

surrounded by five oxygen atoms and one chlorine atom. The Fe — O distances 

are in the range 2.052(9) – 2.283(3) Å, which corroborates well with the reported 

Fe – O distances where Fe is in 2+ oxidation state.26 A Fe — Cl distance of 

2.506(6) Å is similar to Fe – Cl distances reported in Fe2PO4Cl.25 There are two 

crystallographically distinct Li sites, Li1 and Li2, in the asymmetric unit located in 

a general and special position with site occupancy factors (SOFs) of 1 and 0.5, 

respectively. Li1 is four coordinated by oxygen atoms from the two different 

phosphite groups with Li1 – O bond lengths in the range 1.926(4) – 2.061(5) Å. 

Li2, on the other hand, is five coordinated surrounded by 3 oxygen and two 

chlorine atoms with Li2 – O and Li2 – Cl bond lengths in the range 2.021(7) – 

2.089(1) and 2.331(6) – 2.604(8) Å, respectively. 
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The structure is composed of dimers of edge-shared FeO5Cl octahedra 

connected through a common edge O5 – Cl1 along the b-axis and these edge-

shared dimers are further connected through the participation of eight phosphite 

groups to form the three-dimensional structure (Fig. 2b). 

 

 
Fig. 1. PXRD pattern of Li3Fe2(HPO3)3Cl compared with the simulated pattern 

reconstructed from SC-XRD. The impurity peak is marked with an asterisk. 

 

Out of the eight phosphite groups that are connected to the dimer, seven are 

corner-shared and the remaining one bridges the octahedral dimer through the two 

apical oxygen atoms from the same P2O3 group (Fig. 2b). Li sites fill the space 

between the adjacent iron octahedral dimers and when viewed along the a-axis Li 

ions can be seen located in narrow zig-zag channels intercepted by chloride in case 

of Li2 and by oxygen in case of Li1, respectively (Fig. 3a). 

 

 
Fig. 2. Asymmetric unit of Li3Fe2(HPO3)3Cl as refined from SC-XRD (a); packing 

diagram as viewed along the c-axis (b). 
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This arrangement creates empty helical channels along the b-axis of the 

crystals where P — H apices are protruding into the channels alternatively through 

the length of the channel (Fig. 3b). It is also interesting to note that anisotropic 

thermal parameters for the two Li atoms are different, with Li2 (U11 = 21, U22 = 

15, and U33 = 22 Å2 x 103) having higher vibrations in all three directions 

compared to Li1 (U11 = 13, U22 = 11, and U33 = 19 Å2 x 103). These differences 

in the anisotropic thermal parameters may have important implications in Li-ion 

mobility (vide infra). Existence of chloride anion in the asymmetric unit was 

further confirmed through EDS analysis and the result is in good agreement with 

that calculated from single-crystal X-ray data (9.17% wt/wt vs. 8.69% from SC-

XRD). 

Spectroscopic and thermogravimetric analyses  

The IR spectrum of Li3Fe2(HPO3)3Cl as shown in Fig. 4 mainly consists of strong 

absorption peaks due to P—H and P—O bonds of the phosphite moiety in the 

structure. The strong, sharp peak located at 2428 cm–1 is the signature of P—H 

stretching mode while the corresponding bending mode is merged with the strong 

PO3 symmetric and asymmetric stretching modes in the range of 950 – 1150 cm–

1.25 

 

 
Fig. 3. Packing diagram of Li3Fe2(HPO3)3Cl phase as views along a-axis (a); and 

b-axis (b). 
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The asymmetric PO3 bending mode is visible at 594 cm–1. Except for a few 

low intensity peaks the spectral region above 3000 cm–1 is almost flat; this (as well 

as the single-crystal XRD data) confirms that there is no partial oxidation of P—H 

bond to P – OH bond as commonly seen in phosphite chemistry.27 

 

 

Fig. 4. FT-IR spectrum of Li3Fe2(HPO3)3Cl. 

 

TGA of Li3Fe2(HPO3)3Cl was conducted to assess the thermal stability of 

the compound and represented in Fig. 5. The TGA reveals about 0.6% mass loss 

starting from room temperature up to 300 °C which can be assigned to the 

adsorbed moisture. The Li3Fe2(HPO3)3Cl phase is stable until 420 °C where it 

decomposes abruptly with a mass loss of 9.1% which matches perfectly well with 

the loss of one HCl unit from the formula (theoretical = 9.0 %). 

At higher temperatures there are two constant positive slopes of mass gain 

processes which can be assigned to the oxidation of both Fe(II) and P(III) in the 

compound to Fe(III) and P(V), respectively, due to the existence of oxygen and 

moisture impurities in the nitrogen purge gas, as observed also in the work of Rojo 

et. al.20 
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Fig. 5. TGA curve of Li3Fe2(HPO3)3Cl. 

 

Magnetic property 

The magnetic measurements were performed on powdered sample (finely ground 

manually separated pure crystals) to validate the oxidation states of Fe and to 

verify the presence of any magnetic phase transition. The temperature dependence 

of the magnetic susceptibility and inverse susceptibility of Li3Fe2(HPO3)3Cl 

measured in an applied field of 0.5 T from 2 K to room temperature under zero-

field cooled (ZFC) condition are given in Fig. 6. The molar magnetic susceptibility 

increases asymptotically as the temperature decreases from 300 K and reached a 

maximum at 9.5 K in the M(T) plot and after that there is a sharp fall of molar 

susceptibility indicating an onset of antiferromagnetic ordering below 9.5 K. The 

plot of thermal variation of inverse susceptibility, M–1(T), shows linear behavior 

between 100 – 300 K and can be fitted to Curie-Weiss law yielding a Curie 

constant of 3.8 emu K/mol and a Curie-Weiss constant (p) of -6.9 K, respectively 

(Fig. 6).  

The experimental effective magnetic moment per iron ion derived from 

Curie constant (eff (experimental) = 5.5 B) is higher than the spin-only value 

(4.9 B) due to contribution from unquenched orbital magnetic moment. The 

observed eff found in different Fe(II) compounds are in the range 5.1 – 5.5 B.28 

The negative value of the Weiss constant reflects the antiferromagnetic 

interactions between the Fe centers, which forms an edge-shared octahedral dimer. 
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Temperature variation of MT shows a very sluggish decrease in MT upon 

cooling from 3.72 emu K mol–1 at 300 K to 3.10 emu K mol–1 at 40 K followed by 

a sharp fall below 40 K to a value of 0.139 emu K mol–1 at 2 K (Supplementary 

information, Fig. S1). 

 

 
Fig. 6. Temperature dependent molar and inverse molar magnetic susceptibility of 

Li3Fe2(HPO3)3Cl acquired at an applied field of 0.5 T. 

 

To further investigate the nature of the antiferromagnetic transition, low-

temperature magnetic behavior was studied by dc magnetization measurements 

under field cooled (FC) and zero field cooled (ZFC) conditions under low fields 

and several ZFC measurements at several increments of applied field (Fig. 7). The 

ZFC and FC magnetic susceptibilities measured at low fields 0.01, 0.05, and 0.1 T 

show another transition at 4.75 K, which exhibits irreversibility in the FC and ZFC 

data.  

This irreversibility between the FC-ZFC data also decreases as the applied 

field increases from 0.01 to 0.11 T (inset of Fig. 7). However, the broad peak at 9.5 

K (seen at 0.5 Tesla data) shows reversibility indicating an onset of a 3-D 

antiferromagnetic ordering. The transition at 4.75 K is not pronounced in ZFC data 

especially at higher applied fields. 

Increasing the applied field in the ZFC data to various higher fields shift the 

antiferromagnetic maxima to lower temperatures (for example, from 9.5 K at 0.5 T 
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to 6.9 K at 3 Tesla) and disappears completely at 4 T, indicating a field-induced 

metamagnetic transition. 

 

 
Fig. 7. Depiction of field induced variation of the molar magnetic susceptibility of 

Li3Fe2(HPO3)3Cl as a function of temperature; inset shows ZFC-FC curves at 

different field strengths. 

 

The variable field isothermal magnetization (M) measured at 2 K shows a 

very sluggish linear increase of magnetization till 3 T and after that there is a sharp 

jump in magnetization from 0.50 to 3.20 NB/Fe between 3 and 5 T, respectively, 

confirming the metamagetic transition from an antiferromagnetic phase to a 

ferromagnetic like phase (Fig. 8). Such metamagnetic transitions have been 

observed previously in transition metal coordination polymers involving azido and 

cyanide bridges. 29, 30 

The hysteresis scan at 2 K also exhibit a small remnant magnetization and 

an interesting history dependent loops at higher field regions at both positive and 

negative field after the metamagnetic transition. Hysteresis scan at 50 and 300 K 

are completely linear and no signature of any remnant magnetization or field 

induced transition. M-H measurements at higher temperatures, 8 - 50 K, show 

linear increase of magnetization reminiscent of antiferromagnetic interactions. 

Electrochemistry  

The first three cyclic voltammograms (CV) of the cell with Li3Fe2(HPO3)3Cl as 

cathode is represented in Fig. 9. The CVs indicate that the phase is 
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electrochemically active and also the broadness of cathodic and anodic peaks 

reveal that the oxidized and reduced phases may be following a solid-solution type 

behavior. 

 

 
Fig. 8. Magnetization vs. field variation hysteresis loop for Li3Fe2(HPO3)3Cl along 

with M-H scans at different temperatures. Inset shows an enlargement view of the 

remanent magnetization at 2 K around the zero field strength. 

 

The open circuit voltage (OCV) is located at 2.74 V and the cathodic and 

anodic peak potentials are observed at 3.026 and 3.334 V, respectively. The 

oxidation and reduction peak potentials do not shift with cycling suggesting the 

high reversibility of the redox process. Since there are two iron(II) and three Li 

atoms per unit formula, one may expect to be able to extract and insert up to two 

Li ions upon oxidation (charging) and reduction (discharging) of iron atoms, 

respectively, which leads to a theoretical capacity of 131.41 mAh.g–1 of active 

material. 

Galvanostatic charge/discharge tests were employed for evaluating the cell 

performance of Li3Fe2(HPO3)3Cl as cathode in a Li-ion cell and the results are 

given in Fig. 10. Since the oxidation state of Fe is +2 in the active material, the cell 

was charged first with de-insertion of Li+ ions.  
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Fig. 9. CV of Li3Fe2(HPO3)3Cl. The cathodic current is negative. 

 

 

 
Fig. 10. First three cycles of galvanostatic charge\discharge test. Dashed and solid 

lines represent the charge and discharge curves, respectively. 

 

As is obvious from the first cycle of charge-discharge curve, the discharge 

capacity is greater than the corresponding charge capacity, which may indicate that 

a fraction of Fe(II) sites in the crystal structure was oxidized to Fe(III) before 

charging. The Mössbauer results (vide infra), however, rules out the existence of 

any Fe(III) in the as-synthesized materials; therefore, this oxidation can be due the 

extensive milling during the composite cathode preparation. This observation is 

also supported by cyclic voltammetry studies when the cathode was initially 

subjected to charge (reductive lithiation) in the first cycle (supplementary 

information, Fig. S2), a cathodic peak around 2.87 V was observed, which 

disappeared upon further cycling and only one reduction peak can be observed at 
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3.028 V in the CV. Also to be noted here that first charge curve lies at 0.25 volt 

higher than the successive charge curves, which confirms that initially a fraction of 

the active material has been oxidized to Fe(III). The partial oxidation of Fe(II) 

centers and consequent extraction of Li+ by air and moisture has been previously 

observed for some cathode materials and the effect is severe when the initial 

voltage (i.e. cell OCV) is below 3.0 V.10 The so-called air poisoning of the 

particles has been reported to cause irreversible capacity loss by accumulating 

inactive Fe(III) impurities on the surface of the active particles. However, in our 

case the Fe(III) phase recovery is evident from the higher charge capacity in the 

second and third cycles, which indicates that the initially oxidized phase has 

reduced to Fe(II) at the end of the first cycle and contributing to the subsequent 

charging steps in a reversible manner. 

The voltage composition profile as shown in Fig. 10 exhibits a sloppy curve 

which in conjunction with the broad peaks of CV and the voltage charge derivative 

curves (Supplementary information, Fig. S3) confirm the solid-solution formation 

of Fe(II) and Fe(III) ions in the structure as the cathode was subjected to charge 

and discharge. Neither curves exhibit sharp changes in voltage especially in the 

charge regime and consequently the charge cut-off potential was set at 4.5 vs 

Li+/Li with constant current charging to avoid extensive electrolyte oxidation 

followed by constant voltage charging (CCCV charge) at the same potential until 

the current drops to 10 % of the value at C/50 to maximize Fe(II) oxidative 

delithiation. Similarly the lower cut-off potential was set to 2.2 V vs Li+/Li (CC 

discharge) to limit the cell performance only to the reversible capacity. With the 

above routines the first discharge delivered a capacity of about 62 mAh.g–1 which 

accounted for 47% of the theoretical capacity; upon the second and third discharge, 

the discharge capacity increased to 69 mAh.g–1 (52% of the theoretical capacity) 

and became stable at this value, equivalent to the removal of only one Li+ ion per 

formula unit. The de-intercalation Li+ could be accomplished either through 

complete extraction of Li2 with site occupancy of 0.5, or 50 % removal of Li1 sites 

(site occupancy 1), or a mixture of both. Discharging the cells at a slower rate of 

C/100 didn’t show capacities higher than that at C/50 where this issue could be the 
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result of a fundamental limitation or may be resolved by increasing the sample 

conductivity or further decrease in the particle size. 

The Li3Fe2(HPO3)3Cl cathode was tested for capacity retention upon 

successive cycling at C/5 rate after the cell has been cycled several times at 

different C-rates. The results given in Fig. 11 indicate the acceptable stability of 

this phase after 60 cycles. The specific capacity decays only with a slight slope, 

but there are some higher frequency fluctuations in specific capacity which are due 

to the change in environmental conditions, most notably the temperature. 

 

 
Fig. 11. Capacity retention of Li3Fe2(HPO3)3Cl cathode at C/5 rate. Inset shows the 

effect of variation of discharge rate on the cathode specific capacity. 

 

Increasing the discharge rates reveal some interesting kinetic properties of 

Li3Fe2(HPO3)3Cl phase, as shown in the inset of Fig. 11. Upon increasing the 

discharge rate from C/50 to C/5 (10 fold increase in current) the cell can still 

deliver a specific capacity of 56 mAh.g–1 which accounts for 80% of the value at 

C/50; moreover even at a discharge rate of 1C (50 times increase in the current) 

still 38 mAh.g–1 (55% of the normalized value) can be reversibly delivered.  
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Fig. 12. a) Nyquist plots of Li3Fe2(HPO3)3Cl|LiPF6|Li cell at different 

temperatures; filled circles and the line represents the experimental data and fitted 

curve, respectively. Inset shows the equivalent circuit. b) The corresponding 

Arrhenius plots for the two main resistive processes. 

 

These results suggest a high Li+ mobility in the Li3Fe2(HPO3)3Cl lattice, 

even though the channels are not very wide. Electroimpedance spectroscopic 

technique was employed at multiple temperatures below the electrolyte 

decomposition temperature to calculate the activation energies involved in the 

different processes inside the cell in the measured temperature range, and the 

results are shown in Fig. 12 and the fitted impedance parameters using the 

equivalent circuit (see inset of Fig. 12) are supplied as supplementary information 

(Table S1) 

The Nyquist plot has the general shape of a Li-ion cell with a low-frequency 

tail and a high frequency depressed semi-circle representing the Li+ diffusion 

inside the cathode active material and the combined charge transfer/SEI 

resistances, respectively. The value for the two main resistive processes was then 

extracted from the fit parameters and converted to conductance values which were 

utilized for construction of the respective Arrhenius plots, as given in Fig. 12b. 

The results shown in Fig. 12b suggest that both ionic diffusion and the combined 

charge transfer and SEI film resistances are thermally activated. The interestingly 

small activation energy of 7.4 kJ/mol (0.077 eV) associated with the ionic 

diffusion process as well as low activation energy for the charge transfer process 
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(6.6 kJ/mol) may be attributed to the facile kinetics of electrochemical reactions 

observed during successive charge-discharge tests at high C-rates. This low 

activation energy of Li-ion diffusion can be compared to 6.57 kJ/mol previously 

observed in the case of a Li3V2(PO4)3 cathode.31 In general the apparent activation 

energy of the Li-ion diffusion in different materials in composite cathodes range 

between 30 – 60 kJ/mol, as has been reported to be 35.2 and 50.9 kJ/mol for 

LiV3O8,32 44.7 kJ/mol for Li3V2(PO4)3/C,33 47.48 kJ/mol for LiFePO4@C.31 The 

Arrhenius activation energy for the charge transfer process in the present case is 

much lower than observed in LiFePO4@C cathode (59.35 kJ/mol).34  

Ex-situ Mössbauer and PXRD  

To gain further insight into electrochemically oxidized phase, we carried out ex-

situ Mössbauer spectroscopic measurements and powder X-ray diffraction after 

removing the cathode active material from the cell after the first charge cycle and 

compared with Mössbauer and PXRD of pure cathode. Mössbauer spectrum of 

pristine Li3Fe2(HPO3)3Cl has been fitted with two quadrupolar doublets, one major 

and one minor. The isomer shift () and quadrupole splitting () values (δ = 

1.20(1) mm/s, Δ = 1.97(7) mm/s; δ = 1.19(8) mm/s, Δ = 2.87(8) mm/s) reveal the 

existence of two different Iron(II) octahedral sites with site population of about 96 

and 4%, respectively, as shown in Fig. 13a and Table 4. Since there is only one 

crystallographically unique Fe atom in the structure, the minor doublet can be 

assigned to the impurity phase, where Fe is in 2+ oxidation state. The Mössbauer 

spectrum also rules out other possible Fe-containing impurity phases in the sample 

as evident in the spectra collected over the entire velocity range spanning from -10 

to +10 mm.s–1 (data not shown).  

The Mössbauer spectrum for the electrochemically oxidized sample is 

shown in Fig. 13b along with the deconvoluted curves representing three iron sites; 

typical spectra for Fe2+ site as in pristine sample along with a new quadrupole 

doublets for Fe3+ as in Li3-xFeII
2-xFeIII

x(HPO3)3Cl and the impurity doublet. 

The results of fitting are shown in Table 4 suggest that after charging the cells up 

to 4.5 V vs. Li+/Li, almost 40% of the Fe(II) sites are oxidized to Fe(III). 
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Fig. 13. Mössbauer spectrum of purified crystals of Li3Fe2(HPO3)3Cl (a), and 

cathode powder retrieved from a charged cell up to 4.5 V vs Li+/Li (b). 

 

The relative increase in the impurity site percentage with respect to the as 

prepared crystals can be assigned to the addition of one doublet and a consequent 

increase in the degrees of freedom (or uncertainty) in the fitting process. The 

isomer shift and quadrupole splitting values are typical for Fe2+ and Fe3+ 

octahedral coordination surrounded by oxo donors.35 The ex-situ PXRD of the 

electrochemically oxidized sample shows crystalline nature and pattern is in good 

agreement with the pristine sample except some line broadening. The lattice 

constants refinement indicates no appreciable change with respect to the pristine 

material (supplementary information, Fig. S4). 
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Table 4. Values of isomer shift (), Quadrupole Splitting () and site population 

derived from fit parameters of Mössbauer spectra of Li3Fe2(HPO3)3Cl and its 

electrochemically oxidized form 

Pristine Li3Fe2(HPO3)3Cl 

Site  (mm.s–1)  (mm.s–1) Site (%) 

Doublet 1, Fe2+(1) 1.20(1) 1.97(7) 96.3(6) 

Doublet 2, Fe2+ 

impurity 

1.19(8) 2.87(8) 3.6(4) 

Li3Fe2(HPO3)3Cl electrochemically oxidized by charging to 4.5 

V 

Doublet 1, Fe2+(1) 1.20(1) 1.99(8) 54.2(3) 

Doublet 2, Fe3+(1) 0.38(1) 0.69(7) 39.4(1) 

Doublet 2, impurity 1.23(2) 2.76(7) 6.3(2) 

 

Which Li ion is active? 

Since only one Li-atom from Li3Fe2(HPO3)3Cl can be removed, it will be 

interesting to know which one of the two crystallographically distinct Li-atoms is 

electrochemically active or part of both (two Li1 and one Li2) are active. In the 

absence of solid-state 7Li NMR before and after the oxidation, it will not be 

possible to conclude unambiguously which Li is active. Based on the anisotropic 

thermal parameters it may be possible that the Li2 is electrochemically active 

because it has higher vibrations in all three directions. Also Li2 has coordination 

with three oxygen atoms in a plane and two chlorine atoms in axial positions with 

Cl – Li2 – Cl angle of 136.6. Chlorine is less electronegative than oxygen and 

weaker Cl – Li interactions may favor facile Li mobility. It will be also interesting 

to find out the Li-ion conduction path in this structure since only open channel 

along the b-axis has hydrogen atoms protruding into it, and oxygen and chlorine 

intercepts the channel along a-axis. A theoretical investigation will be required to 

find out the Li diffusion path. 

 

Conclusions 

In this article we have shown that a newly synthesized and structurally 

characterized phosphite-based compound of iron, Li3Fe2(HPO3)3Cl, is 

electrochemically active with respect to Li-ion (de)-insertion. Though it cannot 

compete with LiFePO4, the average voltage of 3.1 volt vs Li+/Li for an iron-based 
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compound is reasonably high and with the full theoretical capacity achievement 

can turn it to an attractive cathode. The compound also exhibits interesting field-

induced metamagnetic transition. This example will open up new exploration in 

phosphite chemistry for new cathode materials for Li-ion battery. 
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ABSTRACT: A new lithium containing iron(III) phosphite, LiFe(HPO3)2, has 

been synthesized via a solvent-free, low temperature, solid-state synthesis route. 

The crystal structure of this material has been determined employing single-crystal 

X-ray diffraction, which indicates that the compound has a 3-dimensional structure 

formed by isolated FeO6 octahedral units joined together via bridging HPO3 

pseudo-pyramidal moieties. This arrangement leads to the formation of channels 

along all the three crystallographic directions, where channels along the a- and b-

axes host Li+ ions. The compound was further characterized by TGA, IR, and 

Mӧssbauer spectroscopic techniques. Additionally, it has been demonstrated that 

this phase is electrochemically active towards reversible intercalation of Li+ ions 

and thus can be used as a cathode material in Li-ion cells. An average discharge 

potential of 2.8 V and a practical capacity of 70 mAh.g–1 has been achieved as 

indicated by the results of cyclic voltammetry and galvanostatic charge-discharge 

tests.  
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INTRODUCTION 

In today’s world, there are plenty of avenues of applications where Li-ion battery 

has been envisaged as a prime source of energy storage or power supply.1- 4 For all 

the applications safety is the primary concern but different qualities of batteries are 

sought after based on whether the application is focused on mobile or stationary 

devices.  For example, a battery for vehicular application has to be high in energy 

density while for smart grid application, a low cost, long cycle life and fast charge-

discharge battery will take precedence over the high energy density.5 Thus one 

may expect to have different materials in Li-ion battery to fulfil different 

requirements of applications and in this race cathode component merits most 

attention since it determines the voltage and the specific capacity. 

In this respect polyanion compounds of the transition metals are being 

actively investigated as cathode materials for Li-ion batteries.6, 7 Due to the strong 

covalent bonding between the main group element in the center of the polyhedron 

and oxygen atoms in the polyanion moiety, the oxygen atoms are held tightly in 

the structure. This imparts structural stability to the compound and chances of 

oxygen release upon charging to high potentials are minimized thus improving the 

safety features of the cathode. Moreover, by changing the electronegativity of the 

central atom in a polyanion one can vary the iono-covalency of the metal-ligand 

bond in X – O – M (X = B, S, P, Si etc.; M = transition metal) linkage through the 

inductive effect of X thereby tuning the redox potential on the transition metal 

center.8 This ability of tuning redox potential makes polyanion chemistry unique 

when compared to pure oxides. Another feature of this polyanion chemistry is the 

propensity of forming a wide variety of 2-dimensional (2-D) and 3-dimensional (3-

D) structures through different types of connectivity between the polyanion and the 

transition metals.9 These structures are stabilized under different synthetic 

conditions as employed by chemists.10  

In this context various compounds of transition metals have been 

synthesized incorporating PO4
3–,7, 11 SO4

2–,12 - 14 SiO4
4–,15, 16 BO3

3–,17, 18 mixed 

PO4
3–- CO3

2–,19, 20 etc. Among the various newly discovered polyanion cathodes, 
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Triplite, LiFeSO4F (3.9 V) is emerging as a strong contender of cathode for Li-ion 

battery,21 challenging the most outstanding polyanion cathode, Olivine LiFePO4.
11 

Despite the enormous efforts devoted towards polyanion compounds for 

their electrochemical properties, phosphite-based compounds received little or no 

attention. The only example was that of Rojo et al. showing very small 

electrochemical activity in Li1.43[Fe4.43
IIFe 0.57

III(HPO3)6]1.5H2O with a specific 

capacity of 12 mAh.g-1.22 Recently we have shown that a new phosphite polyanion 

based material, Li3Fe2(HPO3)3Cl, is electrochemically active with a practical 

specific capacity of 70 mAh.g-1 (theoretically 131.4 mAh.g-1) and an average 

discharge voltage above 3.0V.23 The relatively high voltage observed for this 

compound can be assigned to the inductive effects of the phosphite and chloride 

groups coordinated to the iron center. 

With the above encouraging results we have focused more on the synthesis 

and electrochemical activity of other possible phosphite-based compounds of iron. 

In this article we report for the first time the synthesis and structural details of a 

new lithium iron(III) phosphite, LiFe(HPO3)2 and demonstrate its activity towards 

reversible intercalation of Li+ ions. This new phase has a theoretical capacity 120.3 

mAh.g–1 and exhibits extremely good capacity retention upon successive cycling.  

EXPERIMENTAL SECTION 

Materials. γ-Fe2O3 (99+% metal basis) was purchased from Alfa Aesar, 

LiOH·H2O (98% reagent grade) and H3PO3 (98% extra pure) are obtained from 

Acros Organics. All the chemicals were used as received without further 

purification. 

Synthesis. 0.80 g of γ-Fe2O3 (5 mmol), 0.94 g of LiOH·H2O (23 mmol) and 

2.46 g of H3PO3 (30 mmol) were mixed and ground in an agate mortar pestle and 

the resulting high viscosity paste was then transferred to a Teflon cup. The cup was 

then closed with a Teflon cap, placed in a stainless steel Paar reaction vessel and 

heated for 7 days in an oven at 150 °C. After removal from the oven, the reaction 

vessel was allowed to cool down to room temperature and the product, which 
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composed of uniform small clear crystals, was washed with hot water followed by 

filtration to remove the unreacted reagents and dried overnight in open air.  

Single-Crystal X-ray Diffraction. Crystal structure of LiFe(HPO3)2 was 

solved from single-crystal intensity data sets collected on a Bruker Smart Apex 

diffractometer with monochromated Mo Kα radiation ( = 0.7107 Å). A suitable 

crystal was selected and mounted on a glass fiber using epoxy-based glue. The 

data were collected using SMART24 software at 298 K employing a scan of 0.3° in 

ω with an exposure time of 10 s/frame. The cell refinement and data reduction 

were carried out with SAINT,25 while the program SADABS25 was used for the 

absorption correction. The structure was solved by direct methods using SHELX-

9726 and difference Fourier syntheses. Full-matrix least-squares refinement against 

|F2| was carried out using the SHELXTL-PLUS26 suit of programs. The structure 

of LiFe(HPO3)2 was solved in tetragonal system in a non-centrosymmetric space 

group, 𝑰 �̅� 𝟐 𝒅. The electron densities of Fe, P and O atoms were located from 

Fourier difference maps and refined isotropically. Subsequently, electron density 

for the Li+ ion appeared at a distance of 2 Å from the oxygen atoms. An 

anisotropic refinement performed on the located atoms revealed one more electron 

density peak, approximately 1.2 Å away from the phosphorous atom. The latter has 

been assigned as the phosphite hydrogen and subsequently refined isotropically 

after adding soft constrains to fix P – H bond distance close to the theoretical 

value. Details of the final refinement and crystallographic information for 

LiFe(HPO3)2 is provided in Table 1.  

The fractional atomic coordinates along with the isotropic thermal 

displacement parameters are given in Table 2. Selected inter-atomic distances are 

listed in Table 3. 

Powder X-ray Diffraction: For assessing the sample purity powder XRD 

pattern of the as synthesized product was collected on a PANalytical X’Pert Pro 

diffractometer equipped with a Cu 𝐊𝛂𝟏,𝟐anode and a linear array PIXcel detector 

over a 2θ range of 5 to 90° with an average scanning rate of 0.025° sec–1. The 

acquired pattern was then subjected to quantitative phase analysis via the Rietveld 
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method using the single-crystal structure solution as the starting model for 

LiFe(HPO3)2 to calculate the amount of impurity phase(s).  

 

Table 1. Crystal data and structure refinement parameters for LiFe(HPO3)2 

Empirical formula LiFe(HPO3)2 Z 8 

Formula weight 222.75 g.mol-1 ρcalc 2.644 g.cm-3 

Crystal system Tetragonal F(000) 872 

Space group 𝐼 4̅ 2 𝑑 Temperature 298(2) K 

a 10.593(6) Å GOF on F2 1.159 

b 10.593(6) Å 
R [I>2σ(I)] 

R1 = 0.0250  

wR2 = 0.0675 c 9.971(4) Å 

α = β = γ 90 ° 
R [all data] 

R1 = 0.0259  

wR2 = 0.0679 V 1119.0(3) Å3 

 

Mӧssbauer Spectroscopy. 75 mg of the as prepared sample was mounted 

on a Pb sample holder and subjected to analysis by 57Fe Mössbauer spectroscopy at 

room temperature using a constant acceleration spectrometer in transmission 

geometry. The spectrometer was equipped with a 57Co (50 mCi) gamma-ray source 

embedded in Rh matrix and calibrated for isomer shift with respect to a standard α-

Fe foil at room temperature. The collected experimental data were fitted to 

Lorentzian function using the Recoil software.27 

 

Table 2. Atomic coordinates and equivalent isotropic displacement parameters of 

the atoms. Ueq = 1/3rd of the trace of the orthogonalized U tensor 

Atom Wyckoff Site Occ. x/a y/b z/c Ueq [Å
2] 

Fe1 8d .2. 1 0.2819(1) 0.2500 0.1250 0.008(1) 

P1 16e 1 1 0.4463(1) 0.2511(1) 0.4013(1) 0.011(1) 

O1 16e 1 1 0.3444(2) 0.1902(2) 0.4886(2) 0.014(1) 

O2 16e 1 1 0.4259(2) 0.2121(2) 0.2543(2) 0.013(1) 

O3 16e 1 1 0.5774(2) 0.2164(3) 0.4483(2) 0.015(1) 

Li1 8d .2. 1 0.5627(8) 0.2500 0.1250 0.024(2) 

H1 16e 1 1 0.4440(4) 0.3736(2) 0.4090(4) 0.007(1) 

 

Thermo-Gravimetric Analysis (TGA). TGA has been done on about 15 

mg of manually separated crystals of pure LiFe(HPO3)2 using a TA instrument 
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Q50 TGA in a temperature range of 25 to 800 °C with a scan rate of 10 °C.min–1 

under nitrogen flow. 

IR Spectroscopy. The IR spectrum was collected using Thermo Nicolet 

Nexus 470 FT-IR spectrometer over 500 – 4000 cm–1 on manually separated pure 

sample embedded in KBr pellet. 

 

Table 3. Selected Bond lengths for LiFe(HPO3)2
a 

Bonds Distances (Å) Bonds Distances (Å) 

Fe1 – O3 x2#1 1.969(2) P1 – O3 1.511(2) 

Fe1 – O1 x2#2,#3 2.010(3) P1 – H1 1.299(2) 

Fe1 – O2 x2#4,#5 2.037(2) Li1 – O1 x 2#8  2.026(6) 

P1 – O1 1.529(3) Li1 – O2 x 2 #6.#7 1.982(7) 

P1 – O2 1.539(2)   
a #1 x + 0, - y + 1/2, - z + 1/4; #2 - y, x, - z; #3 – y + 0, - x + 1/2, z + 1/4; #4 y + 1/2, - x + 

1/2, - z + 1/2; #5 y + 1/2, x, z - 1/4; #6 – y + 1/2, x - 1/2, - z + 1/2; #7 – y + 1/2, - x, z - 1/4; 
#8 x + 0, - y - 1/2, - z + ¼ 

 

Electrochemical Testing. For electrochemical studies of LiFe(HPO3)2, a 

cathode film was prepared. In this regard the active material, LiFe(HPO3)2, was 

first milled with super P conductive carbon vigorously in a SPEX 8000 miller for 2 

h followed by addition of Poly-vinylidene fluoride (PVDF) as binder dissolved in 

N-Methyl-2-pyrrolidone (NMP). The resulting mixture was further ball milled for 

20 min until a homogeneous, viscous slurry was obtained. The ratio of the active 

material, conducting carbon, and the binder in cathode mix was 65:25:10. The 

cathode mix was then spread as a film of uniform thickness onto a flat sheet of 

aluminum current collector with a glass rod and dried in a vacuum oven for 12 h at 

80 °C. The milled cathode mix was also tested for structural stability by powder X-

ray diffraction and the XRD pattern clearly showed the retention of the crystal 

structure during the cathode mix preparation (supporting information, Figure S1). 

The SEM images of the pulverized (ball-milled) sample mixed with carbon after 2 

h milling are presented in the supporting information (Figure S2). The sizes of the 

particles as estimated from the SEM images range from submicron particulates to 

particles of several micron in diameters. However, the size distribution of the 

majority of particles is approximately in the range 2 - 5 μm in diameter.    
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For electrochemical tests, CR2032 type coin cells were fabricated using the 

above composite cathode film cut into circular disks (3/8 inch diameter) with 5.0 – 

6.0 mg of active material loading. The cells were assembled in an argon filled 

glove box with oxygen concentration below 2.0 ppm. The cathode disk and Li 

anode (0.75 mm thickness Li ribbon cut into circular disk) were mounted in the 

cell using a Celgard® 2325 circular sheet placed between the two electrodes as the 

separator. The electrolyte, 1 M solution of LiPF6 in DMC-EC (1:1) was then added 

and the cell was sealed with a coin cell crimper. The prepared cells were aged for 

equilibration for several hours before electrochemical testing. 

Cyclic voltammograms were obtained using a PAR EG&G 

potentiostat/galvanostat model 273 in the potential range of 2.0 – 4.0 V (vs. Li+\Li) 

with a scan rate of 0.05 mV.sec–1. Voltage-composition profiles were obtained 

using galvanostatic charge-discharge experiments on an Arbin Instruments battery 

tester, model BT2043, in the potential range 2.0 – 4.0 V with a constant current 

charge and discharge modes at various C-rates. 

RESULTS AND DISCUSSION 

Synthesis. The initial ratio of the reactants had a crucial role on the percentage 

yield of the major product and identity of the by-products formed in this reaction. It has 

been found that the highest purity of LiFe(HPO3)2 could be obtained when 

Fe2O3:LiOH·H2O:H3PO3 were mixed in 1:4:6 molar ratio, with Fe2(HPO3)3 as the only 

major impurity phase. Ratios of acid to base greater than the above increases the 

Fe2(HPO3)3 mass fraction in the final product while smaller ratios yield an unknown 

impurity phase (supporting information, Figure S3). A quantitative phase analysis via 

Rietveld refinement performed on the reaction products obtained under optimized 

conditions revealed that the product contained 85% LiFe(HPO3)2 and 15% Fe2(HPO3)3 by 

mass, as demonstrated in Figure 1. 

 It is to be noted here that ex-situ time-dependent PXRD evolution of the 

reaction product(s) indicated that the optimized synthesis of 85% LiFe(HPO3)2 and 

15% Fe2(HPO3)3 can be achieved in 72 hours. In fact, LiFe(HPO3)2 as the major 

product can be formed during the first 6 hours of the synthesis, further heating was 
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required to remove/reduce the intensity of impurity peaks (supporting information, 

Figure S4) . However, 7 days of reaction was required to grow crystals suitable for 

single-crystal X-ray diffraction. Since the identity of the impurity phase was 

known, this sample was used for electrochemical studies rather than the one with 

unknown impurities (Figure S3).     

 

 

Figure 1. Rietveld refinement on the powder XRD of the as-synthesized product. 

Open circles: observed intensity; black line: calculated intensity; green line: 

difference curve; diffraction position indicator: LiFe(HPO3)2- purple tick mark; 

Fe2(HPO3)3- red tick mark. 

 

Crystal Structural Description. LiFe(HPO3)2 is a three-dimensional open-

framework structure made from vertex-shared FeO6 octahedra and HPO3 pseudo-

pyramidal units incorporating Li-ions within its channels. The structure of 

LiFe(HPO3)2 is isostructural to a recently published vanadium analogue, 

LiV(HPO3)2.
28 The asymmetric unit of LiFe(HPO3)2 contains 6 non hydrogen 

atoms and 1 hydrogen atom (Figure 2a). There is one crystallographically distinct 

iron center, located at the special position, 8d, and adopts an octahedral 

coordination with oxygen atoms from phosphite groups. The Fe – O distances fall 

in the range 1.969(2) – 2.037(2) Å which agree well with the reported Fe3+– O 

bond lengths.29  
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The phosphorous of the phosphite group is in +3 oxidation state and bonded 

to 3 oxygen atoms and 1 hydrogen atom in a distorted tetrahedral (or pseudo-

pyramidal) unit. 

 

 

Figure 2. Connectivity pattern and coordination spheres of atoms in LiFe(HPO3)2 

as obtained from single-crystal X-ray structure solution. Thermal ellipsoids are 

given at 80% probability. Only atoms present in the asymmetric unit are labelled 

(a); connectivity pattern of FeO6 and HPO3 units along the c-axis (b). 

 

The P – O distances are in the range 1.511(2) – 1.539(2) Å and the P – H 

bond length is 1.29(4) Å (constrained), all corroborating well with the reported 

values for P – O and P – H distances in many reported metal phosphites.22, 29, 30 The 

Li atom is located in the special position, 8d, and is coordinated by 4 oxygen atoms 

(from two crystallographically distinct O atoms) in an irregular non-planar 

geometry with Li1 – O1 and Li1 – O2 bond lengths of 2.026(6) and 1.982(7) Å, 

respectively. The results of the bond valence sum calculations (BVS)31 for Fe1 

(BVS = 3.09) and P1 (BVS = 3.97, disregarding hydrogen) confirms the oxidation 

states Fe and P as 3+. It is to be noted that the proof of oxidation state of +3 for P 

in phosphite group from BVS value is indirect, because of the lack of reliable bond 

valence parameters for pure P(III) – O bonds.32 The BVS calculation actually 
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represents the oxidation state of (PH)4+ group rather than P in HPO3 moiety as also 

noted by Rojo et al. in an iron phosphite compound.29     

Each Fe atom makes six Fe – O – P linkages and similarly each P atom 

makes three P – O – Fe linkages. Thus the crystal structure is composed of strictly 

alternating FeO6 octahedra and HPO3 units sharing vertices. The vertex linking 

polyhedra form 4-membered rings (connecting only P and Fe atoms) through the 

two bridging HPO3 units between the two FeO6 octahedra, these four membered 

rings are further corner-shared along the c-axis to form a chain (Figure 2b). These 

chains are further connected through HPO3 units laterally along a- and b-axes, 

creating interconnected channels in all three crystallographic directions (Figure 3).  

Two types of channels are formed when viewed along the a- or b-axes. Li+ 

ions can be seen occupying the slightly elongated zig-zag channels while the 

straight hexagonal-shaped channels are left empty. On the other hand, channels 

along the c-axis are also empty and have larger diameter formed by 8-membered 

ring and the hydrogen atoms of the phosphite moiety are protruding into the 

channel. It is to be noted here that Li-ions prefer the channels where inner walls 

are exclusively built by oxygen atoms. 

 

 

Figure 3. Perspective view of the packing diagram of the crystal structure of 

LiFe(HPO3)2 as   viewed along the a-axis (a) and c-axis (b). Blue: FeO6 octahedra; 

Green: HPO3 pseudo pyramidal units. 



83 

 

Thermogravimetric and Spectroscopic Characterization. The TGA plot 

of the pure sample exhibits an initial mass loss of 0.15% up to a temperature of 

300 C, which can be assigned to the removal of adsorbed moisture (Figure 4). The 

structure remains stable up to 320 °C, after which it loses 3 % of its mass, 

indicating the decomposition of the delicate HPO3 groups. As the temperature 

increases from 450 to 800 °C a considerable mass gain can be observed, which can 

be assigned to the oxidation of P(III) to P(V) to form a phosphate or 

pyrophosphate as a result of oxygen impurity in the N2 purge gas, similar to other 

phosphite based materials reported in the literature.22, 33 

Figure 5 depicts the FT-IR spectrum of LiFe(HPO3)2. The spectrum is 

composed of the signature sharp P–H stretching mode at 2450 cm–1 and the P – O 

stretching modes prevailing in the region 900 –1100 cm–1 overlapping with the 

bending vibrations of P – H bond.22 The low frequency part of the spectrum shows 

moderate absorption peaks assigned to the bending modes of P – O bonds. The 

absence of strong absorption peaks in the 3200 – 3500 cm–1 region indicates that 

the P – H bond is preserved during the synthesis and there is no sign of oxidation 

of P – H bond to P–O–H. 

 

 

Figure 4. TGA curve for LiFe(HPO3)2. 
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The Mӧssbauer spectrum of the as-synthesized product is given in Figure 6 

and the isomer shift (IS) and quadrupole splitting (QS) parameters derived from 

the curve fitting are given in Table 4. The observed spectrum has been fitted with 

two quadrupolar doublets, consistent with the results of powder XRD, with each 

doublet representing one crystallographically distinct Fe(III) in octahedral 

coordination as in LiFe(HPO3)2 and Fe2(HPO3)3, respectively.  

 

 

Figure 5. FT-IR spectrum of LiFe(HPO3)2. 

 

Site population analysis as obtained through the Lorentzian fit suggests that 

LiFe(HPO3)2 and Fe2(HPO3)3 each contributes 87 and 13% to the area, 

respectively, corroborating well with the quantitative phase analysis results 

achieved via powder XRD refinement. The IS values are consistent with Fe(III) 

ions in octahedral coordination.34 The Mӧssbauer spectrum also rules out the 

existence of other iron containing impurity species as evident from the spectra 

collected over the velocity range from -8.5 to +8.5 mm.s–1. 

Electrochemistry. To evaluate the basic electrochemical properties of the 

prepared composite cathode, cyclic voltammetry (CV) tests were performed on the 

coin-cells (Figure 7) which demonstrate that the phase is active with respect to Li 

intercalation/deintercalation. The cell exhibits an initial open circuit potential of 

3.1 V upon scanning to the potential of 2.0 V. The reductive lithiation peak for 
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LiFe(HPO3)2 appears at 2.71 V with a weak shoulder at 2.5 assigned to the 

reduction of Fe2(HPO3)3 phase. On reversing the scan toward 4.0 V the 

corresponding oxidative delithiation peak can be observed at 3.22 V. 

 

 

Figure 6. Mӧssbauer spectrum of the as-synthesized product, LiFe(HPO3)2 (85%) 

and Fe2(HPO3)3 (15%). 

 

 

Table 4. Lorentzian deconvolution fit parameters of the Mӧssbauer spectrum 

 IS (mm.s-1) QS (mm.s-1) Site population 

Doublet 1 0.429 (2) 0.644(2) 12.9(7) 

Doublet 2 0.434(6) 0.431(1) 87.1(7) 

 

Repeating the cycling shows two obvious events: firstly, a shift in the  

LiFe(HPO3)2 reduction peak toward more positive direction (2.86 V), indicating an 

increase in the cell discharge potential; and secondly, decrease in Fe2(HPO3)3 

phase reduction current. Additional cycling reveals that the position of oxidation 



86 

 

and reduction peaks for LiFe(HPO3)2 do not shift anymore and the magnitude of 

the cathodic and anodic currents at the peak potentials is very reproducible, 

evidencing the high reversibility of the redox process. 

 

 

Figure 7. Cyclic voltammograms of the composite cathode with respect to Li+/Li. 

Cathodic current is negative. 

 

The galvanostatic charge discharge curves at C/50 rate for the LiFe(HPO3)2 

phase at room temperature and 40 °C are shown in Figure 8. In order to assess the 

contribution of the Fe2(HPO3)3 impurity phase toward the total discharge capacity, 

coin cells of  pure Fe2(HPO3)3 phase was fabricated in the same manner and the 

specific discharge capacity was found to be negligible and also rapidly decaying 

with cycling. Therefore, the observed specific capacity can be assigned to the 

active LiFe(HPO3)2 phase reliably, albeit corrections were made to account for the 

inactive/less-active mass of the Fe2(HPO3)3 phase in the composite cathode mix. 

As the iron center in LiFe(HPO3)2 is in +3 oxidation state, the as-fabricated 

cells are  already in charged state. The cells were initially subjected to discharge by 

reductive lithiation at room temperature (dotted lines) shows sloppy voltage 

profiles, indicating solid-solution formation between the oxidized and reduced 

phases. At this condition the discharge terminates after insertion of 0.3 Li+ ion per 



87 

 

formula unit (36 mAh.g–1). Repeating the test at 40 °C, however, shows 

considerable improvement in capacity achievement with intercalation of 0.6 Li+ 

ion per formula unit (72 mAh.g–1), revealing the existence of polarization effects 

which can be thermally activated. Such findings suggest that the limited achievable 

capacity may be due to the poor electronic and/or ionic conductivity of the material 

which can be improved by reducing the particle size and applying more efficient 

carbon coating procedures. 

 

 

Figure 8. The C/50 voltage-composition profiles of LiFe(HPO3)2. Dotted line: 

Room temperature; solid line: 40 °C; gray: 1st, blue: 2nd; orange: 3rd and red: 20th 

cycles. 

 

The first discharge curve for both room temperature and 40 °C cycled cells 

starts from the open circuit potential, 3.1 V, while for the subsequent cycles the 

discharge starts at a higher potential of 3.4 V vs. Li+/Li redox couple, in agreement 

with the cyclic voltammetry results. In addition, Li+ intercalation for LiFe(HPO3)2 

during the discharge occurs at an average potential of 2.82 V which stands higher 

than some phosphate based materials, e.g. fluoro tavorite LiFePO4F.35, 36 

Despite the limited capacity achievement, LiFe(HPO3)2 exhibit outstanding 

capacity retention when cycled at different C-rates for prolonged amounts of time 

(Figure 9). The cell cycled at 40 °C exhibits a steady specific capacity of about 70 

mAh.g-1 during the first 5 cycles at C/50. Increasing the C-rate to C/20 causes a 
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corresponding decrease in the specific capacity by 15 mAh.g-1. Further increase in 

discharge rate to C/10 and C/5 reduces the specific capacity to 50 and 43 mAh.g -1, 

respectively. However, returning the discharge rate back to C/50 recovers the 

original value of 70 mAh.g-1, indicating that the drop in capacity at higher C-rates 

is reversible and associated with different polarization mechanism inside the cell.  

As expected the cell cycled at 40 °C shows higher specific capacity for all 

C-rates, but for both systems virtually no capacity fading can be detected even 

after 200 cycles. These results indicate the stability of LiFe(HPO3)2 crystal 

structure and the reversible nature of Li+ ion intercalation. The retention of the 

structural integrity after electrochemical cycling has been confirmed by ex-situ 

XRD of the reduced cathode material retrieved after breaking the button cell 

(supporting information, Figure S5).   

 

 

Figure 9. Capacity retention at various C-rates for LiFe(HPO3)2 cathode. 

 

However, it was not possible to refine the powder pattern or locate the 

position of the inserted Li-ion due to the poor quality of the diffraction data. The 

excellent capacity retention may be related to the 3-dimensional interconnected 

channels of the crystal structure. It is well-known that cathode materials where Li+ 

diffusion is restricted to 1-D channels, for example, in Olivine LiMPO4 (M = Fe 
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and Mn), are susceptible to blockage of Li+ diffusion path due to defects and 

impurities.37 This blockage eventually causes capacity fading and reduced cycle-

life. This problem is less likely to occur in materials with 3-D interconnected 

network of ionic diffusion paths and thus capable of showing good cycling 

stability as in the case of Tavorite.38     

CONCLUSIONS 

In this article we demonstrated that a novel phosphite with iron, the most abundant 

and environmentally benign transition metal, LiFe(HPO3)2, can be synthesized in a 

solvent-less low temperature synthesis route. The phase has been shown to be 

electrochemically active for reversible intercalation of Li+ ions, with an average 

discharge voltage of 2.8 V and an experimental capacity of about 70 mAh.g–1 has 

been achieved at 40 °C. Simple synthesis, low cost materials and excellent 

capacity retention of this phase may find applications where energy density is not a 

concern. 
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ABSTRACT: Lithium iron borophosphate, Li0.8Fe(H2O)2[BP2O8]·H2O,  with a 

chiral 65 helical channel structure has been shown to be electrochemically active as 

cathode for both Li- and Na-ion batteries. We report here for the first time 

synthesis of the illusive Li-containing iron borophosphate of a well-known 

structure type by employing hydrothermal synthesis route. The compound has been 

characterized by single-crystal X-ray diffraction, magnetic measurement and 

Mössbauer spectroscopy, which unequivocally prove the mixed valency of Fe2+/3+. 

The compound exhibits a sloppy voltage profile reminiscent of single phase solid 

solution type behavior on electrochemical lithium and sodium insertion in the 

voltage range 2.1 – 4.0 and 1.6 – 4.0 V, respectively. The pure single phase 

oxidized end member Fe(H2O)2[BP2O8]·H2O was synthesized by chemical de-
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lithiation of the as-synthesized compound, and the structure was solved by ab-

initio method followed by Rietveld refinement of the synchrotron X-ray powder 

diffraction data, showing a volume change of 3% with retention of the parent 

lattice. The oxidized phase was also characterized with magnetic and Mössbauer 

spectroscopy, which besides proving the 3+ oxidation state of Fe, showed long-

range anti-ferromagnetic ordering. The electrochemical performance of 

Li0.8Fe(H2O)2[BP2O8]·H2O was studied with galvanostatic charge/discharge tests, 

cyclic voltammetry, and electrochemical impedance spectroscopy. The compound 

showed facile Li- and Na- (de)-insertion with an average voltage of 3.06 and 2.76 

V for Li- and Na-ion cell, respectively, with almost 80% of the theoretical capacity 

achieved and a reasonable capacity retention was observed. The results of EIS in 

the fabricated cells indicated higher impedances for the Na-ion cell compared to 

Li-ion cell. Variable temperature EIS studies on pressed pellet of 

Li0.8Fe(H2O)2[BP2O8]·H2O showed high Li-ion conduction (3.0x10–8 S.cm–1
 at 

room temperature) with low activation energy (0.20 eV/Li+). 

INTRODUCTION 

Polyanion chemistry has taken a center stage in the search for new cathode 

materials in lithium- and sodium-ion batteries.1 This strong surge in research 

activity of polyanionic materials is catalyzed by a pioneering discovery from the 

Goodenough group in 1997 that Olivine structure type LiFePO4 can act as viable 

cathodes for Li-ion batteries.2 Subsequent realization that iono-covalency of the 

metal-ligand bond caused by the inductive effect of the central atoms of the 

polyanion moiety can tune the redox potential with respect to Li+/Li has fueled 

chemists to look out for polyanions beyond phosphates.3, 4 

Thus a large number of polyanionic materials in phoshphates,1, 2 silicates,5, 6 

sulfates,7 - 9 and borates10 - 11 are being investigated as viable cathodes for Li-ion 

batteries. We have recently shown that phosphite (HPO3
2-) can also act as cathode 

for Li-ion batteries. 12, 13 The focus is also shifting towards Na-ion batteries as well, 

as limited global Li abundance may cause Li-ion batteries to become cost-

prohibitive in the future.14 - 16 Similarly, our focus from mono-polyanionic material 
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is shifting to mixed polyanionic materials. It was recently predicted from high 

throughput computation that mixed polyanionic compounds of transition metals 

could be attractive cathode materials for Li-ion batteries both in terms of average 

voltage and specific capacity.17 Subsequently, it was shown by the Ceder group 

that carbono-phosphates, (AMPO4CO3, A = Li, Na; M = Fe, Mn) are indeed 

versatile cathodes for Li- and Na-ion batteries as predicted from the theoretical 

studies.18, 19 In the same article some borophosphate composition predicted from 

substitutional chemistry showed very impressive computed Li-ion battery 

property.17 Encouraged by this finding we wanted to explore borophosphate family 

in search of a suitable cathode for Li- and Na-ion batteries. The chemistry of 

borophosphate is very rich, because of the ability of the borate and phosphate unit 

to polymerize through P – O – B linkages to form a large variety of oligomeric 

species.20, 21 Borophosphates have already been touted for several potential 

applications in optical materials22 - 24 and catalysis because of their propensity to 

form non-centrosymmetric and zeolitic structure, 25-27 respectively. However, 

borophosphates as potential cathode materials for Li-ion batteries have not been 

tested so far. Towards this goal we have synthesized and structurally characterized 

a new mixed valent iron borophosphate composition, Li0.8Fe(H2O)2[BP2O8]H2O, 

which is electrochemically active with respect to both Li- and Na-ion (de)insertion 

with high reversibility at an average voltage of 3.06 and 2.76 V, with respect to 

Li+/Li and Na+/Na, respectively. During the preparation of this manuscript we have 

noticed a paper showing electrochemical activity in the already known phases, 

(NH4)0.75Fe(H2O)2[BP2O8]·0.25H2O
28 and NaFe(H2O)2[BP2O8]·H2O

29  as cathode 

in Na-ion battery.30 The framework structure of the reported ammonium- and 

sodium phases and the current Li-phase is same, only difference exists in the 

handedness of the helical channels. This class of compounds has been found to 

crystallize in both the enantiomorphic space groups, P6122 or P6522 and P61 or 

P65.
25, 28, 31, 32 Though the crystal structure belongs to a well-known structure-type, 

MIMII(H2O)2[BP2O8]·H2O (MI = Na, K; MII = Mg, Mn, Fe, Co, Ni, Zn), first 

reported by Kniep et al.25 and later by others,28, 29, 31 - 41 the combination of Li-Fe in 

this structure type was not reported until now. Successful synthesis of the Li-phase 
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has direct relevance to the Li-ion battery study, since it enables direct chemical and 

electrochemical Li-extraction. Herein we report the synthesis, structure solution of 

Li0.8Fe(H2O)2[BP2O8]·H2O via single-crystal X-ray diffraction, confirmation of the 

oxidation state of Fe by magnetic measurements and Mössbauer spectroscopy, and 

details of electrochemical studies including cyclic voltammetry, galvanostatic 

charge-discharge and impedance spectroscopy in Li- and Na-ion batteries using 

Li0.8Fe(H2O)2[BP2O8]·H2O as a cathode. Moreover, we report the first structural 

solution of the fully oxidized end member, Fe(H2O)2[BP2O8]·H2O, from 

synchrotron powder X-ray diffraction data and elucidate the oxidation state of Fe 

by magnetic and Mössbauer spectroscopy. 

EXPERIMENTAL SECTION 

Reagents. Reagent grade FeCl2·4H2O, H3PO4, and H3BO3 were purchased 

from Fisher Scientific. LiOH·H2O (reagent grade, purity 98+%) was purchased 

from Acros Organics. Li foil (purity 99.9%) and Na cubes (purity 99.9%) were 

purchased from Aldrich. Anhydrous NaClO4 (98%) was purchased from Strem 

Chemicals and battery grade Selectilyte ethylene carbonate (EC) and dimethyl 

carbonate (DMC) were purchased from BASF. All the chemicals were used as-

purchased and without further purification. 

Synthesis. Li0.8Fe(H2O)2[BP2O8]·H2O has been synthesized by employing 

hydrothermal method. Initially a homogeneous solution was prepared by 

dissolving 2.9820 g FeCl2·4H2O (15 mmol), 46.5 mL concentrated (85% w/w, 

density = 1.68 g.cm–3) H3PO4 (0.675 mol), 6.1830 g H3BO3 (0.100 mol), and 

18.8820 g LiOH·H2O (0.450 mol) in 20 mL of deionized water under continuous 

stirring for an hour. The solution was then transferred into a Teflon lined Parr 

stainless-steel reaction vessel (120 ml capacity), sealed, and kept in an oven at 175 

°C for two weeks for the reaction to occur under autogenous pressure. The reaction 

product was composed of large well-defined dark-purple hexagonal crystals. The 

crystals were separated from the solution of unreacted reagents by filtration and 

washed several times with copious amounts of hot water, cold water, and finally by 

ethanol. The product was allowed to dry naturally in air, weighed for the 
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measurement of yield (reaction yield: ~70% with respect to Fe) and subsequently 

used for characterization and property studies. 

Chemical Oxidation. The above material was subjected to chemical 

oxidation (oxidative de-insertion) by mixing 0.4880 g of milled Li0.8Fe 

(H2O)2[BP2O8]·H2O (1.53 mmol) and 0.5200 g of NO2BF4 (3.90 mmol) in 5 mL 

acetonitrile in an argon filled glovebox. The reaction was continued for 5 days at 

room temperature under continuous stirring while color of the powder changed 

from purple to white as the oxidation proceeded to completion. The reaction 

mixture was then removed from glovebox, filtered and washed with acetonitrile 

and dried overnight in a vacuum oven at 65 °C. 

Material Characterization. Single-crystal X-ray diffraction. Crystal 

structure of Li0.8Fe(H2O)2[BP2O8]H2O was solved from single-crystal intensity 

data sets collected on a Bruker Smart Apex diffractometer with monochromated 

Mo Kα radiation ( = 0.7107 Å). Suitable crystal was selected and mounted on a 

glass fiber using epoxy-based glue. The data were collected using SMART42 

software at room temperature employing a scan of 0.3° in ω with an exposure time 

of 20 s/frame. The cell refinement and data reduction were carried out with 

SAINT,43 while the program SADABS43 was used for the absorption correction. 

The structure was solved by direct methods using SHELX-9744 and difference 

Fourier syntheses. Full-matrix least-squares refinement against |F2| was carried out 

using the SHELXTL-PLUS44 suite of programs. The hexagonal crystal system and 

the unit cell parameters, immediately revealed that the crystal structure belongs to 

a well-known structure-type, MIMII(H2O)2[BP2O8]·H2O (MI = Na, K; MII = Mg, 

Mn, Fe, Co, Ni, Zn), first reported by Kniep et al.25 The structure of 

Li0.8Fe(H2O)2[BP2O8]H2O was solved in P6522 space group. The positions of one 

Fe, one P, and 5 O atoms were located from the difference Fourier maps. These 

positions were then refined isotropically and immediately one more peak clearly 

appeared approximately 1.4 Å away from the O1 atom, which was assigned as 

boron atom (B1). At this point anisotropic refinement was carried out and two 

additional peaks separated by a distance of 2.16 Å appeared. These peaks were 

refined as Li, which was ~2 Å away from O5, and water of crystallization (O1w), 
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respectively. Both Li1 and O1w had high thermal parameters and, therefore, 

checked for partial occupancy. Refinement of occupancies revealed that Li1 has an 

occupancy of 66%, however, Li being a light atom such occupancy refinement 

may not be meaningful. Therefore, Li occupancy was fixed at 80% based on the 

Mössbauer spectroscopic study, which indicated ~20% of Fe3+ in the unique Fe 

site. Determination of lithium content was also carried out by atomic absorption 

spectroscopy (AAS) and the amount of lithium was found to be 1.67%. This value 

yielded the fraction of the Li+ to be 0.76(3) in the formula, 

Li0.76Fe(H2O)2[BP2O8].H2O, corroborating well with the Mössbauer spectroscopic 

results. The water of crystallization did not show any partial occupancy. The 

hydrogen atoms on the bound as well as free water could be located in the Fourier 

maps but could not be refined without using the restraints. Details of the final 

refinements and the cell parameters for Li0.8Fe(H2O)2[BP2O8]H2O are given in 

Table 1. The final atomic coordinates and the isotropic displacement parameters 

are given in Table 2. Selected inter-atomic distances are listed in Table 3. 

Powder X-ray diffraction (PXRD) and Thermo-diffractometry. The powder 

XRD pattern of the as-prepared phase was recorded on a PANalytical X’pert Pro 

diffractometer with a Cu Kα1,2 tube  for evaluation of phase purity over a 2θ range 

of 5–90 ° with a step width of 0.026 ° and step exposure duration of 3.3 sec. 

Thermo-diffractometry was utilized for in-situ study of thermal stability of the 

crystal structure of the as-prepared material in a 2θ range of 10 – 26 ° and a 

temperature window of 25–450 °C with 25 °C temperature intervals in an Anton-

Paar HTK 2000 high-temperature strip heater chamber in N2 gas flow. 

For structural characterization after oxidative delithiation, synchrotron 

powder X-ray diffraction data has been collected from Argonne National 

Laboratory (ANL) Advanced Photon Source (APS) 11-BM beam line. The data 

collection was performed in ambient conditions using a monochromated parallel 

X-ray beam of 0.4139 Å wavelength over a 2θ range of 0.5 - 50°.The acquired data 

were then used for structure solution and refinement, initial atomic coordinates 

were found using FOX45 software and Rietveld refinement was performed 

employing GSAS-II.46  
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Magnetic measurements. The DC Magnetic susceptibility of the compounds 

(as-prepared and chemically oxidized) were measured at 0.5 Tesla (1 Tesla = 

10,000 Oe) after zero-field cooling over the temperature range 1.8 - 300 K with a 

Quantum Design SQUID magnetometer. 

 

Table 1. Crystal data and structure refinement for Li0.8Fe(H2O)2[BP2O8]H2O 

Empirical formula Li0.8Fe(H2O)2[BP2O8]H2O 

Formula weight 316.20 g.mol-1 

Crystal system Hexagonal 

Space group 𝑃 6522 

a = b 9.47(6) Å 

c 15.76(1) Å 

α = β  90 ° 

γ 120 ° 

V 1225.4(3) Å3 

Z 6 

ρcalc 2.563 g.cm-3 

F(000) 944 

Temperature 296(2) K 

GOF on F2 1.125 

R [I>2σ(I)] R1 = 0.0266, wR2 = 0.0703 

R [all data] R1 = 0.0286, wR2 = 0.0719 

 

Further magnetic measurements including isothermal magnetization at 

various temperatures were carried out in an applied field range of +5 to -5 Tesla. 

Zero field cooled (ZFC) and field cooled (FC) magnetization data were collected at 

a low applied field (.01 T) for the chemically oxidized phase. 

Mössbauer spectroscopy. 57Fe Mӧssbauer spectroscopy was performed on 

the as-prepared, chemically oxidized, and different state-of-charge cathode 

materials in transmission geometry using a constant acceleration spectrometer 

equipped with a 57Co (25 mCi) gamma source embedded in Rh matrix. The 

instrument was calibrated for velocity and isomer shifts with respect to α-Fe foil at 



100 

 

room temperature. The resulting Mӧssbauer data were analyzed using Lorentzian 

profile fitting by RECOIL software.47 

 

Table 2. Atomic coordinates and equivalent isotropic displacement parameters of 

the atoms. Ueq = 1/3rd of the trace of the orthogonalized U tensor 

Atom x/a y/b z/c Ueq [Å
2] 

 Fe(1) 0.5522(1) 0.4478(1) 0.0833 0.012(1)  

 P(1) 0.1683(1) 0.3866(1) 0.0814(1) 0.010(1)  

 B(1) -0.1517(2) 0.1517(2) 0.0833 0.011(1)  

 O(1) 0.1789(2) 0.4154(2) 0.1791(1) 0.014(1)  

 O(2) 0.0209(2) 0.2132(2) 0.0648(1) 0.015(1)  

 O(3) 0.1409(3) 0.5173(3) 0.0433(1) 0.019(1)  

 O(4) 0.3149(2) 0.3825(3) 0.0478(1) 0.020(1)  

 O(5) 0.4806(3) 0.1924(3) 0.0483(2) 0.028(1)  

 O(1W) 0.1957(9) 0.0978(4) -0.0833 0.085(2)  

 Li(1) 0.4830(3) 0.2414(1) -0.0833 0.075(4)  

 

 

Table 3. Selected bond lengths for Li0.8Fe(H2O)2[BP2O8]H2O 

Bonds 
Distance
s (Å) 

Bonds 
Distances 
(Å) 

Fe1—O3#1,#2 2.081(6) P1—O1 1.558(3) 

Fe1—O4#0,#3 2.088(3) B1—O2#0,#6 1.465(3) 

Fe1—O5#0,#3 2.233(2) B1—O1#7,#8 1.473(3) 

P1—O4 1.506(1) Li1—O3#1,#4 2.086(1) 

P1—O3 1.511(7) Li1—O5#5 2.124(2) 

P1—O2 1.557(9) O1W—Li1 2.36(2) 
#0 x, y, z; #1 x – y + 1, -y + 1, -z; #2 y, -x + 

y, z + 1/6; #3 –y + 1, -x + 1, -z + 1/6; #4 x – y + 1, 

x, z - 1/6; #5 x, x – y, -z - 1/6; #6 -y, -x, -z + 1/6; 
#7 x – y, x, z - 1/6; #8 -x, -x + y, -z + 1/3      

 

Thermogravimetry. The thermogravimetric analysis on the as-prepared 

sample along with the chemically oxidized samples were acquired using a TA 

instrument Q50 TGA in the temperature range of 25 – 800 °C under flowing 

nitrogen atmosphere with a heating rate of 10 °C.min–1. 
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IR spectroscopy. Infrared spectra of the crystalline 

Li0.8Fe(H2O)2[BP2O8]H2O and the chemically oxidized phases were recorded 

using a Thermo Nicolet Nexus 470 FT-IR spectrometer on KBr pellets in the 

wavenumber range of 400 – 4000 cm–1. 

Electrochemical tests. Electrochemical analyses of 

Li0.8Fe(H2O)2[BP2O8]H2O were performed on composite cathodes made from the 

synthesized compound as the active material, conductive carbon and poly-

vinylidenefluoride (PVDF) (binder) in 75:15:10 weight ratio in Li- and Na-ion 

cells. In a typical cathode preparation the active material was ball milled with 

super P conductive carbon for 2 hours in a SPEX 8000 mixer/milling machine to 

reduce the particle sizes. PVDF dissolved in N-methyl-2-pyrrolidone (NMP) was 

then added to the fine powder and milling continued for another 15 min to form a 

homogenous suspension which was applied subsequently on the surface of 

aluminum current collector with a uniform thickness by means of a glass rod. The 

composite cathode was then transferred to the vacuum oven where NMP was 

evaporated by drying at 85 °C for 12h.  

CR2032 button cells were assembled in the argon glove box (oxygen 

concentration < 2.0 ppm) with circular disks (3/8”) cathodes cut from the above 

composite with active material loadings of about 4 mg. The cathodes were 

mounted with a Celgard 2325 as separator and Li-foil as the anode and 1M 

solution of LiPF6 dissolved in DMC-EC (1:1) as the electrolyte for the Li-ion cells. 

For Na-ion cells the above cathodes were assembled with Whatman GF/A glass 

microfiber separators cut to the size, freshly prepared slices of Na metal as the 

anode and a 1M solution of NaClO4 in DMC-EC (1:1) as the electrolyte. The 

assembled Li or Na-ion cells were crimped and aged for at least 12 h before the 

electrochemical analyses. 

A PAR EG&G potentiostat/galvanostat model 273 was used for running 

cyclic voltammetry tests on the cells with a scan rate of 0.05 mV.sec–1 in the 

potential range 1.8–4.2 V and 1.2–4.3 V vs. Li+/Li and Na+/Na, for Li- and Na-ion 

cells, respectively. Galvanostatic charge/discharge experiments were executed on 

an Arbin Instruments battery testing station model BT2403 under various C-rates. 
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Ionic conductivity measurements.  About 600 mg of the as-prepared 

material was pressed into a pellet under a hydrostatic force of 7 tons for 5 min. The 

two sides of the obtained pellet were then coated with silver paint to form the 

blocking electrode and the complex impedance plots were obtained in a frequency 

range of 0.1 Hz - 100 kHz in the temperature windows 25 - 65 °C.  

RESULTS AND DISSCUSSION 

Crystal Structure Characterization. The asymmetric unit of 

Li0.8Fe(H2O)2[BP2O8]H2O contains 10 non-hydrogen atoms (Figure 1). There is 

one crystallographically distinct Fe center located in 6b site, adopting an 

octahedral coordination with 4 oxygen atoms from the phosphate groups and two 

oxygen atoms from the coordinated water molecules where all the oxygen atoms 

coordinated to Fe are located at the general position, 12c. 

The Fe — O bond lengths are in the range 2.081(6) — 2.233(2) Å, which 

are in good agreement with Fe(II) – oxygen bonds reported in the literature.28, 29. 

The P atom is located in a general position (12c) surrounded by 4 oxygens in a 

tetrahedral environment with P — O distances in the range 1.506(1) — 1.558(3) Å. 

The boron atom is located in a special position, 6b, and adopts a tetrahedral 

coordination with B — O distances in the range 1.465(3) — 1.473(3) Å.  O1 and 

O2 act as the bridging oxygens between the phosphate and borate tetrahedral units. 

There is also one free water molecule, O1W located at the special position, 6b, 

coordinating only to the Li ion. The only Li site at the position, 6b, is partially 

occupied, implying mixed-valency in the Fe center. The Li atom is 5-coordinated 

adopting an irregular LiO5 polyhedron with two oxygens from phosphate, two 

from coordinated water, and one from free water molecule with Li — O distances 

in the range 2.086(1) — 2.124(2) Å and a weaker bond with the free water 

molecule through a longer interatomic distance equal to 2.36(2) Å. 

A bond valence sum (BVS) calculation yields a BVS value +2.070 for Fe 

reveals that the oxidation state of iron is mostly 2+ with some contribution from 

Fe3+ as well. 
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The remarkable feature of the structure of Li0.8Fe(H2O)2[BP2O8]H2O is the 

polymerization of borate and phosphate units to form helical chains that run along 

the c-axis of the crystal (Figure 2a). These 65 helical chains form inner walls of the 

spiral channels which are filled with the free water molecules (Figure 2b). These 

chains are further connected by FeO4(H2O)2 octahedral units and such 

arrangements create empty pores which are hosting Li+ ions when viewed along 

the a-axis (Figure 2b and Figure 2c). 

 

 

Figure 1. Connectivity pattern and coordination sphere of different atoms in 

Li0.8Fe(H2O)2[BP2O8]·H2O. The atoms that appear in the asymmetric unit are 

labelled. 

 

The Li+ ions show large displacements in the ab-plane compared to c-axis 

as indicated by the respective thermal displacements of the ellipsoid. This may 

have implications towards high ionic conductivity of this phase, as studied by 

electro-impedance technique (discussed later). Comparison of the acquired powder 

X-ray diffraction pattern of the as-prepared Li0.8Fe(H2O)2[BP2O8]H2O against the 

simulated pattern obtained from the single-crystal XRD suggests pure phase 

formation by the employed synthesis procedure (Supplementary Information, 

Figure S1).  
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In order to verify the existence of fully oxidized end member of 

Li0.8Fe(H2O)2[BP2O8]H2O, the obtained material was treated with NO2BF4, a 

strong oxidizer, which mimics the electrochemical oxidative delithiation. 

The powder X-ray diffraction pattern of the chemically oxidized phase, 

Fe(H2O)2[BP2O8]H2O, can reveal the crystal structure stability upon extraction of 

Li+ ions. To follow the structural changes induced by chemical oxidation, 

synchrotron powder XRD of the sample was collected and used for structure 

solution (Figure 3). 

 

 

Figure 2. Demonstration of 65 helix forming the channel wall (a); Polyhedral 

connectivity of structure of Li0.8Fe(H2O)2[BP2O8]·H2O as viewed along the c-axis 

(b) and a-axis (c) with FeO6 octahedra: blue, PO4 tetrahedra: light green, BO4 

tetrahedra: orange. The red and purple ellipsoids with large thermal displacement 

represent the free water and Li+, respectively. 

 

The pattern was indexed in P6522 space group using the FOX software,45 

similar to the as-prepared material. Intensity extraction by LeBail method followed 

by reconstruction of observed Fourier maps after the ab-initio Monte-Carlo 

simulation technique incorporated in FOX revealed the position of 9 non-hydrogen 

atoms, including: 1 Fe, 1 P, 1 B and 6 O atoms. These coordinates were used for 

the final Rietveld refinement using GSAS II.46 Apart from the absence of the Li+ 

ion, the free water molecule showed a high degree of disorder, as is evident from 
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its large thermal displacement parameter (Figure 4 and Table S1). However, the 

structure remains more or less the same after carrying out the chemical oxidation, 

suggesting a topotactic de-intercalation of Li+ ions and high degree of structural 

stability. 

Moreover, comparison of the unit cell parameters in the as-synthesized and 

chemically delithiated phase shows approximately -3.0% volume change after the 

oxidation. Refined lattice constants and agreement parameters of refinement for 

the oxidized phase are given in Table 4 and the atomic coordinates are supplied as 

supplementary information (Table S1). A bond valence sum (BVS) calculation 

yields a value of +3.06 for iron, which confirms complete oxidation of the Fe 

center in Fe(H2O)2[BP2O8]·H2O to 3+. 

Spectroscopic and Thermal Analyses. IR spectra of as-prepared and 

chemically oxidized phases of Li0.8Fe(H2O)2[BP2O8]·H2O are given in supporting 

information (Figure S2). The spectrum in each case is dominated by the strong P – 

O stretching modes in the range 900 – 1100 cm–1 overlapping heavily with the 

strong B – O  stretching vibrations in the range 800 – 1200 cm–1.48 Strong O – H 

stretching (broad) and bending modes can be observed around 3400 and 1625 cm –

1, respectively. 

 

 

Figure 3. Rietveld refinement of synchrotron XRD data of Fe(H2O)2[BP2O8]·H2O. 

Blue cross: observed intensity, red line: calculated intensity; green line: difference 

curve. The impurity peak is indicated with an asterisk. Inset shows an enlarged 

view of the high 2θ segment of the pattern. 
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Similar to the powder XRD studies, the IR spectrum of the chemically 

oxidized sample matches fairly well with the as-prepared product, indicating the 

bonds remain intact after oxidative removal of the Li+ from the channels or in 

other words a topotactic de-intercalation. 

 

 

Figure 4. Connectivity pattern in Fe(H2O)2[BP2O8]·H2O after chemical oxidation. 

 

 

Table 4. Lattice parameters and goodness of the powder XRD refinement of 

Fe(H2O)2[BP2O8]·H2O 

a = b  9.372(7) (Å) 

c 15.606(7) (Å) 

α = β (°) 90 

γ (°) 120 

V 1187.33(1) (Å3) 

Space group P6522 

Number of reflections 327 

Rw 12.04% 

RF
2 8.9 % 

Number of data points 23928 
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TGA results of the ground crystals of Li0.8Fe(H2O)2[BP2O8]·H2O along 

with the oxidized phase are given in Figure 5. The as-prepared phase shows two 

major weight losses; in the first step 12% mass loss occurs in the temperature 

range 100 - 210 °C corresponding to loss of two H2O molecules from the formula 

leading to a flat plateau, where  weight remains stable between 210 – 320 °C. 

Afterwards, a second major weight loss is observed between 340 to 450 °C where 

the last coordinated water molecule is removed from the structure and no further 

weight loss is observed from 500 to 800 °C. 

The final observed mass of 83.5% matches well with the theoretical value 

of 82.9% due to the mass of de-hydrated compound,  Li0.8FeB(PO4)2. The thermal 

behavior of the chemically oxidized phase is different as the first and second mass 

loss processes have merged together so that no flat profile can be recognized and 

conversion to the dehydrated final product occurs at a much lower temperature of 

260 °C. Thermo-diffraction tests were performed in order to gain further 

information regarding the crystal structure stability upon removal of water 

molecules and the result is given in Figure 6. 

 

 

Figure 5. TGA curves for Li0.8Fe(H2O)2[BP2O8]·H2O and Fe(H2O)2[BP2O8]·H2O. 
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An initial peak intensity degradation is observed as the temperature 

increases from 25 to 75 °C, however, the main peak intensities can be clearly 

observed up to 150 °C (prior to the rapid weight loss as seen in TGA) after which 

an amorphous product forms. The results of TGA and thermo-diffraction studies 

indicate that the crystal structure remains stable after partial removal of the water 

of crystallization which accounts for 2% of mass loss corresponding to the removal 

of 0.33% of free water molecule. Further heating results in the simultaneous 

extraction of the remaining water of crystallization and one of the coordinated 

water molecules leading to the collapse of the crystal structure. This observation is 

in sharp contrast to some of the isostructural Na analogues, where removal of the 

water of crystallization and one of the coordinated water molecules led to 

microporosity with the retention of structural integrity.25, 35 This is also in contrast 

to ammonium analogue, (NH4)0.75Fe(H2O)2[BP2O8]·0.25H2O, where heating at 300 

°C for 10 h does not remove the water of crystallization, nor does it destroy the 

crystal structure.30 

 

 

Figure 6. Themo-diffraction pattern of Li0.8Fe(H2O)2[BP2O8]·H2O. 

 

Magnetic Characterization. Magnetic property measurement is an 

important characterization for the cathode materials for alkali-ion batteries because 

it gives important information about the oxidation state of the transition metal 

besides any magnetic ordering. The ZFC magnetic susceptibility (M) and the 

corresponding inverse (M
-1) molar susceptibility as a function of temperature for 
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the as-synthesized and oxidized compounds are given in Figure 7 as a function of 

temperature. 

The M-T plots reveal that as-synthesized compound has no magnetic 

ordering and is asymptotic in the entire temperature range, while the chemically 

oxidized phase shows an onset of an antiferromagnetic transition at 5.16 K. 

The M-T plots reveal that as-synthesized compound has no magnetic 

ordering and is asymptotic in the entire temperature range, while the chemically 

oxidized phase shows an onset of an antiferromagnetic transition at 5.16 K. The 

M
-1-T plots are perfectly linear between 25 to 300 K and data above 100 K can be 

fitted to Curie-Weiss law yielding a Curie constant C of 3.97(1) and 4.26(1) emu 

K/mol and p of –4.9(4) K  and –4.2 (3)  K, respectively, for the as-synthesized 

and chemically oxidized phases. The effective magnetic moment calculated from 

the Curie constants are 5.64 and 5.84 B for as-prepared and chemically oxidized 

phases, respectively, agree well with the presence of 20% Fe3+ in as-prepared 

material (theoretical 5.66 B) and full Fe3+ in the oxidized phase (theoretical 5.9 

B). 

 

 

Figure 7. The temperature dependence of inverse and molar susceptibility of as-

prepared (squares) and chemically oxidized (circles) samples of 

Li0.8Fe(H2O)2[BP2O8]·H2O. Upper left inset: temperature dependence of χm of 

chemically oxidized sample under ZFC-FC (0.01T) conditions. Lower right inset 

shows the M-H curves of the two phases at different temperatures: as-prepared at 

300 K (purple) and 5 K (blue), and oxidized sample at 2 K (Red). 
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The effective magnetic moment of 5.64B for the as-prepared sample can be 

easily explained by taking into account 80 % of Fe in 2+ (assuming eff (Fe2+) = 

5.6 B) and remaining Fe in 3+ oxidation state, these values also corroborates with 

the Mössbauer experiment (vide infra). The observed magnetic moment for Fe2+ in 

high spin state is always higher than the spin only value (4.89 B) because of the 

contribution from unquenched orbital moment and lies in the range (5.1 – 5.6 

B).49 The negative values of the Weiss constant for both phases indicate 

predominant antiferromagnetic interactions between the Fe-centers. However, this 

exchange interactions between the Fe centers through the phosphate moiety in the 

case of high spin Fe(III) is strong enough to induce an antiferromagnetic ordering, 

while in the case of mixed valency (or predominant Fe2+) there is no such ordering. 

The non-divergence of low field FC-ZFC magnetization measurements for the 

chemically oxidized phase also points to a long range three-dimensional 

antiferromagnetic ordering. The isothermal magnetization measurement at 2 K, 

which is below the TN for the oxidized phase, shows a perfect straight line with no 

hysteresis, once again reinforcing the 3D antiferromagnetic ordering. Similar M-H 

scan for the as-synthesized compound at low and room temperature also indicate 

linear nature reminiscent of antiferromagnetic interactions. 

Mӧssbauer Spectroscopy. Figure 8 demonstrates the Mӧssbauer spectra 

for the as-prepared compound along with its chemically oxidized form recorded 

over a velocity range of -10 to 10 mm.s–1 (limited range shown here) with the fit 

parameters given in Table 5. According to SC-XRD there is only one 

crystallographically distinct iron site in the asymmetric unit and hence the 

observed spectrum should be one simple symmetrical doublet for any single 

oxidation state of Fe with definite isomer shift (IS) and quadrupolar splitting (QS). 

However, the observed asymmetry in the Mӧssbauer peak intensities and widths 

suggest inclusion of another doublet site in the low velocity peak, representing Fe 

in 3+ oxidation state. The compound is, therefore, in a mixed oxidation state with a 

certain ratio of Fe2+:Fe3+
, which can be determined through the Lorentzian curve 

fitting. Another important characteristic of the Mössbauer spectrum of the as-

synthesized compound is that the peaks have very broad linewidths reflecting a 
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distribution of the quadrupolar splitting due to different degree of distortion of 

FeO6 octahedra. However, the exact reason for varying degree of octahedral 

distortion is not clear to us but may have to do with mixed valency and charge 

disorder. For this reason we have used multiple doublets with different 

quadrupolar splitting values to fit the higher quadrupole value peaks and one 

doublet for the smaller quadrupole value peak. However, we report here the 

average IS and the average magnitude of the QS for the doublet with larger 

quadrupolar splitting. 

The fitted parameters given in Table 5 indicate that part of the iron ions are 

trivalent with a high-spin configuration and are located in octahedral environments 

and the remaining Fe ions are in divalent state with high spin octahedral 

coordination as expected from the structure and also corroborates with magnetic 

data. The ratio of the population of Fe2+ and Fe3+ is 4:1 and hence the formula 

Li0.8Fe2+
0.8Fe3+

0.2[BP2O8] (H2O)2·H2O. 

 

 

Figure 8. Mӧssbauer spectra for Li0.8Fe(H2O)2[BP2O8]·H2O (a), and 

Fe(H2O)2[BP2O8]·H2O (b). 

 

On the other hand, the curve fitting of the Mӧssbauer spectrum for the 

chemically oxidized phase requires only one doublet (Figure 8 b), with IS and QS 

values signature of Fe3+ in octahedral coordination. The isomer shift of the 
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oxidized phase matches perfectly with the isomer shift observed for Fe(III) in the 

as-synthesized compound (see Table 5). The absence of any Fe2+ impurity peak 

indicates complete conversion of Fe2+ centers to Fe3+ as a result of oxidative 

delithiation using NO2BF4.  IS and QS values reported here are typical of Fe2+ and 

Fe3+ in high spin octahedral configuration in an oxide environment.50 

Electrochemistry. As mentioned above, topotactic oxidative chemical de-

intercalation of Li+ can be achieved from the host structure 

Li0.8Fe(H2O)2[BP2O8]·H2O. Accordingly, we tried electrochemical 

oxidation/reduction of this phase to assess its electrochemical properties as a 

cathode material in rocking-chair alkali-ion batteries. Reversible electrochemical 

intercalation of Li+ and Na+ ions into the host structure was studied by running 

cyclic voltammetry experiments on the coin cells, whose results are presented in 

Figure 9. 

 

Table 5. Values of Mössbauer isomer shift (IS), quadrupole splitting (QS) and site 

percentage for the as-synthesized and chemically oxidized samples 

 IS (mm.s-1) QS (mm.s-1) site % 

Li0.8Fe(H2O)2[BP2O8].H2O 

Site 1 (Fe3+) 0.468(1) 0.487(9) 20.1(4) 

Site 2(Fe2+)a 1.240(2) 1.853(3) 79.9(1) 

Fe(H2O)2[BP2O8]·H2O 

site 1 0.438(8) 0.348(3) 100 

a Average IS and QS.  

 

The open circuit potential for Li- and Na-ion cells fabricated with 

Li0.8Fe(H2O)2[BP2O8]·H2O as cathode are essentially the same, 3.0 and 3.1 V, 

respectively. The cells were first subjected to oxidation by scanning the potential 

towards the higher voltage, followed by reversing the potential scan to the lower 

voltage limit. The anodic and cathodic peaks for the Li-ion cell occur at 3.65 V and 

2.70 V, respectively. Moreover, the peak positions do not move following further 

cycling, implying the high degree of reversibility and the stability of the redox 

process for this cathode material as will be discussed later. 
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Figure 9. Cyclic voltammetry curves of Li0.8Fe(H2O)2[BP2O8]·H2O|LiPF6|Li (a) 

and NaFe(H2O)2[BP2O8]·H2O|NaClO4|Na (b). 

 

The anodic and cathodic peaks for the Na-ion cell can be observed at 3.50 V 

and 2.45 V, respectively. The anodic peak potential for the Na-ion cell is broad in 

comparison to the Li-ion cell, implying a higher polarization compared to the Li-

ion cell. However, the cathodic (discharge) potential is lower than the latter, as 

expected. The observed shifts in the position of the cathodic and anodic peaks 

towards extreme values upon cycling, as well as comparatively lower peak current 

can be related to the slower dynamics of Na+ diffusion rates as discussed later (see 

the impedance part). 
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The results of the CV experiments reveal the electrochemical activity of the 

Fe(H2O)2[BP2O8]·H2O host towards reversible intercalation of alkali ions. 

Assuming one electron transfer the LiFe(H2O)2[BP2O8]·H2O and 

NaFe(H2O)2[BP2O8]·H2O active materials give rise to a theoretical specific 

capacity of 84.4 and 80.33 mAh.g–1, respectively. 

Figure 10 shows the first 3 cycles of the galvanostatic charge/discharge 

cycling test performed on the Li-ion cells in the potential window of 2.1 - 4.0 V vs. 

Li+/Li at the C-rate of C/50. 

The charge capacity (oxidative delithiation) achieved in the first cycle is 

smaller than the subsequent charge/discharge cycles, since a fraction of the 

material is already in +3 oxidation state. For the first discharge, initially Li+ 

intercalates into the LixFe(H2O)2[BP2O8]·H2O (x ~0.24) host at 3.5 V, which 

appears relatively high for an iron-based cathode material. The voltage-

composition profile reduces monotonically up to an intercalation of 0.7 Li+ into the 

structure (60 mAh.g-1) reaching a value of 2.7 V, after which the potential drops 

rapidly to the lower voltage cut-off value of 2.1 V achieving 80% of the theoretical 

capacity (67.5 mAh.g-1) with an average redox potential of 3.06 V vs Li+/Li. 

 

 

Figure 10. First three galvanostatic charge-discharge tests on 

Li0.8Fe(H2O)2[BP2O8]·H2O|LiPF6|Li cell. 
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Further examination of discharge curves indicates high reversibility of the 

redox process and small capacity loss on subsequent cycles.  

Mössbauer spectroscopy was employed as an ex-situ technique to keep 

track of oxidation state and environment change of iron as the cells were cycled 

between charge and discharge state at C/20 rate. The Mössbauer spectra of the 

cathode has been obtained from fresh cells charged to 4.0 V and subsequently 

discharged to 3.0 and 2.0 volts corresponding to the fully charged, half-way 

discharged and fully discharged states, respectively. For each state-of-charge the 

cathode materials for Mössbauer study were retrieved from 3-4 cells after breaking 

the cells apart. The Mössbauer spectrum of the 4.0 V charged state shows that 

68.8% of iron is in +3 oxidation state, while the percentage of +3 state drops to 

47.7% and 34.0% as the cell potential decreases to 3.0V and 2.0V, respectively, 

during the discharge process (Supplementary information, Figure S3 and Table 

S2). This trend demonstrates the change in the oxidation state of iron center as a 

function of potential and state-of-charge as expected from the charge-discharge-

composition curve and reinforces the fact that the mechanism of charge and 

discharge is associated with oxidative de-intercalation and reductive insertion, 

respectively.  

Minimal changes (Table S2) in the isomer shift and quadrupole splitting of 

the +2 state of iron indicate that there is no change in the coordination environment 

of Fe supporting the intactness of the bound water during the charge-discharge. On 

the other hand, there is some small variation of the isomer shift and quadrupole 

splitting of the Fe(III), the isomer shift decreases from 0.40 mms-1 to 0.36 mm·s–1 

and quadrupole splitting increases from 0.62 to 0.85 mm·s–1) as the cell is 

discharged (Table S2). These changes in IS and QS of Fe(II) and Fe(III) compared 

to as-synthesized and chemically oxidized form are related to changes in the 

particle sizes, defect, and different degree of distortions of Fe-centers introduced 

during electrochemical charge-discharge and also consistent with the solid solution 

mechanism. Since the isomer shift value lower than 0.30 mm·s–1 was not observed, 

which is a signature of Fe(III) in the tetrahedral coordination, it can be safely 

assumed that octahedral coordination of Fe(III) remained intact.51 Therefore, we 
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conclude that bound water molecules are intact during the charge-discharge 

processes. 

Similar to Li-ion cells, the voltage-composition profiles were obtained for 

Na-ion cells at the C-rate of C/50 and the results are shown in Figure 11. 

 

 

Figure 11. First three galvanostatic charge-discharge tests on 

NaFe(H2O)2[BP2O8]·H2O|NaClO4|Na cell. 

 

In the course of the first charge cycle Li+ ions are removed from the host 

structure with concomitant oxidation of most of the Fe(II) centers into Fe(III). 

During the first discharge cycle Na+ intercalate into the LixFe(H2O)2[BP2O8]·H2O 

(x~ 0.2) host with simultaneous reduction of Fe(III) species into Fe(II). The Na+ 

intercalation is accompanied by a unit cell expansion from the original value 

1225.4 Å3 in the lithiated phase to 1240.1 Å3 in the sodiated phase as determined 

through a Pawley refinement of the XRD pattern from the cathode of a discharged 

Na-ion cell following the first discharge cycle (Supplementary Information, Figure 

S4 and Table S3). It is worth mentioning that the observed cell volume in this case 

is slightly larger than that reported in the literature for NaFe(H2O)2[BP2O8].H2O by 

0.73 %.29 The intercalation of Na+ into the host structure has also been confirmed 

from the EDS microanalysis elemental maps acquired from the discharged Na-ion 
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cell after removing the electrolyte by continuous washing using acetone 

(Supplementary Information, Figure S5). 

The process of Na-ion cell discharge starts to occur at a lower voltage, 3.2 

V vs Na+/Na, compared to the Li-ion cell (3.5 V), as a result of smaller redox 

potential for the sodium redox couple compared to the lithium (-2.71 V and -3.04 

V vs S.H.E., respectively). Analogous to the previous case, the Na-ion cell exhibits 

a sloppy voltage-composition profile indicative of solid solution formation 

between the oxidized and reduced phases. The voltage constantly decreases until 

75% of the theoretical capacity has been achieved (60.2 mAh.g–1), after which it 

drops with a higher slope to the lower voltage cut-off potential of 1.7 V, yielding a 

total specific capacity of 66.5 mAh.g–1 (82% of the theoretical capacity) at an 

average potential of 2.76 V at the end of the first cycle. Upon further cycling 

around 9% capacity loss can be observed at the end of third cycle of discharge 

indicating somewhat lower degree of reversibility in comparison to the Li-ion cell. 

The results of capacity retention for both the Li-ion and Na-ion cells as a function 

of C-rate are given in Figure 12.  

Due to the different ionic and electronic polarization effects the specific 

discharge capacity degrades as the C-rate increases for both Li- and Na-ion cells. 

However, the decrease in Na-ion cell is more pronounced due to the added ionic 

diffusion energy barrier as the Na+ ion has a considerably larger ionic radii 

compared to the agile Li+ ion. For both systems, however, the results indicate that 

the achieved capacity is stable for a given C-rate, which is in sharp contrast to the 

recently reported results on NaFe(H2O)2[BP2O8]·H2O cathode by Masquelier 

group, which shows a fast decaying capacity.30 

Upon returning to the slow discharge at C/50 following the higher rate 

charge discharge cycles, subtle differences can be observed for the Li- and Na-ion 

cells. While the Li-ion cell recovers its capacity approximately to the initial C/50 

value the Na-ion cell suffers from capacity loss. This signifies the low mobility of 

Na+ during the charge-discharge processes and the limited higher current rate 

capability of this phase, opposed to the lithiated phase. 



118 

 

To further characterize the of Li+/Na+ ion-exchange and their respective cell 

dynamics electro-impedance spectroscopy was utilized on the assembled cells and 

the results are given in Figure 13. 

 

 

Figure 12. Capacity retention versus C-rate for Li-ion and Na-ion cells assembled 

with Li0.8Fe(H2O)2[BP2O8]·H2O cathode. 

 

The composition of the cathode is same initially in both Li- and Na-ion 

cells. Therefore, the two cells were charged to 4.0 V to remove most of the Li+ 

ions from the cathode host structure by oxidative extraction and impedance spectra 

were collected for the delithiated cathode compound. 

Subsequently the Li- and Na-ion cells were subjected to discharge to 2.0 

and 1.5 V, respectively, to insert Li+ and Na+ ions into the respective cathode and 

another set of impedance curves were acquired to observe the change in cell 

resistance induced by intercalation of respective ions. In each case the impedance 

curve composed of three semi-circles corresponding to anodic and cathodic 

processes (i.e. solid-electrolyte interface (SEI) and charge-transfer resistances), 

except for the Na-ion cell discharged to 1.5 V where only two semi-circles can be 

observed in the frequency range employed (Bode plots and fit parameters are 

provided for comparison in the Supplementary Information, Figure S6 and Table 

S4). 
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Comparable cell impedances for the two charged cells is quite expected as 

in both cases the cathode is in the higher oxidation state with no (or less) Li+ ion in 

the structure. However, the impedance curves of the two discharged cells 

demonstrate enormous difference in the cell impedances, with the Na-ion cell 

impedance larger by more than three times than the Li-ion counterpart indicating 

the Na+/Li+ ion-exchange takes place from the first discharge. Additionally, the 

increased cell impedance in Na-ion battery explains the lower rate capability of 

this cell compared to the Li-ion cell as observed also in CVs and capacity-retention 

experiments. 

 

 

Figure 13. Electro-impedance spectra of Li-ion and Na-ion cells fabricated with 

Li0.8Fe(H2O)2[BP2O8]·H2O cathode. Top inset shows the equivalent circuit used 

for fitting the curves. 

 

Following the discussion regarding mobility of Li+ ions in the lattice from 

the anisotropic thermal displacement parameters, the pelletized as-synthesized 

material was studied by electro-impedance spectroscopy for evaluation of ion 

conduction and the determination of corresponding activation energy (Figure 14 a). 

The spectra show inclined line at the low frequency region followed by a medium 

and a high frequency semi-circle. The low frequency tail indicates that the 

mechanism of the conductivity is mainly ionic in nature and depicts the typical 
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behavior of blocking electrodes (silver) towards mobile Li+ ions. The medium and 

high frequency semicircles are assigned to the ionic conductivity impedance within 

the grain boundary and the grains/bulk, respectively. This allows separation of the 

additive contribution of resistance and extraction of pure ionic conductivity 

through the bulk of the material. Extractions of the respective resistance values by 

fitting indicate that the material has an ionic conductivity value equal to 3.0x10–8 

S.cm–1 at room temperature. Collecting the conductivity values at different 

temperatures allows one to construct an Arrhenius type plot and extract the 

activation energy for Li+ ion hopping from one site to the other (Figure 14b). The 

activation energy yielded in the selected temperature range has a value of 0.20 eV 

per Li+, which is comparable to or smaller than some ionic conductors, e.g. 

Li10SnP2S12
52 or Nalipoite Li2NaPO4.

53 However, the total conductance in 

Li0.8Fe(H2O)2[BP2O8]·H2O is considerably smaller than the commercial ionic 

conductors due to the smaller attempt frequency (Arrhenius pre-exponential 

factor). Details of the fit parameters are given in supplementary information (Table 

S5) .  

CONCLUSIONS 

In this work we have shown that iron borophosphate with tunnel structure is a 

good host for reversible Li- and Na-ion (de)-insertion and can act as cathode 

materials for Li- and Na-ion batteries with reasonable average voltage. Besides 

electrochemistry, we have also demonstrated that the Li-ion 

deintercalation/intercalation is topotactic and fully de-lithiated phase is highly 

crystalline and preserve the structural framework of the parent lithiated phase 

supporting a solid-solution mechanism. The structural and compositional variation 

in borophosphate chemistry will open up new area to explore mixed polyanion-

based cathodes for alkali-ion batteries. 

ASSOCIATED CONTENT 

Supporting Information.  

Details of single-crystal X-ray diffraction of Li0.8Fe(H2O)2[BP2O8]·H2O in the 

form of CIF format, comparison of the observed and calculated powder XRD 
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patterns of the as-synthesized i0.8Fe(H2O)2[BP2O8].H2O, atomic coordinates of the 

chemically oxidized phase, 

 

 

Figure 14. Nyquist plots of the complex impedance data points (spheres) with the 

fit (solid line) and the equivalent circuit (inset) (a); Arrhenius plot for the bulk 

ionic conductivity of Li0.8Fe(H2O)2[BP2O8]·H2O (b). 

 

Mössbauer spectra of the cathode at different state-of-charge and their 

corresponding isomer shift and quadrupole splitting values, Pawley refinement of 

the reduced cathode phase in Na-ion cell and the corresponding EDS elemental 

mapping, impedance phase Bode plot and impedance fit parameters for the cell and 

the pellet. These materials are available free of charge via the Internet at 

http://pubs.acs.org. 

AUTHOR INFORMATION 

Corresponding Author 

choudhurya@mst.edu 

* Department of Chemistry, Missouri University of Science and Technology, 

Rolla, MO 65409, USA. 

ACKNOWLEDGMENT  

The authors acknowledge the funding from Materials Research Centre (Missouri 

S&T) and University of Missouri Research Board. The authors are also grateful to 

Professors Nick Leventis and Pericles Stavropoulos for the donation of a 



122 

 

potentiostat and a glovebox, respectively. Use of the Advanced Photon Source at 

Argonne National Laboratory was supported by the U. S. Department of Energy, 

Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-

06CH11357. 

REFERENCES 

(1) Masquelier, C.; Croguennec, L. Polyanionic (Phosphates, Silicates, Sulfates) 

Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries Chem. Rev. 

2013, 113, 6552 −6591. 

(2) Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho‐olivines as Positive‐
Electrode Materials for Rechargeable Lithium Batteries J. Electrochem. Soc. 1997, 

144, 1188-1194. 

(3) Padhi, A. K.; Manivannan, V.; Goodenough, J. B. Tuning the Position of the Redox 

Couples in Materials with NASICON Structure by Anionic Substitution J. 

Electrochem. Soc. 1998, 145, 1518-1520. 

(4) Recham, N.; Chotard, J.-N.; Dupont, L.; Delacourt, C.; Walker, W.; Armand, M.; 

Tarascon, J.-M. A 3.6 V lithium-based fluorosulphate insertion positive electrode for 

lithium-ion batteries Nature Mater. 2010, 9, 68-74.  

(5) Nytén, A.; Abouimrane, A.; Armand, M.; Gustafsson, T.; Thomas, J. O. 

Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. 

Electrochem. Commun. 2005, 7, 156 - 160. 

(6) Saiful Islam, M.; Dominko, R.; Masquelier, C.; Sirisopanaporn, C.; Armstrong, A. R.; 

Bruce, P. G. Silicate cathodes for lithium batteries: alternatives to phosphates? J. Mater. 

Chem. 2011, 21, 9811-9818.  

(7) Anji Reddy, M.; Pralong, V.; Caignaert, V.; Varadaraju, U. V.; Raveau, B. Monoclinic 

iron hydroxy sulphate: A new route to electrode materials. Electrochem. Commun., 

2009, 11, 1807 - 1810.  

(8) Barpanda, P.; Ati, M.; Melot, B. C.; Rousse, G.; Chotard, J. -N.; Doublet, M. -L.; 

Sougrati, M. T.; Corr, S. A.; Jumas, J. -C.; Tarascon, J. -M. A 3.90 v iron-based 

fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. 

Nature Mater. 2011, 10, 772 - 779. 

(9) Rousse, G.; Tarascon, J.-M. Sulfate-Based Polyanionic Compounds for Li-Ion 

Batteries: Synthesis, Crystal Chemistry, and Electrochemistry Aspects Chem. Mater. 

2014, 26, 394-406. 



123 

 

(10) Legagneur, V.; An, Y.; Mosbah, A.; Portal, R.; Le Gal La Salle, A.; Verbaere, A.; 

Guyomard, D.; Piffard, Y. LiMBO3 (M = Mn, Fe, Co): Synthesis, crystal structure and 

lithium deinsertion/insertion properties. Solid State Ionics, 2001, 139, 37 - 46. 

(11) Yamada, A.; Iwane, N.; Harada, Y.; Nishimura, Sh.-I; Koyama, Y.; Tanaka, I. Lithium 

Iron Borates as High‐Capacity Battery Electrodes Adv. Mater. 2010, 22, 3583-3587. 

(12) Yaghoobnejad Asl, H.; Ghosh, K.; Vidal Meza, M. P.; Choudhury, A. 

Li3Fe2(HPO3)3Cl: an electroactive iron phosphite as a new polyanionic cathode 

material for Li-ion battery J. Mater. Chem. A 2015, 3, 7488-7497. 

(13) Yaghoobnejad Asl, H.; Choudhury, A. Phosphite as Polyanion-based Cathode for Li-

ion Battery: Synthesis, Structure and Electrochemistry of LiFe(HPO3)2. Inorg. Chem. 

2015, 54, 6566–6572.  

(14) Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, 

T. Na-ion batteries, recent advances and present challenges to become low cost energy 

storage systems Energy Environ. Sci. 2012, 5, 5884-5901. 

(15) Kim, S.-W.; Seo, D.-H.; Ma, X.; Ceder, G., Kang, K. Electrode Materials for 

Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion 

Batteries Adv. Energy Mater. 2012, 2, 710-721. 

(16) Han, M. H.; Gonzalo, E.; Singh, G.; Rojo, T. A comprehensive review of sodium 

layered oxides: powerful cathodes for Na-ion batteries Energy Environ. Sci., 2015, 8, 

81-102. 

(17) Hautier, G.; Jain, A.; Chen, H.; Moore, C.; Ping Ong, S.; Ceder, G. Novel mixed 

polyanions lithium-ion battery cathode materials predicted by high-throughput ab 

initio computations J. Mater. Chem., 2011, 21, 17147-17153. 

(18) Chen, H.; Hautier, G.; and Ceder, G. Synthesis, computed stability, and crystal 

structure of a new family of inorganic compounds: carbonophosphates. J. Am. Chem. 

Soc., 2012, 134, 19619-19627. 

(19) Chen, H.; Hao, Q.; Zivkovic, O.; Hautier, G.; Du, L.; Tang, Y.; Hu, Y.; Ma, X.; Grey, 

C. P.; Ceder, G. Sidorenkite (Na3MnPO4CO3): A New Intercalation Cathode Material 

for Na-Ion Batteries Chem. Mater., 2013, 25, 2777-2786. 

(20) Kniep, R.; Engelhardt, H.; Hauf, C. A First Approach to Borophosphate Structural 

Chemistry Chem. Mater. 1998, 10, 2930-2934. 

(21) Ewald, B.; Huang, Y. –X.; Kniep, R. Structural Chemistry of Borophosphates, 

Metalloborophosphates, and Related Compounds Z. Anorg. Allg. Chem. 2007, 633, 

1517. 



124 

 

(22) Li, H.; Zhao, Y.; Pan, S.; Wu, H.; Yu, H.; Zhang, F.; Yang, Z.; Poeppelmeier, K. 

Synthesis and Structure of KPbBP2O8 – A Congruent Melting Borophosphate with 

Nonlinear Optical Properties R. Eur. J. Inorg. Chem. 2013, 3185. 

(23) Shi, Y.; Pan, S.; Dong, X.; Wang, Y.; Zhang, M.; Zhang, F.; Zhou, Z. Na3Cd3B(PO4)4: 

A New Noncentrosymmetric Borophosphate with Zero-Dimensional Anion Units 

Inorg. Chem. 2012, 51, 10870-10875. 

(24) Zhao, D.; Cheng, W.-D.; Zhang, H.; Huang, S.-P.; Xie, Z.; Zhang, W.-L.; Yang, S.-L. 

KMBP2O8 (M = Sr, Ba): A New Kind of Noncentrosymmetry Borophosphate with the 

Three-Dimensional Diamond-like Framework Inorg. Chem. 2009, 48, 6623-6629. 

(25) Kniep, R.; Will, H. G.; Boy, I.; Roehr, C. 61 Helices from Tetrahedral Ribbons 

1∞[BP2O8
3−]: Isostructural Borophosphates MIMII(H2O)2[BP2O8] · H2O (MI = Na, K; 

MII = Mg, Mn, Fe, Co, Ni, Zn) and Their Dehydration to Microporous Phases 

MIMII(H2O)[BP2O8] Angew. Chem. Int. Ed., 1997, 36, 1013-1014. 

(26) Zhou, Y.; Hoffmann, S.; Menezes, P. W.; Carrillo-Cabrera, W.; Huang, Y.-X.; 

Vasylechko, L.; Schmidt, M.; Prots, Y.; Deng, J.-F.; Mi, J.-X.; Kniep, R. Nanoporous 

titanium borophosphates with rigid gainesite-type framework structure Chem. 

Commun. 2011, 47, 11695-11696. 

(27) Feng, Y.; Li, M.; Fan, H.; Huang, Q.; Qiu, D.; Shi, H. A novel open-framework copper 

borophosphate containing 1-D borophosphate anion with 10-MR windows and 12-MR 

channels Dalton Trans., 2015, 44, 894 - 897. 

(28) Huang, Y.-X.; Schaefer, G.; Carrillo Cabrera, W.; Cardoso, R.; Schnelle, W.; Zhao, J.-

T.; Kniep, R. Open-Framework Borophosphates:  

(NH4)0.4FeII
0.55FeIII

0.5(H2O)2[BP2O8]·0.6H2O and NH4FeIII[BP2O8(OH)] Chem. 

Mater., 2001, 13, 4348-4354. 

(29) Boy, I.; Schaefer, G.; Kniep, R. Crystal structure of sodium iron(II) diaquacatena-

(monoboro-diphosphate) monohydrate NaFe(H2O)2(BP2O8).(H2O) and potassium 

iron(II) diaquacatena-(monoboro-diphosphate) hemihydrate, 

KFe(H2O)2(BP2O8).0.5(H2O)  Z. Kristallogr., 2001, 216, 13-14. 

(30) Tao, L.; Rousse, G.; Sougrati, M. T.; Chotard, J.-N.; Masquelier, C. 

(NH4)0.75Fe(H2O)2[BP2O8]·0.25H2O, a Fe3+/Fe2+ Mixed Valence Cathode Material for 

Na Battery Exhibiting a Helical Structure J. Phys. Chem. C 2015, 119, 4540-4549. 

(31) Menezes, P.W.; Hoffmann, S.; Prots, Yu.; Kniep, R. Crystal structure of lithium 

diaquacobalt(II) catena-(monoboro-diphosphate) monohydrate, 

LiCo(H2O)2[BP2O8].H2O Z. Kristallogr., 2008, 223, 333-334. 

(32) Boy, I.; Kniep, R. Crystal structure of lithium zinc diaqua catena-

(monoborodiphosphate)-monohydrate LiZn(H2O)2(BP2O8).H2O Z. Kristallogr., 2001, 

216, 9-10. 



125 

 

(33) Boy, I.; Schaefer, G.; Kniep, R. Crystal structure of sodium nickel diaqua 

catena(monoboro-diphosphate) monohydrate, NaNi(H2O)2(BP2O8).(H2O), at 293 K 

and 198 K Z. Kristallogr., 2001, 216, 11-12. 

(34) Boy, I.; Schaefer, G.; Kniep, R. Crystal structure of sodium iron(II) diaquacatena-

(monoboro-diphosphate) monohydrate NaFe(H2O)2(BP2O8).(H2O) and potassium 

iron(II) diaquacatena-(monoboro-diphosphate) hemihydrate, 

KFe(H2O)2(BP2O8).0.5(H2O) Z. Kristallogr., 2001, 216, 13-14. 

(35) Boy, I.; Stowasser, F.; Schaefer, G.; Kniep, R. NaZn(H2O)2(BP2O8).(H2O): A novel 

open framework borophosphate with CZP-Topology and its reversible dehydration to 

microporous sodium zincoborophosphate Na (ZnBP2O8).(H2O)  Chem.-Eur. J., 2001, 

7, 834-839. 

(36) Shi H.; Shan Y.; Dai L.; Liu Y.; Weng L. Crystal structure of borophosphate with 61 

screw axis helices Jiegon Huaxue, 2003, 22, 391-394. 

(37) Zhuang R.; Chen X.; Mi Lithium manganese diaquaborophosphate monohydrate, 

LiMn(H2O)2[BP2O8].H2O J. Acta Crystallogr. E 2008, 64, i46-i46. 

(38) Yakubovich, O.V.; Steele, I.; Dimitrova, O.V. Na(H2O)[Mn(H2O)2(BP2O8)]: Crystal 

structure refinement Kristallografiya 2009, 54, 20-25. 

(39) Zheng, J.; Zhang, A. Lithium diaqua-nickel(II) catena-borodiphosphate(V) 

monohydrate Acta Crystallogr. E 2009, 65, i42-i42. 

(40) Mingzhen, W. Crystal structure of potassium diaquamanganese(II) borophosphate 

monohydrate, K[Mn(H2O)2(BP2O8)].H2O Z. Kristallogr. 2012, 227, 3-4. 

(41) Guesmi, A.; Driss, A. KCo(H2O)2BP2O8.0.48H2O and 

K0.17Ca0.42Co(H2O)2BP2O8.H2O: two cobalt borophosphates with helical ribbons and 

disordered (K,Ca)/H2O schemes Acta Crystallogr. C 2012, 68, i55-i59. 

(42) Bruker- SMART. Bruker AXS Inc., Madison, Wisconsin, USA. 2002. 

(43) Bruker- SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA, 2008. 

(44) Sheldrick, G. M. A short history of SHELX Acta Cryst. 2008, A64, 112. 

(45) Favre-Nicolin; V.; Cerny, R. FOX, 'free objects for crystallography': a modular 

approach to ab initio structure determination from powder diffraction J. Appl. Cryst. 

2002, 35, 734-743. 

(46) Toby, B. H.; Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all-

purpose crystallography software package J. Appl. Cryst. 2013, 46, 544-549. 



126 

 

(47) Lagarec, K.; Rancourt, D. G. Extended Voigt-based analytic lineshape method for 

determining N-dimensional correlated hyperfine parameter distributions in Mössbauer 

spectroscopy  Nucl. Instrum. Meth. Phys. Res. B 1997, 129, 266.  

(48) Ciceo-Lucacel, R.; Radu, T.; Simon, P. V. Novel selenium containing boro-phosphate 

glasses: Preparation and structural study Mater. Sci. Eng. C 2014, 39, 61-66.  

(49) Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, Fourth edition, John 

Wiley and Sons, New York, 1980.  

(50) F. Menil, Systematic trends of the 57Fe Mössbauer isomer shifts in (FeOn) and (FeFn) 

polyhedra. Evidence of a new correlation between the isomer shift and the inductive 

effect of the competing bond T-X (→ Fe) (where X is O or F and T any element with 

a formal positive charge) J. Phys. Chem. Solids 1985, 46, 763–789.  

(51) Kuzmann, E.; Nagy, S.; Vértes, A.;Critical review of analytical applications of 

Mössbauer spectroscopy illustrated by mineralogical and geological examples Pure 

Appl. Chem., 2003, 75, 801–858. 

(52) Born, P.; Johansson, S.; Zick, K.; auf der Günne, J. S.; Dehnen, S.; Roling, B. 

Li10SnP2S12: An Affordable Lithium Superionic Conductor J. Am. Chem. Soc. 2013, 

135, 15694-15697.  

(53) López, M. C.; Ortiz, G. F.; Dompablo, E. M. A.-d.; Tirado, An Unnoticed Inorganic 

Solid Electrolyte: Dilithium Sodium Phosphate with the Nalipoite Structure J. Inorg. 

Chem. 2014, 53, 2310-2316. 



127 

 

 V. Combined Theoretical and Experimental Approach to the Discovery of 

Electrochemically Active Mixed Polyanionic Phosphatonitrates, AFePO4NO3 (A = 

NH4/Li, K) 

 

Hooman Yaghoobnejad Asl and Amitava Choudhury* 

* Department of Chemistry, Missouri University of Science and Technology, Rolla, 
Missouri 65409, United States. 

ABSTRACT: A new class of mixed polyanionic transition metal phosphatonitrate 

with the general formula AFePO4NO3 (A = NH4/Li, K) has been synthesized 

following a computational predictive study based on DFT calculations. Structures 

of the crystalline products have been solved through synchrotron powder XRD and 

single-crystal XRD techniques. This class of materials exhibits the rare 

coordination of PO4
3– and NO3

– to a single transition metal center and is 

structurally related to the rare mineral bonshtedtite (Na3FePO4CO3), which has 

been used as the initial model for predicting phosphatonitrates. (NH4)1-

xLixFePO4NO3 has been found to be capable of reversible electrochemical Li- and 

Na-ion intercalation in the potential range 2.0—4.2 V at a theoretical capacity of 

ca. 116 mAh.g–1. Various aspects of structural, chemical/electrochemical and 

spectroscopic features of AFePO4NO3 have been discussed in this article 
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INTRODUCTION 

Recently great deal of efforts are being invested in high throughput (HT) 

calculation to discover new materials.1–3 These computer led searches are 

inexpensive and good at determining the best material from the existing database 

and at the same time can predict new hypothetical composition and structure for a 

particular application.4 Such HT searches for new cathode materials for Li-ion 

battery led by the Ceder group has helped in identifying new materials and 

discovering unknown compounds, thereby accelerating the pace of discovery.5–9 

This approach of combining computation and experiments especially in the case of 

cathode materials often narrows down the vast space of exploration to a very 

focused new chemistries, which can overcome the shortcomings of cost, energy 

density, safety and so on. In this search polyanionic chemistry is playing a crucial 

role because of the large inventory of polyanions, high degree of flexibility in 

crystal structure and composition, and wide range of Li+ insertion voltage and 

capacities.8, 9 More importantly, the idea of incorporation of a secondary polyanion 

in the metal polyanion compound adds another dimension to the rich chemistry of 

this class of materials and provides a tool for exploring new structures. Recently 

Ceder group has identified through HT computation a family of mixed polyanionic 

compounds related to the mineral sidorenkite, Na3MnPO4CO3, and bonshtedtite, 

Na3FePO4CO3, as potential two electron candidates.10 These compounds have been 

experimentally realized11–13 and Na3MnPO4CO3 did show a two electron process in 

a Na-ion battery.14 Inspired by this finding we designed a new class of compounds, 

namely phosphatonitrates, with no known natural mineral analogue. For the 

predicted new compounds we assumed that NO3
– with planar trigonal geometry the 

same as CO3
2– with one less negative charge keeping rest of the constituents the 

same will stabilize compositions with one less alkali ion in the formula unit when 

compared to the carbonate analogue at the same oxidation state of transition 

metals, cf. A3MPO4CO3 and A2MPO4NO3 (A = alkali ions), thus providing a higher 

theoretical capacity by keeping optimum number of alkali ions for a potential two 

electron process. A Further increase of the Li-insertion voltage can also be 

expected by virtue of inductive effect due to more electronegative nitrogen atom of 
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the nitrate in phosphatonitrate compared to a carbon atom in the 

carbonophosphate.10 It is to be noted here that there are only a handful of 

compounds known where a nitrate and a phosphate coexist in the same structure.15–

17 The structural stability of these predicted composition was then validated 

through density functional theory (DFT), which also guided the synthesis of DFT-

determined most stable targeted phases of Fe3+, AFePO4NO3 (A = NH4 and K) and 

subsequent structure determination using synchrotron powder and single-crystal X-

ray diffraction data. For our initial efforts we chose Fe in +3 oxidation state for the 

ease of synthesis and to validate the model. The metastable Li/Na phases were 

synthesized via ion-exchange of the ammonium phase. This class of compounds 

may not only be interesting for alkali-ion intercalation battery applications, but 

also attractive from the chemical point of view as the coexistence of two 

mismatched polyanions, nitrate with planar geometry and phosphate with 

tetrahedral geometry in the asymmetric unit are expected to form more open 

structure amenable for host-guest chemistry. In this article we are reporting 

theoretical prediction and experimental development of a highly rare class of solids 

in the chemical inventory of transition metal compounds and their use as cathodes 

for lithium and sodium ion batteries. 

EXPERIMENTAL SECTION 

Methodology. The ab initio calculations for energy and geometry 

optimizations have been carried out with Quantum Espresso plane wave-based 

(PW) code.18 Calculations were based on the nonlinear core corrected UltraSoft 

Pseudo-Potentials (USPPs) with Generalized Gradient Approximation (GGA) 

exchange-correlation functional parametrized according to the Perdew-Burke-

Ernzerhof (PBE) method.19 For systems containing Fe, all calculations have been 

performed in spin polarized mode with an antiferromagnetic ordering of the 

magnetic moments. The starting atomic coordinates have been taken from the 

mineral bonshtedtite, Na3FePO4CO3 (ICSD no.77053) and geometry optimizations 

for the derived phosphatonitrate compounds have been performed with no 

constrain to the parent compound’s space group. The variable cell relaxation 
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achieved in this way (via BFGS quasi-newton algorithm) is free to adopt lower or 

higher symmetries, as compared to the parent compound. For self-consistency 

calculations, an energy cutoff of 544 eV for wave function (and 5.4 keV for charge 

density) calculations has been set. The unit cell integrals have been evaluated by 

applying 90 k-points generated automatically by the Monkhorst-Pack method, 20 

with a fixed k-point density of 0.216 Å–1 along the reciprocal axes. 

Details regarding evaluation of the accuracy of the employed functionals 

and other simulation parameters have been elaborated in the associated supporting 

information. 

Reagents. NH4NO3 (certified ACS) has been purchased from Fisher 

Scientific, amorphous FePO4·4H2O from Sigma-Aldrich, LiF (98.5%) and 

Fe(NO3)3·9H2O (ACS 98.0-101%) from Alfa Aesar, LiNO3 (99+% extra pure), 

KNO3 (99+% extra pure) and H3PO3 (98% extra pure) from Acros Organics, and 

Li foil (99.9%) and Na cubes (99.9%) from Aldrich. All the chemicals used as 

received without further purification. 

Synthesis. Caution: Reactions involving solid NH4NO3 will explode if the 

mixture is heated above 200 °C. Close control of the temperature is required for 

safety reason. 

 NH4FePO4NO3 has been synthesized by mixing 0.6686 g of FePO4·4H2O 

(3 mmol) and 4.0020 g of NH4NO3 (50 mmol) which serves as both reagent and 

flux (Tm = 169 °C). The reaction was carried out in an open glass beaker and 

placed directly in an oven at 183 °C for a duration of 2 to 48 h. 

(NH4)0.96Li0.06FePO4NO3 has been synthesized similarly as above, but with further 

addition of 0.0778 g (3 mmol) of LiF to the reaction mixture. The product in both 

cases consisted of finely divided yellow powder, which was then removed from the 

oven and cooled down to room temperature, washed thoroughly with cold water to 

remove the unreacted reagents, filtered and dried in air. 

KFePO4NO3 has been formed as an impure phase by mixing 0.2419 g of 

(0.6 mmol) Fe(NO3)3·9H2O, 0.0820 g of H3PO3 (1.0 mmol), and 0.0259 g of LiF 

(1.0 mmol) in a 3.5 g of KNO3-LiNO3 (0.56:0.44 mole ratio) eutectic mixture, 

which was used as the reactive molten salt flux and as a source of K+ and NO3
– 
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ions. The mixture was sealed in a Teflon-lined Paar reaction vessel and placed in 

an oven at 145 °C for 21 days. The product, which consisted of clear flat crystals 

of KFePO4NO3, white powders of tavorite, LiFePO4F, and some other unidentified 

phase(s); was washed with hot water, filtered, and dried in air. Except for single-

crystal structure solution the K-analogue was not used for any electrochemical 

experiments. 

Ion-exchange. In a conical flask about 1 g of the (NH4)0.96Li0.06FePO4NO3 

powder was dispersed in 20 mL of water, following which 6.25 g of LiNO3 was 

dissolved in the suspension (1:20 mol ratio) and the conical flask was placed in an 

oven at 75 °C for a duration of 2 to 40 h. The resultant ion-exchanged powder was 

filtered and then thoroughly washed with deionized water and dried in a vacuum 

oven at 80 °C. The amount of Li+ loading in the formula unit was measured with 

atomic absorption spectroscopy as a function of time (vide infra). 

Material Characterization. Synchrotron Powder X-ray Diffraction. The crystal 

structure of (NH4)0.96Li0.06FePO4NO3 was solved from powder XRD pattern collected 

from the Argonne National Laboratory (ANL) Advanced Photon Source (APS) 11-BM 

beamline in a capillary holder. The Pattern was collected under ambient conditions using 

a parallel monochromated X-ray beam with a calibrated wavelength of 0.4139 Å over the 

Bragg angle range of 0.5—50 °. 

The pattern was indexed in the 𝑃1̅ space group and the intensities were 

extracted employing the LeBail method and subsequently used to solve the crystal 

structure by Monte-Carlo method using the FOX ab initio crystal structure solution 

package.21  

The acquired atomic coordinates were then refined by Rietveld method 

employing Bruker DIFFRAC.SUITE TOPAS software, 22 to get the final crystal 

structure. Due to the existence of intensity mismatch induced by stacking faults 

and also peak broadening which leads to the rapid intensity loss at higher 2θ 

portion of the pattern, refinement of individual thermal displacement parameters 

was not possible. Therefore, all the atomic positions have been refined with the 

individual thermal parameters constrained to the average value for all the atoms 

(0.0127 Å2). The observed intensity mismatch caused by stacking fault of the 
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layered structure as well as flaky nature of the crystallites, both induces a slight 

lack of long-range ordering in directions along and normal to the plane stacking 

and subsequent loss of diffraction intensity in those crystal directions. Note that the 

Li position could not be detected from the synchrotron powder X-ray diffraction 

data due to poor scattering power of lightweight lithium present in small 

percentage. Therefore, an analytically measured value of Li (6 %) was introduced 

in the ammonium site just for the sake of completion of the structure solution. 

Details of cell parameters and refinement residuals as well as atomic coordinates 

derived from Rietveld refinement are presented in Tables 1 and 2, respectively. 

Single-Crystal X-ray Diffraction. The crystal structure of KFePO4NO3 was 

solved from single-crystal intensity data obtained from a Bruker Smart Apex 

diffractometer equipped with monochromated Mo Kα radiation (λ = 0.7107 Å). 

The single crystal of interest was glued to a glass fiber and the diffraction data 

were collected at room temperature through ω scan with step sizes of 0.3° at four 

equally spaced φ orientations. 

 

Table 1. Crystal Data and Refinement Results for (NH4)0.94Li0.06FePO4NO3 

Empirical Formula  (NH4)0.94Li0.06FePO4NO3 

a 9.67(8) Å V 303.9(9) Å3 

b 6.22(2) Å Space group 𝑃1̅ 

c 5.14(1) Å number of 

reflections 
630 

α 91.2(4) ° Rp 0.061 

β 79.6(8) ° Rwp 0.078 

γ 93.1(9) ° number of data 

points 
22503 

 

The SMART software23 was used for collecting the diffraction data while 

SAINT24 was used for cell refinement, intensity extraction and data reduction. 

SADABS24 was used for absorption correction and the crystal structure was solved 

employing direct methods using SHELX-9725 software using difference Fourier 

syntheses. Full-matrix least squares refinement against |F2| was carried out using 

the SHELXTL-PLUS25 suite of programs. 
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The unit cell was indexed in the 𝑃1̅ space group and the atomic coordinates 

of one iron, one phosphorus and one potassium atom were found immediately 

following the direct methods. The positions of 7 oxygens and one nitrogen atom in 

the asymmetric unit have been located from the difference Fourier map. 

 

Table 2. Atomic Coordinates for (NH4)0.94Li0.06FePO4NO3 

Atom Wyck. S.O.F. x/a y/b z/c Uiso (Å2)a 

Fe1 2i 1 0.36882 0.74678 0.25199 0.0127 

P1 2i 1 0.42817 0.25207 0.33558 0.0127 

O1 2i 1 0.86273 0.26517 0.79252 0.0127 

O2 2i 1 0.53749 0.76816 0.38304 0.0127 

O3 2i 1 0.33174 0.41658 0.31972 0.0127 

O4 2i 1 0.96709 0.75065 0.58420 0.0127 

O5 2i 1 0.34954 0.07613 0.23103 0.0127 

N1 2i 1 0.08602 0.75143 0.48072 0.0127 

O6 2i 1 0.81787 0.22550 0.38780 0.0127 

O7 2i 1 0.55399 0.28954 0.11819 0.0127 

N2 2i 0.94 0.20384 0.27299 0.90735 0.0127 

Li1 2i 0.06 0.20384 0.27299 0.90735 0.0127 
a Constrained 

 

The iron atom was found to be in a highly distorted octahedral environment 

with two donor oxygen atoms supplied from a single nitrate group and the other 

four from the phosphate moiety. The potassium atom can be found in a 9 

coordinated environment with K—O distances in the range from 2.82— 3.26 Å. 

Details of refinement parameters and crystal data along with the atomic 

coordinates and isotropic thermal displacement parameters are given in Tables 3 

and 4, respectively. 

Powder X-ray Diffraction. The laboratory X-ray diffraction patterns of the 

powdered samples have been collected on a PANalytical X’Pert Pro diffractometer 

using a Cu Kα1,2 source and a linear array detector over the angular range of 5—

90°. 
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Mössbauer Spectroscopy. The 57Fe Mössbauer spectra of the ion-exchanged 

(NH4)0.75Li0.25FePO4NO3  phase and the electrochemically reduced phase, (NH4)1-

xLix+δFePO4NO3, have been acquired with a constant acceleration spectrometer 

equipped with a γ-emitting 57Co source (25 mCi) embedded in Rh matrix. The 

spectra were obtained at ambient conditions with 60 mg of sample enclosed in a 

lead sample holder, with the velocity and chemical shifts calibrated against α-Fe 

foil and were fit by the Lorentzian function using the Recoil software.26 

 

Table 3. Crystal Data and Refinement Results for KFePO4NO3 

Empirical 
formula 

KFePO4NO3 
Formula 
weight 

251.93  g.mol-1 

Crystal 

System 
Triclinic Space group 𝑃1̅ 

a 9.514(5) Å Z 2 

b 6.207(4) Å V 294.4(3) Å3 

c 5.067(3) Å ρcalc 2.824 g.cm-3 

 91.22(4) ° T 298(2) K 

 80.05(9) ° GOF on F2 1.096 

γ 92.93(7) ° F(000) 246 

R [I>2σ(I)] R1 = 0.0581, wR2 = 0.1405 

R [all data] R1 = 0.0816, wR2 = 0.1740 

 

Acquisition of the electrochemically reduced cathode’s spectrum has been 

carried out by assembling the cathode in a homemade pouch cell with 100 mg 

active material loading. Following the galvanostatic discharge, the cell was 

disassembled in the glovebox and the cathode film was washed with acetone to 

remove the electrolyte salt. The active material was then recovered from the 

current collector, loaded in the lead sample holder and sealed in polyethylene 

pouches to protect the sample against air oxidation during the data collection. 

Atomic Absorption Spectroscopy (AAS). Several fractions of the ion-

exchanged products have been removed from the oven at various times to study the 

rate of Li+/NH4
+ ion-exchange and hence determine the optimum reaction time. 

The powdered samples in contact with the concentrated LiNO3 solution was 
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collected by filtration and washed with copious amounts of water to remove the 

unused LiNO3, and dried in a vacuum oven at 80 °C for several hours. 

The dried powders were weighed and dissolved in the minimum amount of 

1:3 (v:v) solution of HNO3(c):HCl(c) and diluted in volumetric flasks. 

Measurements for Li has been carried out with a PerkinElmer 2380 AA 

spectrometer at 670.8 nm and quantification has been done by standard addition 

method against standard solutions (Fluka) to eliminate the sample matrix effect. 

Furthermore, the weight fraction of the Li (0.2%) to the overall solid sample has 

been converted into mole fraction present in the formula unit (0.06 Li). 

 

Table 4. Atomic Coordinates and Isotropic Thermal Displacement Parameters for 

KFePO4NO3 

Atom Wyck. S.O.F. x/a y/b z/c Uiso (Å2)a 

Fe1 2i 1 0.36623 0.25078 0.24958 0.009(1) 

P1 2i 1 0.43185 0.75641 0.31307 0.023(2) 

O1 2i 1 0.33137 0.94296 0.32585 0.018(2) 

O2 2i 1 0.46335 0.72403 0.59881 0.035(2) 

O3 2i 1 0.57297 0.80557 0.12518 0.019(1) 

O4 2i 1 0.35094 0.55853 0.21814 0.012(1) 

N1 2i 1 0.09142 0.25543 0.45663 0.008(1) 

O5 2i 1 0.18721 0.28107 0.59893 0.045(1) 

O6 2i 1 0.96365 0.25603 0.55180 0.014(1) 

O7 2i 1 0.13257 0.23304 0.20466 0.012(1) 

K1 2i 1 0.80995 0.20684 0.10422 0.012(1) 

a Uiso is defined as one third of the trace of the orthogonalized U ij tensor. 

 

Spectral and Thermal Analysis. The FT-IR spectrum of the as-synthesized 

sample ((NH4)0.96Li0.06FePO4NO3) has been acquired with a Thermo Nicolet 

Nexsus-470 spectrometer with sample embedded in KBr pellet. TGA of the sample 

has been obtained using a TA Instruments Q50 thermogravimetric analyzer in the 

temperature range 25—800 °C at a heating rate of 10 °C.min–1 under the high-

purity N2 flow. 
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Coin Cell Fabrication and Testing. For the electrochemical lithiation and 

sodiation experiments CR2032 coin cells have been fabricated with the compound 

of interest acting as the cathode active material. In this regard the ion-exchanged 

sample, (NH4)0.75Li0.25FePO4NO3, has been ball milled with conducting carbon and 

polyvinylidenefluoride (PVDF) binder in 75:15:10 ratio for 0.5 h. N-Methyl-2-

pyrrolidone (NMP) then added to the powder mixture to dissolve the binder and 

resulting high viscosity paste was spread on the carbonized aluminum current 

collector as a film of uniform thickness using a spacer and glass rod. The obtained 

composite cathode was then dried in vacuum oven at 80 °C overnight to evaporate 

the NMP. Circular disk of 3/8 in. in diameter was cut through the cathode film (5 

mg of active material loading) and transferred into an Ar filled glovebox (oxygen 

level < 2 ppm) for coin cell assembly. Li-ion cells were fabricated from the above 

cathode with Celgard 2325 as the separator, Li foil as the anode and 1 M LiPF6 in 

(1:1 v:v) dimethyl carbonate-ethylene carbonate (DMC-EC) solution used as the 

electrolyte. The Na-ion cells were fabricated in the same manner as Li-ion cells, 

however, a Whatman GF/A glass microfiber sheet was used as the separator and a 

1 M NaClO4 in (1:1 v:v) dimethyl carbonate-ethylene carbonate (DMC-EC) 

solution used as the electrolyte. An Arbin Instruments battery tester (Model 

BT2403) was employed for running the galvanostatic charge-discharge 

experiments in a potential range of 4.2— 2.0 V and 4.0— 2.0 V for Li-ion and Na-

ion cells, respectively. 

RESULTS AND DISCUSSION 

DFT predictions, synthesis and structure. In our DFT calculation we 

initially used the crystal structure of Na3FePO4CO3 as the starting model with the 

carbonate moiety replaced by NO3
–. The structure has been completed with 

different monovalent cations (Li+, Na+, K+, and NH4
+) mainly for iron in the +3 

oxidation state, and has been subjected to geometry optimization. 

As a first approximation, the stabilization energy for each predicted 

compound was estimated by comparing the converged total energy of the products 

with respect to the reactants according to the eq 1: 
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ANO3 + FePO4 → AFePO4NO3                  (1);  

where A = Li, Na, K, and NH4. The resulting stabilization energies and unit cell 

parameters are presented in Table 5. Although construction of the convex Hull 

surface may be required for exact determination of the feasibility of a reaction, the 

above procedure may provide a quick estimate regarding the relative stability of 

each phase with respect to its reactants. 

The results of DFT geometry optimization runs provided in Table 5 suggest 

that as long as stabilization energies are concerned, except for NaFePO4NO3, all 

other phases should be stable. However, given the intrinsic uncertainty in DFT 

calculations, LiFePO4NO3 may also fall in the unstable region due to the relatively 

narrow stabilization energy margin, leaving KFePO4NO3 and NH4FePO4NO3 as 

the potentially stable compounds with the assumed layered structure as in parent 

carbonophosphate.11, 12  

Among the most stable pair of predicted compounds, synthesis of 

NH4FePO4NO3 was attempted first via a direct reaction between amorphous 

FePO4·4H2O and NH4NO3 through a fast molten salt approach at 185 °C, at which 

temperature FePO4·4H2O dehydrates to the disordered FePO4 (the disordered 

FePO4 phase crystallizes to quartz phase of FePO4 at higher temperatures as shown 

in the Supporting Information, Figure S1).The product was formed as a finely 

divided powder with quantitative yield within only 2 h of the reaction initiation 

(Supporting Information, Figure S2). 

Interestingly we found that introduction of a small amount of Li+ into the 

structure by adding LiF during the synthesis leads to the formation of solid-

solution (NH4)1-xLixFePO4NO3 phase with considerably improved crystallinity of 

the product compared to the pure NH4FePO4NO3, as observed through XRD peak 

intensities (Supporting Information, Figure S3). 

The chemical (nitrogen and lithium analysis) and spectroscopic (FTIR and 

Mössbauer) analysis (vide infra) of (NH4)1-xLixFePO4NO3 clearly indicated 

presence of ammonium, nitrate, phosphate, lithium, and Fe into the structure. 

Assuming the formation of iron phosphatonitrate crystalline phase, an ab initio 

structure solution from synchrotron powder X-ray diffraction data was initiated. 
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The crystal structure of the crystalline powder was immediately solved and 

as expected the composition was determined to be (NH4)1-xLixFePO4NO3 [x = 

0.06]. The compound, (NH4)1-xLixFePO4NO3, crystallizes in the triclinic crystal 

system, space group 𝑃1̅ with lattice parameters; a = 9.67(8) Å, b = 6.22(2) Å, c = 

5.14(1) Å, α = 91.2(4)°, β = 79.6(8)°, γ = 93.1(9)°, and V = 303.9(9) Å3, in an 

excellent agreement with DFT prediction. The Rietveld refinement of the ab-initio 

solved coordinates from FOX software converged very well (Figure 1). 

 

Table 5. DFT Results of Stabilization Energies and Lattice Parameters for the 

Predicted AFePO4NO3 phases 

compound 
ΔEs

† 

(kJ/mol) 

crystal 

system 
lattice parameters 

LiFePO4NO3 -21.67 Orthorhombic a = 9.48, b = 6.40, c = 5.34 Å, V = 324.61 Å3 

NaFePO4NO3 +10.63 Triclinic 
a = 9.02, b = 6.30, c = 4.94 Å,  = 90.01,  = 

84.94, γ = 91.06 °; V = 279.19 Å3 

KFePO4NO3 -147.27 Triclinic 
a = 9.73, b = 6.06, c = 5.20 Å,  = 89.98,  = 

82.09, γ = 91.48 °; V = 303.14 Å3 

NH4FePO4NO3 -110.08 Triclinic 
a = 9.80, b = 6.24, c = 5.12 Å,  = 90.0,  = 

78.27, γ = 91.14 °; V = 306.57 Å3 

† referred to the reaction outlined in eq 1. 

 

 

 

Figure 1. Rietveld refinement of the synchrotron powder XRD pattern of (NH4)1-

xLixFePO4NO3 showing the observed and calculated intensity based on the 

structure presented in Figure 2. 
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It is to be noted here that both sidorenkite (Na3MnPO4CO3) and 

bonshtedtite (Na3FePO4CO3) crystallize in the monoclinic crystal system (space 

group, P21/m). Our efforts to grow single crystal of (NH4)1-xLixFePO4NO3 by 

employing different flux failed due to low decomposition temperature caused by 

the presence of ammonium (discussed later). On the other hand due to the high 

melting point of KNO3, formation of the KFePO4NO3 was not possible through a 

direct reaction with FePO4·xH2O. However, after many attempts very thin plate-

like clear crystals of KFePO4NO3 were obtained in a mixture with tavorite-

LiFePO4F, and other impurity phases from a low temperature molten salt synthesis 

after 3 weeks using nitrate rich KNO3-LiNO3 eutectic flux (Supporting 

Information, Figure S4). 

Structure of KFePO4NO3 was solved from single-crystal X-ray diffraction 

data, which confirmed that KFePO4NO3 is isostructural with NH4FePO4NO3, with 

lattice parameters a = 9.514(5) Å, b = 6.207(4) Å, c =5.067(3) Å, α = 91.22(4)°, 

β = 80.05(9)°, γ = 92.93(7)°, and V = 294.4(3) Å3, consistent with DFT 

calculations but showing slight deviations from the predicted values. Successful 

single-crystal solution of the K-analogue also validated the ab-initio structure 

solution of the mixed NH4/Li phase in the 𝑃1̅ space group.  

Figure 2 shows the asymmetric unit and local environment in the (NH4)1-

xLixFePO4NO3. The iron atom is in highly distorted FeO6 octahedral coordination 

receiving four oxygen donors from the phosphate tetrahedral moiety and the 

remaining two cis-coordinations are filled by oxygen atoms from a single nitrate 

moiety. The third oxygen of the nitrate has a short O7—N1 bond length of 1.23(4) 

Å consistent with the terminal N=O bond and participates in the coordination of 

the monovalent cation, probably through hydrogen-bonding in case of ammonium 

and ionic interactions in the case of pure alkali ions. It is worth mentioning that our 

efforts to form pure LiFePO4NO3 and NaFePO4NO3 from direct synthesis did not 

yield any crystalline product, in complete agreement with the stabilization energy 

calculations outlined above. 

The results of bond valence sum (BVS) calculations performed on the 

monovalent cation site unequivocally prove that the site is majorly occupied by 
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NH4
+ ions (BVS = 0.98) and not Li+ ions (BVS = 0.12). Moreover, BVS analysis 

confirms the oxidation states of Fe as +3 (BVS=3.02) and P as +5 (BVS=4.92). In 

addition, the results of atomic absorption spectroscopy (AAS) revealed that the 

compound contains 6 % Li+ in the monovalent cation site. As a result, the overall 

composition of the as-synthesized material can be derived as 

(NH4)0.94Li0.06FePO4NO3. It is worth noting that the Li+ position could not be 

located from the Fourier map, presumably due to poor scattering from a small 

percentage of Li. 

 

 

Figure 2. (a) Connectivity pattern in the building block of (NH4)1-xLix FePO4NO3 

as determined through ab-initio crystal structure solution of the synchrotron 

powder XRD. (b) Packing diagram showing the stacking of the layers along [100]. 
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The packing of asymmetric units exhibits the layered nature of the phase 

similar to carbonophosphates.10 Corner sharing of alternative FeO6 and PO4 

polyhedral units forms the FePO4 layer along the (011) plane. The nitrate moiety is 

coordinated to the iron center and disposed normal to the FePO4 plane. The layers 

are then stacked along [100] direction (Figure 2b) with the monovalent cations 

distributed in the interlayer space.  

Thermogravimetric analysis performed on vacuum dried samples shows 

that the as-prepared (NH4)0.94Li0.06FePO4NO3 is essentially stable up to 300 °C, 

after which the structure collapses through an abrupt mass loss of ~ 30% due the 

loss of delicate nitrate and ammonium moieties, forming majorly FePO4, Fe7(PO4)6 

and other minority phases (Supporting Information, Figures S5 and S6). 

Complementary FT-IR spectroscopic analysis confirms the existence of 

ammonium N—H stretching and bending modes at 3260 and 1410 cm–1, 

respectively, while the nitrate N—O  stretching modes are visible at 1530 and 

1310 cm–1. (Supporting Information, Figure S7). 

Electrochemistry. Similar to Li3FePO4CO3 and Na3MnPO4CO3, the 

synthesized phosphatonitrate compounds should be able to intercalate alkali ions 

due to flexibility in the framework.  

Accordingly, the first cycle voltage-composition profile for the as-

synthesized and ion-exchanged material in a RC2032 type coin cell assembled 

with Li metal as the reference and counter electrode is depicted in Figure 3(a). The 

iron center in (NH4)0.94Li0.06FePO4NO3 is in the higher oxidation state of +3 and 

therefore, the cell can be discharged by reductive insertion of Li+. The discharge 

profile starts from an OCV value of 3.17 V (vs. Li+/Li) and reduces monotonically 

in a sloppy manner as the cathode host material is being lithiated, reminiscent of a 

single phase solid-solution formation between redox couples. 

The discharge continues until insertion of 0.35 Li+ at which value the 

discharge ends as it reaches the lower cutoff potential of 2.0 V. Being capable of 

inserting one complete Li+ ion per formula unit, it provides a specific discharge 

capacity of about 116 mAh.g–1 for the active material. One possible explanation 

for the small observed discharge capacity could be the presence of large grain sizes 
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in the as-synthesized compound and the existence of bulky NH4
+ ions in the 

interlayer space. Both these factors have the tendency to hinder the diffusion of Li+ 

ions in and out of the crystal during the cell operation (Figure 4). As depicted in 

Figure 4, the major calculated pathways for Li+ diffusion according to bond 

valence sum analysis, using the Bond_Str routine within the FullProf Suite,27 are 

located between the layers. 

 

 

Figure 3. (a) First cycle voltage-composition profiles for: 

(NH4)0.94Li0.06FePO4NO3, (NH4)075Li0.25FePO4NO3 and NH4FePO4NO3 at C/50. 

(b)The capacity retention for (NH4)0.75Li0.25FePO4NO3and NH4FePO4NO3.at 

various C-rates. 
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Occupation of these paths by NH4
+ groups effectively blocks Li+ diffusion 

leading to low utilization of theoretical capacity. To alleviate this problem, 

aqueous ion-exchange (IEX) method was utilized to exchange the ammonium ions 

topotactically with Li+. With the employed IEX conditions (see Experimental 

Section), it was found that the Li content of the compound can be increased rapidly 

from 6 to 25 % mole fraction in the first 5 h of the IEX (Supporting Information, 

Figure S8). 

 

 

Figure 4. Calculated BVS isosurface at the value 1.0 for Li+ in NH4FePO4NO3 

along (a) [100]; and (b) [010]. Polyhedral guide, blue: FeO6, green: PO4, red: NO3. 

NH4
+ ions have been removed for clarity of visualization. 

 

However, the material resisted against further ion exchange and extending 

IEX time decreased the Li content gradually. This has been assigned to the slow 

dissolution of nitrate and subsequent phase transformation to 

Fe5(PO4)4(OH)3·2H2O, as it was evident from powder XRD pattern of the IEX 

sample after 40 h (Supporting Information,  Figure S9). The resistance of the 

(NH4)0.75Li0.25FePO4NO3 phase for further exchange of Li+ with NH4
+ ions also 

suggests the instability of pure LiFePO4NO3 phase as seen in the DFT results.  

Despite the incomplete exchange between NH4
+ and Li+ ions after 5 h, 

repeating the charge-discharge studies on the ion-exchanged sample, 

(NH4)0.75Li0.25FePO4NO3, reveals a significant improvement in the discharge 



144 

 

capacity, as almost 80% of the theoretical capacity can be obtained during the first 

cycle (Figure 3(a)). Moreover, complete capacity utilization has also been 

observed for the ion-exchanged sample at 40 °C at a C-rate of C/100, implying the 

existence of thermally activated processes (ionic diffusion and charge transfer). 

The ion-exchanged sample exhibits an average voltage of 2.9 V, comparable to the 

Li3FePO4CO3.
11 

Study of electrochemical insertion of Li+ in pure NH4FePO4NO3 exhibits a 

76% of theoretical capacity utilization during the first cycle (Figure 3(a)). This 

substantial capacity achievement compared to as-synthesized 

(NH4)0.94Li0.06FePO4NO3 has been assigned to a very fine crystallite formation 

during the synthesis, as evident from the broad Bragg’s peak of the NH4FePO4NO3 

phase (Supporting Information, Figure S3) and the particle size comparison 

analyses of the as-synthesized NH4FePO4NO3 and (NH4)0.94Li0.06FePO4NO3 

phases, through SEM imaging (Supporting Information, Figure S10). Moreover, a 

close inspection of the flat discharge profile indicates that lithiation of pure 

NH4FePO4NO3 follows a two-phase reaction mechanism, as opposed to the ion-

exchanged (NH4)0.75Li0.25FePO4NO3 phase. However, on the start of the second 

discharge the voltage-composition curve mimics the sloppy nature of the 

(NH4)0.75Li0.25FePO4NO3 phase (Supporting Information, Fig. S11), indicating an 

irreversible solid-solution formation during the first cycle. The lower capacity 

achieved in the case of (NH4)0.94Li0.06FePO4NO3 may be also due to formation of 

more stable Li+—NH4
+ ordered mixed cationic phase, compared to the pure 

NH4FePO4NO3 as observed previously for cation ordering in mixed Na1-

xLixNi0.5Mn0.5O2 and generally in cation-vacancy ordering in alkali transition metal 

oxides.28,29 On the other hand breaking of such ordering in 

(NH4)0.94Li0.06FePO4NO3, through compositional change induced by Li+ ion 

exchange as in (NH4)0.75Li0.25FePO4NO3 may create a phase which suffers less 

from preferred ordering of cations resulting in improved electrochemical 

performance. The results for the capacity retention for both phases are given in the 

inset of Figure 3(b). 
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The two phases lose some 20% of their capacity irreversibly at the end of 

the first cycle; however, as the cells are subjected to charge-discharge tests at 

higher C-rates, both phases lose some capacity due to kinetically induced ionic and 

electronic polarization factors; however, NH4FePO4NO3 loses its capacity much 

more rapidly compared to the ion-exchanged phase. As the cells are returned to the 

slow C/50 rate (cycles 17-20), (NH4)0.75Li0.25FePO4NO3 recovers the initial second 

cycle capacity (~73 mAh.g-1), unlike the NH4FePO4NO3, showing only 38 mAh.g-

1. The results of capacity retention suggest that even after 70 cycles at C/10, 

(NH4)0.75Li0.25FePO4NO3 exhibits no capacity loss (compared to the cycles 9-12) 

due to aging processes, while the achievable capacity for the pure ammonium 

phase becomes negligible under similar condition. This reconfirms the added 

diffusion resistance induced by ammonium ions, as discussed previously. Another 

noticeable feature of the ion-exchanged phase is that the discharge voltage is at 

least 0.15 V higher than the pure ammonium phase.   

Following the reversible electrochemical intercalation of Li+ ions in 

(NH4)0.75Li0.25FePO4NO3 host structure, the activity of the phase has been tested 

for Na+ insertion in a Na-ion cell setup (Figure 5). 

The voltage-composition curves for sodiation share common features with 

the lithium insertion experiments. However, sodiation starts at the lower potential 

of 2.7 V (vs. Na+/Na) as a result of lower (absolute value) reduction potential of 

sodium compared to the lithium (-2.71 vs. -3.04 wrt. SHE, respectively). 

The (de)intercalation process advances through a sloppy profile, evidencing 

solid-solution formation between the end members. The capacity retention curve 

(Figure 5-inset) demonstrates that the Na-ion cell retains 80% of its capacity after 

going through a series of relatively higher C-rate charge-discharge tests. However, 

the performance is inferior to Li-ion cell, especially at high C-rates as a result of 

larger Na+ ionic radii and consequently slower diffusion kinetics. 

Ex Situ Mӧssbauer Spectroscopy. Mössbauer spectroscopy has been 

utilized as an ex situ technique to follow the changes in the oxidation state and 

local environment of redox active iron center in the (NH4)0.75Li0.25FePO4NO3 and 

the electrochemically lithiated materials (Figure 6). The asymmetry observed in 
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the absorption bands of (NH4)0.75Li0.25FePO4NO3 (Figure 6a) indicates large 

chemical disorder in the local environment of Fe(III) centers, probably due to the 

mixing of Li+ and NH4
+ leading to stacking faults of the layers. In addition, the 

preferred orientation of the crystallites as also observed in Rietveld refinement can 

cause asymmetry in the Mössbauer spectrum.30 Therefore, two doublets were used 

for Lorentzian fitting of the observed intensity data, but only the overall fit is 

shown in Figure 6a. 

 

 

Figure 5. Voltage-composition profiles of (NH4)0.75Li0.25FePO4NO3 phase cathode 

in a Na-ion cell at C/50. Inset shows the capacity retention at various C-rates. 

 

The Mössbauer spectrum of the lithiated phase at the end of C/10 discharge 

is shown in Figure 6b. The emergence of an absorption band at higher chemical 

shift and quadrupole splitting confirms the reduction of Fe(III) to Fe(II). Again, the 

local disorder for Fe(II) is evident from the broadness of the absorption doublet, 

and suggests that all Fe(III) sites contribute to reduction during cell discharge. 

Details of the chemical shift and quadrupole splitting for the Mössbauer spectra are 

provided in Table 6 and the values are typical for Fe(III) and Fe(II) in high-spin 

configuration in oxidic materials.31 

CONCLUSION 

In conclusion, we have successfully theoretically predicted and experimentally realized a 

new family of mixed polyanionic solid combining nitrate and phosphate into one 

structure. Electrochemical studies indicate these phosphatonitrates are electrochemically 

active with respect to insertion and deinsertion of lithium and sodium ions.  Ease of 
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synthesis, good reversibility and flexible framework, which is able to accommodate 

different alkali ions will instigate exploration of synthesis with other metals such as Mn, 

which can improve the insertion voltage and can undergo more facile two electron 

process for eventual practical applications. 

 

 

Figure 6. Mössbauer spectrum of (NH4)0.75Li0.25FePO4NO3 (a), and 

electrochemically lithiated (NH4)1-xLix+δFePO4NO3 (b). 

 

 

Table 6. Values of chemical shift (C.S.), quadrupole splitting (Q.S.), and 

population analysis of the ion-exchanged sample (NH4)0.75Li0.25FePO4NO3 and the 

respective electrochemically reduced phase, (NH4)0.75Li0.25+xFePO4NO3 

 (NH4)0.75Li0.25FePO4NO3 

 C.S. (mm.s-1) Q.S. (mm.s-1) Site % 

Fe(III) Site 1 0.390(4) 1.121(9) 70.4(3) 

Fe(III) Site 2 0.412(9) 0.607(2) 29.6(3) 

(NH4)0.75Li0.25+xFePO4NO3 
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Table 6. Values of chemical shift (C.S.), quadrupole splitting (Q.S.), and population 

analysis of the ion-exchanged sample (NH4)0.75Li0.25FePO4NO3 and the respective 
electrochemically reduced phase, (NH4)0.75Li0.25+xFePO4NO3 (cont.) 

 C.S. (mm.s-1) Q.S. (mm.s-1) Site % 

Fe(III) site 1 0.376(6) 1.047(3) 54.4(1) 

Fe(II) site 2 1.218(1) 2.173(1) 45.6(1) 
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2. CONCLUSION 

The transition metal polyanion chemistry is a fertile area of soli-state 

synthesis. This is mainly due to the vast possible number of combinations between 

the transition metals and polyanionic moieties. Unlike organic materials, there are 

not many firmly established rules for the synthesis of inorganic solid-state 

materials. Despite the fast growing first principle computational methods for 

predicting the stable phases at a fixed composition for a given set of empirical 

conditions, exploratory synthesis using chemical intuition and trial-and-error based 

methods are still the widely used synthetic strategies for finding new materials in 

this area. On the other hand, this provides an opportunity for solid-state chemists to 

investigate into the unexplored area by focusing on combinations where the 

products may have potential usage for a particular application, in this case solid-

state electrodes for alkali-ion batteries. In most of the new materials discovered in 

this work, low melting fluxes were used as a medium to dissolve the precursors 

and/or reagents to grow crystals. Avoiding water as the solvent in hydrothermal 

syntheses, creates the condition required to move away from most 

thermodynamically stable phases and come close toward the meta-stable ones. 

Moreover, avoiding water as the solvent eliminates the possibility of 

coordination of hydroxide ligand, which competes with other ligands for transition 

metal coordination. This in turn increases the chances of finding new phases by 

providing new compositional opportunities. 

The diversity expected from polyanion chemistry is well reflected in the 

reactions containing iron and phosphorous acid, where it was found that the choice 

of the iron precursor’s oxidation state (ferric, ferrous) and type (nitrate, chloride, 

oxide) will determine the fate of the product formed. Regarding the 

electrochemical properties of the phosphite containing phases, it is expected that 

due to the lower oxidation state of the phosphorous atom in the phosphite (+3) 

compared to the phosphate (+5), the increase in the Fe2+/Fe3+ redox potential is 

weakened compared to the phosphate phases; however, it was experimentally 

found that due to structural reasons, the average cell voltages observed for 
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Li3Fe2(HPO3)3Cl and LiFe(HPO3)2 is within those observed for some phosphate-

based materials, surpassing some others, among them tavorite LiFePO4(OH)1-xFx 

can be mentioned. 

Even though exploratory synthesis is believed to be the major tool for 

finding the new compositions, the rational design of new materials by appropriate 

utilization of existing information opens up another avenue for making new 

materials. This approach seeks new compositions from chemical and structural 

similarities between the already known materials and prospective ones. In this 

regard ab initio quantum mechanical modelling can be quite useful for comparison 

of the expected formation energies for certain structures with various 

compositions. Both of these approaches has been implemented in this work for the 

formation of Li0.8Fe(H2O)2B[P2O8]•H2O and AFePO4NO3 (A: NH4/Li, K). These 

phases have been prepared based on previous knowledge from 

AFe(H2O)2B[P2O8]•H2O (A: Na, K) and AMPO4CO3 (A: Li, Na; M: metal in +2 

oxidation state). 

This work has essentially focused on the synthesis of novel polyanionic 

compounds of iron which can reversibly intercalate Li+ and Na+ ions for Li-ion and 

Na-ion batteries. The conclusions drawn from each paper has been summarized in 

the following: 

The crystal structure of tavorite LiFePO4OH has been reported for the first 

time from Single-Crystal XRD, complementing the available data from powder 

XRD and neutron diffraction information. Moreover, a new scalable synthetic 

method has been proposed for the production of tavorite, LiFePO4F, based on low-

cost eutectic salt melts. LiFePO4OH and LiFePO4F have been shown to exist as a 

solid-solution over the whole range, LiFePO4F1-x(OH)x, (0≤ x ≤ 1). The Fe2+/Fe3+ 

redox couple in iron tavorite is located between 2.5 to 2.9 V vs Li+/Li (theoretical 

capacity 150 mAh.g-1) and is strongly affected by the amount of fluoride anion 

coordinated to the iron center. Furthermore, electro-impedance measurements 

suggested that the mixed solid-solution phase, LiFePO4F1-x(OH)x, exhibit the best 

high C-rate performance as a result of small particle size and Li—OH/F attractions 

intermediate between those of pure OH and F versions. 
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The new Li3Fe2(HPO3)3Cl phase has been formed using the reaction 

between ferrous chloride, lithium hydroxide and phosphorous acid. This reaction 

shows the possibility of using phosphorous acid as a melt and reagent at the same 

time. Of the two theoretically removable Li+ ions per formula unit (theoretical 

capacity 131.4 mAh.g-1), only one could be reversibly de-intercalated in the safe 

potential window of the electrolyte. The insertion occurs at a potential of ca 3.1 V 

vs Li+/Li and demonstrates the inductive effect of the chloride ligand. Moreover 

the studies of the cell performances demonstrate the high Li-ion kinetics, which is 

further studied through variable temperature AC-impedance measurements. Finally 

Li3Fe2(HPO3)3Cl exhibits antiferromagnetic ordering of magnetic moments on Fe 

centers below 10 K with an unusual metamagnetic transition with an onset at a 

field strength of 3 T. 

As a second phosphite containing phase we have demonstrated the synthesis 

and crystal structure of LiFe(HPO3)2 which has been obtained through a solvent-

less  reaction between iron oxide, lithium hydroxide and phosphorous acid. The 

crystal structure exhibits large diffusion channels in all 3 directions along the 

crystallographic axes, with a theoretical capacity of 120 mAh.g-1 per formula unit. 

The iron center can be reduced by insertion of 0.3 Li+ ions at an average voltage of 

3.0 V. However, a deeper discharge with intercalation of 0.6 Li+ ions requires a 

higher temperature of 40 °C, indicating the existence of thermally activated 

processes (electronic/ionic conduction). Quite interestingly the cells exhibit 

capacity gain on successive charge-discharge tests even after 1000 cycles (up to 

200 cycles shown in the paper) underpinning their appropriateness for stationary 

applications where cost and cycle-life overrides the high energy density. 

The new Li-containing Li0.8Fe(H2O)2B[P2O8]•H2O has been synthesized 

using phosphoric acid and boric acid under hydrothermal conditions. The 

compound crystallizes in the non-centrosymmetric space group, P6522, and display 

a theoretical capacity of 87.5 mAh.g-1. The crystal structure of the chemically 

delithiated phase, Fe(H2O)2B[P2O8]•H2O, has been solved by employing ab initio 

methods from synchrotron powder XRD which shows no phase transformation 

with respect to the lithiated phase. The lithiation and sodiation of the host has been 



155 

 

tested in Li-ion and Na-ion cells which exhibit reversible 0.8 alkali-ion 

(de)intercalation at an average voltage of 3.06 and 2.76 V, respectively. Moreover 

the differences in kinetics due to the Li+ and Na+ insertion has been studied using 

in-situ AC-impedance spectrometry, which demonstrated the sluggish nature of 

Na+ insertion compared to the Li+ ion counterpart. 

Finally, AFePO4NO3 (A=NH4/Li, K) has been obtained by a combination of  

DFT based computational methods and experimental synthesis. The results of the 

DFT prediction suggests that FePO4NO3 host may be stabilized only with NH4
+ 

and K+ ions, but not Li+ or Na+, per se. Accordingly NH4FePO4NO3 and 

KFePO4NO3 has been obtained using nitrate-based fluxes. Moreover 

NH4FePO4NO3 may be obtained as a solid solution with Li+ ions by adding Li+ 

during synthesis and by subsequent ion-exchange. The crystal structures of (NH4)1-

xLixFePO4NO3 and KFePO4NO3 have been solved from synchrotron powder XRD 

and Single-Crystal XRD, respectively, and reveal the structural similarity of these 

phases to the previously discovered carbonophosphates, AMPO4CO3. The 

performance of Li-ion and Na-ion cells with the (NH4)1-xLixFePO4NO3 cathode has 

been evaluated, which in either case shows almost 80% of theoretical capacity 

(116 mAh.g-1) achieved at an average voltage of 2.9 and 2.5 V, respectively. 

Despite the relatively low capacity and voltage of (NH4)1-xLixFePO4NO3 compared 

to the olivine LiFePO4, the ease (beaker and oven) and fast (<2h) synthesis and 

widely available low-cost starting materials (FePO4•xH2O and NH4NO3) and 

exceptionally good cycle life make this material as a candidate for large scale 

electrochemical energy storage applications. 
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APPENDIX A: 

SUPPLEMENTARY INFORMATION 

Phosphorous Acid Route Synthesis of Iron Tavorite Phases, LiFePO4(OH)xF1-x [0≤ x 

≤1] and Comparative Study of Their Electrochemical Activities 
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Figure S1. First 3 cycles of CV for the three iron tavorite phases. 
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APPENDIX B: 

SUPPLEMENTARY INFORMATION 

Li3Fe2(HPO3)3Cl: An Electroactive Iron Phosphite As a New Polyanionic Cathode 

Material for Li-ion Battery 
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Figure S1. χmT versus T plot indicating the antiferromagnetic behavior of 

Li3Fe2(HPO3)3Cl phase at low temperatures. 

 

 

 

Figure S2. Cyclic voltammograms of Li3Fe2(HPO3)3Cl cathode with scanning to 

the lower vertex potential initially. 
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Figure S3. Voltage-charge derivative curve versus potential for discharge (blue) 

and charge (red) steps of Li3Fe2(HPO3)3Cl cathode material. 

 

 

.  

Figure S4. PXRD Rietveld refinement of Li3Fe2(HPO3)3Cl phase after subjected to 

charge to 4.5 V vs. Li+/Li. 
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Table S1. Impedance Fit Parameters for the equivalent circuit shown in Figure 12 

Temperature 

(°C) 
L1 (H) 

R1 

(Ω) 

R2 

(Ω) 

CPE1-T 

(F) 

CPE1-

P 

W1-R 

(Ω) 

W1-τ 

(s) 
W1-P 

23 4.1×10-6 11.8 341.5 5.35×10-5 0.64 6039 204.4 0.70 

29 8.8×10-6 9.9 303.3 1.09×10-4 0.55 5295 206.5 0.71 

33 7.8×10-6 8.2 259.5 7.44×10-5 0.62 4707 206.3 0.70 

36 7.1×10-6 7.5 254.4 7.43×10-5 0.62 4634 205.2 0.70 

40 6.5×10-6 6.3 236.1 8.64×10-5 0.61 4234 202.8 0.70 

45 4.9×10-6 5.4 215.6 1.18×10-4 0.59 3733 202.6 0.70 

50 6.3×10-6 4.7 206.5 1.43×10-4 0.58 3337 198.2 0.70 

𝑍𝑤𝑠 =
𝑅𝑊×𝑡𝑎𝑛ℎ(𝑗𝜔𝜏)

𝑃

(𝑗𝜔𝜏)𝑃
 where 𝜏 = 𝐿

2

𝐷⁄  and L and D are effective diffusion length and 

diffusion coefficients, respectively. 
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APPENDIX C: 

SUPPLEMENTARY INFORMATION 

Phosphite as Polyanion-based Cathode for Li-ion Battery: Synthesis, Structure and 

Electrochemistry of LiFe(HPO3)2
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Figure S1. PXRD of the active material milled with carbon, showing the retention 

of crystal structure of LiFe(HPO3)2 during the cathode mix preparation. 

 

 

 

Figure S2. SEM micrographs of LiFe(HPO3)2 phase ball-milled with carbon for 2 

hours prior to composite cathode preparation. 
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Figure S3. PXRD of the synthesis mixture with the unknown impurity phase(s) 

marked with star. 

 

 

 

Figure S4. Time parameter optimization during the synthesis of LiFe(HPO3)2. 

Traces of another impurity peaks vanishes after72 hours (boxed area). 
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Figure S5. PXRD of the reduced cathode mix after breaking the button cells, when the 

cells were discharged. The retention of crystal structure of LiFe(HPO3)2 in evident in the 

PXRD pattern. 
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APPENDIX D: 

SUPPLEMENTARY INFORMATION 

Iron Borophosphate as Potential Cathode for Lithium and Sodium-ion 

Batteries
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Figure S1.  Acquired and calculated powder XRD patterns of 

Li0.8Fe(H2O)2[BP2O8]·H2O. 

 

 

Figure S2. FT-IR spectra of Li0.8Fe(H2O)2[BP2O8]·H2O and its chemically 

oxidized phase. 
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Figure S3. Mössbauer spectra of the LixFe(H2O)2[BP2O8].H2O cathode at various 

state-of-charge (SOC); (a) Charged to 4.0 V; (b) Discharged to 3.0 V; (c) 

Discharged to 2.0 V. 

(a) 

(b) 

(c) 
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Figure S4. Pawley refinement on the unit cell parameters of the reduced 

(discharged) Na-ion cell cathode. The observed Al (200) and (220) reflections 

marked with stars (from the current collector) were used as an internal standard for 

2θ axis calibration. 
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Figure S5. EDS elemental mapping of the sodium intercalated (discharged) active 

material particle on the cathode film retrieved from the Na-ion cell. Fluorine 

originates from PVDF binder. 
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Figure S6. Phase Bode plot of the impedance curves acquired on Li- and Na-ion 

cells in charged and discharged states, respectively. 

 

 

Table S1. Atomic coordinates and isotropic thermal parameter obtained via 

Rietveld refinement of Fe(H2O)2[BP2O8]·H2O Powder XRD pattern 

label 
Wyckof

f 

Multiplicit

y 
x y z S.O.F. Uiso. (Å2) 

Fe1 6b 6 0.553(6) 0.446(3) 0.083333 1 0.007(2) 

P1 12c 12 0.171(3) 0.383(2) 0.080(6) 1 0.005(7) 

B1 6b 6 0.848(4) 0.152(4) 0.083333 1 0.029(4) 

O1 12c 12 0.174(1) 0.414(1) 0.179(1) 1 0.009(9) 

O2 12c 12 0.026(4) 0.212(6) 0.062(8) 1 0.009(8) 

O3 12c 12 0.141(7) 0.510(1) 0.036(9) 1 0.009(8) 

O4 12c 12 0.327(6) 0.384(9) 0.053(2) 1 0.009(8) 

O5 12c 12 0.486(4) 0.202(7) 0.051(6) 1 0.009(8) 

O1W 6b 6 0.202(3) 0.101(1) 0.91666 1 0.17(4) 
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Table S2. The values for the Isomer Shift (IS) and Quadrupole Splitting (Q.S.) and 

site population of the iron sites obtained from Lorentzian fits of Mössbauer spectra 

of LixFe(H2O)2[BP2O8].H2O cathode at different potentials 

Potential 

vs. 

Li+/Li 

 
I.S. 

(mm.s-1) 

Q.S. 

(mm.s-1) 

Site 

% 

4.0 V 

Doublet 1 0.4036 0.6241 68.8 

Doublet 2 

(Average) 
1.2955 1.8989 31.2 

3.0 V 

Doublet 1 0.3779 0.7211 47.7 

Doublet 2 

(Average) 
1.2860 1.9899 52.3 

2.0 V 

Doublet 1 0.3611 0.8592 34.0 

Doublet 2 

(Average) 
1.2655 1.9787 66.0 

 

 

Table S3. Lattice parameters refinement of the reduced cathode retrieved from the 

discharged Na-ion cell 

a b c Space group Volume 

9.495(3) 9.495(3) 15.881(7) P6522 1240.1(1) 
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Table S4. Li- and Na-ion cell Impedance fit data at charged and discharged states 
   High frequency Mid frequency Low frequency 

 

L1 (H) 

 

R1 (Ω) 

 

R2 (Ω) 

CPE1a  

R3 (Ω) 

CPE2  

R4 (Ω) 

CPE3 

T (sP.Ω-1) P T (sP.Ω-1) P T (sP.Ω-1) P 

Li-ion cell 4.0 V 1.70x10-6 6.4 1.12x102 1.92x10-5 0.82 2.10x103 4.20x10-5 0.70 6.00x103 2.30x10-3 0.71 

Na-ion cell 4.0 1.30x10-6 9.5 3.28x1002 2.28x10-5 0.74 2.50x103 2.77x10-5 0.85 2.13x104 2.06x10-3 0.75 

Li-ion cell 2.0 V 2.20x10-6 3.7 2.80x1002 2.70x10-5 0.77 1.00x104 9.20x10-5 0.64 2.80x104 6.90x10-3 0.95 

Na-ion cell 1.5 V 7.80x10-8 10.5 1.44x1002 1.97x10-5 0.85 2.81x104 4.07x10-5 0.74 Not Obs. Not Obs. Not Obs. 

a 𝒁𝑪𝑷𝑬 =
𝟏

𝑻(𝒊𝝎)𝑷
 

 

Table S5. Ionic conductivity measurements on pressed pellet of Li0.8Fe(H2O)2[BP2O8]·H2O 
 Bulk grain boundary blocking electrode 

 R1  (Ω) CPE1 R2  (Ω) CPE2 CPE3 

T (K) T (sP.Ω-1) P T (sP.Ω-1) P T (sP.Ω-1) P 

303.95 7ta.46x106 4.43x10-10 0.72 2.51x107 8.83x10-9 0.66 8.06x10-8 0.68 

308.85 5.95x106 5.89x10-10 0.70 1.91x107 9.58x10-9 0.68 1.42x10-7 0.73 

313.65 4.17x106 6.78x10-10 0.70 1.62x107 1.10x10-8 0.67 6.93x10-8 0.94 

318.15 3.29x106 8.80x10-10 0.69 7.91x106 1.06x10-8 0.75 1.70x10-8 0.70 

323.65 2.58x106 1.03x10-9 0.68 5.91x106 1.22x10-8 0.74 1.90x10-7 0.62 

328.55 1.94x106 1.30x10-9 0.67 3.27x106 1.23x10-8 0.8 2.16x10-7 0.51 

333.75 1.51x106 1.34x10-9 0.68 2.37x106 1.48x10-8 0.78 2.76x10-7 0.44 

338.75 1.25x106 1.60x10-9 0.67 1.94x106 1.50x10-8 0.8 3.26x10-7 0.43 

1
7
3
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APPENDIX E: 

SUPPLEMENTARY INFORMATION 

A Combined Theoretical and Experimental Approach to the Discovery of Mixed 

Polyanionic Phosphatonitrates, AFePO4NO3 (A = NH4/Li, K) 
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Functional testing and computational method details: 

The accuracy of the employed PBE functional and other parameters for calculating the 

energy states have been checked by calculating the sodiation potential of Na2FePO4CO3 

according to the following scheme, with the self-consistence energies reported: 

𝑁𝑎2𝐹𝑒𝑃𝑂4𝐶𝑂3          +         𝑁𝑎 →             𝑁𝑎3𝐹𝑒𝑃𝑂4𝐶𝑂3 

 E (Ry)/formula unit:     -695.311645        -96.14465        -791.657529  

Assuming ΔG≈ΔE, one would get an average energy difference of 2.74 eV/formula unit 

for sodiation of bonshtedtite, which matches acceptably with the experimental average 

sodium cell voltage of 2.7 V [I]. Due to the high level of agreement between the calculated 

and observed energies no Hubbard-type +U correction found necessary with the above 

setup, as we found over-estimated energies with USPPs and DFT+U calculations. 

For the self-consistent field (SCF) energy optimization runs for calculating the 

ground state energy of reactants and the proposed phosphatonitrate products the exact 

optimized parameters as above have been used. The crystal information and atomic 

coordinates for FePO4 (AlPO4 structure type), LiNO3, β-KNO3, NaNO3 were taken as the 

closest stable phases in the reaction temperature employed. For NH4NO3 however, the 

crystal information of the 32.3—84.2 °C stable phase (phase (IV)) has been fed into the 

computational method as the high temperature NH4NO3 (phase I) exhibits a high degree of 

disorder and lacks some atomic coordinates due to the free rotation of NH4 and to a lesser 

extent NO3 moieties in the unit cell. Despite this the phase (IV) to phase (I) transformation 

enthalpy correction were applied to the calculated total energy, which is anyway negligible 

compared to the SCF value (+7.431 vs. -117.508 kJ.mol-1). All the crystal information and 

atomic coordinates have been taken from Inorganic Crystal Structure Database (ICSD). 
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Experimental results 

 

 

Figure S1. Powder XRD patterns exhibiting dehydration of FePO4.4H2O to the 

trigonal (AlPO4 structure type) FePO4 as a function of temperature. 

 

 

 

Figure S2. Time-evolution of (NH4)0.94Li0.06FePO4NO3 synthesis as observed 

through ex-situ PXRD. 
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Figure S3. Demonstration of the lithium/ammonium site mixing on the crystallinity 

of phase. 

 

 

 

Figure S4. PXRD analysis of the KFePO4NO3 synthesis product. 
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Figure S5. Thermo-gravimetric analysis of the as-synthesized 

(NH4)0.94Li0.06FePO4NO3. 

 

 

 

Figure S6. Post-TGA PXRD pattern of (NH4)0.94Li0.06FePO4NO3 demonstrating 

decomposition of the phosphatonitrate phase to black FePO4 and Fe7(PO4)6. 
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Figure S7. FT-IR spectrum of the as-synthesized (NH4)0.94Li0.06FePO4NO3 phase. 

 

 

 

Figure S8. Atomic absorption spectrometric (AAS) measurement of Li content in 

(NH4)1-xLixFePO4NO3 as a function of Li+/NH4
+ ion-exchange time. 
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Figure S9. Powder XRD pattern of the (NH4)0.94Li0.06FePO4NO3/LiNO3 ion-

exchange reaction after 40 h. 

 

 

 

Figure S10. SEM micrographs of as-synthesized (NH4)1-xLixFePO4NO3 (a); and 

NH4FePO4NO3 (b). 
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Figure S11. First and second galvanostatic discharge voltage profile of 

NH4FePO4NO3 in Li-ion cell indicating an irreversible phase change following the 

first cycle lithiation. 
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